You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using PyTorch version 2.0.0+cu117 and torch_geometric version 2.3.0
And this is the error I get:
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.x
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.tx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.allx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.y
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ty
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ally
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.graph
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.test.index
Processing...
----------------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [11], in <cell line: 2>()
1 # Download the 'Cora' dataset and cache it in the local './data' directory
----> 2 dataset = Planetoid(root="./data", name='Cora')
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\datasets\planetoid.py:92, in Planetoid.__init__(self, root, name, split, num_train_per_class, num_val, num_test, transform, pre_transform)
89 self.split = split.lower()
90 assert self.split in ['public', 'full', 'geom-gcn', 'random']
---> 92 super().__init__(root, transform, pre_transform)
93 self.data, self.slices = torch.load(self.processed_paths[0])
95 if split == 'full':
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\data\in_memory_dataset.py:57, in InMemoryDataset.__init__(self, root, transform, pre_transform, pre_filter, log)
49 def __init__(
50 self,
51 root: Optional[str] = None,
(...)
55 log: bool = True,
56 ):
---> 57 super().__init__(root, transform, pre_transform, pre_filter, log)
58 self._data = None
59 self.slices = None
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\data\dataset.py:97, in Dataset.__init__(self, root, transform, pre_transform, pre_filter, log)
94 self._download()
96 if self.has_process:
---> 97 self._process()
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\data\dataset.py:230, in Dataset._process(self)
227 print('Processing...', file=sys.stderr)
229 makedirs(self.processed_dir)
--> 230 self.process()
232 path = osp.join(self.processed_dir, 'pre_transform.pt')
233 torch.save(_repr(self.pre_transform), path)
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\datasets\planetoid.py:150, in Planetoid.process(self)
149 def process(self):
--> 150 data = read_planetoid_data(self.raw_dir, self.name)
152 if self.split == 'geom-gcn':
153 train_masks, val_masks, test_masks = [], [], []
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\io\planetoid.py:21, in read_planetoid_data(folder, prefix)
19 def read_planetoid_data(folder, prefix):
20 names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
---> 21 items = [read_file(folder, prefix, name) for name in names]
22 x, tx, allx, y, ty, ally, graph, test_index = items
23 train_index = torch.arange(y.size(0), dtype=torch.long)
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\io\planetoid.py:21, in <listcomp>(.0)
19 def read_planetoid_data(folder, prefix):
20 names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
---> 21 items = [read_file(folder, prefix, name) for name in names]
22 x, tx, allx, y, ty, ally, graph, test_index = items
23 train_index = torch.arange(y.size(0), dtype=torch.long)
File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\torch_geometric\io\planetoid.py:106, in read_file(folder, prefix, name)
103 return out
105 out = out.todense() if hasattr(out, 'todense') else out
--> 106 out = torch.Tensor(out)
107 return out
ValueError: too many dimensions 'matrix'
Environment
PyG version: 2.3.0
PyTorch version: 2.0.0+cu117
OS: Windows 11
Python version: 3.10.6
CUDA/cuDNN version: 11.4
How you installed PyTorch and PyG (conda, pip, source): pip
Any other relevant information (e.g., version of torch-scatter):
torch_scatter-2.1.1+pt20cpu
torch_sparse-0.6.17+pt20cpu
torch_spline_conv-1.2.2+pt20cpu
The text was updated successfully, but these errors were encountered:
🐛 Describe the bug
Hello community,
when I try to load a dataset from the
torch_geometric.datasets
package I get an error.This is my code:
I am using PyTorch version
2.0.0+cu117
and torch_geometric version2.3.0
And this is the error I get:
Environment
conda
,pip
, source): piptorch-scatter
):torch_scatter-2.1.1+pt20cpu
torch_sparse-0.6.17+pt20cpu
torch_spline_conv-1.2.2+pt20cpu
The text was updated successfully, but these errors were encountered: