-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathutils.py
995 lines (763 loc) · 27.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
"""Internal utilities; not for external use"""
from __future__ import annotations
import contextlib
import functools
import io
import itertools
import math
import os
import re
import sys
import warnings
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
Collection,
Container,
Generic,
Hashable,
Iterable,
Iterator,
Mapping,
MutableMapping,
MutableSet,
TypeVar,
cast,
overload,
)
import numpy as np
import pandas as pd
if TYPE_CHECKING:
from .types import ErrorOptionsWithWarn
K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")
def alias_message(old_name: str, new_name: str) -> str:
return f"{old_name} has been deprecated. Use {new_name} instead."
def alias_warning(old_name: str, new_name: str, stacklevel: int = 3) -> None:
warnings.warn(
alias_message(old_name, new_name), FutureWarning, stacklevel=stacklevel
)
def alias(obj: Callable[..., T], old_name: str) -> Callable[..., T]:
assert isinstance(old_name, str)
@functools.wraps(obj)
def wrapper(*args, **kwargs):
alias_warning(old_name, obj.__name__)
return obj(*args, **kwargs)
wrapper.__doc__ = alias_message(old_name, obj.__name__)
return wrapper
def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index:
from ..coding.cftimeindex import CFTimeIndex
if len(index) > 0 and index.dtype == "O":
try:
return CFTimeIndex(index)
except (ImportError, TypeError):
return index
else:
return index
def get_valid_numpy_dtype(array: np.ndarray | pd.Index):
"""Return a numpy compatible dtype from either
a numpy array or a pandas.Index.
Used for wrapping a pandas.Index as an xarray,Variable.
"""
if isinstance(array, pd.PeriodIndex):
dtype = np.dtype("O")
elif hasattr(array, "categories"):
# category isn't a real numpy dtype
dtype = array.categories.dtype # type: ignore[union-attr]
elif not is_valid_numpy_dtype(array.dtype):
dtype = np.dtype("O")
else:
dtype = array.dtype
return dtype
def maybe_coerce_to_str(index, original_coords):
"""maybe coerce a pandas Index back to a nunpy array of type str
pd.Index uses object-dtype to store str - try to avoid this for coords
"""
from . import dtypes
try:
result_type = dtypes.result_type(*original_coords)
except TypeError:
pass
else:
if result_type.kind in "SU":
index = np.asarray(index, dtype=result_type.type)
return index
def safe_cast_to_index(array: Any) -> pd.Index:
"""Given an array, safely cast it to a pandas.Index.
If it is already a pandas.Index, return it unchanged.
Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64,
this function will not attempt to do automatic type conversion but will
always return an index with dtype=object.
"""
if isinstance(array, pd.Index):
index = array
elif hasattr(array, "to_index"):
# xarray Variable
index = array.to_index()
elif hasattr(array, "to_pandas_index"):
# xarray Index
index = array.to_pandas_index()
elif hasattr(array, "array") and isinstance(array.array, pd.Index):
# xarray PandasIndexingAdapter
index = array.array
else:
kwargs = {}
if hasattr(array, "dtype") and array.dtype.kind == "O":
kwargs["dtype"] = object
index = pd.Index(np.asarray(array), **kwargs)
return _maybe_cast_to_cftimeindex(index)
def maybe_wrap_array(original, new_array):
"""Wrap a transformed array with __array_wrap__ if it can be done safely.
This lets us treat arbitrary functions that take and return ndarray objects
like ufuncs, as long as they return an array with the same shape.
"""
# in case func lost array's metadata
if isinstance(new_array, np.ndarray) and new_array.shape == original.shape:
return original.__array_wrap__(new_array)
else:
return new_array
def equivalent(first: T, second: T) -> bool:
"""Compare two objects for equivalence (identity or equality), using
array_equiv if either object is an ndarray. If both objects are lists,
equivalent is sequentially called on all the elements.
"""
# TODO: refactor to avoid circular import
from . import duck_array_ops
if first is second:
return True
if isinstance(first, np.ndarray) or isinstance(second, np.ndarray):
return duck_array_ops.array_equiv(first, second)
if isinstance(first, list) or isinstance(second, list):
return list_equiv(first, second)
return (first == second) or (pd.isnull(first) and pd.isnull(second))
def list_equiv(first, second):
equiv = True
if len(first) != len(second):
return False
else:
for f, s in zip(first, second):
equiv = equiv and equivalent(f, s)
return equiv
def peek_at(iterable: Iterable[T]) -> tuple[T, Iterator[T]]:
"""Returns the first value from iterable, as well as a new iterator with
the same content as the original iterable
"""
gen = iter(iterable)
peek = next(gen)
return peek, itertools.chain([peek], gen)
def update_safety_check(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> None:
"""Check the safety of updating one dictionary with another.
Raises ValueError if dictionaries have non-compatible values for any key,
where compatibility is determined by identity (they are the same item) or
the `compat` function.
Parameters
----------
first_dict, second_dict : dict-like
All items in the second dictionary are checked against for conflicts
against items in the first dictionary.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
"""
for k, v in second_dict.items():
if k in first_dict and not compat(v, first_dict[k]):
raise ValueError(
"unsafe to merge dictionaries without "
f"overriding values; conflicting key {k!r}"
)
def remove_incompatible_items(
first_dict: MutableMapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> None:
"""Remove incompatible items from the first dictionary in-place.
Items are retained if their keys are found in both dictionaries and the
values are compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
"""
for k in list(first_dict):
if k not in second_dict or not compat(first_dict[k], second_dict[k]):
del first_dict[k]
# It's probably OK to give this as a TypeGuard; though it's not perfectly robust.
def is_dict_like(value: Any) -> TypeGuard[Mapping]:
return hasattr(value, "keys") and hasattr(value, "__getitem__")
def is_full_slice(value: Any) -> bool:
return isinstance(value, slice) and value == slice(None)
def is_list_like(value: Any) -> TypeGuard[list | tuple]:
return isinstance(value, (list, tuple))
def is_duck_array(value: Any) -> bool:
if isinstance(value, np.ndarray):
return True
return (
hasattr(value, "ndim")
and hasattr(value, "shape")
and hasattr(value, "dtype")
and (
(hasattr(value, "__array_function__") and hasattr(value, "__array_ufunc__"))
or hasattr(value, "__array_namespace__")
)
)
def either_dict_or_kwargs(
pos_kwargs: Mapping[Any, T] | None,
kw_kwargs: Mapping[str, T],
func_name: str,
) -> Mapping[Hashable, T]:
if pos_kwargs is None or pos_kwargs == {}:
# Need an explicit cast to appease mypy due to invariance; see
# https://github.com/python/mypy/issues/6228
return cast(Mapping[Hashable, T], kw_kwargs)
if not is_dict_like(pos_kwargs):
raise ValueError(f"the first argument to .{func_name} must be a dictionary")
if kw_kwargs:
raise ValueError(
f"cannot specify both keyword and positional arguments to .{func_name}"
)
return pos_kwargs
def _is_scalar(value, include_0d):
from .variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES
if include_0d:
include_0d = getattr(value, "ndim", None) == 0
return (
include_0d
or isinstance(value, (str, bytes))
or not (
isinstance(value, (Iterable,) + NON_NUMPY_SUPPORTED_ARRAY_TYPES)
or hasattr(value, "__array_function__")
or hasattr(value, "__array_namespace__")
)
)
# See GH5624, this is a convoluted way to allow type-checking to use `TypeGuard` without
# requiring typing_extensions as a required dependency to _run_ the code (it is required
# to type-check).
try:
if sys.version_info >= (3, 10):
from typing import TypeGuard
else:
from typing_extensions import TypeGuard
except ImportError:
if TYPE_CHECKING:
raise
else:
def is_scalar(value: Any, include_0d: bool = True) -> bool:
"""Whether to treat a value as a scalar.
Any non-iterable, string, or 0-D array
"""
return _is_scalar(value, include_0d)
else:
def is_scalar(value: Any, include_0d: bool = True) -> TypeGuard[Hashable]:
"""Whether to treat a value as a scalar.
Any non-iterable, string, or 0-D array
"""
return _is_scalar(value, include_0d)
def is_valid_numpy_dtype(dtype: Any) -> bool:
try:
np.dtype(dtype)
except (TypeError, ValueError):
return False
else:
return True
def to_0d_object_array(value: Any) -> np.ndarray:
"""Given a value, wrap it in a 0-D numpy.ndarray with dtype=object."""
result = np.empty((), dtype=object)
result[()] = value
return result
def to_0d_array(value: Any) -> np.ndarray:
"""Given a value, wrap it in a 0-D numpy.ndarray."""
if np.isscalar(value) or (isinstance(value, np.ndarray) and value.ndim == 0):
return np.array(value)
else:
return to_0d_object_array(value)
def dict_equiv(
first: Mapping[K, V],
second: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> bool:
"""Test equivalence of two dict-like objects. If any of the values are
numpy arrays, compare them correctly.
Parameters
----------
first, second : dict-like
Dictionaries to compare for equality
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
equals : bool
True if the dictionaries are equal
"""
for k in first:
if k not in second or not compat(first[k], second[k]):
return False
return all(k in first for k in second)
def compat_dict_intersection(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
"""Return the intersection of two dictionaries as a new dictionary.
Items are retained if their keys are found in both dictionaries and the
values are compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
intersection : dict
Intersection of the contents.
"""
new_dict = dict(first_dict)
remove_incompatible_items(new_dict, second_dict, compat)
return new_dict
def compat_dict_union(
first_dict: Mapping[K, V],
second_dict: Mapping[K, V],
compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
"""Return the union of two dictionaries as a new dictionary.
An exception is raised if any keys are found in both dictionaries and the
values are not compatible.
Parameters
----------
first_dict, second_dict : dict-like
Mappings to merge.
compat : function, optional
Binary operator to determine if two values are compatible. By default,
checks for equivalence.
Returns
-------
union : dict
union of the contents.
"""
new_dict = dict(first_dict)
update_safety_check(first_dict, second_dict, compat)
new_dict.update(second_dict)
return new_dict
class Frozen(Mapping[K, V]):
"""Wrapper around an object implementing the mapping interface to make it
immutable. If you really want to modify the mapping, the mutable version is
saved under the `mapping` attribute.
"""
__slots__ = ("mapping",)
def __init__(self, mapping: Mapping[K, V]):
self.mapping = mapping
def __getitem__(self, key: K) -> V:
return self.mapping[key]
def __iter__(self) -> Iterator[K]:
return iter(self.mapping)
def __len__(self) -> int:
return len(self.mapping)
def __contains__(self, key: object) -> bool:
return key in self.mapping
def __repr__(self) -> str:
return f"{type(self).__name__}({self.mapping!r})"
def FrozenDict(*args, **kwargs) -> Frozen:
return Frozen(dict(*args, **kwargs))
class HybridMappingProxy(Mapping[K, V]):
"""Implements the Mapping interface. Uses the wrapped mapping for item lookup
and a separate wrapped keys collection for iteration.
Can be used to construct a mapping object from another dict-like object without
eagerly accessing its items or when a mapping object is expected but only
iteration over keys is actually used.
Note: HybridMappingProxy does not validate consistency of the provided `keys`
and `mapping`. It is the caller's responsibility to ensure that they are
suitable for the task at hand.
"""
__slots__ = ("_keys", "mapping")
def __init__(self, keys: Collection[K], mapping: Mapping[K, V]):
self._keys = keys
self.mapping = mapping
def __getitem__(self, key: K) -> V:
return self.mapping[key]
def __iter__(self) -> Iterator[K]:
return iter(self._keys)
def __len__(self) -> int:
return len(self._keys)
class OrderedSet(MutableSet[T]):
"""A simple ordered set.
The API matches the builtin set, but it preserves insertion order of elements, like
a dict. Note that, unlike in an OrderedDict, equality tests are not order-sensitive.
"""
_d: dict[T, None]
__slots__ = ("_d",)
def __init__(self, values: Iterable[T] = None):
self._d = {}
if values is not None:
self.update(values)
# Required methods for MutableSet
def __contains__(self, value: Hashable) -> bool:
return value in self._d
def __iter__(self) -> Iterator[T]:
return iter(self._d)
def __len__(self) -> int:
return len(self._d)
def add(self, value: T) -> None:
self._d[value] = None
def discard(self, value: T) -> None:
del self._d[value]
# Additional methods
def update(self, values: Iterable[T]) -> None:
for v in values:
self._d[v] = None
def __repr__(self) -> str:
return f"{type(self).__name__}({list(self)!r})"
class NdimSizeLenMixin:
"""Mixin class that extends a class that defines a ``shape`` property to
one that also defines ``ndim``, ``size`` and ``__len__``.
"""
__slots__ = ()
@property
def ndim(self: Any) -> int:
"""
Number of array dimensions.
See Also
--------
numpy.ndarray.ndim
"""
return len(self.shape)
@property
def size(self: Any) -> int:
"""
Number of elements in the array.
Equal to ``np.prod(a.shape)``, i.e., the product of the array’s dimensions.
See Also
--------
numpy.ndarray.size
"""
return math.prod(self.shape)
def __len__(self: Any) -> int:
try:
return self.shape[0]
except IndexError:
raise TypeError("len() of unsized object")
class NDArrayMixin(NdimSizeLenMixin):
"""Mixin class for making wrappers of N-dimensional arrays that conform to
the ndarray interface required for the data argument to Variable objects.
A subclass should set the `array` property and override one or more of
`dtype`, `shape` and `__getitem__`.
"""
__slots__ = ()
@property
def dtype(self: Any) -> np.dtype:
return self.array.dtype
@property
def shape(self: Any) -> tuple[int, ...]:
return self.array.shape
def __getitem__(self: Any, key):
return self.array[key]
def __repr__(self: Any) -> str:
return f"{type(self).__name__}(array={self.array!r})"
class ReprObject:
"""Object that prints as the given value, for use with sentinel values."""
__slots__ = ("_value",)
def __init__(self, value: str):
self._value = value
def __repr__(self) -> str:
return self._value
def __eq__(self, other) -> bool:
if isinstance(other, ReprObject):
return self._value == other._value
return False
def __hash__(self) -> int:
return hash((type(self), self._value))
def __dask_tokenize__(self):
from dask.base import normalize_token
return normalize_token((type(self), self._value))
@contextlib.contextmanager
def close_on_error(f):
"""Context manager to ensure that a file opened by xarray is closed if an
exception is raised before the user sees the file object.
"""
try:
yield
except Exception:
f.close()
raise
def is_remote_uri(path: str) -> bool:
"""Finds URLs of the form protocol:// or protocol::
This also matches for http[s]://, which were the only remote URLs
supported in <=v0.16.2.
"""
return bool(re.search(r"^[a-z][a-z0-9]*(\://|\:\:)", path))
def read_magic_number_from_file(filename_or_obj, count=8) -> bytes:
# check byte header to determine file type
if isinstance(filename_or_obj, bytes):
magic_number = filename_or_obj[:count]
elif isinstance(filename_or_obj, io.IOBase):
if filename_or_obj.tell() != 0:
raise ValueError(
"cannot guess the engine, "
"file-like object read/write pointer not at the start of the file, "
"please close and reopen, or use a context manager"
)
magic_number = filename_or_obj.read(count)
filename_or_obj.seek(0)
else:
raise TypeError(f"cannot read the magic number form {type(filename_or_obj)}")
return magic_number
def try_read_magic_number_from_path(pathlike, count=8) -> bytes | None:
if isinstance(pathlike, str) or hasattr(pathlike, "__fspath__"):
path = os.fspath(pathlike)
try:
with open(path, "rb") as f:
return read_magic_number_from_file(f, count)
except (FileNotFoundError, TypeError):
pass
return None
def try_read_magic_number_from_file_or_path(filename_or_obj, count=8) -> bytes | None:
magic_number = try_read_magic_number_from_path(filename_or_obj, count)
if magic_number is None:
try:
magic_number = read_magic_number_from_file(filename_or_obj, count)
except TypeError:
pass
return magic_number
def is_uniform_spaced(arr, **kwargs) -> bool:
"""Return True if values of an array are uniformly spaced and sorted.
>>> is_uniform_spaced(range(5))
True
>>> is_uniform_spaced([-4, 0, 100])
False
kwargs are additional arguments to ``np.isclose``
"""
arr = np.array(arr, dtype=float)
diffs = np.diff(arr)
return bool(np.isclose(diffs.min(), diffs.max(), **kwargs))
def hashable(v: Any) -> TypeGuard[Hashable]:
"""Determine whether `v` can be hashed."""
try:
hash(v)
except TypeError:
return False
return True
def iterable(v: Any) -> TypeGuard[Iterable[Any]]:
"""Determine whether `v` is iterable."""
try:
iter(v)
except TypeError:
return False
return True
def iterable_of_hashable(v: Any) -> TypeGuard[Iterable[Hashable]]:
"""Determine whether `v` is an Iterable of Hashables."""
try:
it = iter(v)
except TypeError:
return False
return all(hashable(elm) for elm in it)
def decode_numpy_dict_values(attrs: Mapping[K, V]) -> dict[K, V]:
"""Convert attribute values from numpy objects to native Python objects,
for use in to_dict
"""
attrs = dict(attrs)
for k, v in attrs.items():
if isinstance(v, np.ndarray):
attrs[k] = v.tolist()
elif isinstance(v, np.generic):
attrs[k] = v.item()
return attrs
def ensure_us_time_resolution(val):
"""Convert val out of numpy time, for use in to_dict.
Needed because of numpy bug GH#7619"""
if np.issubdtype(val.dtype, np.datetime64):
val = val.astype("datetime64[us]")
elif np.issubdtype(val.dtype, np.timedelta64):
val = val.astype("timedelta64[us]")
return val
class HiddenKeyDict(MutableMapping[K, V]):
"""Acts like a normal dictionary, but hides certain keys."""
__slots__ = ("_data", "_hidden_keys")
# ``__init__`` method required to create instance from class.
def __init__(self, data: MutableMapping[K, V], hidden_keys: Iterable[K]):
self._data = data
self._hidden_keys = frozenset(hidden_keys)
def _raise_if_hidden(self, key: K) -> None:
if key in self._hidden_keys:
raise KeyError(f"Key `{key!r}` is hidden.")
# The next five methods are requirements of the ABC.
def __setitem__(self, key: K, value: V) -> None:
self._raise_if_hidden(key)
self._data[key] = value
def __getitem__(self, key: K) -> V:
self._raise_if_hidden(key)
return self._data[key]
def __delitem__(self, key: K) -> None:
self._raise_if_hidden(key)
del self._data[key]
def __iter__(self) -> Iterator[K]:
for k in self._data:
if k not in self._hidden_keys:
yield k
def __len__(self) -> int:
num_hidden = len(self._hidden_keys & self._data.keys())
return len(self._data) - num_hidden
def infix_dims(
dims_supplied: Collection,
dims_all: Collection,
missing_dims: ErrorOptionsWithWarn = "raise",
) -> Iterator:
"""
Resolves a supplied list containing an ellipsis representing other items, to
a generator with the 'realized' list of all items
"""
if ... in dims_supplied:
if len(set(dims_all)) != len(dims_all):
raise ValueError("Cannot use ellipsis with repeated dims")
if list(dims_supplied).count(...) > 1:
raise ValueError("More than one ellipsis supplied")
other_dims = [d for d in dims_all if d not in dims_supplied]
existing_dims = drop_missing_dims(dims_supplied, dims_all, missing_dims)
for d in existing_dims:
if d is ...:
yield from other_dims
else:
yield d
else:
existing_dims = drop_missing_dims(dims_supplied, dims_all, missing_dims)
if set(existing_dims) ^ set(dims_all):
raise ValueError(
f"{dims_supplied} must be a permuted list of {dims_all}, unless `...` is included"
)
yield from existing_dims
def get_temp_dimname(dims: Container[Hashable], new_dim: Hashable) -> Hashable:
"""Get an new dimension name based on new_dim, that is not used in dims.
If the same name exists, we add an underscore(s) in the head.
Example1:
dims: ['a', 'b', 'c']
new_dim: ['_rolling']
-> ['_rolling']
Example2:
dims: ['a', 'b', 'c', '_rolling']
new_dim: ['_rolling']
-> ['__rolling']
"""
while new_dim in dims:
new_dim = "_" + str(new_dim)
return new_dim
def drop_dims_from_indexers(
indexers: Mapping[Any, Any],
dims: Iterable[Hashable] | Mapping[Any, int],
missing_dims: ErrorOptionsWithWarn,
) -> Mapping[Hashable, Any]:
"""Depending on the setting of missing_dims, drop any dimensions from indexers that
are not present in dims.
Parameters
----------
indexers : dict
dims : sequence
missing_dims : {"raise", "warn", "ignore"}
"""
if missing_dims == "raise":
invalid = indexers.keys() - set(dims)
if invalid:
raise ValueError(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
)
return indexers
elif missing_dims == "warn":
# don't modify input
indexers = dict(indexers)
invalid = indexers.keys() - set(dims)
if invalid:
warnings.warn(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
)
for key in invalid:
indexers.pop(key)
return indexers
elif missing_dims == "ignore":
return {key: val for key, val in indexers.items() if key in dims}
else:
raise ValueError(
f"Unrecognised option {missing_dims} for missing_dims argument"
)
def drop_missing_dims(
supplied_dims: Collection, dims: Collection, missing_dims: ErrorOptionsWithWarn
) -> Collection:
"""Depending on the setting of missing_dims, drop any dimensions from supplied_dims that
are not present in dims.
Parameters
----------
supplied_dims : dict
dims : sequence
missing_dims : {"raise", "warn", "ignore"}
"""
if missing_dims == "raise":
supplied_dims_set = {val for val in supplied_dims if val is not ...}
invalid = supplied_dims_set - set(dims)
if invalid:
raise ValueError(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
)
return supplied_dims
elif missing_dims == "warn":
invalid = set(supplied_dims) - set(dims)
if invalid:
warnings.warn(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
)
return [val for val in supplied_dims if val in dims or val is ...]
elif missing_dims == "ignore":
return [val for val in supplied_dims if val in dims or val is ...]
else:
raise ValueError(
f"Unrecognised option {missing_dims} for missing_dims argument"
)
_Accessor = TypeVar("_Accessor")
class UncachedAccessor(Generic[_Accessor]):
"""Acts like a property, but on both classes and class instances
This class is necessary because some tools (e.g. pydoc and sphinx)
inspect classes for which property returns itself and not the
accessor.
"""
def __init__(self, accessor: type[_Accessor]) -> None:
self._accessor = accessor
@overload
def __get__(self, obj: None, cls) -> type[_Accessor]:
...
@overload
def __get__(self, obj: object, cls) -> _Accessor:
...
def __get__(self, obj: None | object, cls) -> type[_Accessor] | _Accessor:
if obj is None:
return self._accessor
return self._accessor(obj) # type: ignore # assume it is a valid accessor!
# Singleton type, as per https://github.com/python/typing/pull/240
class Default(Enum):
token = 0
_default = Default.token
def iterate_nested(nested_list):
for item in nested_list:
if isinstance(item, list):
yield from iterate_nested(item)
else:
yield item
def contains_only_dask_or_numpy(obj) -> bool:
"""Returns True if xarray object contains only numpy or dask arrays.
Expects obj to be Dataset or DataArray"""
from .dataarray import DataArray
from .pycompat import is_duck_dask_array
if isinstance(obj, DataArray):
obj = obj._to_temp_dataset()
return all(
[
isinstance(var.data, np.ndarray) or is_duck_dask_array(var.data)
for var in obj.variables.values()
]
)