Skip to content

pydata/xarray

This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b510bdc · Feb 24, 2021
Jan 31, 2020
Feb 15, 2021
Feb 18, 2021
Feb 17, 2021
Feb 19, 2021
Jan 11, 2021
Jan 17, 2020
Feb 24, 2021
Jul 18, 2019
Dec 20, 2020
Jan 22, 2020
Jan 22, 2020
Jun 12, 2019
Feb 8, 2021
Jan 10, 2018
Jun 25, 2020
Sep 22, 2020
Sep 30, 2013
Jan 11, 2021
Oct 12, 2020
Jul 27, 2020
Jan 7, 2021
Feb 16, 2021
Aug 22, 2020

Repository files navigation

xarray: N-D labeled arrays and datasets

https://github.com/pydata/xarray/workflows/CI/badge.svg?branch=master https://readthedocs.org/projects/xray/badge/?version=latest https://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat

xarray (formerly xray) is an open source project and Python package that makes working with labelled multi-dimensional arrays simple, efficient, and fun!

Xarray introduces labels in the form of dimensions, coordinates and attributes on top of raw NumPy-like arrays, which allows for a more intuitive, more concise, and less error-prone developer experience. The package includes a large and growing library of domain-agnostic functions for advanced analytics and visualization with these data structures.

Xarray was inspired by and borrows heavily from pandas, the popular data analysis package focused on labelled tabular data. It is particularly tailored to working with netCDF files, which were the source of xarray's data model, and integrates tightly with dask for parallel computing.

Why xarray?

Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called "tensors") are an essential part of computational science. They are encountered in a wide range of fields, including physics, astronomy, geoscience, bioinformatics, engineering, finance, and deep learning. In Python, NumPy provides the fundamental data structure and API for working with raw ND arrays. However, real-world datasets are usually more than just raw numbers; they have labels which encode information about how the array values map to locations in space, time, etc.

Xarray doesn't just keep track of labels on arrays -- it uses them to provide a powerful and concise interface. For example:

  • Apply operations over dimensions by name: x.sum('time').
  • Select values by label instead of integer location: x.loc['2014-01-01'] or x.sel(time='2014-01-01').
  • Mathematical operations (e.g., x - y) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
  • Flexible split-apply-combine operations with groupby: x.groupby('time.dayofyear').mean().
  • Database like alignment based on coordinate labels that smoothly handles missing values: x, y = xr.align(x, y, join='outer').
  • Keep track of arbitrary metadata in the form of a Python dictionary: x.attrs.

Documentation

Learn more about xarray in its official documentation at https://xarray.pydata.org/

Contributing

You can find information about contributing to xarray at our Contributing page.

Get in touch

  • Ask usage questions ("How do I?") on StackOverflow.
  • Report bugs, suggest features or view the source code on GitHub.
  • For less well defined questions or ideas, or to announce other projects of interest to xarray users, use the mailing list.

NumFOCUS

https://numfocus.org/wp-content/uploads/2017/07/NumFocus_LRG.png

Xarray is a fiscally sponsored project of NumFOCUS, a nonprofit dedicated to supporting the open source scientific computing community. If you like Xarray and want to support our mission, please consider making a donation to support our efforts.

History

xarray is an evolution of an internal tool developed at The Climate Corporation. It was originally written by Climate Corp researchers Stephan Hoyer, Alex Kleeman and Eugene Brevdo and was released as open source in May 2014. The project was renamed from "xray" in January 2016. Xarray became a fiscally sponsored project of NumFOCUS in August 2018.

License

Copyright 2014-2019, xarray Developers

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

xarray bundles portions of pandas, NumPy and Seaborn, all of which are available under a "3-clause BSD" license: - pandas: setup.py, xarray/util/print_versions.py - NumPy: xarray/core/npcompat.py - Seaborn: _determine_cmap_params in xarray/core/plot/utils.py

xarray also bundles portions of CPython, which is available under the "Python Software Foundation License" in xarray/core/pycompat.py.

xarray uses icons from the icomoon package (free version), which is available under the "CC BY 4.0" license.

The full text of these licenses are included in the licenses directory.