-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
groupby.py
1419 lines (1212 loc) · 49.5 KB
/
groupby.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import datetime
import warnings
from collections.abc import Hashable, Iterator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, TypeVar, Union, cast
import numpy as np
import pandas as pd
from xarray.core import dtypes, duck_array_ops, nputils, ops
from xarray.core._aggregations import (
DataArrayGroupByAggregations,
DatasetGroupByAggregations,
)
from xarray.core.alignment import align
from xarray.core.arithmetic import DataArrayGroupbyArithmetic, DatasetGroupbyArithmetic
from xarray.core.common import ImplementsArrayReduce, ImplementsDatasetReduce
from xarray.core.concat import concat
from xarray.core.formatting import format_array_flat
from xarray.core.indexes import (
create_default_index_implicit,
filter_indexes_from_coords,
safe_cast_to_index,
)
from xarray.core.options import _get_keep_attrs
from xarray.core.pycompat import integer_types
from xarray.core.types import Dims, QuantileMethods, T_Xarray
from xarray.core.utils import (
either_dict_or_kwargs,
hashable,
is_scalar,
maybe_wrap_array,
peek_at,
)
from xarray.core.variable import IndexVariable, Variable
if TYPE_CHECKING:
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import DatetimeLike, SideOptions
from xarray.core.utils import Frozen
GroupKey = Any
def check_reduce_dims(reduce_dims, dimensions):
if reduce_dims is not ...:
if is_scalar(reduce_dims):
reduce_dims = [reduce_dims]
if any(dim not in dimensions for dim in reduce_dims):
raise ValueError(
f"cannot reduce over dimensions {reduce_dims!r}. expected either '...' "
f"to reduce over all dimensions or one or more of {dimensions!r}."
)
def unique_value_groups(
ar, sort: bool = True
) -> tuple[np.ndarray | pd.Index, list[list[int]]]:
"""Group an array by its unique values.
Parameters
----------
ar : array-like
Input array. This will be flattened if it is not already 1-D.
sort : bool, default: True
Whether or not to sort unique values.
Returns
-------
values : np.ndarray
Sorted, unique values as returned by `np.unique`.
indices : list of lists of int
Each element provides the integer indices in `ar` with values given by
the corresponding value in `unique_values`.
"""
inverse, values = pd.factorize(ar, sort=sort)
if isinstance(values, pd.MultiIndex):
values.names = ar.names
groups: list[list[int]] = [[] for _ in range(len(values))]
for n, g in enumerate(inverse):
if g >= 0:
# pandas uses -1 to mark NaN, but doesn't include them in values
groups[g].append(n)
return values, groups
def _dummy_copy(xarray_obj):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
if isinstance(xarray_obj, Dataset):
res = Dataset(
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.data_vars.items()
},
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
xarray_obj.attrs,
)
elif isinstance(xarray_obj, DataArray):
res = DataArray(
dtypes.get_fill_value(xarray_obj.dtype),
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
dims=[],
name=xarray_obj.name,
attrs=xarray_obj.attrs,
)
else: # pragma: no cover
raise AssertionError
return res
def _is_one_or_none(obj):
return obj == 1 or obj is None
def _consolidate_slices(slices):
"""Consolidate adjacent slices in a list of slices."""
result = []
last_slice = slice(None)
for slice_ in slices:
if not isinstance(slice_, slice):
raise ValueError(f"list element is not a slice: {slice_!r}")
if (
result
and last_slice.stop == slice_.start
and _is_one_or_none(last_slice.step)
and _is_one_or_none(slice_.step)
):
last_slice = slice(last_slice.start, slice_.stop, slice_.step)
result[-1] = last_slice
else:
result.append(slice_)
last_slice = slice_
return result
def _inverse_permutation_indices(positions):
"""Like inverse_permutation, but also handles slices.
Parameters
----------
positions : list of ndarray or slice
If slice objects, all are assumed to be slices.
Returns
-------
np.ndarray of indices or None, if no permutation is necessary.
"""
if not positions:
return None
if isinstance(positions[0], slice):
positions = _consolidate_slices(positions)
if positions == slice(None):
return None
positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions]
return nputils.inverse_permutation(np.concatenate(positions))
class _DummyGroup:
"""Class for keeping track of grouped dimensions without coordinates.
Should not be user visible.
"""
__slots__ = ("name", "coords", "size")
def __init__(self, obj: T_Xarray, name: Hashable, coords) -> None:
self.name = name
self.coords = coords
self.size = obj.sizes[name]
@property
def dims(self) -> tuple[Hashable]:
return (self.name,)
@property
def ndim(self) -> Literal[1]:
return 1
@property
def values(self) -> range:
return range(self.size)
@property
def data(self) -> range:
return range(self.size)
@property
def shape(self) -> tuple[int]:
return (self.size,)
def __getitem__(self, key):
if isinstance(key, tuple):
key = key[0]
return self.values[key]
T_Group = TypeVar("T_Group", bound=Union["DataArray", "IndexVariable", _DummyGroup])
def _ensure_1d(
group: T_Group, obj: T_Xarray
) -> tuple[T_Group, T_Xarray, Hashable | None, list[Hashable]]:
# 1D cases: do nothing
from xarray.core.dataarray import DataArray
if isinstance(group, (IndexVariable, _DummyGroup)) or group.ndim == 1:
return group, obj, None, []
if isinstance(group, DataArray):
# try to stack the dims of the group into a single dim
orig_dims = group.dims
stacked_dim = "stacked_" + "_".join(map(str, orig_dims))
# these dimensions get created by the stack operation
inserted_dims = [dim for dim in group.dims if dim not in group.coords]
# the copy is necessary here, otherwise read only array raises error
# in pandas: https://github.com/pydata/pandas/issues/12813
newgroup = group.stack({stacked_dim: orig_dims}).copy()
newobj = obj.stack({stacked_dim: orig_dims})
return cast(T_Group, newgroup), newobj, stacked_dim, inserted_dims
raise TypeError(
f"group must be DataArray, IndexVariable or _DummyGroup, got {type(group)!r}."
)
def _unique_and_monotonic(group: T_Group) -> bool:
if isinstance(group, _DummyGroup):
return True
index = safe_cast_to_index(group)
return index.is_unique and index.is_monotonic_increasing
def _apply_loffset(
loffset: str | pd.DateOffset | datetime.timedelta | pd.Timedelta,
result: pd.Series | pd.DataFrame,
):
"""
(copied from pandas)
if loffset is set, offset the result index
This is NOT an idempotent routine, it will be applied
exactly once to the result.
Parameters
----------
result : Series or DataFrame
the result of resample
"""
# pd.Timedelta is a subclass of datetime.timedelta so we do not need to
# include it in instance checks.
if not isinstance(loffset, (str, pd.DateOffset, datetime.timedelta)):
raise ValueError(
f"`loffset` must be a str, pd.DateOffset, datetime.timedelta, or pandas.Timedelta object. "
f"Got {loffset}."
)
if isinstance(loffset, str):
loffset = pd.tseries.frequencies.to_offset(loffset)
needs_offset = (
isinstance(loffset, (pd.DateOffset, datetime.timedelta))
and isinstance(result.index, pd.DatetimeIndex)
and len(result.index) > 0
)
if needs_offset:
result.index = result.index + loffset
class GroupBy(Generic[T_Xarray]):
"""A object that implements the split-apply-combine pattern.
Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over
(unique_value, grouped_array) pairs, but the main way to interact with a
groupby object are with the `apply` or `reduce` methods. You can also
directly call numpy methods like `mean` or `std`.
You should create a GroupBy object by using the `DataArray.groupby` or
`Dataset.groupby` methods.
See Also
--------
Dataset.groupby
DataArray.groupby
"""
__slots__ = (
"_full_index",
"_inserted_dims",
"_group",
"_group_dim",
"_group_indices",
"_groups",
"_obj",
"_restore_coord_dims",
"_stacked_dim",
"_unique_coord",
"_dims",
"_sizes",
"_squeeze",
# Save unstacked object for flox
"_original_obj",
"_original_group",
"_bins",
)
_obj: T_Xarray
def __init__(
self,
obj: T_Xarray,
group: Hashable | DataArray | IndexVariable,
squeeze: bool = False,
grouper: pd.Grouper | None = None,
bins: ArrayLike | None = None,
restore_coord_dims: bool = True,
cut_kwargs: Mapping[Any, Any] | None = None,
) -> None:
"""Create a GroupBy object
Parameters
----------
obj : Dataset or DataArray
Object to group.
group : Hashable, DataArray or Index
Array with the group values or name of the variable.
squeeze : bool, default: False
If "group" is a coordinate of object, `squeeze` controls whether
the subarrays have a dimension of length 1 along that coordinate or
if the dimension is squeezed out.
grouper : pandas.Grouper, optional
Used for grouping values along the `group` array.
bins : array-like, optional
If `bins` is specified, the groups will be discretized into the
specified bins by `pandas.cut`.
restore_coord_dims : bool, default: True
If True, also restore the dimension order of multi-dimensional
coordinates.
cut_kwargs : dict-like, optional
Extra keyword arguments to pass to `pandas.cut`
"""
if cut_kwargs is None:
cut_kwargs = {}
from xarray.core.dataarray import DataArray
if grouper is not None and bins is not None:
raise TypeError("can't specify both `grouper` and `bins`")
if not isinstance(group, (DataArray, IndexVariable)):
if not hashable(group):
raise TypeError(
"`group` must be an xarray.DataArray or the "
"name of an xarray variable or dimension. "
f"Received {group!r} instead."
)
group = obj[group]
if len(group) == 0:
raise ValueError(f"{group.name} must not be empty")
if group.name not in obj.coords and group.name in obj.dims:
# DummyGroups should not appear on groupby results
group = _DummyGroup(obj, group.name, group.coords)
if getattr(group, "name", None) is None:
group.name = "group"
self._original_obj: T_Xarray = obj
self._original_group = group
self._bins = bins
group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj)
(group_dim,) = group.dims
expected_size = obj.sizes[group_dim]
if group.size != expected_size:
raise ValueError(
"the group variable's length does not "
"match the length of this variable along its "
"dimension"
)
full_index = None
if bins is not None:
if duck_array_ops.isnull(bins).all():
raise ValueError("All bin edges are NaN.")
binned, bins = pd.cut(group.values, bins, **cut_kwargs, retbins=True)
new_dim_name = str(group.name) + "_bins"
group = DataArray(binned, getattr(group, "coords", None), name=new_dim_name)
full_index = binned.categories
group_indices: list[slice] | list[list[int]] | np.ndarray
unique_coord: DataArray | IndexVariable | _DummyGroup
if grouper is not None:
index = safe_cast_to_index(group)
if not index.is_monotonic_increasing:
# TODO: sort instead of raising an error
raise ValueError("index must be monotonic for resampling")
full_index, first_items = self._get_index_and_items(index, grouper)
sbins = first_items.values.astype(np.int64)
group_indices = [slice(i, j) for i, j in zip(sbins[:-1], sbins[1:])] + [
slice(sbins[-1], None)
]
unique_coord = IndexVariable(group.name, first_items.index)
elif group.dims == (group.name,) and _unique_and_monotonic(group):
# no need to factorize
if not squeeze:
# use slices to do views instead of fancy indexing
# equivalent to: group_indices = group_indices.reshape(-1, 1)
group_indices = [slice(i, i + 1) for i in range(group.size)]
else:
group_indices = np.arange(group.size)
unique_coord = group
else:
if isinstance(group, DataArray) and group.isnull().any():
# drop any NaN valued groups.
# also drop obj values where group was NaN
# Use where instead of reindex to account for duplicate coordinate labels.
obj = obj.where(group.notnull(), drop=True)
group = group.dropna(group_dim)
# look through group to find the unique values
group_as_index = safe_cast_to_index(group)
sort = bins is None and (not isinstance(group_as_index, pd.MultiIndex))
unique_values, group_indices = unique_value_groups(
group_as_index, sort=sort
)
unique_coord = IndexVariable(group.name, unique_values)
if len(group_indices) == 0:
if bins is not None:
raise ValueError(
f"None of the data falls within bins with edges {bins!r}"
)
else:
raise ValueError(
"Failed to group data. Are you grouping by a variable that is all NaN?"
)
# specification for the groupby operation
self._obj: T_Xarray = obj
self._group = group
self._group_dim = group_dim
self._group_indices = group_indices
self._unique_coord = unique_coord
self._stacked_dim = stacked_dim
self._inserted_dims = inserted_dims
self._full_index = full_index
self._restore_coord_dims = restore_coord_dims
self._bins = bins
self._squeeze = squeeze
# cached attributes
self._groups: dict[GroupKey, slice | int | list[int]] | None = None
self._dims: tuple[Hashable, ...] | Frozen[Hashable, int] | None = None
self._sizes: Frozen[Hashable, int] | None = None
@property
def sizes(self) -> Frozen[Hashable, int]:
"""Ordered mapping from dimension names to lengths.
Immutable.
See Also
--------
DataArray.sizes
Dataset.sizes
"""
if self._sizes is None:
self._sizes = self._obj.isel(
{self._group_dim: self._group_indices[0]}
).sizes
return self._sizes
def map(
self,
func: Callable,
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
@property
def groups(self) -> dict[GroupKey, slice | int | list[int]]:
"""
Mapping from group labels to indices. The indices can be used to index the underlying object.
"""
# provided to mimic pandas.groupby
if self._groups is None:
self._groups = dict(zip(self._unique_coord.values, self._group_indices))
return self._groups
def __getitem__(self, key: GroupKey) -> T_Xarray:
"""
Get DataArray or Dataset corresponding to a particular group label.
"""
return self._obj.isel({self._group_dim: self.groups[key]})
def __len__(self) -> int:
return self._unique_coord.size
def __iter__(self) -> Iterator[tuple[GroupKey, T_Xarray]]:
return zip(self._unique_coord.values, self._iter_grouped())
def __repr__(self) -> str:
return "{}, grouped over {!r}\n{!r} groups with labels {}.".format(
self.__class__.__name__,
self._unique_coord.name,
self._unique_coord.size,
", ".join(format_array_flat(self._unique_coord, 30).split()),
)
def _get_index_and_items(self, index, grouper):
first_items = grouper.first_items(index)
full_index = first_items.index
if first_items.isnull().any():
first_items = first_items.dropna()
return full_index, first_items
def _iter_grouped(self) -> Iterator[T_Xarray]:
"""Iterate over each element in this group"""
for indices in self._group_indices:
yield self._obj.isel({self._group_dim: indices})
def _infer_concat_args(self, applied_example):
if self._group_dim in applied_example.dims:
coord = self._group
positions = self._group_indices
else:
coord = self._unique_coord
positions = None
(dim,) = coord.dims
if isinstance(coord, _DummyGroup):
coord = None
coord = getattr(coord, "variable", coord)
return coord, dim, positions
def _binary_op(self, other, f, reflexive=False):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
g = f if not reflexive else lambda x, y: f(y, x)
if self._bins is None:
obj = self._original_obj
group = self._original_group
dims = group.dims
else:
obj = self._maybe_unstack(self._obj)
group = self._maybe_unstack(self._group)
dims = (self._group_dim,)
if isinstance(group, _DummyGroup):
group = obj[group.name]
coord = group
else:
coord = self._unique_coord
if not isinstance(coord, DataArray):
coord = DataArray(self._unique_coord)
name = group.name
if not isinstance(other, (Dataset, DataArray)):
raise TypeError(
"GroupBy objects only support binary ops "
"when the other argument is a Dataset or "
"DataArray"
)
if name not in other.dims:
raise ValueError(
"incompatible dimensions for a grouped "
f"binary operation: the group variable {name!r} "
"is not a dimension on the other argument"
)
# Broadcast out scalars for backwards compatibility
# TODO: get rid of this when fixing GH2145
for var in other.coords:
if other[var].ndim == 0:
other[var] = (
other[var].drop_vars(var).expand_dims({name: other.sizes[name]})
)
other, _ = align(other, coord, join="outer")
expanded = other.sel({name: group})
result = g(obj, expanded)
if group.ndim > 1:
# backcompat:
# TODO: get rid of this when fixing GH2145
for var in set(obj.coords) - set(obj.xindexes):
if set(obj[var].dims) < set(group.dims):
result[var] = obj[var].reset_coords(drop=True).broadcast_like(group)
if isinstance(result, Dataset) and isinstance(obj, Dataset):
for var in set(result):
for d in dims:
if d not in obj[var].dims:
result[var] = result[var].transpose(d, ...)
return result
def _maybe_restore_empty_groups(self, combined):
"""Our index contained empty groups (e.g., from a resampling). If we
reduced on that dimension, we want to restore the full index.
"""
if self._full_index is not None and self._group.name in combined.dims:
indexers = {self._group.name: self._full_index}
combined = combined.reindex(**indexers)
return combined
def _maybe_unstack(self, obj):
"""This gets called if we are applying on an array with a
multidimensional group."""
if self._stacked_dim is not None and self._stacked_dim in obj.dims:
obj = obj.unstack(self._stacked_dim)
for dim in self._inserted_dims:
if dim in obj.coords:
del obj.coords[dim]
obj._indexes = filter_indexes_from_coords(obj._indexes, set(obj.coords))
return obj
def _flox_reduce(
self,
dim: Dims,
keep_attrs: bool | None = None,
**kwargs: Any,
):
"""Adaptor function that translates our groupby API to that of flox."""
from flox.xarray import xarray_reduce
from xarray.core.dataset import Dataset
obj = self._original_obj
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
# preserve current strategy (approximately) for dask groupby.
# We want to control the default anyway to prevent surprises
# if flox decides to change its default
kwargs.setdefault("method", "split-reduce")
numeric_only = kwargs.pop("numeric_only", None)
if numeric_only:
non_numeric = {
name: var
for name, var in obj.data_vars.items()
if not (np.issubdtype(var.dtype, np.number) or (var.dtype == np.bool_))
}
else:
non_numeric = {}
# weird backcompat
# reducing along a unique indexed dimension with squeeze=True
# should raise an error
if (
dim is None or dim == self._group.name
) and self._group.name in obj.xindexes:
index = obj.indexes[self._group.name]
if index.is_unique and self._squeeze:
raise ValueError(f"cannot reduce over dimensions {self._group.name!r}")
# group is only passed by resample
group = kwargs.pop("group", None)
if group is None:
if isinstance(self._original_group, _DummyGroup):
group = self._original_group.name
else:
group = self._original_group
unindexed_dims: tuple[str, ...] = tuple()
if isinstance(group, str):
if group in obj.dims and group not in obj._indexes and self._bins is None:
unindexed_dims = (group,)
group = self._original_obj[group]
parsed_dim: tuple[Hashable, ...]
if isinstance(dim, str):
parsed_dim = (dim,)
elif dim is None:
parsed_dim = group.dims
elif dim is ...:
parsed_dim = tuple(self._original_obj.dims)
else:
parsed_dim = tuple(dim)
# Do this so we raise the same error message whether flox is present or not.
# Better to control it here than in flox.
if any(
d not in group.dims and d not in self._original_obj.dims for d in parsed_dim
):
raise ValueError(f"cannot reduce over dimensions {dim}.")
expected_groups: tuple[np.ndarray | Any, ...]
isbin: bool | Sequence[bool]
if self._bins is not None:
# TODO: fix this; When binning by time, self._bins is a DatetimeIndex
expected_groups = (np.array(self._bins),)
isbin = (True,)
# This is an annoying hack. Xarray returns np.nan
# when there are no observations in a bin, instead of 0.
# We can fake that here by forcing min_count=1.
if kwargs["func"] == "count":
if "fill_value" not in kwargs or kwargs["fill_value"] is None:
kwargs["fill_value"] = np.nan
# note min_count makes no sense in the xarray world
# as a kwarg for count, so this should be OK
kwargs["min_count"] = 1
# empty bins have np.nan regardless of dtype
# flox's default would not set np.nan for integer dtypes
kwargs.setdefault("fill_value", np.nan)
else:
expected_groups = (self._unique_coord.values,)
isbin = False
result = xarray_reduce(
self._original_obj.drop_vars(non_numeric),
group,
dim=parsed_dim,
expected_groups=expected_groups,
isbin=isbin,
keep_attrs=keep_attrs,
**kwargs,
)
# Ignore error when the groupby reduction is effectively
# a reduction of the underlying dataset
result = result.drop_vars(unindexed_dims, errors="ignore")
# broadcast and restore non-numeric data variables (backcompat)
for name, var in non_numeric.items():
if all(d not in var.dims for d in parsed_dim):
result[name] = var.variable.set_dims(
(group.name,) + var.dims, (result.sizes[group.name],) + var.shape
)
if self._bins is not None:
# bins provided to flox are at full precision
# the bin edge labels have a default precision of 3
# reassign to fix that.
assert self._full_index is not None
result[self._group.name] = self._full_index
# Fix dimension order when binning a dimension coordinate
# Needed as long as we do a separate code path for pint;
# For some reason Datasets and DataArrays behave differently!
if isinstance(self._obj, Dataset) and self._group_dim in self._obj.dims:
result = result.transpose(self._group.name, ...)
return result
def fillna(self, value: Any) -> T_Xarray:
"""Fill missing values in this object by group.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic, except the result is aligned to this
object (``join='left'``) instead of aligned to the intersection of
index coordinates (``join='inner'``).
Parameters
----------
value
Used to fill all matching missing values by group. Needs
to be of a valid type for the wrapped object's fillna
method.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.fillna
DataArray.fillna
"""
return ops.fillna(self, value)
def quantile(
self,
q: ArrayLike,
dim: Dims = None,
method: QuantileMethods = "linear",
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> T_Xarray:
"""Compute the qth quantile over each array in the groups and
concatenate them together into a new array.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1
inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf" (*)
2. "averaged_inverted_cdf" (*)
3. "closest_observation" (*)
4. "interpolated_inverted_cdf" (*)
5. "hazen" (*)
6. "weibull" (*)
7. "linear" (default)
8. "median_unbiased" (*)
9. "normal_unbiased" (*)
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. Methods marked with
an asterix require numpy version 1.22 or newer. The "method" argument was
previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool or None, default: None
If True, the dataarray's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
skipna : bool or None, default: None
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Variable
If `q` is a single quantile, then the result is a
scalar. If multiple percentiles are given, first axis of
the result corresponds to the quantile. In either case a
quantile dimension is added to the return array. The other
dimensions are the dimensions that remain after the
reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile
DataArray.quantile
Examples
--------
>>> da = xr.DataArray(
... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]},
... dims=("x", "y"),
... )
>>> ds = xr.Dataset({"a": da})
>>> da.groupby("x").quantile(0)
<xarray.DataArray (x: 2, y: 4)>
array([[0.7, 4.2, 0.7, 1.5],
[6.5, 7.3, 2.6, 1.9]])
Coordinates:
* y (y) int64 1 1 2 2
quantile float64 0.0
* x (x) int64 0 1
>>> ds.groupby("y").quantile(0, dim=...)
<xarray.Dataset>
Dimensions: (y: 2)
Coordinates:
quantile float64 0.0
* y (y) int64 1 2
Data variables:
a (y) float64 0.7 0.7
>>> da.groupby("x").quantile([0, 0.5, 1])
<xarray.DataArray (x: 2, y: 4, quantile: 3)>
array([[[0.7 , 1. , 1.3 ],
[4.2 , 6.3 , 8.4 ],
[0.7 , 5.05, 9.4 ],
[1.5 , 4.2 , 6.9 ]],
<BLANKLINE>
[[6.5 , 6.5 , 6.5 ],
[7.3 , 7.3 , 7.3 ],
[2.6 , 2.6 , 2.6 ],
[1.9 , 1.9 , 1.9 ]]])
Coordinates:
* y (y) int64 1 1 2 2
* quantile (quantile) float64 0.0 0.5 1.0
* x (x) int64 0 1
>>> ds.groupby("y").quantile([0, 0.5, 1], dim=...)
<xarray.Dataset>
Dimensions: (y: 2, quantile: 3)
Coordinates:
* quantile (quantile) float64 0.0 0.5 1.0
* y (y) int64 1 2
Data variables:
a (y, quantile) float64 0.7 5.35 8.4 0.7 2.25 9.4
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
if dim is None:
dim = (self._group_dim,)
return self.map(
self._obj.__class__.quantile,
shortcut=False,
q=q,
dim=dim,
method=method,
keep_attrs=keep_attrs,
skipna=skipna,
interpolation=interpolation,
)
def where(self, cond, other=dtypes.NA) -> T_Xarray:
"""Return elements from `self` or `other` depending on `cond`.
Parameters
----------
cond : DataArray or Dataset
Locations at which to preserve this objects values. dtypes have to be `bool`
other : scalar, DataArray or Dataset, optional
Value to use for locations in this object where ``cond`` is False.
By default, inserts missing values.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.where
"""
return ops.where_method(self, cond, other)
def _first_or_last(self, op, skipna, keep_attrs):
if isinstance(self._group_indices[0], integer_types):
# NB. this is currently only used for reductions along an existing
# dimension
return self._obj
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
return self.reduce(
op, dim=[self._group_dim], skipna=skipna, keep_attrs=keep_attrs
)
def first(self, skipna: bool | None = None, keep_attrs: bool | None = None):
"""Return the first element of each group along the group dimension"""
return self._first_or_last(duck_array_ops.first, skipna, keep_attrs)
def last(self, skipna: bool | None = None, keep_attrs: bool | None = None):
"""Return the last element of each group along the group dimension"""
return self._first_or_last(duck_array_ops.last, skipna, keep_attrs)
def assign_coords(self, coords=None, **coords_kwargs):
"""Assign coordinates by group.
See Also
--------
Dataset.assign_coords
Dataset.swap_dims
"""
coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
return self.map(lambda ds: ds.assign_coords(**coords_kwargs))