From f1bd83de5e24fc83f0de3d6bd7f4ac062cdecf6b Mon Sep 17 00:00:00 2001 From: Brady Planden Date: Thu, 11 Jul 2024 11:52:12 +0100 Subject: [PATCH] refactor: methods for SimulateEIS, updt. fitting_example --- examples/scripts/eis_fitting.py | 33 ++++------------------- pybop/models/base_model.py | 48 ++++++++++++++------------------- 2 files changed, 25 insertions(+), 56 deletions(-) diff --git a/examples/scripts/eis_fitting.py b/examples/scripts/eis_fitting.py index ce468e381..ea10295e0 100644 --- a/examples/scripts/eis_fitting.py +++ b/examples/scripts/eis_fitting.py @@ -5,7 +5,7 @@ # Define model parameter_set = pybop.ParameterSet.pybamm("Chen2020") -model = pybop.lithium_ion.DFN( +model = pybop.lithium_ion.SPM( parameter_set=parameter_set, options={"surface form": "differential"} ) @@ -39,33 +39,10 @@ signal = ["Impedance"] # Generate problem, cost function, and optimisation class problem = pybop.EISProblem(model, parameters, dataset, signal=signal) -prediction_1 = problem.evaluate(np.array([1.0, 60e-6])) -prediction_2 = problem.evaluate(np.array([10.0, 40e-6])) +prediction_1 = problem.evaluate(np.array([0.1, 50e-6])) +prediction_2 = problem.evaluate(np.array([10, 70e-6])) + +# Plot fig = px.scatter(x=prediction_1["Impedance"].real, y=-prediction_1["Impedance"].imag) fig.add_scatter(x=prediction_2["Impedance"].real, y=-prediction_2["Impedance"].imag) fig.show() -# cost = pybop.SumSquaredError(problem) -# optim = pybop.CMAES(cost, max_iterations=100) - -# # Run the optimisation -# x, final_cost = optim.run() -# print("True parameters:", parameters.true_value()) -# print("Estimated parameters:", x) - -# # Plot the time series -# pybop.plot_dataset(dataset) - -# # Plot the timeseries output -# pybop.quick_plot(problem, problem_inputs=x, title="Optimised Comparison") - -# # Plot convergence -# pybop.plot_convergence(optim) - -# # Plot the parameter traces -# pybop.plot_parameters(optim) - -# # Plot the cost landscape -# pybop.plot2d(cost, steps=15) - -# # Plot the cost landscape with optimisation path -# pybop.plot2d(optim, steps=15) diff --git a/pybop/models/base_model.py b/pybop/models/base_model.py index 440e8d142..18ab9be8a 100644 --- a/pybop/models/base_model.py +++ b/pybop/models/base_model.py @@ -126,8 +126,8 @@ def build( else: if not self.pybamm_model._built: self.pybamm_model.build_model() - self.set_params(eis=self.eis) + self.set_params(eis=self.eis) self._mesh = pybamm.Mesh(self.geometry, self.submesh_types, self.var_pts) self._disc = pybamm.Discretisation( mesh=self.mesh, @@ -460,8 +460,8 @@ def simulateEIS(self, inputs: Inputs, f_eval: list) -> dict[str, np.ndarray]: inputs : dict or array-like The input parameters for the simulation. If array-like, it will be converted to a dictionary using the model's fit keys. - t_eval : array-like - An array of time points at which to evaluate the solution. + f_eval : array-like + An array of frequency points at which to evaluate the solution. Returns ------- @@ -492,31 +492,25 @@ def simulateEIS(self, inputs: Inputs, f_eval: list) -> dict[str, np.ndarray]: zs = [self.calculate_impedance(frequency) for frequency in f_eval] return {"Impedance": np.asarray(zs) * self.z_scale} - def initialise_eis_simulation(self, inputs: Inputs = None): - # Get the mass matrix + def initialise_eis_simulation(self, inputs: Optional[Inputs] = None): + # Set mass matrix, and solver self.M = self._built_model.mass_matrix.entries + self._solver.set_up(self._built_model, inputs=inputs) - if inputs is not None: - casadi_inputs = ( - casadi.vertcat(*[x for x in inputs.values()]) - if self._built_model.convert_to_format == "casadi" - else inputs - ) - - # Set up the solver for new inputs - self._solver.set_up(self._built_model, inputs=inputs) + # Convert inputs to casadi format if needed + casadi_inputs = ( + casadi.vertcat(*inputs.values()) + if inputs is not None and self._built_model.convert_to_format == "casadi" + else inputs or [] + ) - # Extract necessary attributes from the model - self.y0 = self._built_model.concatenated_initial_conditions.evaluate( - 0, inputs=inputs - ) - self.J = self._built_model.jac_rhs_algebraic_eval( - 0, self.y0, casadi_inputs - ).sparse() - else: - # Extract necessary attributes from the model - self.y0 = self._built_model.concatenated_initial_conditions.entries - self.J = self._built_model.jac_rhs_algebraic_eval(0, self.y0, []).sparse() + # Extract necessary attributes from the model + self.y0 = self._built_model.concatenated_initial_conditions.evaluate( + 0, inputs=inputs + ) + self.J = self._built_model.jac_rhs_algebraic_eval( + 0, self.y0, casadi_inputs + ).sparse() # Convert to Compressed Sparse Column format self.M = csc_matrix(self.M) @@ -679,9 +673,7 @@ def predict( parameter_values=parameter_set, ).solve(initial_soc=init_soc) else: - raise ValueError( - "This sim method currently only supports PyBaMM models" - ) + raise ValueError("This method currently only supports PyBaMM models") else: return [np.inf]