-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayers.py
163 lines (128 loc) · 5.66 KB
/
players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import copy
import os
from sklearn.preprocessing import OneHotEncoder
class Player:
def __init__(self, symbol, *args, **kwargs):
self.symbol = symbol
assert self.symbol in ["X",
"O"], "unsupported symbol %s, the only possible symbols supported now are X and O" % self.symbol
def move(self, *args, **kwargs):
raise NotImplementedError()
class RandomPlayer(Player):
def move(self, valid_moves, *args, **kwargs):
ind = np.random.uniform(0, len(valid_moves) - 1)
move = valid_moves[int(ind)]
print(move)
return move
class HumanPlayer(Player):
def move(self, valid_moves, *args, **kwargs):
return input("please enter the move: ")
class MiniMaxPlayer(Player):
_MAPPING_GAME = {
'win': 1,
'draw': 0
}
def __init__(self, symbol, other_player):
self.other = other_player
self.moves_scores = None
super(MiniMaxPlayer, self).__init__(symbol)
def move(self, valid_moves, board, *args, **kwargs):
score, move, mapping_move_scores = self._evaluate_best_move(valid_moves, board, self, 1, 0)
self.moves_scores = mapping_move_scores
return move
def _evaluate_best_move(self, valid_moves, board, player, multiplier, i):
scores_moves = list()
mapping_moves_scores = dict()
min_or_max = [max, min] # apply min or max according to which player move is being evaluated
for move in valid_moves:
# create copy of the board
board_copy = copy.deepcopy(board)
board_copy.update_board(move, player)
is_over, result = board_copy.is_game_over(player)
if is_over:
score = self._MAPPING_GAME[result] * multiplier
else:
new_player = self.other if player == self else self
new_multiplier = 1 if multiplier == -1 else -1
new_i = 0 if i == 1 else 1
score, _, _ = self._evaluate_best_move(board_copy.valid_moves, board_copy, new_player, new_multiplier,
new_i)
scores_moves.append(score)
mapping_moves_scores[move] = score
min_or_max_score = min_or_max[i](scores_moves)
return min_or_max_score, valid_moves[scores_moves.index(min_or_max_score)], mapping_moves_scores
def _visualize_scores(self):
print(self.moves_scores)
class DLPlayer(Player):
def __init__(self, symbol):
"""
Look for file where model is saved otherwise train it!
"""
# check if file exists
super(DLPlayer, self).__init__(symbol)
target_file = os.path.join(os.path.dirname(__file__), 'trained_models', 'nn_model.h5')
if os.path.isfile(target_file):
from keras.models import load_model
self.nn = load_model(target_file)
else:
raise NotImplementedError('There is no saved models, you might want to train your own DL model and save it')
other_symbol = "O" if self.symbol == "X" else "X"
self._labels_encoding = {
' ': 0,
other_symbol: 1,
self.symbol: 2, # always need to map out player to X
}
self._moves_mapping = []
self._board = np.zeros(27)
def move(self, valid_moves, board, *args, **kwargs):
encoded_board = self._encode_board_status(board)
encoded_moves = self._encode_valid_moves(valid_moves)
all_boards = self._get_all_possible_board_states(encoded_board, encoded_moves)
one_hot_encoded_all = np.apply_along_axis(hot_encoded_board, 1, all_boards)
best_move_index = self.nn.predict(one_hot_encoded_all).argmax()
return valid_moves[best_move_index]
def _encode_valid_moves(self, moves):
return [self._map_move(move) for move in moves]
def _get_all_possible_board_states(self, encoded_board, encoded_valid_moves):
expanded_board = np.tile(encoded_board, (len(encoded_valid_moves), 1))
for i, move in enumerate(encoded_valid_moves):
expanded_board[i, move] = self._labels_encoding[self.symbol]
return expanded_board
def _encode_board_status(self, board):
target_array = self._flatten_board(board)
encoded_board = np.vectorize(self._labels_encoding.get)(target_array)
return encoded_board
def _hot_encoded_board(self, encoded_board):
new_board = np.copy(self._board)
for i, el in enumerate(encoded_board):
new_board[i * 3 + el] = 1
return new_board
def _flatten_board(self, board):
target_list = []
for _, l in board._board.items():
target_list += l
return np.array(target_list)
@staticmethod
def _map_move(move):
_map = {'A': 0, 'B': 3, 'C': 6}
row, col = move
return _map[row] + int(col) - 1
class MixedPlayer(Player):
"""
A class that will use the random player with probability 1-p and another (better) player with probability p.
It will be used to smooth the better player and have intermediate levels of difficulties between the two players
"""
def __init__(self, other_player, p):
self.p = p
self.players = [RandomPlayer(other_player.symbol), other_player]
self.symbol = other_player.symbol
def move(self, valid_moves, *args, **kwargs):
i = np.random.binomial(1, self.p)
return self.players[i].move(valid_moves, *args, **kwargs)
def hot_encoded_board(encoded_board):
new_board = np.zeros(18)
for i, el in enumerate(encoded_board):
if el != 0:
new_board[i * 2 + (el - 1)] = 1
return new_board