From e7eaa59909f9a1641c1c19844fe567b96ddd8e5b Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 16 Jun 2020 16:49:00 -0400 Subject: [PATCH 01/11] #1011 first attempt. quite hacky --- pybamm/models/base_model.py | 6 ++-- .../full_battery_models/base_battery_model.py | 33 +++++++++++++++++-- pybamm/simulation.py | 12 ++++--- pybamm/solvers/base_solver.py | 3 +- tests/unit/test_models/test_base_model.py | 22 +++++++++++++ .../test_lithium_ion/test_spm.py | 19 +++++++++++ 6 files changed, 83 insertions(+), 12 deletions(-) diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index 0776e40ba8..130a1b30c3 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -326,11 +326,9 @@ def _find_input_parameters(self): def __getitem__(self, key): return self.rhs[key] - def new_copy(self, options=None): + def new_copy(self): "Create an empty copy with identical options, or new options if specified" - options = options or self.options - new_model = self.__class__(options) - new_model.name = self.name + new_model = self.__class__(name=self.name) new_model.use_jacobian = self.use_jacobian new_model.use_simplify = self.use_simplify new_model.convert_to_format = self.convert_to_format diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index d499d08d2b..d1596be133 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -467,6 +467,8 @@ def build_model_equations(self): pybamm.logger.debug( "Setting rhs for {} submodel ({})".format(submodel_name, self.name) ) + if submodel_name == "external circuit": + n = 1 submodel.set_rhs(self.variables) pybamm.logger.debug( @@ -493,7 +495,7 @@ def build_model_equations(self): ) self.update(submodel) - def build_model(self): + def build_model(self, build_equations=True): # Check if already built if self._built: @@ -509,7 +511,10 @@ def build_model(self): self.build_coupled_variables() - self.build_model_equations() + if build_equations: + self.build_model_equations() + else: + self.update(*self.submodels.values()) pybamm.logger.debug("Setting voltage variables ({})".format(self.name)) self.set_voltage_variables() @@ -530,6 +535,30 @@ def build_model(self): self._built = True + def new_copy(self, options=None, build=True): + """ + Create a copy of the model. Overwrites the functionality of + :class:`pybamm.BaseModel` to make sure that the submodels are updated correctly + """ + options = options or self.options + # create without building + # 'build' is not a keyword argument for the BaseBatteryModel class, but it + # should be for all of the subclasses + new_model = self.__class__(name=self.name, options=options, build=False) + # update submodels + new_model.submodels = self.submodels + # now build + if build: + if self._built is True: + new_model.build_model(build_equations=False) + else: + new_model.build_model(build_equations=True) + new_model.use_jacobian = self.use_jacobian + new_model.use_simplify = self.use_simplify + new_model.convert_to_format = self.convert_to_format + new_model.timescale = self.timescale + return new_model + def set_external_circuit_submodel(self): """ Define how the external circuit defines the boundary conditions for the model, diff --git a/pybamm/simulation.py b/pybamm/simulation.py index 1fb11bc19b..e5c3df0312 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -124,12 +124,14 @@ def set_up_experiment(self, model, experiment): time. """ self.operating_mode = "with experiment" - self.model = model.new_copy( - options={ - **model.options, - "operating mode": constant_current_constant_voltage_constant_power, - } + new_model = model.new_copy(build=False) + new_model.submodels[ + "external circuit" + ] = pybamm.external_circuit.FunctionControl( + new_model.param, constant_current_constant_voltage_constant_power ) + new_model.build_model() + self.model = new_model if not isinstance(experiment, pybamm.Experiment): raise TypeError("experiment must be a pybamm `Experiment` instance") # Save the experiment diff --git a/pybamm/solvers/base_solver.py b/pybamm/solvers/base_solver.py index 159118bf72..4a854d3c4d 100644 --- a/pybamm/solvers/base_solver.py +++ b/pybamm/solvers/base_solver.py @@ -444,8 +444,9 @@ def calculate_consistent_state(self, model, time=0, inputs=None): root_sol = self.root_method._integrate(model, [time], inputs) except pybamm.SolverError as e: raise pybamm.SolverError( - "Could not find consistent initial conditions: {}".format(e.args[0]) + "Could not find consistent states: {}".format(e.args[0]) ) + pybamm.logger.info("Found consistent states") return root_sol.y.flatten() def solve(self, model, t_eval=None, external_variables=None, inputs=None): diff --git a/tests/unit/test_models/test_base_model.py b/tests/unit/test_models/test_base_model.py index ba9a284621..7f0edc3006 100644 --- a/tests/unit/test_models/test_base_model.py +++ b/tests/unit/test_models/test_base_model.py @@ -229,6 +229,28 @@ def test_update(self): self.assertEqual(model.initial_conditions[e], submodel2.initial_conditions[e]) self.assertEqual(model.boundary_conditions[e], submodel2.boundary_conditions[e]) + def test_new_copy(self): + model = pybamm.BaseModel(name="a model") + whole_cell = ["negative electrode", "separator", "positive electrode"] + c = pybamm.Variable("c", domain=whole_cell) + d = pybamm.Variable("d", domain=whole_cell) + model.rhs = {c: 5 * pybamm.div(pybamm.grad(d)) - 1, d: -c} + model.initial_conditions = {c: 1, d: 2} + model.boundary_conditions = { + c: {"left": (0, "Dirichlet"), "right": (0, "Dirichlet")}, + d: {"left": (0, "Dirichlet"), "right": (0, "Dirichlet")}, + } + model.use_jacobian = False + model.use_simplify = False + model.convert_to_format = "python" + + new_model = model.new_copy() + self.assertEqual(new_model.name, model.name) + self.assertEqual(new_model.use_jacobian, model.use_jacobian) + self.assertEqual(new_model.use_simplify, model.use_simplify) + self.assertEqual(new_model.convert_to_format, model.convert_to_format) + self.assertEqual(new_model.timescale, model.timescale) + def test_check_well_posedness_variables(self): # Well-posed ODE model model = pybamm.BaseModel() diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_spm.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_spm.py index d342ffb7b3..16c94524bd 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_spm.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_spm.py @@ -104,6 +104,25 @@ def test_surface_form_algebraic(self): model = pybamm.lithium_ion.SPM(options) model.check_well_posedness() + def test_new_model(self): + model = pybamm.lithium_ion.SPM({"thermal": "x-full"}) + new_model = model.new_copy() + self.assertEqual(new_model.submodels, model.submodels) + self.assertEqual(new_model.name, model.name) + self.assertEqual(new_model.use_jacobian, model.use_jacobian) + self.assertEqual(new_model.use_simplify, model.use_simplify) + self.assertEqual(new_model.convert_to_format, model.convert_to_format) + self.assertEqual(new_model.timescale, model.timescale) + + # with custom submodels + model = pybamm.lithium_ion.SPM({"thermal": "x-full"}, build=False) + model.submodels["negative particle"] = pybamm.particle.FastSingleParticle( + model.param, "Negative" + ) + model.build_model() + new_model = model.new_copy() + self.assertEqual(new_model.submodels, model.submodels) + class TestSPMExternalCircuits(unittest.TestCase): def test_well_posed_voltage(self): From 2e152eb15762f8ef939db9d37718de9d683e4e12 Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 16 Jun 2020 16:51:23 -0400 Subject: [PATCH 02/11] #1011 fix flake8 --- pybamm/models/full_battery_models/base_battery_model.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index d1596be133..4115c19acb 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -467,8 +467,6 @@ def build_model_equations(self): pybamm.logger.debug( "Setting rhs for {} submodel ({})".format(submodel_name, self.name) ) - if submodel_name == "external circuit": - n = 1 submodel.set_rhs(self.variables) pybamm.logger.debug( From 97bcc5381d7ec25d9426a5921bede4db7d459f6a Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Wed, 17 Jun 2020 12:50:39 -0400 Subject: [PATCH 03/11] #1011 remove model_options from simulation.specs --- .../full_battery_models/base_battery_model.py | 5 ++- pybamm/simulation.py | 31 +++++-------------- tests/unit/test_simulation.py | 13 +------- 3 files changed, 11 insertions(+), 38 deletions(-) diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index 4115c19acb..e1c3374006 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -533,16 +533,15 @@ def build_model(self, build_equations=True): self._built = True - def new_copy(self, options=None, build=True): + def new_copy(self, build=True): """ Create a copy of the model. Overwrites the functionality of :class:`pybamm.BaseModel` to make sure that the submodels are updated correctly """ - options = options or self.options # create without building # 'build' is not a keyword argument for the BaseBatteryModel class, but it # should be for all of the subclasses - new_model = self.__class__(name=self.name, options=options, build=False) + new_model = self.__class__(name=self.name, build=False) # update submodels new_model.submodels = self.submodels # now build diff --git a/pybamm/simulation.py b/pybamm/simulation.py index e5c3df0312..ac091688ab 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -107,7 +107,7 @@ def __init__( self.solver = solver or self.model.default_solver self.quick_plot_vars = quick_plot_vars - self.reset(update_model=False) + self.reset(reset_model=False) # ignore runtime warnings in notebooks if is_notebook(): # pragma: no cover @@ -251,12 +251,12 @@ def set_defaults(self): self.solver = self._model.default_solver self.quick_plot_vars = None - def reset(self, update_model=True): + def reset(self, reset_model=True): """ A method to reset a simulation back to its unprocessed state. """ - if update_model: - self.model = self.model.new_copy(self._model_options) + if reset_model: + self.model = self.model.new_copy() self.geometry = copy.deepcopy(self._unprocessed_geometry) self._model_with_set_params = None self._built_model = None @@ -578,7 +578,6 @@ def model(self): def model(self, model): self._model = copy.copy(model) self._model_class = model.__class__ - self._model_options = model.options.copy() @property def model_with_set_params(self): @@ -588,10 +587,6 @@ def model_with_set_params(self): def built_model(self): return self._built_model - @property - def model_options(self): - return self._model_options - @property def geometry(self): return self._geometry @@ -663,7 +658,6 @@ def solution(self): def specs( self, - model_options=None, geometry=None, parameter_values=None, submesh_types=None, @@ -677,10 +671,11 @@ def specs( A method to set the various specs of the simulation. This method automatically resets the model after the new specs have been set. + The model cannot be changed after a simulation has been created. We recommend + creating a new simulation for each model (see #1011) + Parameters ---------- - model_options: dict, optional - A dictionary of options to tweak the model you are using geometry: :class:`pybamm.Geometry`, optional The geometry upon which to solve the model parameter_values: dict, optional @@ -703,9 +698,6 @@ def specs( experiment at. """ - if model_options: - self._model_options = model_options.copy() - if geometry: self.geometry = geometry @@ -731,14 +723,7 @@ def specs( } ) - if ( - model_options - or geometry - or parameter_values - or submesh_types - or var_pts - or spatial_methods - ): + if geometry or parameter_values or submesh_types or var_pts or spatial_methods: self.reset() def save(self, filename): diff --git a/tests/unit/test_simulation.py b/tests/unit/test_simulation.py index 3222383c74..64544b4f8b 100644 --- a/tests/unit/test_simulation.py +++ b/tests/unit/test_simulation.py @@ -12,7 +12,6 @@ def test_basic_ops(self): sim = pybamm.Simulation(model) self.assertEqual(model.__class__, sim._model_class) - self.assertEqual(model.options, sim._model_options) # check that the model is unprocessed self.assertEqual(sim._mesh, None) @@ -147,11 +146,6 @@ def test_specs(self): sim = pybamm.Simulation(model) sim.build() - model_options = {"thermal": "lumped"} - sim.specs(model_options=model_options) - sim.build() - self.assertEqual(sim.model.options["thermal"], "lumped") - params = sim.parameter_values # normally is 0.0001 params.update({"Negative electrode thickness [m]": 0.0002}) @@ -198,22 +192,17 @@ def test_set_crate(self): def test_set_defaults(self): sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) - model_options = {"thermal": "x-full"} submesh_types = { "Negative particle": pybamm.MeshGenerator(pybamm.Exponential1DSubMesh) } solver = pybamm.BaseSolver() quick_plot_vars = ["Negative particle surface concentration"] sim.specs( - model_options=model_options, - submesh_types=submesh_types, - solver=solver, - quick_plot_vars=quick_plot_vars, + submesh_types=submesh_types, solver=solver, quick_plot_vars=quick_plot_vars, ) sim.set_defaults() - self.assertEqual(sim.model_options["thermal"], "x-full") self.assertEqual( sim.submesh_types["negative particle"].submesh_type, pybamm.Uniform1DSubMesh ) From 08c894116f3d863925abce8af29fd8c2727a98a3 Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Sun, 28 Jun 2020 20:25:58 -0400 Subject: [PATCH 04/11] #1011 remove sim.specs and sim.reset --- .../external_circuit/experiment_events.rst | 5 + .../submodels/external_circuit/index.rst | 1 + examples/scripts/compare_lithium_ion.py | 2 +- .../full_battery_models/base_battery_model.py | 1 + .../lead_acid/basic_full.py | 3 + .../lithium_ion/basic_dfn.py | 3 + .../lithium_ion/basic_spm.py | 4 + .../submodels/external_circuit/__init__.py | 1 + .../external_circuit/experiment_events.py | 35 +++++ pybamm/simulation.py | 133 ++++-------------- tests/unit/test_simulation.py | 88 ++---------- 11 files changed, 91 insertions(+), 185 deletions(-) create mode 100644 docs/source/models/submodels/external_circuit/experiment_events.rst create mode 100644 pybamm/models/submodels/external_circuit/experiment_events.py diff --git a/docs/source/models/submodels/external_circuit/experiment_events.rst b/docs/source/models/submodels/external_circuit/experiment_events.rst new file mode 100644 index 0000000000..ce7c0e5a8b --- /dev/null +++ b/docs/source/models/submodels/external_circuit/experiment_events.rst @@ -0,0 +1,5 @@ +Experiment events +================================= + +.. autoclass:: pybamm.external_circuit.ExperimentEvents + :members: diff --git a/docs/source/models/submodels/external_circuit/index.rst b/docs/source/models/submodels/external_circuit/index.rst index 600c7718ba..4eda7e9e7b 100644 --- a/docs/source/models/submodels/external_circuit/index.rst +++ b/docs/source/models/submodels/external_circuit/index.rst @@ -13,3 +13,4 @@ variable to be constant. current_control_external_circuit function_control_external_circuit + experiment_events diff --git a/examples/scripts/compare_lithium_ion.py b/examples/scripts/compare_lithium_ion.py index 2644511824..c0ef3cd3ba 100644 --- a/examples/scripts/compare_lithium_ion.py +++ b/examples/scripts/compare_lithium_ion.py @@ -3,7 +3,7 @@ # import pybamm -# pybamm.set_logging_level("INFO") +pybamm.set_logging_level("INFO") # load models models = [ diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index 5b5435bab1..3f4d58d0f1 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -569,6 +569,7 @@ def new_copy(self, build=True): new_model.use_simplify = self.use_simplify new_model.convert_to_format = self.convert_to_format new_model.timescale = self.timescale + new_model.length_scales = self.length_scales return new_model def set_external_circuit_submodel(self): diff --git a/pybamm/models/full_battery_models/lead_acid/basic_full.py b/pybamm/models/full_battery_models/lead_acid/basic_full.py index 60addb80fe..a81f5717a4 100644 --- a/pybamm/models/full_battery_models/lead_acid/basic_full.py +++ b/pybamm/models/full_battery_models/lead_acid/basic_full.py @@ -298,3 +298,6 @@ def __init__(self, name="Basic full model"): pybamm.Event("Maximum voltage", voltage - param.voltage_high_cut), ] ) + + def new_copy(self, build=False): + return pybamm.BaseModel.new_copy(self) diff --git a/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py b/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py index e8aa7165b4..3c76715ccd 100644 --- a/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py +++ b/pybamm/models/full_battery_models/lithium_ion/basic_dfn.py @@ -282,3 +282,6 @@ def __init__(self, name="Doyle-Fuller-Newman model"): pybamm.Event("Minimum voltage", voltage - param.voltage_low_cut), pybamm.Event("Maximum voltage", voltage - param.voltage_high_cut), ] + + def new_copy(self, build=False): + return pybamm.BaseModel.new_copy(self) diff --git a/pybamm/models/full_battery_models/lithium_ion/basic_spm.py b/pybamm/models/full_battery_models/lithium_ion/basic_spm.py index 7df99f8615..8e027d0e76 100644 --- a/pybamm/models/full_battery_models/lithium_ion/basic_spm.py +++ b/pybamm/models/full_battery_models/lithium_ion/basic_spm.py @@ -167,3 +167,7 @@ def __init__(self, name="Single Particle Model"): pybamm.Event("Minimum voltage", V - param.voltage_low_cut), pybamm.Event("Maximum voltage", V - param.voltage_high_cut), ] + + def new_copy(self, build=False): + return pybamm.BaseModel.new_copy(self) + diff --git a/pybamm/models/submodels/external_circuit/__init__.py b/pybamm/models/submodels/external_circuit/__init__.py index f181a9cca9..c61de44750 100644 --- a/pybamm/models/submodels/external_circuit/__init__.py +++ b/pybamm/models/submodels/external_circuit/__init__.py @@ -8,3 +8,4 @@ LeadingOrderVoltageFunctionControl, LeadingOrderPowerFunctionControl, ) +from .experiment_events import ExperimentEvents diff --git a/pybamm/models/submodels/external_circuit/experiment_events.py b/pybamm/models/submodels/external_circuit/experiment_events.py new file mode 100644 index 0000000000..1eaef5a47f --- /dev/null +++ b/pybamm/models/submodels/external_circuit/experiment_events.py @@ -0,0 +1,35 @@ +# +# Model to impose the events for experiments +# +import pybamm + + +class ExperimentEvents(pybamm.BaseSubModel): + """Model to impose the events for experiments.""" + + def __init__(self, param): + super().__init__(param) + + def set_events(self, variables): + # add current and voltage events to the model + # current events both negative and positive to catch specification + n_cells = pybamm.electrical_parameters.n_cells + self.events.extend( + [ + pybamm.Event( + "Current cut-off (positive) [A] [experiment]", + variables["Current [A]"] + - abs(pybamm.InputParameter("Current cut-off [A]")), + ), + pybamm.Event( + "Current cut-off (negative) [A] [experiment]", + variables["Current [A]"] + + abs(pybamm.InputParameter("Current cut-off [A]")), + ), + pybamm.Event( + "Voltage cut-off [V] [experiment]", + variables["Terminal voltage [V]"] + - pybamm.InputParameter("Voltage cut-off [V]") / n_cells, + ), + ] + ) diff --git a/pybamm/simulation.py b/pybamm/simulation.py index ac091688ab..51726be33d 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -96,6 +96,7 @@ def __init__( * self._parameter_values["Cell capacity [A.h]"] } ) + self._unprocessed_model = model self.model = model else: self.set_up_experiment(model, experiment) @@ -107,7 +108,12 @@ def __init__( self.solver = solver or self.model.default_solver self.quick_plot_vars = quick_plot_vars - self.reset(reset_model=False) + # Initialize empty built states + self._model_with_set_params = None + self._built_model = None + self._mesh = None + self._disc = None + self._solution = None # ignore runtime warnings in notebooks if is_notebook(): # pragma: no cover @@ -124,16 +130,24 @@ def set_up_experiment(self, model, experiment): time. """ self.operating_mode = "with experiment" + + # Update model new_model = model.new_copy(build=False) new_model.submodels[ "external circuit" ] = pybamm.external_circuit.FunctionControl( new_model.param, constant_current_constant_voltage_constant_power ) + new_model.submodels[ + "experiment events" + ] = pybamm.external_circuit.ExperimentEvents(new_model.param) new_model.build_model() + self._unprocessed_model = new_model self.model = new_model + if not isinstance(experiment, pybamm.Experiment): raise TypeError("experiment must be a pybamm `Experiment` instance") + # Save the experiment self.experiment = experiment # Update parameter values with experiment parameters @@ -215,29 +229,6 @@ def set_up_experiment(self, model, experiment): dt = 7 * 24 * 3600 self._experiment_times.append(dt) - # add current and voltage events to the model - # current events both negative and positive to catch specification - n_cells = pybamm.electrical_parameters.n_cells - self.model.events.extend( - [ - pybamm.Event( - "Current cut-off (positive) [A] [experiment]", - self.model.variables["Current [A]"] - - abs(pybamm.InputParameter("Current cut-off [A]")), - ), - pybamm.Event( - "Current cut-off (negative) [A] [experiment]", - self.model.variables["Current [A]"] - + abs(pybamm.InputParameter("Current cut-off [A]")), - ), - pybamm.Event( - "Voltage cut-off [V] [experiment]", - self.model.variables["Terminal voltage [V]"] - - pybamm.InputParameter("Voltage cut-off [V]") / n_cells, - ), - ] - ) - def set_defaults(self): """ A method to set all the simulation specs to default values for the @@ -251,24 +242,9 @@ def set_defaults(self): self.solver = self._model.default_solver self.quick_plot_vars = None - def reset(self, reset_model=True): - """ - A method to reset a simulation back to its unprocessed state. - """ - if reset_model: - self.model = self.model.new_copy() - self.geometry = copy.deepcopy(self._unprocessed_geometry) - self._model_with_set_params = None - self._built_model = None - self._mesh = None - self._disc = None - self._solution = None - def set_parameters(self): """ - A method to set the parameters in the model and the associated geometry. If - the model has already been built or solved then this will first reset to the - unprocessed state and then set the parameter values. + A method to set the parameters in the model and the associated geometry. """ if self.model_with_set_params: @@ -276,19 +252,20 @@ def set_parameters(self): if self._parameter_values._dict_items == {}: # Don't process if parameter values is empty - self._model_with_set_params = self._model + self._model_with_set_params = self._unprocessed_model else: self._model_with_set_params = self._parameter_values.process_model( - self._model, inplace=True + self._unprocessed_model, inplace=False ) self._parameter_values.process_geometry(self._geometry) + self.model = self._model_with_set_params def build(self, check_model=True): """ A method to build the model into a system of matrices and vectors suitable for performing numerical computations. If the model has already been built or - solved then this function will have no effect. If you want to rebuild, - first use "reset()". This method will automatically set the parameters + solved then this function will have no effect. + This method will automatically set the parameters if they have not already been set. Parameters @@ -594,11 +571,6 @@ def geometry(self): @geometry.setter def geometry(self, geometry): self._geometry = geometry.copy() - self._unprocessed_geometry = copy.deepcopy(geometry) - - @property - def unprocessed_geometry(self): - return self._unprocessed_geometry @property def parameter_values(self): @@ -667,64 +639,11 @@ def specs( quick_plot_vars=None, C_rate=None, ): - """ - A method to set the various specs of the simulation. This method - automatically resets the model after the new specs have been set. - - The model cannot be changed after a simulation has been created. We recommend - creating a new simulation for each model (see #1011) - - Parameters - ---------- - geometry: :class:`pybamm.Geometry`, optional - The geometry upon which to solve the model - parameter_values: dict, optional - A dictionary of parameters and their corresponding numerical - values - submesh_types: dict, optional - A dictionary of the types of submesh to use on each subdomain - var_pts: dict, optional - A dictionary of the number of points used by each spatial - variable - spatial_methods: dict, optional - A dictionary of the types of spatial method to use on each - domain (e.g. pybamm.FiniteVolume) - solver: :class:`pybamm.BaseSolver` (optional) - The solver to use to solve the model. - quick_plot_vars: list (optional) - A list of variables to plot automatically - C_rate: float (optional) - The C_rate at which you would like to run a constant current - experiment at. - """ - - if geometry: - self.geometry = geometry - - if parameter_values: - self.parameter_values = parameter_values - if submesh_types: - self.submesh_types = submesh_types - if var_pts: - self.var_pts = var_pts - if spatial_methods: - self.spatial_methods = spatial_methods - if solver: - self.solver = solver - if quick_plot_vars: - self.quick_plot_vars = quick_plot_vars - - if C_rate: - self.C_rate = C_rate - self._parameter_values.update( - { - "Current function [A]": self.C_rate - * self._parameter_values["Cell capacity [A.h]"] - } - ) - - if geometry or parameter_values or submesh_types or var_pts or spatial_methods: - self.reset() + "Deprecated method for setting specs" + raise NotImplementedError( + "The 'specs' method has been deprecated. " + "Create a new simulation for each different case instead." + ) def save(self, filename): """Save simulation using pickle""" diff --git a/tests/unit/test_simulation.py b/tests/unit/test_simulation.py index e13da8da2f..834f81484f 100644 --- a/tests/unit/test_simulation.py +++ b/tests/unit/test_simulation.py @@ -26,6 +26,11 @@ def test_basic_ops(self): for val in list(sim.model_with_set_params.rhs.values()): self.assertFalse(val.has_symbol_of_classes(pybamm.Parameter)) self.assertFalse(val.has_symbol_of_classes(pybamm.Matrix)) + # Make sure model is unchanged + self.assertNotEqual(sim.model, model) + for val in list(model.rhs.values()): + self.assertTrue(val.has_symbol_of_classes(pybamm.Parameter)) + self.assertFalse(val.has_symbol_of_classes(pybamm.Matrix)) sim.build() self.assertFalse(sim._mesh is None) @@ -36,26 +41,6 @@ def test_basic_ops(self): if val.size > 1: self.assertTrue(val.has_symbol_of_classes(pybamm.Matrix)) - sim.reset() - sim.set_parameters() - self.assertEqual(sim._mesh, None) - self.assertEqual(sim._disc, None) - self.assertEqual(sim.built_model, None) - - for val in list(sim.model_with_set_params.rhs.values()): - self.assertFalse(val.has_symbol_of_classes(pybamm.Parameter)) - self.assertFalse(val.has_symbol_of_classes(pybamm.Matrix)) - - sim.build() - sim.reset() - self.assertEqual(sim._mesh, None) - self.assertEqual(sim._disc, None) - self.assertEqual(sim.model_with_set_params, None) - self.assertEqual(sim.built_model, None) - for val in list(sim.model.rhs.values()): - self.assertTrue(val.has_symbol_of_classes(pybamm.Parameter)) - self.assertFalse(val.has_symbol_of_classes(pybamm.Matrix)) - def test_solve(self): sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) @@ -67,17 +52,8 @@ def test_solve(self): if val.size > 1: self.assertTrue(val.has_symbol_of_classes(pybamm.Matrix)) - sim.reset() - self.assertEqual(sim.model_with_set_params, None) - self.assertEqual(sim.built_model, None) - for val in list(sim.model.rhs.values()): - self.assertTrue(val.has_symbol_of_classes(pybamm.Parameter)) - self.assertFalse(val.has_symbol_of_classes(pybamm.Matrix)) - - self.assertEqual(sim._solution, None) - # test solve without check - sim.reset() + sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) sim.solve(check_model=False) for val in list(sim.built_model.rhs.values()): self.assertFalse(val.has_symbol_of_classes(pybamm.Parameter)) @@ -140,65 +116,25 @@ def test_reuse_commands(self): sim.solve() sim.set_parameters() - def test_specs(self): - # test can rebuild after setting specs - model = pybamm.lithium_ion.SPM() - sim = pybamm.Simulation(model) - sim.build() - - params = sim.parameter_values - # normally is 0.0001 - params.update({"Negative electrode thickness [m]": 0.0002}) - sim.specs(parameter_values=params) - - self.assertEqual( - sim.parameter_values["Negative electrode thickness [m]"], 0.0002 - ) - sim.build() - - sim.specs( - geometry=pybamm.battery_geometry(current_collector_dimension=1), - submesh_types={ - **model.default_submesh_types, - "current collector": pybamm.MeshGenerator(pybamm.Uniform1DSubMesh), - }, - spatial_methods={ - **model.default_spatial_methods, - "current collector": pybamm.FiniteVolume(), - }, - ) - sim.build() - - var_pts = sim.var_pts - var_pts[pybamm.standard_spatial_vars.x_n] = 5 - sim.specs(var_pts=var_pts) - sim.build() - - spatial_methods = sim.spatial_methods - # nothing to change this to at the moment but just reload in - sim.specs(spatial_methods=spatial_methods) - sim.build() - def test_set_crate(self): model = pybamm.lithium_ion.SPM() current_1C = model.default_parameter_values["Current function [A]"] sim = pybamm.Simulation(model, C_rate=2) self.assertEqual(sim.parameter_values["Current function [A]"], 2 * current_1C) self.assertEqual(sim.C_rate, 2) - sim.specs(C_rate=3) - self.assertEqual(sim.parameter_values["Current function [A]"], 3 * current_1C) - self.assertEqual(sim.C_rate, 3) def test_set_defaults(self): - sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) submesh_types = { "Negative particle": pybamm.MeshGenerator(pybamm.Exponential1DSubMesh) } solver = pybamm.BaseSolver() quick_plot_vars = ["Negative particle surface concentration"] - sim.specs( - submesh_types=submesh_types, solver=solver, quick_plot_vars=quick_plot_vars, + sim = pybamm.Simulation( + pybamm.lithium_ion.SPM(), + submesh_types=submesh_types, + solver=solver, + quick_plot_vars=quick_plot_vars, ) sim.set_defaults() @@ -433,14 +369,12 @@ def test_drive_cycle_data(self): # check warning raised if the largest gap in t_eval is bigger than the # smallest gap in the data - sim.reset() with self.assertWarns(pybamm.SolverWarning): sim.solve(t_eval=np.linspace(0, 1, 100)) # check warning raised if t_eval doesnt contain time_data , but has a finer # resolution (can still solve, but good for users to know they dont have # the solution returned at the data points) - sim.reset() with self.assertWarns(pybamm.SolverWarning): sim.solve(t_eval=np.linspace(0, time_data[-1], 800)) From c865c05de94d57ee0ab33757a4aacb2775ddcf20 Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Sun, 28 Jun 2020 21:48:36 -0400 Subject: [PATCH 05/11] #1011 fix examples --- ...utorial 2 - Setting Parameter Values.ipynb | 39 +++--- .../Tutorial 3 - Basic Plotting.ipynb | 129 ++++-------------- .../Tutorial 4 - Model Options.ipynb | 26 ++-- .../notebooks/models/pouch-cell-model.ipynb | 14 +- .../full_battery_models/base_battery_model.py | 2 +- 5 files changed, 69 insertions(+), 141 deletions(-) diff --git a/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb b/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb index c8591cb93d..4dc23fbad4 100644 --- a/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb +++ b/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb @@ -101,7 +101,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a4e0be8318b453ea00394c0f5dbdea5", + "model_id": "9dc20fe7756b4af6957afd61db7a69f7", "version_major": 2, "version_minor": 0 }, @@ -142,15 +142,14 @@ "metadata": {}, "outputs": [], "source": [ - "model2 = pybamm.lithium_ion.SPMe()\n", - "sim2 = pybamm.Simulation(model2)" + "model2 = pybamm.lithium_ion.SPMe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now extract the parameter values that have been automatically loaded into our simulation:" + "We now load the default parameter values from the model:" ] }, { @@ -159,7 +158,7 @@ "metadata": {}, "outputs": [], "source": [ - "parameter_values2 = sim2.parameter_values" + "parameter_values2 = model2.default_parameter_values" ] }, { @@ -191,7 +190,7 @@ "metadata": {}, "outputs": [], "source": [ - "sim2.specs(parameter_values=parameter_values2)" + "sim2 = pybamm.Simulation(model2, parameter_values=parameter_values2)" ] }, { @@ -209,12 +208,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb29cf7606614252a6a459832fc76c6a", + "model_id": "99f8a0a60836421bba0f44c72c505ead", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=1747.0357219251334, step=17.470357219251333)…" + "interactive(children=(FloatSlider(value=0.0, description='t', max=1765.234010695187, step=17.65234010695187), …" ] }, "metadata": {}, @@ -281,8 +280,8 @@ " 'Edge heat transfer coefficient [W.m-2.K-1]': 0.3,\n", " 'Electrode height [m]': 0.13699999999999998,\n", " 'Electrode width [m]': 0.207,\n", - " 'Electrolyte conductivity [S.m-1]': ,\n", - " 'Electrolyte diffusivity [m2.s-1]': ,\n", + " 'Electrolyte conductivity [S.m-1]': ,\n", + " 'Electrolyte diffusivity [m2.s-1]': ,\n", " 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n", " 'Initial concentration in negative electrode [mol.m-3]': 19986.609595075,\n", " 'Initial concentration in positive electrode [mol.m-3]': 30730.755438556498,\n", @@ -306,17 +305,17 @@ " 'Negative current collector thickness [m]': 2.5e-05,\n", " 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n", " 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Negative electrode OCP [V]': ,\n", - " 'Negative electrode OCP entropic change [V.K-1]': ,\n", + " 'Negative electrode OCP [V]': ,\n", + " 'Negative electrode OCP entropic change [V.K-1]': ,\n", " 'Negative electrode active material volume fraction': 0.7,\n", " 'Negative electrode cation signed stoichiometry': -1.0,\n", " 'Negative electrode charge transfer coefficient': 0.5,\n", " 'Negative electrode conductivity [S.m-1]': 100.0,\n", " 'Negative electrode density [kg.m-3]': 1657.0,\n", - " 'Negative electrode diffusivity [m2.s-1]': ,\n", + " 'Negative electrode diffusivity [m2.s-1]': ,\n", " 'Negative electrode double-layer capacity [F.m-2]': 0.2,\n", " 'Negative electrode electrons in reaction': 1.0,\n", - " 'Negative electrode exchange-current density [A.m-2]': ,\n", + " 'Negative electrode exchange-current density [A.m-2]': ,\n", " 'Negative electrode porosity': 0.3,\n", " 'Negative electrode specific heat capacity [J.kg-1.K-1]': 700.0,\n", " 'Negative electrode surface area to volume ratio [m-1]': 180000.0,\n", @@ -341,17 +340,17 @@ " 'Positive current collector thickness [m]': 2.5e-05,\n", " 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n", " 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Positive electrode OCP [V]': ,\n", - " 'Positive electrode OCP entropic change [V.K-1]': ,\n", + " 'Positive electrode OCP [V]': ,\n", + " 'Positive electrode OCP entropic change [V.K-1]': ,\n", " 'Positive electrode active material volume fraction': 0.7,\n", " 'Positive electrode cation signed stoichiometry': -1.0,\n", " 'Positive electrode charge transfer coefficient': 0.5,\n", " 'Positive electrode conductivity [S.m-1]': 10.0,\n", " 'Positive electrode density [kg.m-3]': 3262.0,\n", - " 'Positive electrode diffusivity [m2.s-1]': ,\n", + " 'Positive electrode diffusivity [m2.s-1]': ,\n", " 'Positive electrode double-layer capacity [F.m-2]': 0.2,\n", " 'Positive electrode electrons in reaction': 1.0,\n", - " 'Positive electrode exchange-current density [A.m-2]': ,\n", + " 'Positive electrode exchange-current density [A.m-2]': ,\n", " 'Positive electrode porosity': 0.3,\n", " 'Positive electrode specific heat capacity [J.kg-1.K-1]': 700.0,\n", " 'Positive electrode surface area to volume ratio [m-1]': 150000.0,\n", @@ -410,8 +409,8 @@ "output_type": "stream", "text": [ "EC initial concentration in electrolyte [mol.m-3]\t4541.0\n", - "Electrolyte conductivity [S.m-1]\t\n", - "Electrolyte diffusivity [m2.s-1]\t\n", + "Electrolyte conductivity [S.m-1]\t\n", + "Electrolyte diffusivity [m2.s-1]\t\n", "Initial concentration in electrolyte [mol.m-3]\t1000.0\n", "Negative electrode Bruggeman coefficient (electrolyte)\t1.5\n", "Positive electrode Bruggeman coefficient (electrolyte)\t1.5\n", diff --git a/examples/notebooks/Getting Started/Tutorial 3 - Basic Plotting.ipynb b/examples/notebooks/Getting Started/Tutorial 3 - Basic Plotting.ipynb index 95ce5914be..7ef0b2d6a2 100644 --- a/examples/notebooks/Getting Started/Tutorial 3 - Basic Plotting.ipynb +++ b/examples/notebooks/Getting Started/Tutorial 3 - Basic Plotting.ipynb @@ -19,10 +19,17 @@ "execution_count": 1, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -245,10 +252,6 @@ " 'Outer negative electrode sei thickness [m]',\n", " 'X-averaged outer negative electrode sei thickness',\n", " 'X-averaged outer negative electrode sei thickness [m]',\n", - " 'Total negative electrode sei thickness',\n", - " 'Total negative electrode sei thickness [m]',\n", - " 'X-averaged total negative electrode sei thickness',\n", - " 'X-averaged total negative electrode sei thickness [m]',\n", " 'Inner negative electrode sei concentration [mol.m-3]',\n", " 'X-averaged inner negative electrode sei concentration [mol.m-3]',\n", " 'Outer negative electrode sei concentration [mol.m-3]',\n", @@ -256,6 +259,11 @@ " 'Negative sei concentration [mol.m-3]',\n", " 'X-averaged negative electrode sei concentration [mol.m-3]',\n", " 'Loss of lithium to negative electrode sei [mol]',\n", + " 'Total negative electrode sei thickness',\n", + " 'Total negative electrode sei thickness [m]',\n", + " 'X-averaged total negative electrode sei thickness',\n", + " 'X-averaged total negative electrode sei thickness [m]',\n", + " 'X-averaged negative electrode resistance [Ohm.m2]',\n", " 'Inner negative electrode sei interfacial current density',\n", " 'Inner negative electrode sei interfacial current density [A.m-2]',\n", " 'X-averaged inner negative electrode sei interfacial current density',\n", @@ -276,10 +284,6 @@ " 'Outer positive electrode sei thickness [m]',\n", " 'X-averaged outer positive electrode sei thickness',\n", " 'X-averaged outer positive electrode sei thickness [m]',\n", - " 'Total positive electrode sei thickness',\n", - " 'Total positive electrode sei thickness [m]',\n", - " 'X-averaged total positive electrode sei thickness',\n", - " 'X-averaged total positive electrode sei thickness [m]',\n", " 'Inner positive electrode sei concentration [mol.m-3]',\n", " 'X-averaged inner positive electrode sei concentration [mol.m-3]',\n", " 'Outer positive electrode sei concentration [mol.m-3]',\n", @@ -287,6 +291,11 @@ " 'Positive sei concentration [mol.m-3]',\n", " 'X-averaged positive electrode sei concentration [mol.m-3]',\n", " 'Loss of lithium to positive electrode sei [mol]',\n", + " 'Total positive electrode sei thickness',\n", + " 'Total positive electrode sei thickness [m]',\n", + " 'X-averaged total positive electrode sei thickness',\n", + " 'X-averaged total positive electrode sei thickness [m]',\n", + " 'X-averaged positive electrode resistance [Ohm.m2]',\n", " 'Inner positive electrode sei interfacial current density',\n", " 'Inner positive electrode sei interfacial current density [A.m-2]',\n", " 'X-averaged inner positive electrode sei interfacial current density',\n", @@ -579,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -678,18 +687,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c21531c2202d416dad4927836be1463b", + "model_id": "83ac226df3aa42d8bd4fec1086c71169", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.9999999999995, step=35.99999999999999),…" + "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…" ] }, "metadata": {}, @@ -710,18 +719,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1c17ae12bb1d474e885e745697fad5d9", + "model_id": "4b3d3b04d12c427a9e5431d692ac0e01", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.9999999999995, step=35.99999999999999),…" + "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…" ] }, "metadata": {}, @@ -733,92 +742,6 @@ "sim.plot(quick_plot_vars=quick_plot_vars)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Overwriting default plot variables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you plan on plotting a specific set of variables repeatedly you can also overwrite the default set of quick plot variables in the simulation class. Currently, if we run `plot` with no arguments, we produces the standard plot we observed in previous tutorials:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7bdbaad776cf4bb09dbc5dd536fce2ee", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.9999999999995, step=35.99999999999999),…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sim.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But, if we set:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "quick_plot_vars = [\"Electrolyte concentration [mol.m-3]\", \"Terminal voltage [V]\"]\n", - "sim.specs(quick_plot_vars=quick_plot_vars)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "then running `plot` will automatically produce a plot using your plot variables:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b595c02d53174fc08002c45a412d4346", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.9999999999995, step=35.99999999999999),…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sim.plot()" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -852,7 +775,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/examples/notebooks/Getting Started/Tutorial 4 - Model Options.ipynb b/examples/notebooks/Getting Started/Tutorial 4 - Model Options.ipynb index 742b7e2d28..9fdd3e2366 100644 --- a/examples/notebooks/Getting Started/Tutorial 4 - Model Options.ipynb +++ b/examples/notebooks/Getting Started/Tutorial 4 - Model Options.ipynb @@ -18,7 +18,15 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ "%pip install pybamm -q # install PyBaMM if it is not installed\n", "import pybamm" @@ -55,7 +63,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -65,13 +73,11 @@ ], "source": [ "model = pybamm.lithium_ion.SPMe(options=options) # loading in options\n", - "sim = pybamm.Simulation(model)\n", - "\n", + "parameter_values = model.default_parameter_values\n", "# Increasing the current\n", - "parameter_values = sim.parameter_values\n", - "parameter_values.update({\"Typical current [A]\": 3})\n", - "sim.specs(parameter_values=parameter_values)\n", + "parameter_values.update({\"Current function [A]\": 3})\n", "\n", + "sim = pybamm.Simulation(model, parameter_values=parameter_values)\n", "sim.solve()" ] }, @@ -90,12 +96,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a551cd74c2c94180870a552c07bd0715", + "model_id": "37f600852b6e4114815c29c2f4674130", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…" + "interactive(children=(FloatSlider(value=0.0, description='t', max=800.239418181818, step=8.00239418181818), Ou…" ] }, "metadata": {}, @@ -137,7 +143,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/examples/notebooks/models/pouch-cell-model.ipynb b/examples/notebooks/models/pouch-cell-model.ipynb index 65c208f525..2df81d2ae3 100644 --- a/examples/notebooks/models/pouch-cell-model.ipynb +++ b/examples/notebooks/models/pouch-cell-model.ipynb @@ -91,7 +91,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/user/Documents/PyBaMM/pybamm/models/full_battery_models/base_battery_model.py:329: UserWarning: 1+1D Thermal models are only valid if both tabs are placed at the top of the cell.\n", + "/Users/vsulzer/Documents/Energy_storage/PyBaMM/pybamm/models/full_battery_models/base_battery_model.py:344: UserWarning: 1+1D Thermal models are only valid if both tabs are placed at the top of the cell.\n", " \"1+1D Thermal models are only valid if both tabs are \"\n" ] } @@ -318,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -569,7 +569,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydeXwV1fn/P89NgLCENRggkLDvgoUIaHH3i1DAtYqtrQstWpFWtNaq/aq1WqtfcUFbqVaxtb9W7bduFDdca/kiUqCCkU1kR0DWAAIJyTy/P2Y7M3Nm7tybm9wkPG9f19w5c85znnNmQs5nnnPOEDNDEARBEARBEAShvpPItgOCIAiCIAiCIAhxEPEiCIIgCIIgCEKDQMSLIAiCIAiCIAgNAhEvgiAIgiAIgiA0CES8CIIgCIIgCILQIBDxIgiCIAiCIAhCgyA32w4IgiAIgpA6S5YsOS43N/cpAIMhDyMFQWgcGADKqqqqfjh8+PCvdBmyJl6IqDmANwGcyczVmvNNAbxjna+qa/8EwYaI2gFoA+B0AK8y897seiQIQn1D+Zv2KwA3MPMETZ53AFycqX9DcnNzn+rUqdOAjh077k0kEvLSNkEQGjyGYdDOnTsHbt++/SkA5+ryZPNJzWQAL+mECwAwcyWAdwFMqlOvBCHIcAA/BjARwLez7IsgCPWTyQBeAqD9m2bxZwBTM1jn4I4dO+4X4SIIQmMhkUhwx44dy2FGlPV56tAfP5cBeJWIWhHRu0S0lIg+JaLzlDyvWPkEoVFBRExEXxPRr1Mo8x4RHSGi+bXpmyAIaXEZgFet762J6DUiWk1Evyci+2/tHADfyWCdCREugiA0Nqx/10I1SlbEizUlrCczbwBwBMAFzDwMwBkAHiQisrKWATgxGz4Kxx5E9DgR3aE5tQTAYwD+AeDvGaxyKDP/wqr7TSL6lcan84hoOxHlMvOZAH6UwfoFQcgAvr9pADACZrR2IIBeAC4EAGu6WDMi6pANPwVBEBoD2Yq8FADYZ30nAPcS0XKYa1yKABQCgDWlrJKI8rPipXCsMRpAIKrBzHuZeQMz/7EW17v8CcD3FOFu830Af5F1X4JQr1H/pgHAImZeZ/0New7mvy02XwHoUpfOCYIgNCayJV4OA8izvl8GoCOA4cx8AoAdyjkAaAYzOiMIGYeIEkR0MxFtAHA8gOeJ6MYsuPIKgA4ATlF8awdgAoBns+CPIAjxUf+mAYB/Kpd6nGflbxRs2rQpd8KECT27des2eNCgQQNOO+203suXL2+2ePHivFGjRvXt3r374JKSksE/+9nPOhuGAQB49NFHOxDR8FdeecV5MPnnP/+5LRENf+aZZ9oBwHPPPddmwIABA/v16zewV69egx544IECO++MGTMKevToMahHjx6Djj/++AFvvfVWK/vciBEj+n344Yct6rALjkkuvvji7u3btx/ap0+fQbVlJycnZ3j//v0H9u7de1C/fv0G3nnnnYXV1VFLyoR0iOrnuXPn5ufn55/Qv3//gf379x948skn9wWAG2+8sUvz5s2/sXXrVmfjrxYtWnzD/h727wIALF++vNlpp53Wu6SkZPDAgQMHfOtb3+q5efPmlDYQy4p4sZ5e5xBRHsxdnL5i5qNEdAaAEjufFVrfxcxHs+GncExwK4DxAH4CYA1MsfAAEXWrSyeY+TCAvwG4XEm+BMAqZl5Wl74IgpAavr9pADCCiHpYa10mwYroWpHVTgA2ZMXRDGMYBs4999zep5566oHNmzeXffbZZyvvu+++rV9++WWTCy64oPfNN9+8fcOGDWVlZWUrPv7441b3339/R7tsnz59Dj/33HPt7ePnn3++fb9+/Q4DQEVFBV1//fUlc+fO/Xz16tUrysrKVowZM+YAYIqaZ555puOCBQtWr1+//rNZs2ZtvPLKK3ts2rRJXv1Qh0yePHnXnDlzPk+Wb+7cufkXXXRR93TsNGvWzFi1atWKtWvXfvbee++tefvtt9vcdNNNErXMMMn6ubS09OCqVatWrFq1asWCBQvW2Olt27atuueeewr99qL+XTh06BBNnDixzzXXXLNz48aNZStWrFg5derUndu3b6//4sViHsxQ+l8AlBLRpzAHbquUPGcAeC0LvgnHANZ0xF8AuAJANwD/YeZFADYD6J8Fl/4E4NvKAOhyK00QhPqP/TcNAP4N4LcAVgJYD+BlK304gIXZmgb6xBNPtO/Tp8+gnJyc4X369Bn0xBNPtE9eKpy5c+fm5+bm8s0337zTTjvppJMOr1y5Mq+0tPTghRdeuB8A8vPzjVmzZm2aOXNmZzvfyJEjD/7nP/9pWVFRQeXl5YkNGzY0GzRo0CEA2LdvX6KqqooKCwurAKB58+Y8dOjQCgCYMWNGp9/85jdbOnfuXAUAo0ePPnTJJZfsfvDBB4+rSVuE1Bg3btzBjh071vg+jmunqKio6qmnntrwzDPPHGdH8ITMk0o/f+c739k9Z86c9jt27MhR08P+XRg7duzBJ598sv2wYcMOfve73y23z02YMOHAiSeemNIMq2yKl98BuIKZdzHzScx8PDNfxcwDlEWP3wXwRPZcFBo5ZwJYbd1vQwH8x3pS2g7mvPQ6hZnnA9gF4Hwi6gVz0e9f69oPQRDSwv6b9gEzn8rM45m5HzP/iJntUcD3ATyeDeeeeOKJ9nfffXfRQw89tOnQoUNLH3rooU133313UU0EzPLly5sPHTr0kD/9s88+yxs2bJgnfdCgQRWHDh1K7NmzJwEARIRTTz11/0svvdT6r3/9a9uxY8c6a4YKCwur/+u//mtfcXHxkIkTJ/aYNWtWe3say9q1a5t/85vf9Ng+8cQTD61cubJ5uu0QGgYDBw6srK6uhjpVScg8/n5evHhxK3va2M9//vNOdr5WrVpVf+c739l13333eaIvYf8uAEBZWVlz/78N6ZC1G4CZlxLR+0SUE/GSyleYeY2muCBkgk4A9ljfT4C5k9ipAMoBLM+ST8/CjLj0A/AWM+/Ikh+CIKRAsr9pFmXM/G6dOmYxY8aMzrNmzdowceLEAwBg/dxw4403Fl9zzTV7khSvFS677LI9jzzySOGBAwdyHnnkkc133XWXE5l54YUXNi5atOirN954I//RRx/t9M4777R+8cUXN2TDz/rK5MmTu5WVlWV0fc/gwYMPzZ49e3NN7QwZMqR/ZWVl4tChQ4ny8vLc/v37DwSAX//611suuuii/TX3tHEyYsSIft/73vd2/eQnP9ldUVFBp5xySt8rr7xy59SpU/ccOHAgcdZZZ/WZMmXKV1OmTNm7e/funHHjxvW+7rrrdlxxxRX7tm3blnveeef1mj59+vbvfve75Zs2bcotLi6ucXSstLT04Pvvv79Wd+6WW275aujQoQPvuOOO7TWtJxWyGXkBM8+OekklM8tCZaE2WQVgOBH1hPkypD0wp3rczMzZenfCswDOBjAFMmVMEBoUUX/TrPN/qEt/VNatW5c3ZsyYg2ramDFjDq5bty4vrEwyjj/++MPLli0LDJ4HDhx4ZOnSpZ70FStWNG3RooXRvn17Zy7KGWeccWjVqlXN9+zZkztkyJAKv50RI0YcvvPOO79677331rz55pvtAKB3796H/+///s9je/HixS0GDBjQaDZBaAwsX7581apVq1Y8/vjjG88+++x99pqJmgiXFStWNM3JyUFRUZHsvlmLpNLPBQUF1RdccMGeBx54wJm2GfbvAgAMGjQo8G9DOkjoTTiW+RDA0zDf45IHc/3VPcz8PBGNAjATwCEA/2TmX/oLW4tvfwtgCIAqmAvsBwG4BeZuQj0BXMbMZXEdYuYNRLQA5jS2Oek3TRAEwaVnz55H5s2b18qOvADAvHnzWvXs2TPt3TwnTpx44Pbbb6cZM2YU3HTTTbsA4OOPP24+cODAIw899FDnV155Jf/8888/cPDgQbruuuuKf/zjHweezt59991bmjdv7nlYVF5envjXv/7VcsKECQdsm126dKkEgBtvvHH7bbfd1nXEiBFrOnXqVL1gwYLmL7zwQoeFCxeu8ttu7GQiQtJQ+PLLL3OnTJlSctVVV32VSGT1uXutsmjRotX292bNmrF6nJ+fb6jHHTp0qFaPO3fuXKUepxN1Saeff/GLX+woLS0dUF1dTUD4vwt79+7NmTJlyu6HH3640/PPP9/m0ksvLQeAN954o1VBQUFVKuteRLwIxyxWdOWnRLQIwFXMPFY5PR7AXcz8uvJ2bD8TARjMfApgbrtspTdh5rFENA7AZAC6rZcrACwhokeZ+XafX6frKiOitwGMArAoXgsFQRBMbrrppm3XXnttdwAbxowZc3DevHmtrr322u6333771nRtJhIJzJkz54upU6d2mzlzZqdmzZpx165dKx577LHNL7300tpp06YVT58+vYlhGLj44ot333rrrYG1hJdcckngSbxhGHjggQcKp02bVpKXl2e0aNHCePrpp9cDwGWXXVa+ZcuWpqNGjRpARNyyZUtj9uzZ60tKSpxdSS+44II+ubm5DADDhg07+MYbb6xLt42CnokTJ/ZYuHBh/t69e3MLCwuH3HLLLV/ecMMNuzJpp6KiItG/f/+BVVVVlJOTw5MmTdp95513ylTqDFPTfu7cuXPVuHHj9j799NOFQPS/C61ateJXX3117U9+8pNuP//5z7vl5ubygAEDDs+aNWtTKj5T9mbHCEL9gIjuANCBma9X0joB+G+Yi/f/wsyva8r9HMAXzPx3Je10ABOZ+adENBjAT5n5qtpugyAIxx7Lli3bMHTo0NgDxieeeKL9jBkzOq9bty6vZ8+eR2666aZt2VrvIgiCEMWyZcsKhg4d2l13TiIvgmAujl/gSytn5mnWxhFLALwOAETUlZm3WHlWwlyf8nfrnB15UZ8IUK15LQiCkALXXHPNHhErgiA0dES8CMc8zHyZJvkaIroQ5u/IHwGAiHIBPAfgFCvPPwCMJaL5AI7CXPMiCIIgCIIg1BIiXgRBAzM/AuARX/IwmLuB2XkYwFRfng+sD6yF+lfWlo+CIAiCIAjHGiJeBCEmzLwIslheEIT6g2EYBiUSCVm8KghCo8EwDAJghJ1vvPvNCYIgCELjpmznzp1trD/0giAIDR7DMGjnzp1tAIS+ZkIiL4IgCILQAKmqqvrh9u3bn9q+fftgyMNIQRAaBwaAsqqqqh+GZZCtkgVBEARBEARBaBDIkxpBEARBEARBEBoEIl4EQRAEQRAEQWgQiHgRBEEQBEEQBKFBIOJFEARBEARBEIQGgYgXQRAEQRAEQRAaBI1OvBDRiURURUTfTrEcEdGjRLSWiJYT0TDf+dZEtIWIftuQfSKi8yxbnxDRYiIaLT7Vb3+sMpdZtj4logVENDQVnywbt1o+rSaic3zncojoP0Q0t4H71J+IPiKiCiK6KVV/asmn04mo3LqfPiGiOzLlExFtsPr/EyJanKpdQRAEQWhoNKr3vBBRDoD7AcxLo/g4AH2sz0gAs6yfNncD+LAR+PQugDnMzEQ0BMDfAPQXn+q1PwCwHsBpzLyXiMYBeNJnMxIiGgjgUgCDAHQB8A4R9WXmaivL9QBWAmjdwH3aA+AnAM5PoUxt+wQA/2LmCbXk0xnMvCsd24IgCILQ0GhskZcfA3gRwFdqIhH9jIj+bT0lviuk7HkAnmWThQDaElFnq/xwAIVIT4DUK5+Y+SC7L/dpCcB50Y/4VD/9sXxawMx7rcOFALoqPn2PiBZZT9+fsASzzqfnmbmCmdcDWAtghFW+K4DxAJ5qBD59xcz/BnDUfy5bPkVRU58EQRAE4Vij0YgXIioCcAHMp9xq+hiYT8BHADgBwHAiOlVjogjAZuV4C4AiIkoAeBBAylNQ6qNPVv0XENEqAK8BmCw+1X9/fPwAwBuWTwMATALwTWY+AUA1gMvi+mR9fwTAzTDfatuYfHKoBz6dRETLiOgNIhqUQZ8YwDwiWkJEV6fhlyAIgiA0KBrTtLFHAPycmQ0iUtPHWJ//WMetYA5A407bmQrgdWbe4rPbUH0CM78M4GVr4H03gLPFp/rtjw0RnQFTKNjrcM4CMBzAvy2bzeGL8iWxNwHAV8y8hIhObyw+acimT0sBlDDzQSL6FoBXYN43NfLJYjQzbyWi4wC8TUSrmDnl6a2CIAiC0FBo0OKFiK4DMMU6bAPgeWsQUADgW0RUBYAA/IaZn4go+y0AWwF0U7J0tdJOAnAKEU2FOVhtSkQHmfmWBurTt5j5SwBg5g+JqCcRFRzrPtU3f0LsFsCcsjSOmXfb2QD8iZlv9ZW9AMCd1uEPI3w6F8C51qA6D0BrIvp/zPy9huqTfe382eqDT8z8OhE9rtxPNfEJzGz//IqIXoYZFRTxIgiCIDRemLnRfQD8EcC3re9jAHwMoJV1XATgOE2Z8TCnvRCAUQAWafJcCeC3DdknAL0BkPV9GMxBEIlP9dcfK38xzLUOJ/vSBwL43PYDQHuYT/n95QcBWAagGYAeANYByPHlOR3A3Ibsk1LulwBuqg8+Aeik3E8jAGyy7o0a+QRzPVa+laclgAUAxqbaV/KRj3zkIx/5NKRPg468xIGZ51lzyz+yIiAHAXwPwekZr8N8krwWwCEAVzVSny4CcDkRHQVwGMAkZrbnzYtP9dMfALgDQAcAj1t1VzFzKTOvIKL/tnxLwFyofh2AjWphZv6MiP4GYAWAKgDXsbtbVaPxiYg6AVgMczcwg4imAxiY5X76NoBrrajrYQCXWvdTjXwiokKYUxsBM4r+V2Z+s4a+CoIgCEK9xn4aKAiCIAiCIAiCUK9p9JEXQRAEQWiMLFmy5Ljc3NynAAxGI9o9VBCEYxoDQFlVVdUPhw8frt3ERsSLIAiCIDRAcnNzn+rUqdOAjh077k0kEjKNQhCEBo9hGLRz586B27dvfwrmZjkB5EmNIAiCIDRMBnfs2HG/CBdBEBoLiUSCO3bsWA4zoqzPU4f+CIIgCIKQORIiXARBaGxY/66FahQRL4IgCIIgpMzatWubjBw5sm+vXr0G9e7de9Ddd999nH1ux44dOSeffHKfkpKSwSeffHKfnTt35gCAYRi48soruxUXFw/u27fvwPnz57fIXguEOOzatStn7NixPXv06DGoZ8+eg955552WgFzjxsTFF1/cvX379kP79OkzSE1P5xo/9thjHUpKSgaXlJQMfuyxxzrUhr/HtHghoquz7YOf+uZTffMHEJ/iIj4lp775A9RPnwRBR5MmTfDggw9u+eKLLz7797//vfLpp58+bsmSJXkAcOedd3Y+/fTTD2zcuLHs9NNPP3DHHXd0AoD//d//bbNu3bq8DRs2lM2aNWvj1KlTi7PbCiEZV199dbcxY8bsX79+/WcrVqxYccIJJxwB5Bo3JiZPnrxrzpw5n/vTU73GO3bsyLn//vu7LFq0aOXixYtX3n///V1swZNJjmnxAqA+DhLqm0/1zR9AfIqL+JSc+uYPUD99EoQAJSUlR0ePHn0IANq1a2f06tXr8KZNm5oCwJtvvtn2mmuu2Q0A11xzze433nijHQC8+uqrbS+77LLdiUQCZ5111tf79+/P3bhxYxPV7v79+xOnn3567379+g3s06fPoD/84Q/t6rptgsnu3btzPv744/zp06fvAoC8vDwuKCioBuQaNybGjRt3sGPHjlX+9FSv8SuvvNLm1FNP3V9YWFjdsWPH6lNPPXX/Sy+91MZvd+rUqUW9evUa1Ldv34FXX31111T9ld3GBEEQBEGoEatXr266YsWKFqeddtpBANi9e3duSUnJUQDo1q3b0d27d+cCwLZt25p079690i7XuXPnyo0bNzax8wLASy+91LpTp05HP/jgg7WWrYw/uRXisXr16qbt27evuvjii7uvWLGixZAhQ77+wx/+sLl169aGXOPGT6rXeOvWrU26du3qpBcVFVVu3brVI1y3b9+e8/rrr7dbt25dWSKRwK5du1K+9seUeKEWxzGMSgBkJuS2AOW1dxc7EvlL6I+T5nOTyZeLlO/qSftrTtN8NGtV6PgUqErnVWQe9iToPKXAF/ewWfNWaN32OFYTQ1qr9cM163UgzEaUfbtcy5b5KOhYGFikGtYObZLPWW2dyXxRLmLr1q3RuXNnj0/+axzH11T9COtzAGjXrjVKunVmfX9474uo+iOva1hfU3ANMQHoWJCPPj0LOfI+IMW/lPzh6PY4B26XdC5siUH9Ctit1zwfXZ+TXVOfrl81l4B0l4VBBHTr0gzDjm/NnrLk9Svs+tkJS5Z//RYzjw1UITRaJk+e0q2srCyjawsGDx58aPbsP2xOlq+8vDxx4YUX9rrvvvs2t2/f3vCfTyQSoKh/rHwMGzbs8C9+8Ytu1157bdF5551XPnbs2IMput4oefe2Z7vtXrM1o9e4Q9+iQ2fde3noNa6qqqKVK1e2mDlz5qYzzzzz66uuuqrb7bff3mnmzJlfqvnkGmcGY+GPuvG+FRm9xtR24KHEqN8n/T1ORqrXOIwOHTpUN2vWzJg0aVL3CRMm7Js0aVJ5qjaOKfGC6kqg2+kAJcyPM4KyjongzKRz8iTc0YtzrJwDzPO2PWVUSgTkEpBjDTRyCcghIAdAgswPACTAzrGbBhCZ6QQ3naw8ZA10ADh5SClvH5M1SPLkVfI77jv5/eU1eZOUdwSaJy+FlkegvC+vzyaIQuonTxtcGxT0yU7z2PCWV/M4/qs2FQMBu/7+oHB/g33I+n7VXRtfmqce6x7R5+UQm7r0GGnkr09pg3XOvYfZkw5N3U55T35fXuUcfPnsvAm4x2H5gj4o5TVpbjt96cRIaNLcegzFrpJOhi+vgYRT3nDSzHRDSTec3wenAQnz36REp4UFEIQ6oKKigsaPH9/r4osv3nPFFVfss9M7dOhQZT9t37hxY5P27dtXAUDnzp2Pbtiwoamdb9u2bU3VJ/IAMGTIkIqlS5euePHFF9vcfvvtRe+8887+GTNmbKu7Vgk23bt3rywsLKw888wzvwaASZMm7b3vvvs6AXKNjwVSvcZFRUVH//nPf+bb6Vu3bm162mmnHVBtNmnSBJ988snKOXPmtP773//ebtasWcctXLhwTSp+HVviRRAEQRAaIXEiJJnGMAxceumlJX379j3yy1/+cod67pxzztn3xBNPdLj33nu3P/HEEx3Gjh27DwDOPffcfY8//vhxU6ZM2fP++++3zM/Pr/YPbDds2NDkuOOOq5o6deqedu3aVT/99NMixgFERUhqi+Li4qpOnTpVLlu2rNnQoUMr5s2b17pfv35HALnGtUEmIiSZJNVrfP7555f/6le/KrIX6f/zn/9s/fDDD29RbZaXlycOHjyYmDRpUvnZZ599sFevXsen6peIF0EQBEEQUubtt99u9corr3To06fP4f79+w8EgLvuumvrpEmTyu+6665tF1xwQa+SkpKCoqKiypdffvkLALjkkkvKX3vttTYlJSWDmzdvbjz11FMb/HaXLFnS/NZbb+2aSCSQm5vLjz/++MY6bpqg8Nhjj2267LLLelZWVlJxcXHFc889twEA5Bo3HiZOnNhj4cKF+Xv37s0tLCwccsstt3x5ww037Er1GhcWFlb/7Gc/+3L48OEDAODmm2/+srCwsFqta9++fTkTJkzoXVFRQQBw9913pyzYiPnYeb8VNWvLMm3MOx3Jcd/J7y+vyZukvG7alEwbC/c32IcybUymjdV42tgSZi6F0KhZtmzZhqFDh+7Kth+CIAiZZtmyZQVDhw7trjt3rG+VLAiCIAiCIAhCA0HEiyAIgiAIgiAIDQIRL4IgCIIgCIIgNAhEvAiCIAiCIAiC0CAQ8SIIgiAIgiAIQoNAxIsgCIIgCIIgCA0CES+CIAiCIKRNVVUVBgwYMPCMM87obaetWrWq6ZAhQ/oXFxcPHj9+fM8jR44QABw+fJjGjx/fs7i4ePCQIUP6r169umm4ZaE+cNdddx3Xu3fvQX369Bk0ceLEHocOHSJArrGQPUS8CIIgCIKQNvfcc09h7969D6tpN954Y9dp06bt2LRpU1mbNm2qZs6cWQAAM2fOLGjTpk3Vpk2byqZNm7bjxhtv7Jodr4U4rF+/vsmTTz5Z+Mknn6z4/PPPP6uurqannnqqPSDXWMgeIl4EQRAEQUiLL774oslbb73VZsqUKc7LMg3DwEcffZR/1VVX7QWAyZMn7/7HP/7RFgDmzp3bdvLkybsB4Kqrrtq7YMGCfMMwPDY3btzYpLS0tF///v0H9unTZ9Cbb77Zqg6bJPiorq6mr7/+OnH06FEcPnw40bVr16NyjYVsIuJFEARBEIS0uO6667r9z//8z5ZEwh1O7NixIzc/P7+6SZMmAIDu3btX7tixo6l1rmmPHj0qAaBJkyZo1apV9Y4dO3JVm7Nnz25/1llnla9atWrFypUrPxs5cuShumuRoNKjR4+j11133fYePXoMOe6444bm5+dXX3jhhfvlGgvZJDd5FkEQBEEQ6jMP/OjZbutXfNkikzZ7DOxy6Ge/v3xz2PnnnnuuTUFBQdUpp5xyaO7cufmZqnfUqFFfX3PNNd2PHj2a+Pa3v7335JNPPpy8VONn52/v7Va5aV1Gr3HT4p6HOk67LfQa79y5M+e1115ru3bt2k87dOhQPX78+J6PP/54+wsuuGB/TeqVayzUhGNLvFSWv4UvXi2oq+oYwFHrIwiCUIfsSp5FEGrG/PnzW7399ttti4qK2lRUVCS+/vrrxHnnndfj5ZdfXn/gwIGco0ePokmTJtiwYUPTwsLCSgAoLCysXL9+fdNevXodPXr0KA4ePJhTWFhYpdodN27cwQ8//HD1iy++2Gby5Mk9pk2btmPatGm7s9PKY5t//OMfrYuLiyu6dOlSBQDnn3/+vgULFrT60Y9+tEeusZAtjinxwsxjs+2DIAiCIGSaqAhJbfG73/1u6+9+97utADB37tz8Bx98sPDVV19dDwCjRo068Mwzz7S7+uqr986ePbvDhAkT9gHA+PHj982ePbvD2Wef/fUzzzzT7qSTTjqgTjkDgDVr1jTt2bNn5U9/+tNdFRUVtHTp0hYAjvmBbVSEpLbo3r175dKlS1sdOHAg0bIXJacAACAASURBVLJlS+O9997LHz58+KFEIiHXWMgax5R4EQRBEASh9nnwwQe3TJo0qdc999xTNGjQoEPXX3/9LgC4/vrrd1100UU9iouLB7dp06b6hRde+MJf9q233sp/9NFHO+Xm5nKLFi2q//KXv6yv+xYIAHDmmWd+PXHixL1DhgwZkJubi0GDBh268cYbdwJyjYXsQcycbR8EQRAEQUiRZcuWbRg6dKhMERQEodGxbNmygqFDh3bXnZPdxgRBEARBEARBaBCIeBEEQRAEQRAEoUEg4kUQBEEQBEEQhAaBiBdBEARBaJgYhmFQtp0QBEHIJNa/a0bYeREvgiAIgtAwKdu5c2cbETCCIDQWDMOgnTt3tgFQFpZHtkoWBEEQhAZIVVXVD7dv3/7U9u3bB0MeRgqC0DgwAJRVVVX9MCyDbJUsCIIgCIIgCEKDQJ7UCIIgCIIgCILQIBDxIgiCIAiCIAhCg0DEiyAIgiAIgiAIDQIRL4IgCIIgCIIgNAhEvAiCIAiCIAiC0CAQ8SIIgiAIgiAIQoNAxIsgCIIgCIIgCA2COhcvRDSbiL4iojIl7QEiWkVEy4noZSJqq5y7lYjWEtFqIjpHSR9rpa0lolvquh2CIAiCIAiCINQt2Yi8/BHAWF/a2wAGM/MQAGsA3AoARDQQwKUABlllHieiHCLKAfA7AOMADATwHSuvIAiCIAiCIAiNlDoXL8z8IYA9vrR5zFxlHS4E0NX6fh6A55m5gpnXA1gLYIT1WcvM65i5EsDzVl5BEARBEARBEBopudl2QMNkAC9Y34tgihmbLVYaAGz2pY/UGSOiqwFcbR7kDEeTVvG8oLjuxs4YMy+lZjKuzdjm4uaNl49iNocAJGJWTYjnJoFjN4ec/2nS1eMUujJue+LmAwEU4kC6fprXJ1Znxr8+ZNcfXSBBrMnDTn3evNrkoM2wxzGa8okEJ7FmkhMzHxHHskkAEglD517ggMCghBHdbjLr/KTswC5m7hjLWaFRUFBQwN27d8+2G4IgCBlnyZIloX/T6pV4IaJfAKgC8JdM2WTmJwE8CQDUrC2j62npeBZxKhFzHE9mXt0oyk8i7mXJsWwmqzoHSOTEsEcA5cI3egrJmkBOIsc5rctG1qepr9kE/fe8HLYGqRzZPTkE5Gqao9ozjxl5TYJ5dOTmqAPfYP32cSIBNM0l7bkom2H9AzBycyjQnrDBbNMm4WpQbX+zpkBCvTdCyiQSQJNc9R5yM/qFZ7NmQA7leHNq7CZygCY5wXuIYIV6leMWzZVsEb8aubmMHE0fuULJpEnOUeTlKed9BlXbTZtUIZGwBIIvg3rd8vIq0TSHXb+JnWvnFCEAMJDXzAwgJ8CeC2IKFlfYtGx+CE2auAKGSBEo5Ipuoio0a1Zpmkq4dQLm7wol2EnL7/mvjRCOKbp3747Fixdn2w1BEISMQ0Shf9PqjXghoisBTABwFjPbf6G3AuimZOtqpSEiPZNeZdAWA+wOgBD1gJbjPel1DCV7zJ6KOSBes9mbTfcMPZlJe9jlFzHJHQg2yN+til5KgeiO8oujTJDUJoV8D0lmWLdDyo5qBBkDTOG3V7Jr7rdMcHuYfO1K516ybbBVIDTKF2JQ7Sa2/VBtKpUxmd6b/UJgcoWLm5UcIcPWd1J+59kwv9gihtmyaZ9X7Jj1s0ec2aaI2Dk2f/1jxc4EQRAEoVFQL8QLEY0FcDOA05j5kHJqDoC/EtFDALoA6ANgEcy/4X2IqAdM0XIpgO9m3rOwwWwNhgoZNWmNylSboaO3FM2qZGBkxMoA0jcuBABUK1WHRT3C3NPZNOAOLPVxBR3uWdbUxJbhZP7p0sOugPPcPCLqEJWu2nYG4poODpRXrwUD8E3hYuULa8rpjikki+2PWoM9EDfYnBLmv+7s6w9dX9p2LV0BZsBQbIX+WihGPW1zgxgeVWNUG0CON78qepzIDbn96Z53HSKrtGEA5h2qiBDPFEd22uUKGVXE2J3DIKvdDO80NEEQBEHIJvOnj8UJfRcjr81hHClvjk/WlGL0I29mxHY2tkp+DsBHAPoR0RYi+gGA3wLIB/A2EX1CRL8HAGb+DMDfAKwA8CaA65i52lrcPw3AWwBWAviblbe2vUe8oXQUvvyZepxf52EBAwbUIVjNzBPcg6A99nySDeTVMSg0x8mJLpG6vWgI7lP0sPOpYhjWoFYnROOqL00WrU37HJL3iyePIjr8NlO6ne0IhFWQjaA9rUhh7xlPMIhhLyVxoi0wrPSAA6Z8sc/puteJhlmG2VGs5K47Ylv9mBaciJLjg2vQjTKp8UtBEARByD7zp4/F8AGLsHjLuTgyZiMWbzkXwwcswvzp/s2G06POIy/M/B1N8tMR+X8N4Nea9NcBvJ5B12KgG5qlov80A4zYUY6aDE7SeZ6fmk1dNMVzHBUFUI1oozPqc+70cYZ55FrUt8ILhXxn5afOZlTvhvWTOuj2T61KF2bFR2VAHO2Rz4b9P+fpv1LK3+CIyxRokpJgWOVyNK6ETV3ziIVAhCJY3nNfOf/jYBN8oRq28jj9wAgsN2O7oE8F2VERXUSKyIqkEKzpYHYt/tiR1wAHhHwm5bQgCIIgpM8JfRfj4zVnoGf+P7HsL4/j9Htn44PbgNK+czJiPxvveTmGqckAI8lzbY742HN/Ah/2fVKrUueCPxLjn7qjfgLlOVil16b1pDqJH8me2oc96U/VTjKbrCmsjd2FVOL0RRrCJax/7clF6dyJ2qhWzL60owWeSILfsIXBbuRIzaIx6RXHqnjy2YyKGNl3lKNllA85YRNN2w3zo/OJiAEyrI++Vtsv10eypoQpUophrmkJRFpU6awNBwmCIAhCVshrcxgj+r6PLr23I2f9uwCA0hv+B3ltDmfEvoiXOqemT0hDBi/R6gVwJnkZMcuwMndG99E/u1fHj+q4zjMFJ4VWqmXiDOa1g3YEe4NhDpKr2fxpTtsKxmFiaT7rBFuD7mpDtZncF20j1KfsEQPv2ChTjWx7hsdmdAVqZII0J5iVwXySixDadnbvE2vcbvajxhetaLHr0ShkT3SG1dQQb1RfrLz+ep3F9OrNbosWRVDoBKu95bX5w/SByPy4U8r8BV2HyPrPdULUiyAIgpBdKg8fwua7egAAcppW4f8+vwKjZv4TALD44ZtxpLx5VPHYiHhJi6j4QZxyqZ2KtpdqdZExiRr4oq8+br7QaAyCw0s2wkWA/7tukKwrw8ww/wuXf1H489hTgqLwj7kDiRqbaWELDOj9TFZUFS6BvtOIEfV74NrqIi/+sopBe2yvdTMkXGZrbtVvnU3A8PjlETu+KJEdm7F3FAtcO6tzDOse0ph07Dp+WZWYu4VRUF2DwMww2LXqlLeNs+VTKi8gEgRBEIQMs/Kt11D+aF906fMVjMocGJUEPnoEB3fuwge3TcbIklfwyZrSjNQl4iVlajJI0AzBaiQUIuyF2owxJI8zSPYN7Mh7KlB9WOwmWfNJKeHKi0i30oJDnl7X1eUJRAZSECpJNWqErVhrSZTEsGsdKUZCDQbvIXtgToAb9PO1QdccgmZgr1ZJ8Kx7saQA2L7DfEb94scT4LBFB+BESzwXzReRA3vLu+9wIbf/yRIxRCB7upkbzlEiVnbd5NlGWaSLIAiCkC2WTD8RvbdPQtsu+7Bk0QlIfG83lqw8CaVd5yBvXglKu87BkpUjMrbbWL3YKrlhUAvDgxqbtCVATcqrjlD4qRik4olfNauDVq8DyfJ5z0WJqFDB4Mlrp7I2b+QDbt85XfTFf8V0kQWPkNE57kO1qbmSKaCv0ONvEp8IwStnz8ZLKHkcgaLYScVnO0KTCBNFEcbs+tXrY18HR1yovwoJXXl/R7BrWBUxlqIipVeC38hzXi/9vUfsaXsySS8IgiAImefQ3r3YcO9pGHriF4BB+HDN93DmI78HAI9QaQVgdAbrFfGSlEyLlhjziWKjPK+ONEkIbI1UI3vwTsGBPrtOLOikgVeweJZPR1euseGP6EQJFk+6MhBM5rv/8oV6qosAaE5H+pnGrZL+03j/ldCc8rc9ZiUBWxF24pi0hY8tYjyCQ3d9klwH9cAWB+quZ6wIDPUFlf4GOP8nOAKHAOfdLKS8T8cVT8q0MI9lO039fXTjL/b6IkroJKMgCIIg1B4f/PLHGNb+efT7xiFsXV2Igyc/ijO/P6FO6hbxkpSwQUG6AoRqxWQ2UKtNFgOKEi3uGm/9TmLRz6HD69GNZaO7Si9c1LMJja4LFUSRdak1IlIvRgkZXd+wquDC8pKv/oj6WM0Y0Xhtf2t8VgUHQ/mpnk/Wz2oZVcSoNjTuevwlt7zfL0DZ0IABc8tjq5y1tbElZYLXh5R8nnNsvkVTESL24nx74b7ZJv8cNluc2HX5Wim6RRAEQahD/jl9IkaXvgcAWPjxSfjmzHfqtH4RLylTU6Vgz03JhC+KSSDCZhqjm6Q2DRjI0UYNUvXAeW5MppBJZyGWZ5zpeBhMi4YUW3qPDSOtGXWR7VcFR6q3RdhkI8MAKKEM0BGSMcqmpqFRGxHo2qjb7lgdetvrQigRLjjtY499ddzuExxORMIn0Ah+I15h5vilzgADwIZhvqAycLOz5zuxN1ndeM2xTQwwg609lp3dxpyO8No1F/K7LTBsAUO21GdwjbeiEwRBEITkrFv0EfjVyzF6xJeoKG+GjzdMwBkzn61zP0S8pEy6AwXSjX602YKjw4hn8nHm7WizRJSLNYJWB/pJogYhEQNdREQdpHqLcSBvGGp5htdm9BP91K5tPJvJcfqCFd9rYlDB84JKnx2vyfgVOC+o1BVJwU9P5ES5aFrxGmLXuW+U8s57IpW2B+p0SkdPQbRT2IqSOPVpFCGbi1zcyItthQAm385mUIUdgRI6ic3eJM81NDevCERpBEEQBKEWeP/OaRjd649IDGJ88WkxCqe/izMKu2TFFxEvDYJ0nvWr6MrpbFrD6Mi5ROqBd9hvF1MHn/6lxGFP1gHziTkndINHs0QqIiOsp+zBvH/6lzsdR+9vlN1omzF802R0BEKG9gN03kHKQCKhqzJ5fIq9Y3NP1MR01voRcnn861occalUbb9IM6Dhk4gXXf22r36x5brHVjH76vtCMHYZjfixX06pXp9AFIwY6tuOvFPC7KiJWQc7U8zYK7a0QtH9bdNOMxMEQRCEDFF19CgW3XQORg9bBBCwYmlvHD9jWVZ9kq2SGxSqRADSFzNRNn2EBovCpYTOIvk+qXhkH9uv14wqr9qPnKrF1pvcA5nS71PbphqRiVVOl2jrSAbSmRUUeslI42d4icDZUPFmT9dKcoFCr7/votsv/DTUuX86O7qbSlOJLWLs6IkdmXGiI6pw8dn0rMRS/HCiOwxna2VTdDFAhifRNefvSXval/lxhYy9bTKUd7ionaS8b0bdM1kQBEEQMsQnL76Aiqc6YeTIj3FgVz5WtZqddeECZCHyQkSzAUwA8BUzD7bS2gN4AUB3ABsAXMLMe8n8qz0TwLcAHAJwJTMvtcpcAeC/LbP3MPOf6rIdmREO6ZpMYTTrzjOJbzPFpoU9IDcA5GhqiRuRUJ9RkyY9qmxYmg6DbT+DlnXxqWQCyolyhJ3XlFenUIXZTIsIR+PaVIfbft/9/aNrOymZ2UoIdUsTvjPCbs3Q8Jp7jnxptohxIyMae+xeC7fNwbCSHdlRbXqmh7FOU7ATVfK+WNKKpChlmMnqT3V6mLKtsiJqRLsIgiAINWX+9LE4oe9i5LU5jMqDzTCgSRVyWldjxxcFaHdDGY5vlZ9tFwFkJ/LyRwBjfWm3AHiXmfsAeNc6BoBxAPpYn6sBzAIcsXMngJEARgC4k4ja1brnAOLFDnSkE92I40umbSJpMMa2739IrT7FJnjn4+siKQiUDVTh2HRfUFk7U2TsCUR+TwIpUQNvP5qMUW1VHEmZSDEQdetReEadr7rjqP4IiA1NRMTzcdSAFbiwRYE9Fcxn3x+HdISBpu6gn8pdqvPLMp6wy1uCI0HmFMGEXcx21LpDDSXCY3erR7AoddnRlQSR8yFnupkZymJmd0MHR+EqL6qs0S+7IAiCIJjCZfiARVi0/hxsKCtC05YVyGlajbXLi9Hl9o1oXk+EC5AF8cLMHwLY40s+D4AdOfkTgPOV9GfZZCGAtkTUGcA5AN5m5j3MvBfA2wgKogyT4QFC1Kg9NiFzaTJhM2UbtmCJfiBuPxTX5iP/ueCAOs7Y3m8/vh5w64vTjqTWfBGDqC712GR/QjRauzUQw6GiheCdHhXDIsOMUKiRkEB5RxiE2GbvsVb8+gqpb7T3pCtt8VThn1JGcNUJ+ev3OasahzvJzJyaR0HBovhopwRlPgXyO1MICeZaG3IzyLoXQRAEoSac0HcxPl55Mkb0eBM9jt+K/TtaY/7SMehasjPbrgWoLwv2C5l5m/V9O4BC63sRgM1Kvi1WWlh65oizWhgwRxGxB4rk+1lTdPNjwvLFhQKmo/LZgiXCUugxw/fWdeVMqj0U5m4yH/Rng/0VdTeE2ozoQ489jrCZ9DpoZ1rVSMOqrU/4b1n/IFxTie5uU5vhWbiv3m5RtzJpDlUlrGYh36mQjrCnaAWEriJYCJb4UtJ1E+PIk279blgX1gBAbO8o5r+72ffTLs/OtDK2BJHzLhgGmK0HBTlWmr6JgiAIghCLvDaHcdKQfyHRpArbv+iIDj9dgdKvDyFvXkm2XQtQ7xbss7t6NSMQ0dVEtJiIFsOoTLU0Mic0VNj7dD3FJ+1hJtMrH/V4OnlJW76wx07Qpm64BriTY7xVh9kKdyyOcElOdCe6A8iaE3y+HlGp7rsvmaB4H/e2DeRhzymPTQ1xbzf/lfP4af30b2ccmB6mBAT9IsheZ6PuhBbHUY9P5I0QgeFZv8NkxTasivybFNvxOkcsWV9UYcoGgQ03MuPfjMHbbnJ2ILMjSGpkyLbCBiybtfHv1LELEbUnoreJ6HPrp3ZaMhFdYeX53FqHaacPJ6JPiWgtET1qrd8MtUtE/YnoIyKqIKKb6qaVgiAIwBfzP8ShWe1BBFRXJrDkwB0oun0D8lq0wOKHb8aR8ubZdjFAfREvO6zpYLB+fmWlbwXQTcnX1UoLSw/AzE8ycykzlyLRNEW3MqEq/ISMLGtLJwEIWRkQXmGcZrORUq/4NZoBbxXVlms6m36Pw57sh9WRTAp5JZb5sQenfnv27lfxbYb7F+gHaxDvn+6U5GoFLpW9U5daMOAf+fvSW4PjozWAdxbNJ2m07qWY9iDd3t2N2Ztma3kPpBEU/r5jd9c0Z3cydn0NvY0Vm552si0GvMdGtWG+qBLs+Q+ObetuIdeWbZjZFCzM7s1tGPZLKs1MzpoW750GIgMEgvo4R+07NYJjBLfNE2pG2DpMhyRrL2cBmAJ3zaY9rTnM7h4APwEwo1ZaIwiCoOGDn30XRavORdP8ChzelwciA0e2rMbBnbvwwW2TMbLkFXyypjTbbgaoL+JlDgD7qdUVAF5V0i8nk1EAyq3pZW8BGENE7aw/FmOstFogmapIddDgy1+roiVG/WHE8EsdfAfPJBd9YYP9aHvJp5QFBvNJPUlmIZ0c8XHa73sSX1PUJ/uO2dDrmvxa+W2mbsWbxx6vqyLJ76Y/yqL1y7oY6uZhkVEN+8AprNiy61Xskf1/K0wY7EIr8miV8btqi0XPDgTKWUfwOQLHEtCWj052pT1mmXi/Z0JahK3DVNGuvbQewLVm5oXWTIJn4V3HGbDLzF8x878BHK2V1giCICiseucNHPxdAU75xquorszBR1umodXU3Viy8iSUdp2DvHklKO06B0tWjsDoR97MtrsBsrFV8nMATgdQQERbYD65ug/A34joBwA2ArjEyv46zG2S18LcKvkqAGDmPUR0N4B/W/l+xcz+TQBScUqXmLa5JJV5D/3jjtBqY/roHwFq83FIevpttodQCY8dvdDQeUOeL/5mEIKp6fuoRge8sQY9FPJdZ9OTN6I7I+WwPWgOOpkWqoBRoy7xPXKFhnN9FAUS9yWVgLdPyFet+rLPVLzzaYHASy/VeoN3vi1N2JPuWeeixqjIjazoXyBKyv8BkAF1RYrrG5nrVsiMzti/AObsIn0HqveDuvMeeVomZIiwdZgqUWsyt2jS49oVBEGoNT64/VqMKHoeTdtW4sCOVjAu/BinlHQHAI9QaQVgdHZcTEqdixdm/k7IqbM0eRnAdSF2ZgOYnVLlziPQhkiY4KhJkYgMaVQXLEbOwC1KADhlWRk0KvkM59heDRNPaIT6qAxonQE9goPGVJrOSsNjD7TtsiEF0rwEkWVUEZKq3bBeV9ejRBnViyYEGurs/EWuTUWPqFn1dWo7Ofyc1hapaea94X8u4L4vRiOGKRgOClbNSnTIFjJmTvW9k0FB4/5OufU11H/XsgcRvQOgk+bUL9QDZmaiKEmeHunaJaKrYb46AMXFxZl2SxCERsq6RQvR9sMLMLr/fhz9uin+VXYhzvjNn7PtVlrUl93GjiH8w7B0yqdArKo0I7uk5aKf3dvPhf0vqUwF26uEPy3FJ/Oh9pWIRI5jxe1fbRAL+ivoPLHn6CsUy6bPeCASkw7k+aGJcoTfl5FRIp/NsItuR9bs65dUxJAyIUqdLpXMMc+UME025ZqDgbCxI6m+wCtu/YLFnu5nbl9sBPzSuWm+38XpOUWoKFEizzw3tXFKfMeO2GhbIUTBzGeHnSOiHUTUmZm3+dZhqmyFOYvApiuAD6z0rr50e01mHLvJ/H4SwJMAUFpaKiE3QRCS8uH//DdObPM7NO1SiX1bW+PIOa/jjKu/kW230qa+rHlpYJDySadshMlM4X0sG7OQMn8+xlR6QnhPhDUnLF9U8/2uZHJdiFuHvsFxL0sqLoX1V9I60m23YtxvwrWZXLjEvj6+Mh4bFLQZuAfY/dhpsdtO8EzhUwUG+WyClGhKwFGvHfMLOaIj0BdkKjN1DZi2rYo4MSMs3o8fZobBruNqNMrWLuQ1KmSGsHWYKtq1l9a0sP1ENMraZexyeNdxJrMrCIKQEXZtWI+1t/XFyV0eQSLXwOJFJ6DDz7ahaEjDFS6ARF5SIGxwUMNBQ6bHHJmyl8yONvoRPsJUnx37B5bRA2R9JCQZqXeD+xQ8snwKhsOmOiXNm+J8MW22ZKEiO1uEltYlptqvyhKPcFei7LL+UCv+yFuXru+95ciyyVYUxk1Vdb92upsjYNSNvq03srAlhRlIEJm/F8q6IHJNBDCterfBUMUbg5DwtRPMol0yj3YdJhGVAvgRM/8wydrLqQD+CKA5gDesT5TdTgAWA2gNwCCi6QAGMvP+2m2mIAiNlY8efxDfaPortBtchd2b2uHAN/+MkT84I9tuZQQRL3VOzMURsW0pRuKOACNRRpmRNpPbjxt5cX4qo/d0B8m6p/rJfNLnCFn/orlskd2uGUgHynGIzZjXQL0L1J+p9aG3Mp1NPxRyMhDdsfKoL4V3owZumaiXVPrTGGawg5SGRok4uz3+aW6eOnXKWvHfa9Y3P82aZ2ZLX7LXsABg8q7VCt7dpNgLttjOb/aXKozccJLMHcoszLwb+nWYiwH8UDnWrr208g1Owe52eKeaCYIgpMXBPbux8q6xKB2+CmwA68u6otevV+G4RvSUS8RLUjJ8sWvj5qmN+zFp6EGdOkP+8Z6Cd6gWJii8Y0bd83H1WD+9S2czdfTDQIb18DyFUWJEwMMhqZ+pNqJGmjikZEhynPb5TahTqjznU3BajVx41sQkNP7YwjCOMLIuhisOVL/Jsz4m2HbfneuoInaEkQEy7yFb6Dhrbtz3xniteNfYuBWbNtmw2hyxQ5kgCILQuJk/fSxO6LsYeW0Oo2J/MzRrcRTDRhrYu6Uttvd/BIPvvTjbLmYcES9J0T8NTd9c1ByedG2mYidmJaHNTj41zC9W1C++59VOmiNeSFNWQ7Kn/o7YCPMn2nJgshrBnMyTo7ERGZnw+eXHiThEiA5/H4baAdwNA3yqKFBUuR5RNgHfepOIxodGath33ckceCfIG3Hx1OsTG7o1NYFtkA2AE958UdEY//bJbAcyrGthqDcTGYFfCTWO4rTLOuPoHCanPQRWfv0ZgBHcbQyuOLfeye4INEc8sRLDYdTKGjBBEASh/jN/+lgMH7AIC9dPQJODmzHyxMWgXAP7d7RCq2mfY3CLFtl2sVYQ8ZISuuFQKs+fNdRJFC/N0U1U9IUNGNa2UmG7PkQ+5YZ3fO0O/moSNQmS4vIRTUlfKtfEZkhN7NrVvePE71Wceg0DzntIAlGNNBx3RARr7Cm+JcPfd2xYB4ngvaGrP5lRVmyGvtuFdYWD511RZDhLWygQ3bHFLiPBrvCwzaj3t3mPW5EW5SEGkbtWRnWEGUio9TGBiZU1OLaEEvUiCIJwLHJC38VYWjYYJw2dgyYtjuLAjnyUbRyCE/ouRV4jFS6AiJc0qGkkRveYOZnJFOuJdDFq6B0xtyY8d3BAqvw/bEDqmQUD75N5dTjmFTKprYXRPa33RzhImztF+yE2U/FVFQdAuOBI546zhZF/UyrdIDzUhv0/ZYztlEottOW99uTatI8j3v0YmuwEM5REXV/qp3tx8JqRV9awHVNR9YXHkPVOI+eFk66sATGYNFPAbJ+YALJfUOk5E2is93fMQNQmGYIgCELj5fDBr5HX5jBOHL4UiSaMHesKUPDTz3DCwSPIm1eSbfdqFdkquUbU1cChBk9X1Tk4cW2y7xNlOtSiPn4SGVXR1OUVMlbpFMWVxx6b04H8U200m986NpKNzW2bgfQIe6od3YJwOxqTyTAUsxmRsf3wnU1eXpOL1b60B+0hpjwvXoQrVFWjdl8a3g23QrvAjWjAO7L32VSvt78d9n3lt+P4S8FyzFaEx2fXMWEvpifD1yFuLq9fBGbz42mdIsDI80tpKNYk+iIIgnAs8f4NF4KeLwIR9axpfQAAIABJREFUUHGgORbvvxNd/nsjmjZvhcUP34wj5c2z7WKtIuKlzqnJQCM47Ko5Ef5EDpzDhvvRg/ZUUcej9lgxrp2wXlajHAZHC644V8sZiLMbQXCiChqfYt0BakQijdslUDW5g/Fgu1Xvou3p7AK+wXzUjcEhNVnn1JdDGnBFof+u14qWkDQ7SXldinValVBRyllvUHnHpKlTnPrZmwh/nepPWFPIzA8RWwKG3LVQmhuJnP+AQEhNEARBaJTs2bQZn944FKcMfwu5zY9i+xcFyG16FEc2r8LBnbvwwW2TMbLkFXyypjTbrtYqIl7SpibDcU25lMzFFECeEV5cm5xy0/yRCe/UluRPzaOq00Z3YjY9DF30QLGe1FZ0xMkrYuL6x+qJqEhMOmgiB0Gb4VdBHW5rIy8RxzrLSa+3JnLi9yV44JZ3gh5qXX57DJjTrpT3tGhEkDdS5AoGf3TJtmmQG47xCBrbLtmRGVgvprR+2kLE4yeB2d6JjD3lVSfJFjqCIAhCo2Xhj09G8zePx8DStdixvgBLvr4bRbdvxJKVo1DadQ7y5pWgtOscLFk5AqMfeTPb7tYq9WrNCxHdAHMPfQbwKYCrAHQG8DyADgCWAPg+M1cSUTMAzwIYDmA3gEnMvKEOvExynAzNo+m0Bx4hBWs6kIkT3iDfoMxT2JvGyk+/WlYHxuFVxh+1p9t0s8lej7W2KIU6QjRqZNZkii9uVWpCxPUkCs+kjd4kqzfsvJJRrSlw3VUBofSF+5JGfdM88QydUxQsByi7dkX8Siag9JMjGFg5Vu9wsiIpVhk7my2E1PapztqL9gGAvPPR1Gl53g3KVb9FvQiCIDRG1n30ETD3+ygdtQ0wCPOXjcdp9/8NRdZ5Vai0AjA6K17WLfUm8kJERQB+AqCUmQfD3JX2UgD3A3iYmXsD2AvgB1aRHwDYa6U/bOWrLe+A4DCrBrZ8ZjNFRuzFN+COqYKToULGj+6UqqQ1xZ5gFVqnXzwlR3nCHStXfH/C2qv66LGZQtN17Q6ri0Izkecud8bq1qDffsGkP6oBXxm/WQbA5NVkCX8+cgf32t80f5RDSXJefKkRBqQx5iT5OsiOQjnnwhrkqcCfprEJMqd9UWg2X2pQvZJPyDBg7iSndJgs3BcEQWhcVFVV4bObBqHLZ2NRPHAbtq7phLWdXsBp9/8t265lnXojXixyATQnolwALQBsA3AmgL9b5/8E4Hzr+3nWMazzZ5Fucnh9JGOiRT/lJUiqQ+04RfwvqfT+ZzcybAoRQ7+GxS0ZtJWs49RhX9iT/WgL0WdStWkYmkRNOe30IuVcMvyC0L8oPkpouGm+ipxBsSIONOm6unQuhwkn0jhGuo/Gntp2/0nPveAXMlZhdecwWwTZ9gylvCm+VPXhr5V861K8SswAnHUsps9qXrs2NdpCVt8o+X0vA2KDwc7CJRbpIgiC0IhY+sJfUf5wN/QftgEA4eOt16Hkri/Q/7/GZ9u1ekG9mTbGzFuJaAaATQAOA5gHc5rYPmausrJtAZxIWRGAzVbZKiIqhzm1bFcteIcMqQ3TFiPcXtJqQobNARfVgwRi61TPSDU+YbOd/INyfz576FbT3tXVkboyTz4ETOdN8DWrMblBtS9Tqlznja+B/uulMxtVle6cYzNE9UXNnAurS1fGSQv59VWrtzf58myrrK7fIVbskZXfjdLZ0w4J5ChO590tqlhiQiJhvZDSmV5mixQ16kfOO3WiXtzq2gy2TxAEQWhYlO/ciS33nYnBx28EdTKwdU0h8r73Jr7Zu2+2XatX1Js/eUTUDmY0pQeALgBaAhibAbtXE9FiIlqM6soaWEp9GlOIRwgMQfyPwrUnQkZ6oS6qviYJAQTqjAEbjlW1R3Q9xAj2ni5P4Il5yEfrTsQnypbXppvCIK0tdavheDaT++f0ixJp8EQiYrbdOWbTT79NfySDPOWtNjOgbH7lDODtXb+MOI33+2bZsbeoVj/2lsja6In1Ue8LT59ZNlW7um2ww6Izpl12bIEBNswPDDfNqDYAw+khXY87IoXtxjg+EdiwG2P1ocEwrBuJyJMZrpw3QGSArGtilzUX8cMTybFtCoIgCA2XDx+8B01f6YP+w9fh673NUUYPoPiX63CcCJcA9SbyAuBsAOuZeScAENFLAL4JoC0R5VrRl64Atlr5twLoBmCLNc2sDcyF+x6Y+UkATwIA5bXN0F94/3C9hnED1Rz5T6Rp22MzFRup1WlHTfTP672ExIwC5/yiI8pmFH6h5D4hj1Mqnu2aRoxsG/aDfEaKlysJnhdURue0vUgaSQl9kWZaDloCxao+TKSF1WUnq9PrHO0O16adRJ5M4Ta996Y1qc4SCMGIETkd44/yOF+d7ZMVP211CXvhPQFsvg7Ticwkgr9bZN8s9k9BEAShQTF/+lic0Hcx8tocxpHyZvh6Xwuc3G0fjGrC5lWd0OmWT/GNFi2y7Wa9pd5EXmBOFxtFRC2stStnAVgB4H0A37byXAHgVev7HOsY1vn3mP3PXGuTGJEQLam66H/SGzMKo2ZNmiEFmyHmvc+izWfUHpRm68o4T799Rdy1B+4KmLg9GBb9sKMHaiQirh2dTXvFQiDKEdc3f1f5owfp3mrKZQ2820WJ6ig1R5rTbousRHgcm1FmyPMjMJi3IylxL7Kna3T1s7c/g3GT4MoqJ+rj8Y890UH/CyrhHJJjEyAwGebHLu+5AK6AsWM6oPBtj93fGztapK51EREjCILQEJg/fSyGD1iExVvOxfuLz0defgUKuu/Fwd0tsbnH39H9V18gT4RLJPUm8sLMHxPR3wEsBVAF4D8wIyavAXieiO6x0p62ijwN4M9EtBbAHpg7k9Wlx9bPVEeV6T6u1j0/TmIrqYs1iB+EjLC8FpUtZdOrxbHpRmLImmoTr1zoOV9EwvVN7efUfPbb5BABoxNAukw1ie6ElQmPxHhjXFF1BvyyxEHYGhanhjBBp4k82gImEWIzSvyF5ve3XddQza8WKXsee6J4dvCDfMXUBf26KIxrAQBbAsZeB2OeU0W1Wz8HLLjCLd3fLkEQBKEuOaHvYnxcdiJK2vwL3Uq/hFGZwJdrO6KgcD96nXZOtt1rENQb8QIAzHwngDt9yesAjNDkPQLg4rrwS08tDBa0JnWJKTxlJed/EWhGjzEIG+TqIithVmPKMI+9JjHyxm2FPZjP8dSCwBH50iIH9wGbvvNRNjWG044nahz1CI6QzDG0gFNCPe+8wV7zrwoBnve2RPoMODFhw+tatGix8/rabQsVUm5MUyME4oNuGcVX05xb2LlnVXtWnUyGx2bY74crTqw+txf5K6LFXt/ij1F6hDb50wRBEIT6yv6du9CizWGMHjUfALD+s2K0nfwyCiYUIG9eSZa9azjUp2ljDYQkj5eTEjInJi2TUY+507WZWu26j3reRtdqVbik4q7hjuNCfUoVb3yIQo5SI0qwhQqETM/+8XV8cNqUP3OIXwhvj9+eunZcbStrGh56/9hCyErjuHtOEDzRNE91Pr+cpJCb1xOVs4+JrI+/EezGUuygi7+ttjBxwyWOLduuF7MTDGZHHGk3c4gz91EQBEHIKu9MvwSJFwaACDAqc7Bg+Xj0uXclOvbuj8UP34wj5c2z7WKDQcRLbMKGsakOGnx2ko6OoxYAZHD0XgPc6kxfvbsyeTOpD9+Tu8ohn0DF0YIgJew2hJRPxWjIQD2sVp8LKVUTsBvDT2fgrliJLEbwvJMmtmiNEC2OXf/HPq+IGOUwECsMrDPyDfTV16T4pal/jZHWt0Bf2MJDHxVxd1Ijxz+/bVIr8XxjqO998di0tmBzxQ55+kfIDETUnojeJqLPrZ/tQvJdYeX5nIiuUNKHE9GnRLSWiB6130EWZpeILiOi5VaZBUQ0tG5aKghCbbPoT0/j0O/b44wRryG3WSXWlXVDdWUCRk4rHNy5Cx/cNhkjS17BJ2tKs+1qg0HESywyOTRQ5sKnZDb6mbljs84gZaBlC5bgIDYs2hI2pcwaTmrtReG3R8p3f/3RNvVnPU/gY9o0krxDVB2ga20yYr+k0m8z7sct5ywZd9P8QkJpiGNDIyB1LnuujWLQmSKlGNBt7azthrBpaH6fQhrvFyw6ZU2A8w4Y9aZyxbm14N/qKPfOdf02FGPeF156RblnfZgSiVF/Gxyb5psvnZtEXlOZcW4B8C4z9wHwrnXsgYjaw5zmPBLm1OY7FZEzC8AUAH2sj73tf5jd9QBOY+bjAdwNa4dMQRAaLmvmf4hl04fiG5iOJq0qUL6tNXaPfB997l2FJStHobTrHOTNK0Fp1zlYsnIERj/yZrZdbjDEWvNi/SOdDIOZ99XQn3pGLaiBGk3v8Je155LEzV8buBJG513C//TY991rRX8URD9Q89eReuujB4CUPIvWn2R5IvP5lV0SGNYi9xQgv3FVUCAoUPTlk9lXhA0DlPBmUG3o7iWdD+7aEOs4sK1whEFo+t4WNXYZtQ7Le/seUDdjcDUPOQLX6VVLfdovkzT9tNMsm3Yepz7yLOInX+d4bVpCR9duoSacB+B06/ufAHwA4Oe+POcAeJuZ9wAAEb0NYCwRfQCgNTMvtNKfBXA+gDfC7DLzAsXuQpivBRAEoQFSVVWFRdefjhEn/Qc0Ati5sQN29b0Hg396uZNHFSqtAIzOgp8NmbgL9r+0PlF/I3MAFNfYo3pFWNygJiYjRlLxEjU2w4rYdaXyVDbEvxglwh6EA14P/DWE1Zhqb4fVEX/8755l5f9qWiIkSpKKb4F05Sl/cs/C7dh5DEW9OeXI80Pjm2JBCQ76Y32BHdTiCCr2+UgAG6599adaj8e84oQzScsvMAzAIP1dH+azp21qpMvKYzDAhuHsvqCedr+z2y4rkyNslIaQdcJcv+NOC2NLhdi7jamL910ho4o1VzaRNeVNIi8Zp5CZt1nftwMo1OQpArBZOd5ipRVZ3/3pce3+AKbQEQShgfHur27B0Gb/DyO/uRfVlQksXz4IpQ8tRKdsO9bIiCteVjLzN6IyENF/MuBPAyTVwT5FHtaY1LVHmvUYMKwRnXfuoTL1xVdEd+wRGOQdHOpspuxmRP3hvkXXFyXS0oKDA3GVdOoxDDMSYT/Nr8Ed6knL5AsqyR7I20IrSYQnFN8FsW2q9jy/Fp78+vuV/CqFTWWhXxtPlrD17voViADa9ZG9PbIdnbFPqZ1r5kkkfH57RCnBfROSkCpE9A6gHVP8Qj1gZqa4+7OngM4uEZ0BU7yEPogloqsBXA0AxcWN7HmhIDRQ1i5YgPYLvo3TepXDqCJ8snQIBt7xBkqvbJtt1xolccXLSRnK08CJOxRO02TAbIxJ/clshmatuf/BaTPm/9WoRVgtaln1Cb+a7o7VdJbj+2fj2FQG814/klv2D07VRL/NVCIpScVBOpdLCaTY72EJj8REV+BEFJyn/0opXWem4qMS5QCAHJ2AC3HPIw6sGybgoybS4m03B5vgC9Uw3N3EnMiKzye2C6p9a69H0WzLbF8TtsqQpyEhjXVysMfvmgj8YxVmPjvsHBHtIKLOzLyNiDoD+EqTbSvcKWCAOdXrAyu9qy99q/U91C4RDQHwFIBxzLw7wu8nYa2JKS0tlQsvCFmkfOdOlN15EUqHLUdul6M4Up6H1S1/heEzrsu2a42aWAv2rXeqgIguJqJ86/vtRPQSEQ1T8xw7+CfU1FVdnufD8YpG2kyzDRQs6bXmGVYmSVUMxLBZ06f+gTfYh/hESOKvz17gfSwhUZTAIFaTz7EZ5lwSdEXsN9ine9fq7pi4fQkgZMevoFGD7QXp0f4Eohp+5evzMex9Oa449tmxBYWzcN41y2xGeHRbOJtFGCADgOGEcTiQy+uX+V4X9a5zf8lc4em/CnX571D9g4huI6K/EtFzRPTXDJqeA+AK6/sVAF7V5HkLwBgiamct1B8D4C1rWth+Ihpl7TJ2uVJea5eIigG8BOD7zLwmg+0QBCFDzJ8+FgcfL0DVX1ri4OMF+PSGwWjxek+MGr0EFYea4t/bf4yW1+7GsMtFuNQ2qb6k8nZm/l8iGg3gLAAPwNxVZWTGPWu01HCaWeYnLaVpM3yRsL+FUZGIZDX+f/bePN6OqszXf959TshAZhIgJCEBEgghGoYDhEFQgxoQQdp2QlsUhLZxovvaTrTaKt2Ntt1o90W7uYjD/XnFvmhDfrQyyKCCzZBACBCGRCEkISGBQMgcztnv/aOGvapqVe3a5+xz9tkn78Nnc3ZVrfWud1XVTq1vvWvwRWLKKO74LXmRTa1FYrKlNRZny7eZpDdBsWZ11Yrb5V4fa/eA7w7NvQvdKEcUmcm5QHUXqXQjGlJboDKaYct7H5W8qTJBjbig/G5XkjgRkozMScqmApVItLhhKb/fEnYNE6kZcM9lPA2z1NImZXxkvJn/DrQloqrn94PdK4H/EJGLgNXAewBEpAv4mKp+VFU3i8jXgQfDPF+LBu8DlwI/BEYSjF/5VZFd4MvAfsB3w1nmulXV5k01jEHCPZct4rgjH+D+1e9kWMexzN5yJUd2PQNVWP3EQRz85cdZMGyfVru519CoeOkJ/74duEZV/0tErmiyT21AXxoMBf1fGiqnhAjKNMrr0aiwylr3vvHP2V8kavLyRl2gyvpTyqaCav4q5b6Ge719efMy1LVZkKdevbMZkoWltUPSnni+lbi2UVctZzsvAJUWTLn3SsbRHHmd91NyEvtFS7Rdzf2JpNdliWIzwXdNXPC4XgpVNJXHbzf4HgmYUIq4ffE06BSmqlS1WpuyOv2j0TAS2fwhGe3CYSLybmA7gKr+shlGw25bCz37lwAfdbavA67LSTevAbsfde0ahjG4OPrwJfx+5VuZNfK3TB39M9gXNj67H2MnbufQr69stXt7HY2u87JORP4deC/wSxEZ3gsbbYyvSdKEN5+5Jup1CcntB9MHt8o3giTzcbu0JH1Xsu+4XTfzXc63medPr5Bsbq896dsVz23URl962QvI52dMyl7iTGZa940U0sAvIpUwiiVk7yHic5xY50Zrf3yeRg37WAB6nMqOffGtbhMm15qJ2LbUNlwxUVuosuZk3B3MiUgl1puBxFoutUUvBZEqcZezyAON4zMEIkoSkwfsxZMl/wYYBUwGJrXYF8MwhiCbnlvDiHE7OXn2rUw7cj09uzu4d+X7GHvJQ4wYu5eNmBgkNBp5eQ/BYlvfUtVXwgGHf918twYbzWwY9KYPUMkOTE1xs3Ej0WDmQiup7j/1G7x9e5Psa7sX1yxZXpHAaKQ7Wb10EhrM+NhAIb5z6YtQ1PNVfGcqlbdu1y8P0ZieiptNkt+LTPruFw3/V8lRg0U/r1jgpAzG92Ylddz3eib3BolkWWhTojFamkyGu8/Jk4jhpZRbJpdk1d3ex8pojRQRWdBqZwzDGDp0d3dz96f+hNMX3Il0Bi+P7lv1Pk7+0rWcLsLdX7yQrmkjGd1qR/dCGoqaqOoOVf2Fqq4Mt9er6m3NckZExovIDSLypIg8ISInichEEbldRFaGfyeEaUVE/kVEVonI8mjigObT7DeaUtyyaohkH/yBRRLf0/+5sRg3udssi8Zk15pubpebrK38uEXNpluGL1euBU/kJV1bn90im2W6t+XVzHnJXxe33m6eeDsdRfD6nw4LEAuMRGM/vH1zy8LfjE40xyPbbuRAsvsT0xJL1l4khosmSkj4KSQuc2LGtOhvOL10VZP1UVdtSXpVlZphcbcdEVQbiB/d5a7fUZQleSWjqIykHQ9DO1rVcMKAvXqVl/Oc7+e0zAvDMIYUd378TLZ++2DedOodaE+Fl9aMR6jy2i5l+4svcfcXL+TEGTey7GkbmtYKSokXEXmoGWlK8B3gFlWdA8wHngA+D9yhqrOBO8JtgDOB2eHnEoKJA/qBXvbjKbLn6wnlLaJ8wz2bv0768oZK58rtzkOi2ZVJV2u2Zf0tewbyyvDldxu0cQM5epVfUEY0tqHQputLiVPpiruEP1kdETfW69U7WqQyLQISn1S+Wv+m5AmIb083YJj6ZPa5/klmV2wv23XNOZ6y6QqNzPWRmq30ucj9WaTOAUK0lEtMVWvTN0eCJbhNgpwZ+ymhJSqISi29Eq6iWfNSVWNhU7On4bHIXi19TSK5F8lzY+w9HCAih4nIocBBrXbGMIz25q5vfJ1Xv7M/p5/yW0ZN2sqyh4+h509Ws//n1rH0iQV0TVvMiNtm0DVtMUufOIFTv31Lq13eKynbbexIEVlecFyAcX1xRETGAacBHwZQ1T3AHhE5l9pc+j8imEf/c8C5wI81WJ76vjBqM8VZvbjJ9KK/TFmaZTLR1cj1t0q8RHizCBepTDcm06Ih3hc1qJ19kvobvfVO2/Q1Vku7GaYtN0OZ29L2d9WJphpu9JIVtS1jceBp6Gd9zLfrHosWqSy7QGUs21LRiLS4qGp5m5AUA+nzFtdbiS9Qqv0fkxRatY3o3ora99UgKJG/tkvqBo1jFk50SqPv4Q7tqYYziXkccw1H90Zoskq2Piph1ER7AKdLWTxdW7KWgjiTSUg8IUBwrwS/nIYnchha/A0QzUv6ty30wzCMNubXX/pL5nT+J284bBNahVeeH8vmY7/PcR8+K07jCpXRFKwka/Q7ZcXLnBJpeuonKeQQYBPwAxGZDywFPg0c4AiSDcAB4fepwBon/9pwXz+Jl4h0c7HRpqwnbV4LtC+CKWGzHwSXr5jU3sSZ8TR48wSK+xY9bdOboY5vQtkzWb4V6IuA9Ja4nlHjt4mXy526udiseL7lpKrjZ0Puh8LFjex49UGdstzJtpwgWmBenP3U6uBKovS9mCxOajZVsyImPhmamF45TiYQDMB384kjOsJpkUPxWDu3mvzdRNGi+Jg3trRXoarPEbzMMgzDaJgnfn0X1V9+gjce9ywAq5+cRudZ32XGhxayX2tdMwooJV5UdXV/O0Lgy7HAJ1X1fhH5DrUuYpEfKtLYnKAicglBtzLoHNkkV2OP6N07+N6+t8979dsXiiRFYzlrXkZrhWQvVV6URgENowXp45HNxN4Sp9F3OO9MSvz/4tsrz2bUSC6MGOXtT+1w36RLX+byc6MPTsSoUvElqX9CVXEXkE9ETcR3YX3uOA37+ItTtDvWpIyIk/SGkJkqOb1OTs29KN4UXf1a2CnRYysUC5GoUIgnAsver7U7KehqlpxjTxJhHY2jRDX5pLHYSuRLRJLCEx9H64augBGRfVV1u4iMVtVtddJeCPxRVe8eGO8Mw2hXVtxxO2N/9+ccevCLdHb1sGXDGFZsfyenfv3fWu2aUYJGZxvrT9YCa1X1/nD7BgLx8kLUHSyc3WxjeHwdMN3JPy3cl0BVrwGuAZAR4wfBU7434iPzmrcPttKkYxIlxVVBy9IVMW6TrrfeupEYEDo8jTWf1/W6akV+JUmJpAbIRDlKVthbUtTQTjW8y1KUvBr2Z0pGObIxrqLIWGJfuqtWnuAqiv6kjKpjM71IZdqfMvrbjRhlxYEmE6aOu/dxpntfyqZEO91ZEhJmXbUW3NlBPcPfiRCOgamJzHg65dSgfqHWnazp7zQGDxNE5CPAKqBe5/KbgWP63yXDMNqFey5bxNGHL2HEuJ3s2jKSh588Bn2thxOPX0rn4d1sf2kUj+3+OMf91d9aN7A2YtCs0aKqG4A1InJEuGshsAJYDFwQ7rsAuCn8vhj4UDjr2AJgS/+Nd/HRD1EQ7yv5onf9ZW2W8bPxLii+1OJ86nXVcmuXlybbfQxvH/90w7bslUnWWjN78vIUHldnoHfdMlM2c5yP1w1phIIISNyYzzmXPqHgE4du9sjHvPui1C3mKtVQtLjnMuFb0c+D5L3o7osjRqRWeXF0a6Q9alLDWVsllV4IooYoqFRroR/1uxhFlYKPs9YLKcGmEp5PxV3zJbYZT6HWuLhtIxYSjIM8VET2Tx8UkWHh38OAPap668C6ZxjGYOWeyxZx3JEPsGTtOWw+9XE2bxjDguN/zylvuJ89O4ax7KF5jPnERo77i79ttatGgwymyAvAJ4GfiMg+wB+BjxAIrP8QkYuA1QRrzQD8EjiL4I3cjjDtAFDiNW8hnhhB2dfRjdDrxkz5jK7y9eXKi2HkvUHPs6G+NDlu9iW6UzbqUloYeV6IFwm5uOhmXm7PLZTYJQUJ67jinq1S1zQnIuJNo6lrXdMDmSiQK64iYeArKLs77N6Y0xM1GoYSnadIMFTS94ejjpRAgMRdCJ3IWXy+nYpF41cqCafdCEswIxkQTMBQKzCsq+ZUeMjwAHAhMF1VN3qO/72IfBu4gmDc5QcH0jnDMAYvRx++hPueeQe7d1fo/I+TmDrnVao9wp7tnYy8ZB3H7TO81S4avaSueGmkz3FfUdVlgG/S7IWetEptlpkBoFkNBPF+LaakiGmKi+Vbz8moSK1BVyZ33tv9bAn19tQXBI3VqHyqujadguulTfjoVWuedEV+lKhw1lb+Ou1xA74R7R2WkRYOkvrrFxZJI5rcjPPXohApnxoQt270Ke7+5TiZ7gaojuhIeqS4M4BFEZtKJduFLOmjUFvo1a1dSlJHQig1xij9+xtKqOoT4de82S7HEsw8+Q+YcDEMI6S7u5sR43Zy8qwb6RzVTffuDlYsm8WY9/8701YspNOES1tTptvYBBH5BHv1rHDNfLPp9F/pbd7c7WZQ1jFxGk2abEg65EVd3B5E6UashN15XJvphmpeeaT256Xx+VaU2ld23Vx1Lk9cB83md4+l9/uK8TXoy3yK6uCuCZN2ILaRakTXmtxZH+PsTmGJQfTh/rx1aYqNJn1MnI/QRrryCdHi+O6uMSPRdqK8dP+3sOuX1H4NcZkVqCLBOJao3ITDmvo4ViX6hUmyDIVqPCd00K1saEqXLCKyj4i4M6/cDUxQ1eXAytZ4ZRjGYGHHtm3c+rE/YesLG/OtAAAgAElEQVS3D0YEOkZ2s/LRGex62yO87puP8Oz/vYZdW5o9eZMx0JQRL4V9joc2RU3f3prMa4mVypy/23uoyb4XFJ4nNVwRAdk36G5v/rTN3E+dlpo7bKKe5/6c+ekbOaNlGpR17aUVRk6SxPlt0FFJG3dOc3xGUqIlr/wi/2JxkLYZNfTdOpSwFQsfrdlrREQm/BJHtEQ2nYiPijgiJpLX6SIk9isWHI4w1aqgVWfePE0KKHXsEAmeqJ6R2NLary32UYX8mNnQQUQ+TTAV/ioReUJEPqGqP1XVvwNQ1f/VWg8Nw2gVO7du59eXLGLYz6dwxmm3MmrCdp5fOZnXtnWyQRbQMWwMd3/xQk6ccSPLnvZ18DHaiTJjXur1OR7CFPTfaYZJl76Ij1w3oyZ8I4tUNt5tzP2bccHjYoSbp+pk9DWOE7Zy9ItrLyoz2bWtHpmSMrYSYzFycvn25112nzgo45nPS7dRHO2I8xXYr43WkHhHWgxFNjPjeEqc2Dgv2XNS1fANSsquOhvudU1c3yiIGSZQDRewJ3svJFx1FHWcJl2AcwKqPdXg5yPew7GYiKMq6k58XHNIwhNbrUJNskeLTKoj4DSuV7BIJbH9oN61iynhSagO4ZUqw2nzHyJY9+tIVd0oIpOBr4rI11T1y6310DCMVvHy+vU89bXzmHvEM7zpjduodgtrnz6Q/T99H9MnTOaeyxbRdfhiRtz2M7qmjWTpEyckFps02pO64qVEn+O9hLxGffnGvjd9YdZGbefRD29ltYqGkxYnw3fFkYu8fW5jMCs4PDZLnMa0kKkXHfDnLLbbrKsTNVCVZBQiXUbZO6IarpkT2WvEz6LrhPp97DUaChUl0wUtUX4J9RZHKJyl7dMRHXHSJzKnysyuFSOxUMiuvRNEYSqajsc4dt2CRZ2IS7BApcTKKDoRYZpK8txHPwyJdwxd0eJwF8EaYJOA34vIqwTPo0eBj4nIVar6cisdNAxjYNmycTNLv3Q+p5zw3xz/hm72bB/GQ8sXMP9vbmDG6AlxOleojGavHv8wpGhotjERmamqz/aTL21AM5qtqXy5r4fTCdLN/Bwf6tqrd7B8vRJv5+Ntcbb9DStfY1whsVaIK2LSln0vmXMjMZpN4zbmk6JJvYaKznjsp3giPAWnsih6k1nbpazWzSkkfW7dt/iSTpxD1K6uvf3P2optFrWnCyoeTYnsW6SxyFwqYJF7Lt1oTLre0b0V3w+JOjk5hVr3rZSI0SijKxalijsixS1XVWvrugjhrGexhCV9M3oXqoxtDl0Ro6o3AjeGU+L/JUHXsdcD84GJwJ0iMlZVD2uhm4ZhDADPLX+MnuvPY/LUlzn99J3s2T6M1U8exORP/47j9zuw1e4ZA0SjUyX/guANWIyILFDV+5rnUruQbQYNSgpf1fehDpI1nZV2yQZY3VI8viZthlYLW8f18S382DcZ5++qVdam5hTUlzvMW47bfavBaEyUL9NtyrkUhdGRovOSMppeoLLApCMS6tvM8zGjU5y/EmfSzP2t1fB4Jbk/+BIpnOL73/VLnRshFjJKOHA/3a8tEi4exTZ0+TjwH8AygqjLkcCjqvrGcHp9wzCGAOmFJZc93cXsT13DU9/4EF3HLGf4vN107+pg6YqFHPul6zl0+KhWu2wMMKUWqRSR94jIlcAYETlSJPHO8Zr+cW2o0mjDO/0+vz+6irg2y9quM60uyfZjnt5opM1VDT9l8mTfW2fLjBaTzGteKuXPts+mL18pm6lL3qsFKuuZzthUzzevO3GadD20muyylbChtU8u7vFQHMfXxxETsT+JDcexcJ+k8iQcj4vxX420r9GQeLfseAYzxVlDUkHCdVp85UfJpDYjmUjtbIpEY18yoTGSd2roUTxv8tBXL6q6EjgRuAEYQdB17Lzw2J5mliUiE0XkdhFZGf6dkJPugjDNShG5wNl/nIg8KiKrRORfJJw6Ls+uiJwrIstFZJmILBER691i7JW4C0vueutq7l95Bicccw8TfzeXU05/kGq1wvJlc9H3ruOEKxbTacJlr6SUeAHuJVjtfgLwzwSzvTwkIjcDO/vLucGLr9XUSN4Ck6Wp05rNtPKaYLOgKLfI9P56IkKoTVVbhnoN+Xp20tlr4sBvOO+lfj2bRZSxmSmj0cvjaZdnBIfHpu8apr8X2kzlSdwHdaJd8WVwAwoaiqIySI5I8thMRFN8N6+kd8eSIeu7BCqrmpLCWdGStAfBFMjxfGHRvRhFyVSpam3RyvRil0IkhIa+eIFApKjqf6nq36vqv/bjWJfPA3eo6mzgjnA7gYhMBL5CIKhOAL7iiJzvARcDs8PPojp27wDmq+rRBBPkXNsflTKMwc7Rhy/h/tXvZOJp5/Pol87h5Dm30TFMkU7lgafOZtTHXuCYbz7IiH3HtNpVo4WU6jamquuAH4vIH1T1XgAR2Q+YCTzZf+4NNnwNhD42Gupmb7Dz0AC2YVI9bEj2wU8StcdctVzO1fIt9r5Uvfa2O78OjRaSabiWzdiMS+6LRviKaOSkSblfgLdoyaaJgyQ5dn2XPu/UxNGQaMNjMysmJLSpYfcsT7o4OpItKNjlqqpg4L2qK2AkiO5UHHvR15RYimOZUhMrkQ11phzLvJNQ+tyV0shwLvDG8PuPCNaT+VwqzduA21V1M4CI3A4sEpG7gbFRd2oR+THwTuBXeXZTC0DvS/PD64bRFowYt5PDNtzNlJd+hpwG217cl2XrFnL8Eb/kpK/+rNXuGYOEspEXACLhEn5/SVWXqur25rs1GGmWKki/Au5FvsS+wUDSt7xOaEIjHvete1z6jX89S8Xvy2tHokOlbCa6HeX7Gb9lT9sseQp8kY76DXffdnL5RFcQxPtL+JS5SyWpnxJ2xZ+n0NHIDXVslPwtuZGWzPVxlZFjMz0mKTgUnQgnofh/odWwku79mLaY7YRZs5tegjLqThf3s0tNCmA0hQNUdX34fQNwgCfNVGCNs7023Dc1/J7eX2hXRM4TkSeB/yKIvhjGXkFPTw93/flCXrjiYAAOmvMC3bs6WfrISYz95Avs7h5jC0saCRodsL8X0g+hjF538cjJ15IeI268RQpUcK27S5poeIQ/GlNUKX9DLdWULNVgL2s7tqXlbXoCHl6bhX42em0lWX9fmfn7JLHTGzVJRzQk8afIraSNlJ16kyf4bEkkFqKoiXj8JbkvI85InWupCaOK46MicXRDfXVOCBT3IkQLSjrHI1EUR3tq4sMnc8S1p1qzWSWYSjkxoN8oi4j8GvBNT3S5u6GqKv0Q2krbVdX/BP5TRE4Dvg6c4csnIpcAlwAcfPDBzXbLMAaMl5/fyINfuYiu2Us57fQtqMKWDePYd+x27nvmXXR95pv85vKLOHHGjcH6LK122Bg0DDrxIiIdwBJgnaqeLSKHANcD+wFLgT9T1T0iMhz4MXAc8BLw3v6ZxrleE7RRPK9nnUN1dvhpsJtRMb0zkn77n/6eHhPhpukpKLVRb9zAgNNTp4S97NttX4oOj40yvudd8ngcSFoU+OwUnIzonCZWm/dU3GfC61so0tKBlowILfDbtZW+/oTiQKmJkMS9khY3Hn/dxRujcSJulCQ+JxSfQ9deJISE2tTNgYHaaBZnIjAIo1UJP8JCA7ErtWscnYjoO9XUApUaHk4KfnUqGOiUeNLw8jNYGBlU1SsOAETkBRGZoqrrRWQK4FugeR21LmAA0wi6ga0Lv7v714Xf69pV1d+KyKEiMklVX/Qcv4Zwopyuri5TrUbb8djtv2Hsby/kwMM2svBNVbp3dvLskwfRveAKjvjAe21hSaMug068EKyi/AQwNtz+BnCVql4vIv8GXEQwGPIi4GVVnSUi7wvTvbd/XMprmkfHGmk9eNI3q/GRK2KqBM3uskZKOKRVqnR4owYR9d78u3njxl9qf18pr+t819VjTxuxWRKt2W1kjZMiokUqezMlclH6qvbeR9+dFc1Oll4zpWwRceQlzKTi2PQImaKfsriJccRDtRoPbfEtUBlkUSqaUybOPR3OLKahyqlNiZztYxhEf4TkykmhWAorXJupzGgyi4ELgCvDvzd50twK/L0zSP+twBdUdbOIvBquS3M/8CHgX4vsisgs4A9hNOZYYDjBSznDGDL86pMf4pB9HmT2Uc/TeWQ31W7hoUcXcMxXbuSwEbUB+LawpFGPhsa89DciMg14O+FMK+H0km8mmBoTggGO7wy/nxtuEx5fGE1H2b+o8+kNOa9+vSbzyhHnU8fF2mvfAht17OXgvilPv1nX8D9f+nRe92/0PRqynI6H5C186SPrU/hm3vnUBmNnTlop+8U2yxNlz50WuTd3ttTOZXJK6NpxcTdK+pnwMW200XqHFXenmPberTl2E6c+rSojP1OCoq5PTtowBpKIzvhnfZPgPnBuhtoAfFCp1hx0/VEJPlElxa0RmeiZK/KV5MB+o6lcCbxFRFYSdN+6EkBEukTkWoBwoP7XgQfDz9eiwfvApQTPsVXAHwgG6+faBd4FPCYiy4CrCXoS2MU12p7du3Zz88cv5MUrp/KWBT9n9nHP8fLGcSx/5RN0/tlWjv+HO+gcYTOHGY0x2CIv3wY+C0R38n7AK6raHW67Ax/jwZKq2i0iW8L0mTB7/9Fo1KUv5UBztWZe/KB8fdK1T1pMy5P61t1V4NM5o+ZgsFHume4rS50GshtBkJL+Ftl0x0g04pdvkcp48cImXnKNehl5xVX9e1mVaAH5hI9xxKjO5fGNa9EovRNtqIYHKiXqLpkvxJcw8jUdicnqreiO1aQdRyy4+WKbUZ0c35M+hdLRyZ+IoqjbPUxSXchSNtNhoVrHsYYEvVEOVX0JWOjZvwT4qLN9HXBdTrp5Ddj9BkHvAcNoS9ILSz604nUcNHodUw5+iTNP2UW1W9i6cTQrOy7ihM//vXewmWGUZdCIFxE5G9ioqktF5I1NtBsPbqSzXWerSDesmymYemlT8hep9DWDG4/r1PJFNmPRUTJvvQBGNdMwjFLUcpY5O25jXl17BYGxejYzDeJeRHJ8+6IgU8LPhGfi9c8nUiO/omgMkfjMu0CRNvAqwNQxqV2feGyMr24pW3n2Yx/xdXvzN/5rIswjbFMiruLuc7ty1YIvjqhX56+Gor0mZFQlEYSpDchPyvl4dri9ZI0XwzAGJ9HCkvevfifVnuOY+fy3OXnBA0gFqj3Co48fw6xP/JgJUw7lhFY7awwJBo14AU4BzhGRswhWTx4LfAcYLyKdYfTFHfi4DpgOrBWRTmAcnj7C7uBGGTG+ia8o+6HBkDFZJA8asVnGV/eNbmN1q9fIzbOWly/tVdpmmc4U9c5cwqamjxZTHHHqnX+xzTzB05s7N6fLlN9P8XxLbudFndIN+bI9yXznIBH8cAWcePL4IlYkIzmJgIUjtCTcmWcvuhbJujsRmlQZkc2qVAvXMnIH40e9XGvjkpJ2gy5lGo5zifI54tqd4czWeTEMo0UcffgSHn74CObP+hVjJv4M2Q92bhlBR2c3nX/2PEeP2LfVLhpDjEEz5kVVv6Cq01R1JvA+4E5V/QBwF/CnYbILqA2cjAY+Eh6/c2D6CKdjCI2KGI+LuWGJ9NvWkggFNpuHW0Ttu8YfZ06k3NEkQhl3iyzk+9Q4ydxev6S8/cLoR17aPlxy7w6PvcSuRMEl7KaOeWIS+b+OVOWV7PV3u2GJ1trkUTettJfpcnMFYOq6hVKgdpdKJnlcdhxViaMhEguOWDjE0RYJxu5EAimKSEV1S/UtjIfphWIm+ITdzcJZAuJxNglVF4ypkcQ+wzCMgeO2f/gHNlxxMCPG7eTE05Yz5oBX2bNtOEvXfgje9STDRnUzzISL0Q8MpshLHp8DrheRK4CHge+H+78P/G8RWQVsJhA8/UQzGwbp17tlKNm1a4DbL27jM92s9DVq3XwVyrjbWCs+L2JQJpaUHjtQlL5sR7vcrk4O6fOU0RIlrqmv3oUCyeNfXprEfiER1aiXJyojHQXJnJN6gtAjvqL88duXtE85BvPa+okuZR5Hs+LQiYCkbMbXNOybV3GVkGs244wrK2v245cAzqFKKrxj414MwxgInn/6GZZ/45PMm/oEbzrsBSrDFK3CM09O58CPLWb01MM5Abj7ixfSNW0ko1vtsDEkGZTiRVXvJpgvH1X9I2S7SarqLuDdA+pYU9D8llWZvJn3x6kW04CRHPNSPALGTVfb6xMx4k2dLtnfUIv2FnfbKSJfcuX7mG8zPQFBrj0tsFlCefnqnedX2X2Z20qK92ejGgXlJCIPtTzSwK0cRTVUPOdYUsI6x2B0fVy94kakov2aqnu2i1YUAUkpzvDCVgFRQSpRJNJ3tqqp2mkclVH31xUtlBkOCAomdEjP62cYhtFcfn3V95i48hped9JK3rJQqXZXWPvMFDYOO4nXNr7AcUc+yP1XX0nXX36TJVd91haWNPqVQSleBh9l3t03Yq7AXmExBQczb+oHVs3kBQrSUYDMuAsaP7u+hpqvjMb7RNZvAjaiO+tFJEqZKlJNqd3xuc0LvdQlq7bS16u0+Ck45vOz6B5xNxKnIxI+ORo+3p1zshOiJcrv2nR8cWeEEw2nRXZkSFCEpMSSILUBNmg1+FKJRExitrF0vaUmrtyyE980nChBSs3MZhiG0Qhrn/wjL179J8w+ci2nT9pF5QBlz/ZhrHvuQA7+zN0cMu5ADgnT2sKSxkBi4qU0eb36G6UR0dKLcuIWkNsUamSRypJlahUNF6l024a+hqdvnIt6/uJtpJV0J2dfFN0pZ7d2VJ3/u1Sr6ZTlfC2SRbGAk8bFgWs7vgYa+FnpcPYXRDXUPaIpW+FG3JhP+1gmKuQIgfR9Ua2Gs4l57Lr1EsdGnF8TyQFq400kmz7jtzgxi1BjuNMdRz5Ve6pQwTttddzdMLzR1PE1OF4LA0VTMVerimo1Ga2JTpSzL7gfpDZ+RkBVanmcBSyrVbemhmEY9UlPb7zs6S5O+qf/4taPn8/B+6zgsLnrmHLSblTh2aen0XHSFzjk/A8zy2PLFpY0BhITLw2R1/TrpZipm60XtvssgsqX6UZN/O/ri73wCQB1/tbair1rmGnqb/lalU/VjPhWfP402X2qr7jRgzxh5KSOvCgWUJqKnPSVsOtXrYGfU349ze90vUtM2yHJe8tNXzci4/ikSDx3c1bERIk0MyaoFoTRpJMEwi2aPSxa6wUN5hYLpkzWQDQlynLWgXGnZDYMw2gAd3rjrnd/k//++qW8Yf6t7P5fk3nbabsBeGXDWB5/4VSO+Ph3mfWBaS322DBqmHhpiGZFXzzmcs0Wddzx+NCQi32rgy+6End5if/vJEi9/Xfz+NqS0SiACu6ImvL9+9O1S0c4kmcy32rRGS+0WXB6i6IXmbVdenuZnHyZhTS9kZh84RoFBjKLVIYqM9G1qegCpcvN8zHtSj3xEm2kRVpKEGo6fXxvacKnpEAL7tDITmJNG9d/x6P4HEk1UWqtXqFNDQRMFOmrzTaWX9c4KhiGZMTZaxiGUYajD1/CvavezvYt3ehPj+T0o3fTMaIHHd7NK+vHsmbcX3D0X32Z/VrtqGF4MPHSa5r57r3RckuWWddFX4KStnOSpUVM2Rm84sw5eqwW4XEad3VORV5zrmxEoqF4lWMzuwhisc1cP3vhR1E5UBMI2Xq78jDfz0hoJnK4XbWK6p53rlMG47VitDb7V3rygyLxV3SS60ahPILRXVslIbid7lyZbBL1Lyy6/0ObYWVjYYSzSGWi/HQs0S1voP8dMgyjHdnx6nbuvexPeNPCnSyYcQsjJ+5AFXZvHc5jL53H6w+6gf3+x3oTLcagxoZ5Dnp8LcIGuou4r9lz6U33k3yb6chKUepGggtKOHNTibRlm3KqQW8g8ZxnxX9m6p2pqtZWh8+UV8+mkLnk8TofTSA2nbGZ38jO0yTpeqgSrMfi+VdFoH4vJ/fkhIVWSZ7LhC91fhqJe0v9dZecez+xxgyhaHbvEkdcENWbMNIitZnDPJcz2B+v6RJ9ov1OlEidAhzhUrMpsRIz6WIYRh67du5i8SUf5OFLj6XnukN58xn3BP/OdPTw6FML2Hz0rez7sc28+nIHu7aMbLW7hlEXi7z0ir40FXLepze79dEre77OW+WK8eVw39L7rLp567y0T3pZpyHfm6rX2txJ6dUfjcK8cxUXmxfValTAeNRj+u7LCpi8eExBNKfApqTSpQMEudc9EhdONKYUQn6EJmUz7gqWSUg2muJEQcQ1FqfXuIuahhEjX13T6isatC+uEnIcVlWqYeUrlURWx6ZJF8MwkvT09PDLr36TA1/4BfOOW8VZp+9BBLZvHsXTKw5j165O5sx+lldem8Gs/edw9xcvtOmNjbbBxEtp6sUOemmnbvYGOw/1uR3TuIFajoIGv2RrUr+k8iqlUBA0RB3R0oDR9AxaRVkTsqEZl7xO3riIVGu4MJtQapHKeoIlSuMWnVtuKoqS29FRUvtzzr1PminJgfYZ33z+xSLGXZ8lWpFF42hZJRrD4jggNROOH9F9J6HNbCQs6E4nmXFLqJp+MQyDnp4ebvvm1cx44d+ZdfRznHl4FZkDu7fuw0trJrDlyL/h8PM/xtgwvU1vbLQrJl4GnMzr38byBZmdfXVa8P2I9w20s6fiOVpPZOTZrEeeMCpqWPvxvQEvbmgXNrzTjWpfPs2xWVLEuHeB+7cRQSeewqIGsiQTJlN5br+8LnFpUQBOZMX57vNRUzsVR0gV5MO1T/JcZRYRde05+9NlB2ZTUcpo8cjwqERjWKhJGonTeGvoFVbukchGLboT9W2zRSoNY2/BN73xlslnMH/P1YwZv5O3TNuGzFCqPcK6Px5A5xv/noPe8F5GiXBAypZNb2y0KyZeCukHNdCnV6Q5eZsRJogp222s1kxOtSFTlpKRDNe6O34lr+GW72O+R2WtlLWbsNdIK7HOqcwTWN5EZSmKYtQtIqkCfF2qGhFE6eO1+ELyZ5D+SXi7GHq6omW6lFWy/sbC0CNwMvdsuEOjfM65VAQkvShlOrNbVrjtDJxRDbuJRSImLEgc4eNYIZZC6fpE6cO+jiLJiTEMwxiauNMbb1tzIEfxH5x4zL1I5XdIB1RfE/6w6lBGnPwpDn7rhczwLU5lGEMAEy+FlIkbNGoyp0Vb9Nq4rs28LO775v4nt0tPyoP0Gchr4zd6tvPK8Pnjx33b7f9WyYuSNOBbRNzhKGw050dF6hcUX+lw3EXGZlFUI2dHdOckjvei8onZ3cI8Ws3emYl7IuVv+tq6dmMRU4WqJNOloy0Jo5KyGwUyUqJIq9X4X0r3HnfjKHG9wkS16I5bEedEOF3DErON4Qj+0Gitnpq0GXZ3i6+5YRhDlpc3beaYOfezdtUBHDX+10yY8RJSgZ49HWh3B4+/9EGO/tS/ckSl7ILUhtG+mHjpM2UjFRFSuNlnGnWn1+VUqRL8I5n3bqeeIHHffLuNv2a6X3b4SPJ4cVOwrM3SaLYh3leqVZBoxfcGozFF162qxVNBN4KEIgYhs/BjQxopdUFimx4hk0if2nCPJ0SfEitNkfQ1kthKRZNdv9IRyWhwPqLxlMjB/rBjWeImCNIkBulrEP2piVKvvDQMY4jwwC9+yfqbfsQREx/nkHlr6BjTzaHHrOG1ncN4cd0E1m0/iiM+/kNG/HoWx1z23Va7axgDxqCJKYrIdBG5S0RWiMjjIvLpcP9EEbldRFaGfyeE+0VE/kVEVonIchE5tv+91NSnv03mlZPp8JJvMxfJ+ZQnypEuKuqFn+6JXxSRUc/35LDl4I20NNC/P92QjG061Y0ao5pIVY74NIvfZlnf3O3caZF7IxhCf5RAdGQiKAlRU1yAG1GIfNT06XJviLIuRj5qbYppryc57rniNz0Gxncus66J83+nCuE1DWMgyXsz5zYJzlHtRpDwBKtoZrHKyL/gr4Td0urcOAkxpmjmF2I0i7znjifdBWGalSJygbP/OBF5NHw+/YuE08nVsysix4tIt4j8af/W0BiMdL/2Gjdf8R3u+vAbeeWfpnDszndz9ttuZvbxz7BndyfVbuGhRxcw/MLNHPi5tRz3tVtZ8p3LbXpjY69j0IgXoBv4H6o6F1gAfFxE5gKfB+5Q1dnAHeE2wJnA7PBzCfC9gXd5oBoOUWspLTBKtGhzXeyjAJNs7qRFvxgqlEg5DcK0zb5GJ3yN2jyTZc54nuCoO8tWlN+TLrbZuKaMy/HZzIiY2tG6Nn2auKFz6QimhHhNGa1qEDmq51JCcqeNOnnTPqbNRqu3pO3EWkJq+WIRo2GEx3fdIZxhrApUSQ7mT4aJXN9UJewS5nycYEwtxuN/XWA0lbznToyITAS+ApwInAB8xREj3wMupvaMWlTProh0AN8AbuuPChmt5Z7LFrHtu5Po/sm+bPvuJO65LLgl1jzxDDdcdAmr/voI9P9MZNGML3LaWx9k1KSt7N46nOVPnUz1rMcZc+lLPPDwqcyb+TC/ufyjbNv0Yjy98bKnu1pcO8MYWAaNeFHV9ar6UPh9K/AEMBU4F/hRmOxHwDvD7+cCP9aA+4DxIjJlgN3uBb1pZKRjHM1sqPTWpuQ2UnsRKyoopWYzaiuWtZNXIzfKETXma+/fk9bLnhk3IpEvEBoPiiWiHH0krl2uvWTzOp03nVKdA4nGfMGNIUX1cI9LaoFKx2biKvluLM++6PokT36d31SiklmDkr45o1RRlMUVQvFXN8aTLigYvB91KYvFnmcNmNqSmdSP2Bi9Ie+54/I24HZV3ayqLwO3A4vC59BYVb1PVRX4McnnVp7dTwI/BzY2tSZGy4kG2i9Zew47zniGe5edRNe837Pr2vHsf+8xnLfwJxxyzFoQZf3q/Vkz+gqGfXAz+35sM8d89XaGjZ8JBLODLX3iBLqmLWbEbTPomrbYpjc29lO4VN8AACAASURBVEoG5ZgXEZkJHAPcDxygquvDQxsgnu1vKrDGybY23Lfe2YeIXEIQmYHOZoZWe9tYqNP/pXQZJVqzkvlSh961kBuMBWXS1qtlppnXSNXL2AwFRyWn/r6Ge719jS6kGecvcLzXi1SKdzNlTzzfktt50ZwompLnY+K8SB17JAVMZFOrQEcqT95PyckfJ8lUHqCa+xNxp212hUfwXbMXPNRBVanW8nhulNhuLEo0ufClkyeIxChVrcbjjCRz8qKIkUVemkzec8cl7xk0Nfye3p9rV0SmAucBbwKOb0YFjMHD0Ycv4cEH5jJn5h3Iz47izSfvorJPFdUedm0ZwVMvnMJhH/gq+87sYnodWza9sWEMQvEiIqMJ3j5dpqqvivNGUVVVpLGntKpeA1wDICPG9/EJ72stNSpifC2aorRFCRoRQs0nK1ryT2/0bjkd6nPbYv6zq6ltfyM/r0FcNFg93RCOxijUE3GlpaCn7Lq+1LvkZX1KKz5JbsZJJCeRz67Hp7zrlmfI51ae72kR4/MybSNXAEo2X+3uyq68klm0MlVAfF8m7heN/2iUx+32laqsxM5q7f4DyIyPCURMIk3ofU1kDdCPfgghIr8GDvQcutzd6M1zpwwpu98GPqeqVakTRXNfyB188MHNdstoAo/8+j5W/eQaTppxJ+MmbWPEhJ2csvBhAKrdwprV09m1/1s4fPT3GX3pS7y+xf4aRrsxqMSLiAwjEC4/UdVfhLtfEJEpqro+DMdHIfV1kHhJMS3c1x+eNd9WQyZLtmib4mbjRnxrTOTJPLexWdjgLhkFKiNMypy9MutkJF7a17GXPl7Pz4zNnEJ8EsO3XUZmJ23lNH9Tt6tPUNQjGtNTcbNJ8nuRyYR4wLkzFDqcyibOd4F/PoGjjhaJZz6L0vg61+ae4Jpi0VDBuGu7+LO6d4F7glOiKHU0UETZNEY5VPWMvGMikvfccVkHvNHZngbcHe6fltofPZvy7HYB14fCZRJwloh0q+qNHr/jF3JdXV124QcBD9x4B2t/8QNOmPl7Jk17mTkVZd5bXgOCqHH1tQrP/vFg9j3jixz0hvdzqFS4+4sXcvC0kYxuse+G0Y4MmjEv4Wws3weeUNV/dg4tBi4Iv18A3OTs/1A469gCYIsTjm+mZ4PIZPo5Va19HfAXr7UCg4lek/9FTei0x24zLTtEQp2c/v+i1EVv/NOioUx0QOukSje6fWVkbJboOha1a/Nspt/3esshJQrdiEHKP9++YL+nILeujgGR4rKKxsy442Rw8zsGJPWB7LmMyna7ESaGsqTr69gmZVNwhFWldm+69VFXbYlnHr1EWCV1ksAZiO+L84QD+1OKVSRlz82nisaDq8rPwGeUJu+543Ir8FYRmRAO1H8rcGv4HHpVRBaEz7UPkXxuZeyq6iGqOlNVZwI3AJf6hIsxsPgG2ff09PDbHy/mxj97L89dfhh7rhvL/JfO49xF/8mUOS/QOWoPGzdOYMW6RWw75iY6PrCVB5adwvSp61l5yx1sf3GzDbQ3jD4ymCIvpwB/BjwqIsvCfV8ErgT+Q0QuAlYD7wmP/RI4C1gF7AA+0j9u9bIfT5G9dAsuIrOrgTIzr+R766+/+1CZXL5S041kX7qqkzr3hXYvfEm/QC+fM7/8PKHiLaPEqXQb3HXFWJ1bJn4HH41DSTue444rHtMhC019yUQ0CvzOKy++B3JOZvTzaORe8A5p8aX3CBuoRYeiUyA4kwVAQrBI2B8w2uNen6DrYbRfUmNYNMhLbTvOKuLYq0Vu3LExPtkT9CZr1r9NhoP3uSMiXcDHVPWjqrpZRL4OPBjm+Zqqbg6/Xwr8EBgJ/Cr85No1Bh/RIPv7nj2HnTtOYdLKazjhpHup/mQcC6pCx5nBk6vaI2xcsx+vjDyF2e/7a/Y58GimiyS6hZz67Vu457JFdB2+mBG3/YyuaSNtoL1h9AHRZkxj1CbIiPHKtDeWTV1uv1Tyk2bIaU6n88cr5NYz3EFmdb+MzbCJVhlW0sXOEuWGSTuG5QqE2ot0ZZ+OWgJPezr+u2+nG3nJpou3RelMLSLs87iCMnxYthwfHZXgU0vk/11UgOHDpNC/iM6Cy1PLpwzrEDo6ao1mf7rgS2dn/lTR7u59hkFHpVKzmSdeBIZ1VpI70unCjZHDQaQj6afH50oFOjv8Trq+VARGjiA7GD31HaCzQ+koWDg6Sr9Px2uMGEEiIuT66W4P7+xGKv7uXOLkGTF8V3AfVdJ1CMWG1ETMiOHdsfhI2JNQlAhAlX1HbWfYMDdvGD+T2j6AjkqVfYbvrt3D0bGoPhJJf2XsrN8tVVV7lbsX0dXVpUuWLGm1G0OGnu5ubv+Xa9n+8N28/Q23sPXF0YyfugUFOoYFvzVV2Pjcfrwy9gxmv/czdO53pBMlNQyjWYhI7jNtMEVe2oR0o7bRSEXeq2bf4T5EfRI2++8f1qh7Dbheavx/VwskGqd4GotO7vRA7N706W/8SpUvI/eS9YK4nu5A74K0jaCOzfp5PcLFl6KEn+UdrEU9VAMh4xWidQSb271O4/8Ff6K8iV9TogKauReT26EcqUZiJZUgnplBEdXEsZpYqqZ2RN3WgqhKPHg/cW41KQ4TIk/DSu89L58Mowz/50//gjnbn2LciN1s2TWcJ/c9gvNvyC4Dt3vnLu76/g2Mefhqxo3axr4jX2PiAa9wxoFbkTODNBNGvUy1p8JLG8bz6sR3cOCbL2Lf+07joC88x0EDXC/DMGqYeOkVfWm19aZbltvsaiBv3aR9a32mc9dqJuF39SYWJ320rQQDG91IRVIgpHKVOI2+w8VnUqjXGPTZjN595zW869pI7YjHYjR4uYsKikRMRbIisiyqJGZQi9dNqaRs5pxCbwQoOuXhjmrY9q+UdC4TIRIyM4UlzifZ4e/RveXOIJbt2qaxqAiETPb6uPGWoK6KuuPSwBE3QcWDrmHilKe5orD2C0j+BiRVK8PYW/k/f/oXnLz/PYw79lXGjNrM1h0TmfjQJv6/8y5hwiknsevh2zn58N8zYtQeOjqqvHnidjoWhhGVqrDt5VFs3TSa9ZunMnPqMyx57h2c9nc/ZgowBbj7ixfSZYPsDaPlmHjpFX15797b1qjbeM/GOrzUDdz0oR45Lays4Kg16Xpb82QkRrzrsfi0TFFzLn1qannT0qoBP1NRjrKRCW9JUSM5b6xJHfKSxwteSjqakYxxFRWXua20Nj6j8EIXibuU0WrUi0pqgiEdHfFv+Mt3I0bZKI5HZCcEXu0+dte1iXSIazMWEk73ruhPTdao8zcSMI6kCkNRlaibmjPmxfU1caqt24phsGDyvUw4ZiMP/3Ehr6zexRFTnmLWSX/kPT3PIvJTKm+PhAq8+tIYnlszk92vjWDY69/F7PMuY3zHCAAmEIx5Of7ImwPB8pffZMlVn+XEGTcGY1VaWEfDMEy89IF+aCzUeyUf00DD2n3dXUjvumX5LPsiKz5yG6OpMiqp7d7ayrOfzFT/PNRt3GtScOWVKal9RZeqV0PTchxIRE48lNACsfmMPcX7r4r4MhQZrdQ2XT8LRYtrwxFKktoXBz80FeXwRI9qwkniA5JKL4RRQwGVat3IViRsJXHBa+IoEi3BIpVBpMWJzTgRIo9PhtGG3HPZIo4+fAkjxu1k15aRLHu6q3Aw+/o/rGXJDbey8/EHOGLMfUw5aDM7t45k+oL1IMqpR92EzAvSahWks8ozz8ymuv/xTDrxHCa+fhETK8OYWOCTDbI3jMGLiZeG6WszIacF5zVbr5lccKzXbpbP6L75rStiUg3KdJqiF/beRnKBT71BM+qhCd1wcpwpOle96lVYhOd289+B2b19EjG+PDlCKvfWp9Y+d6dDzrvn4v054iGz4n0kTHIuSKKcaFsiGZOupNb2OhGjhMmM49HkC+oM+NXM32hSlXhuELd+kRIyjDYlmtXr/tXvpOvdYYTjyBv53Sffyo4jP8qOe3/GEZOfZNvWkUyauI0DZrzI5PE7WXSgUJle+x1We4LfyLaNo9nz2jBemXQuh779o9x0xQ2ce+K3mf2lZQVe+LHV7A1jcGLipTRl4gcN2imVtahrl6el24J2TLox53UhaoRSa7DWdzX5RjkhJ0qcRrc5WO60lBcsZWymx16UtlcmQlEvSYm8yYa7ZLJlhIJ4BICnqMw1S4lWTxs+313PJUn/ItwGvU/A5Psa3rmROHBsJHyTZBlBWvfuqgkNV8AFExBI0CXMc78mz717rycFTMImUEESY8PKLLBqGM2m0WiJS7VaZe3KNay85yEWHH4/f1xxEDteWMfyvz6Hw2eup2OfbhYcfy/acx8db++J82kVXtvVyWs79mHNhun0jDuSEdPmMfm4t7PvwfN5+d8PZvOjB7Bs1DksuugvufErV3H0jl/x6tbxhVEWwzDaCxMvpWj2q/Ci1lq9vNDQK/1+I/kGOi+akG5Wpd8vp9/MlxJCdY75Gso+su3w/KhLUUM7r4yq5s+SlcinOTaLdGstayKJeL6X8VU8V8Q7Q1lajHka5b6mtCtaM5EDkkKqtN8Jo8nEeeUlsmutjvH5lqwvmrGfjo7UIiiRBKmEF1UlkCWixNMyq/dMee45kTi9xD4Fw/W1qsG9VVFsiUqjLH0RHGk73mjJp9/KxHd/g6f/61fs3LCJzl0vMbljNXNmr2brK6Po7KwyftJWxkx5lck7hnHgPj1UxnUz58RnmcOzsf1qTyDQVz83k106np7OCcw+/wuMnHYsnR37AHC4x6/xZ15FR+cned29/z8vXHwbrxu7m8mnrGPMW/61l2fMMIzBiImXQvpBDfSpi0dO5KUvr9/7jK/ZGxC8JU69PU599+UrE6coI0rqRka8OYvTN/uM1rVZQolloiUNOpqJuTiCAig1hqO+/aSYTY81ydQhZcOn4xJdytwISZqCsT+Je1HIdFOLz4U40REVVHz3tcRiKRYcztTJWg2FTSRiNLSZPt9OREhSPgUipjY+JuiiZstUGvXJExz3XLaIU799C6rKtle2suGPz7Ph6Wd4ZfVadm/bxa5NG9hv+xJe696Hbh3OCNnCwrfez/pVkxn1wmM8//enccIRG+jZ3cGCY/+bnsffzJzX7YHXJcvfnzBysrszmNlr+whefXE/ph30LJvW78eOaedx6NveT8eko/jdlz9J17TFzPqb5Q3VsTLzPYx5C4w+6Jvw6qMw9gjkqH+lMtPWAjWMoYSJl0JKvPrui0kXr/mSZea6GbXaqkDBCn8ZY72ra1FcKP2OOWo4KtkS60U2VOp38IpslhUyOSUlvsXjGerk8u3P8ze2WxB1KNrv2o4b0s6OdIQk/9o4V0Frad1OUUBiquS6jqX8SQjX8DxG0an0PaB1/a3ZjSbjUoWqJK+9101HTSWui1tZR5VUe6rBz0e8h5FI1Ej2HlEnDBTJ/GoVgt+kI0JwJw+odWMTJDvVc3xyFNGoO1lySmbDSHP04Uu4f/U7kfWr0J/O5XVj92HH5lGccPS97PnhWLp3DkP2dDBtWDeHjt9NdUoFKkplrv9fr+nzNjB93gYguAe7d3UinVVeenksI3fsZtOrByAHncCYGUdSHb4fBxyzkI7RU+gMF2GeHH4iUbXqqS0cdNahLPnyJ/s0q1dl5nvAxIphDGlMvJQmr1HfaGM/lb7Zr0y97vTDe1mtUg0FUXIR+fwuX0Vv7d3GX1Zw1O8WUz9W08hZKC6vTue9hhFqjfm8CEGjVMM1c6JITCM2CqMrmuxW1Rdc0RFv5/hQWJ6bX4K3u24UxUkSRk6cneK/X8XJEEVbSEVCXG8VqKg/Ipi8rgqizgKVQSRFEsonODEahC4TWWMRmhI6/fIbN4YUI8btpOvd32Tb949l1KTtjKxup+e1DirDqlS7K1RF2f7acF7buS9jq1t5detotusUemQkw/c8z87OaYyds4AREyYxetXf8tiaEzn+r/8n7DMBhu/HPZdfRNe0xUz9/GqA0mNMbFYvwzAaxcRLQzQjEpPKl24nZyInvgN1yi7tZmEztS7u2+fadvR+Odmtpihv/IZfSXShCdtunpKgjBrJi6Pkn8nGRFKiDewIhPTfMr5loiaQ6VrVMO651JSIyUQ2iguI2tWxTSc6k6lw/dOY8RHiBezpaKCuCZGbiVA46SQZjUnWW7NVSIVqotEs8XlQEoPm4+LToanUQpWJ+ye8JhrmEXF/DenYEYnzHI58aUjgG3s3u7aMZMlVn+X0rz4OlWFQGR4LjtGXvsg+kFh8cWyBrXsW38JxRz7Ab678h2ANlK9d1Kdoic3qZRhGI1TqJxm8iMgiEXlKRFaJyOcHtvR0h5qBosEWbaGLfahDustNxloyduLuyfXa44ridrAJcudFKMriRndc3/pCvPijuy8nipIRVTmFp7uUNYIvi2ogEHp71ZVsXl+9ve5GEQvxnIOU0aoGkaN6a9sk7LgbHkd9ftYEnNQ2JflxpyLO1L0K6d5acVZRkGr4SRSXKFwTPkrYJSyhUoIxLbEmSlcuUlIYRiHLnu7ixBk38puvfJrtm7fxm8sDwbHs6a6GbZ367VtY+sQJdE1bzIjbZtA1bbFFSwzDGDDaNvIiIh3A1cBbgLXAgyKyWFVXtNazejTazaxM/KCvuDbL+pc/SDj93riRCERRmiJ7PjFSr4Ge9xa+N7iRk6JuVaWCYungnKdbVW+Im8Va8yXZ/UhS33Jdqp07N8oR7fQNr3Lb1wU3jisgEtE4J08qKJJ1LEc0Jh0P/id5Y0VcX4jSuqGclM0oTChBtzC3UF91JZoAQGoGEgPzoz51GZVX8yY05PffMFI0u3uWRUsMw2gVbStegBOAVar6RwARuR44FxgA8dLbd/YFcYfE7rIBscI4RonWYpq+NdzzGrwKheuDFEVkfI193xv5vkRRokZy2fr72sfpfWWiBt78Bc7Xs5nNkCysr+cyL5qTbqTnCbS0qMsVoY7fUdtefXNOeFVBMn/8x2MzETZJ35tO3tq9Gc4glrpP4nopVMOuXHn3c6L+4UYcVXH74oVGVZWqVmtTOqd+bJI++YZRgAkOwzCGAu0sXqYCa5zttcCJ/VtkP7QQmm2yz/bKG8iKlvzWtftyupGS3IZimbZ7r6sfK4fmdQWsF73wUio0U8JuRjX4i2noxX1ORKOonnmiTJxjGbMJgZFNkBsZkmxZrn7PiitnfJYmz4U4ziUG6TsFBF/dyE0tpFVzPYywVFI+4kRXgg3H19qifHGhqmH3Qqmds5zJBgzDMAxjKNPO4qUUInIJcEm4uY0/3PRUK/3JYRLwYqudaJTu5GZuHXYNgC9NoC2vQQqrQ+tppf8zWlSu0SKWLl36ooisTu1ut9+Q+du/mL/9S7v5C+3jc+4zrZ3FyzpgurM9LdyXQFWvAa4ZKKd6g4gsUdXGR00OItq9Du3uP1gdBgPt7r/RXqjq5PS+drsHzd/+xfztX9rNX2hPn9O082xjDwKzReQQEdkHeB+wuMU+GYZhGIZhGIbRT7Rt5EVVu0XkE8CtBEN5r1PVx1vslmEYhmEYhmEY/UTbihcAVf0l8MtW+9EEBnW3tpK0ex3a3X+wOgwG2t1/o/1pt3vQ/O1fzN/+pd38hfb0OYFow/OvGoZhGIZhGIZhDDztPObFMAzDMAzDMIy9CBMvA4yITBeRu0RkhYg8LiKfDvdPFJHbRWRl+HdCq30tQkQ6RORhEbk53D5ERO4XkVUi8rNwEoVBi4iMF5EbRORJEXlCRE5qp2sgIn8Z3j+PichPRWTEYL8GInKdiGwUkcecfd5zLgH/EtZluYgc2zrPa+TU4R/D+2i5iPyniIx3jn0hrMNTIvK21nht7A2IyKLwPlslIp9vtT9p2vXZ127PunZ7tg32Z1m7Pbf2lmeUiZeBpxv4H6o6F1gAfFxE5gKfB+5Q1dnAHeH2YObTwBPO9jeAq1R1FvAycFFLvCrPd4BbVHUOMJ+gLm1xDURkKvApoEtV5xFMWPE+Bv81+CGwKLUv75yfCcwOP5cA3xsgH+vxQ7J1uB2Yp6qvB54GvgAQ/q7fBxwV5vmuiHQMnKvG3kJ4X11N8LuZC7w/vP8GE+367Gu3Z13bPNva5Fn2Q9rrufVD9oJnlImXAUZV16vqQ+H3rQT/sEwFzgV+FCb7EfDO1nhYHxGZBrwduDbcFuDNwA1hksHu/zjgNOD7AKq6R1VfoY2uAcFkGyNFpBMYBaxnkF8DVf0tsDm1O++cnwv8WAPuA8aLyJSB8TQfXx1U9TZVjdZsvY9gzSkI6nC9qu5W1WeAVcAJA+assTdxArBKVf+oqnuA6wnuv0FDOz772u1Z16bPtkH9LGu359be8owy8dJCRGQmcAxwP3CAqq4PD20ADmiRW2X4NvBZoBpu7we84vw41hI8lAYrhwCbgB+E3QGuFZF9aZNroKrrgG8BzxH8Q78FWEp7XYOIvHM+FVjjpGuX+lwI/Cr83q51MNqPtrrX2ujZ127PurZ6trXxs6ydn1tD4hll4qVFiMho4OfAZar6qntMgyngBuU0cCJyNrBRVZe22pc+0AkcC3xPVY8BtpMKow/yazCB4I3JIcBBwL5kw8Rtx2A+52UQkcsJusb8pNW+GMZgpV2efW36rGurZ9tQeJYNpvNZj6H0jDLx0gJEZBjBP94/UdVfhLtfiMKL4d+NrfKvDqcA54jIswRdE95M0Md2fBj2hSAkua417pViLbBWVe8Pt28g+Ae/Xa7BGcAzqrpJVV8DfkFwXdrpGkTknfN1wHQn3aCuj4h8GDgb+IDW5p9vqzoYbU1b3Gtt9uxrx2dduz3b2vVZ1nbPraH2jDLxMsCEfWa/Dzyhqv/sHFoMXBB+vwC4aaB9K4OqfkFVp6nqTIKBXneq6geAu4A/DZMNWv8BVHUDsEZEjgh3LQRW0CbXgCDEvkBERoX3U+R/21wDh7xzvhj4UDh7ywJgixOmH1SIyCKCriXnqOoO59Bi4H0iMlxEDiEYxPlAK3w0hjwPArPDWZr2Ifi3eXGLfUrQbs++dnzWteGzrV2fZW313BqSzyhVtc8AfoBTCUKMy4Fl4ecsgr60dwArgV8DE1vta4m6vBG4Ofx+KMFNvwr4v8DwVvtXx/ejgSXhdbgRmNBO1wD4KvAk8Bjwv4Hhg/0aAD8l6Nf8GsEbwovyzjkgBLMn/QF4lGA2msFah1UE/Yaj3/O/OekvD+vwFHBmq/23z9D9hM+Rp8P77fJW++Pxr22ffe30rGu3Z9tgf5a123Nrb3lGSei8YRiGYRiGYRjGoMa6jRmGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG2BiRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4Mow4iMldEPiwi00VkTKv9MQzDMIzeYs80o90x8WIY9RkGfBI4D9iWPigiM0Vkp4gsa3bBIjJSRJaJyB4RmdRs+4ZhGMZehz3TjLbGxIth1Gc68ANgFZD3luoPqnp0swtW1Z2h3eebbdswDMPYK7FnmtHWmHgxjBARuTN8I7RMRHaJyHsAVPVm4AZV/aWqvlrCzkwReVJEfigiT4vIT0TkDBG5V0RWisgJjaQzDMMwjEaxZ5oxVDHxYhghqvrm8I3QvwOLgZ87xzY0aG4W8E/AnPBzPnAq8Bngi71IZxiGYRilsWeaMVTpbLUDhjGYEJEPAWcC71LVnj6YekZVHw1tPg7coaoqIo8CM3uRzjAMwzAawp5pxlDExIthhIjIu4EPAOeq6mt9NLfb+V51tqskf3dl0xmGYRhGaeyZZgxV7EYyDEBEzgYuBc5W1V2t9scwDMMweos904yhjI15MYyAHwHTgHvDwY0XtdohwzAMw+gl9kwzhiyiqq32wTDaGhGZCdysqvP6sYxngS5VfbG/yjAMwzAMe6YZgx2LvBhG3+kBxvXngl4Ei4pVm23fMAzDMFLYM80Y1FjkxTAMwzAMwzCMtsAiL4ZhGIZhGIZhtAUmXgzDMAzDMAzDaAtMvBiGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG2BiRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4MwzAMwzAMw2gLTLwYhmEYhmEYhtEWmHgxDMMwDMMwDKMtMPFiGIZhGIZhGEZbYOLFMAzDMAzDMIy2wMSLYRiGYRiGYRhtgYkXwzAMwzAMwzDaAhMvhmEYhmEYhmG0BSZeDMMwDMMwDMNoC0y8GIZhGIZhGIbRFph4MQzDMAzDMAyjLTDxYhiGYRiGYRhGW2DixTAMwzAMwzCMtsDEi2EYhmEYhmEYbYGJF8MwDMMwDMMw2gITL4ZhGIZhGIZhtAUmXgzDMAzDMAzDaAtMvBiGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG1BZ6sKFpGRwC3Am1W1x3P8W8AvVfXOAXfOMJrM0qVL9+/s7LwWmIe9NDCaSxV4rLu7+6PHHXfcxlY7s7eS90wTkR8CN6vqDSJyPfAlVV3ZIjcNoynYM83oR+o+01omXoALgV/4hEvIvwL/CzDxYrQ9nZ2d1x544IFHTp48+eVKpaKt9scYOlSrVdm0adPcDRs2XAuc02p/9mLqPdMAvgd8Frh4YFwyjP7BnmlGf1HmmdZKtfwB4CYAEfmciDwqIo+IyJUAqroa2E9EDmyhj4bRLOZNnjz5VftH3mg2lUpFJ0+evIXgDajROj4A3CQB/1NEnhKRXwP7O2l+B5whIq18cWgYzcCeaUa/UOaZ1hLxIiL7AIeq6rMiciZwLnCiqs4HvukkfQg4pRU+GkaTqdg/8kZ/Ed5b1nWjRbjPNOA84AhgLvAh4OQoTrYRpwAAIABJREFUnapWgVXA/Ba4aRjNxJ5pRr9R75nWqofdJOCV8PsZwA9UdQeAqm520m0EDhpg3wzDMAyjEdxn2mnAT1W1R1WfJ9v12Z5rhmEYfaBV4mUnMKJEuhFhWsMwDMMYrJR9poE91wzDMPpES8SLqr4MdIjICOB24CMiMgpARCY6SQ8HHmuBi4YxJHn3u989c+LEifNnz559VH/Z6ejoOG7OnDlzZ82addQRRxwx9ytf+coBPT1FY5jbi6L63XzzzWPGjBlz9Jw5c+bOmTNn7sknn3w4wF/91V8dNHLkyGPWrVsXj3UYNWrUMdH35557rvPss88+dPr06fOOOuqoI08//fRZy5cvHw6wfPny4aeffvqsGTNmzJs7d+6RZ5111qFr1qyxMRODiNQz7bfAe0WkQ0SmAG9KJbfnmmE0CXum9Z12fKa1so/0bcCpqnoLsBhYIiLLgM8AiMgwYBawpHUuGsbQ4sILL3xx8eLFdadpvfnmm8e8613vmtkbO8OHD68++eSTK1atWvX4nXfe+fTtt98+7jOf+cyQ6SZTr35dXV3bnnzyyRVPPvnkit///vdPR/vHjx/ffcUVVxyQtletVjnnnHNmnXbaaVvXrFnz2OOPP/7ElVdeue75558ftmPHDnnHO94x+8///M83rV69+rEVK1Y8cemll27asGGDiZfBx23AqcB/AiuBFcCPgf+OEojIAcBOVd3QEg8NY4hhz7S+047PtFaKl6uBCwBU9UpVnauqR6vqF8PjZwM3qGp3yzw0jCHGmWeeuW3y5Ml9/k2VtTN16tTua6+99tkf/OAH+1er1b4WO+hopH7vf//7X1q8ePHEF154ocPdf/PNN4/p7OzUz372s5uifSeddNLORYsWbbvmmmsmHnvssdvOP//8LdGxs88+e+vxxx+/q+mVMfrK1cAFGvAJVT1CVd+iqmep6g1hmvOBf2+hj4YxpLBnWnNpl2day97eqepDInKXiHTkzIvfCfzTQPtlGP3NhRdeOP2xxx4b1Uyb8+bN23HdddetaabNZjF37tw9PT09rFu3rnP69OlNfRlxwgknHPHBD37wxU996lMv7d69W97whjcc/uEPf3jTpZdeunnr1q2VhQsXzr744os3XnzxxS+/9NJLHWeeeeasj3/84y9ccMEFr6xfv77z3HPPPeyyyy7bcP7552957rnnOg8++OCG/XPrB7BkyZLRc+bMmQtw7rnnbv7GN76xAWD06NE973//+1+88sorD7jqqquej/IvX7585Pz583f4bD/22GMjjz32WO8xY3BR4pkGwaD+/z2QfhlGf2PPtOZhz7RytLTrgapeV3Ds/w6kL4ZhwOtf//o5e/bsqezYsaOyZcuWzugfrL/7u79b+653vevVVvvXDnR1dW276667VvmOff7zn984f/78uV/+8pet29AQpOiZFh7/wUD5YhiGPdOawWB8plm/acMYYAbr2ySA5cuXPwlB2PcHP/jBfj//+c+f7avNFStW7NPR0cHUqVOb3gX0gQceeCr6Pnz4cHW3x4wZU3W399tvvx53e8qUKd3udm/eUEGyfo888khh2kmTJvWcd955m//xH/8xXrjwda973c4bb7xxgi/9UUcdteu3v/3t6N74ZRiGMRDYM6152DOtHLaomWEY/cbzzz/fefHFF8/4yEc+srFSGXr/3PSmfpdffvkLP/rRjyb39PQIwDve8Y6te/bskW9961uTojT333//yFtuuWX0xRdf/NLSpUtHX3/99eOiY7/61a9GP/jgg2Wn5TUMwzCahD3TsrTimTb0zrxhGLm84x3vOOTUU0+d88wzzww/4IADXn/VVVdNqp+rMTu7d++uRNMuvulNbzp84cKFr37rW996vsheO9HX+k2ZMqX7zDPPfHnPnj0CUKlUWLx48R/uvPPOsdOnT583a9asoz73uc9NnTp16mujR4/Wm266adXVV1+9/4wZM+YddthhR1199dX7H3jggTaRiWEYez32TOs77fhME1VttJ6GYTTII4888uz8+fNfbLUfxtDlkUcemTR//vyZrfbDMIyhjz3TjP6m6JlmkRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4MwzAMwzAMw2gLTLwYxsBQrVar0monjKFJeG8NveWeDcMYrNgzzeg36j3TTLwYxsDw2KZNm8bZP/ZGs6lWq7Jp06ZxwGOt9sUwjL0Ge6YZ/UKZZ5otUmkYA0B3d/dHN2zYcO2GDRvmYS8NjOZSBR7r7u7+aKsdMQxj78CeaUY/UveZttdNlSwi1wFnAxtVdV4fbb0JuMrZNQd4n6re2Be7hmEYhlGGZj7TQnsHA9cC0wEFzlLVZ/tq1zAMo1nsjeLlNGAb8ONm/EPv2J0IrAKmqeqOZtk1DMMwjDz+H3v3HR5VmTZ+/HsnIRWSACZ0ktCliyigCCoiqOuCIN0C1n1/ggUbrLgC+spaVlddFxGsvIqia0MRFRcQUaqASu+9hJJCSJ/798dMxiSkZyaTcn+u61wzZ+Y559xDmWfu8zRP12kishT4X1X9TkRqAw6r04wxlUmNa+pT1R+AU7lfE5GWIrJIRNaJyHIRaVeGU98IfG1f8sYYYyqKJ+s0EWkPBKjqd65zn7E6zRhT2dS45KUQrwMTVPVC4CHg32U4x0hgnkejMsYYY0qvrHVaGyBBRD4RkfUi8pyI+HstSmOMKYMaP2Df1Sx+CfCRiHvSjCDXe0OA6QUcdkhVB+Q6RyOgE/CNd6M1xhhjClfOOi0AuAy4ANgPfAiMBd7wbtTGGFNyNT55wdn6lKCqXfO/oaqfAJ+U4BzDgU9VNdPTwRljjDGlUJ467SCwQVV3A4jIZ0BPLHkxxlQiNb7bmKomAXtEZBiAOHUp5WlGYV3GjDHG+Fg567Q1QKSIRLn2rwQ2eyFMY4wpsxqXvIjIPOBnoK2IHBSR24ExwO0ishHYBAwqxflicU4puczz0RpjjDGF82SdpqrZOMfIfC8ivwECzPZO5MYYUzY1bqpkY4wxxhhjTNVU41pejDHGGGOMMVVTlU5eROQBEdkkIr+LyDwRCfZ1TMYYY4wxxhjvqLLdxkSkCfAj0F5VU0VkPrBQVd8u7JjzzjtPY2NjKyhCY4ypOOvWrTuhqlHFlzTVhdVpxpjqqqg6rapPlRwAhIhIJhAKHC6qcGxsLGvXrq2QwIwxpiKJyD5fx2AKJiJvAn8CjqtqxwLeF+Al4FrgLDBWVX8p7rxWpxljqqui6rQq221MVQ8Bz+NcSOsIkKiq3/o2KmOMMeYcbwMDi3j/GqC1a7sLmFkBMRljTJVUZZMXEamLc/rHOKAxECYiNxVQ7i4RWSsia+Pj4ys6TGOMMTWcqv4AnCqiyCDgXXVaiXOtlUYVE50xxlQtVTZ5Aa4C9qhqvGtl+0+AS/IXUtXXVbW7qnaPiipbd/CVK1eyZcuW8kVrjDHGFKwJcCDX/kHXa8YYY/KpysnLfqCniIS6+gv3A7ySYdx7773cc8897v0XX3yRzz77zBuXMsYYYwpV3t4E//rXv3jggQe8EJkxxlSMKpu8qOoq4GPgF+A3nJ/ldW9c69133+X555937//rX//i66+/du8PGDCAWbNmufdTUlK8EYYxxpjq6RDQLNd+U9dr5yhvb4K9e/eyadOmskVpjDGVQJWebUxVnwCe8PZ12rVrl2d/586dpKamApCRkUFAQAB+fs48MCUlhYiICJ577jkeeOABsrKyWLx4MT169KBu3breDtUYY0zV8wUwXkQ+AHrgnIDmiDculPtGnDHGVEVVtuXFl0SE0NBQAAIDA/nqq6+48847AcjKymLatGlceumlAGzdupVrrrmGhQsXApCcnMzChQvJysryTfDGGGMqlIjMA34G2orIQRG5XUT+IiJ/cRVZCOwGdgKzgf/no1CNMabSq9ItL5VRREQEjz32mHu/ZcuWLFmyhA4dOgDwySefMHbsWFasWMEll1yCw+Fwt9oYY4ypflR1VDHvK3BPUWU8ZcWKFcyYMYOZM2fSrFmz4g8wxphKxpIXLwsJCeHyyy93748aNYro6Gh69eoFwNSpU1m6dCnff/89tWrV8lGUxhhjaoKMjAwOHTrEmTNnfB2KMcaUid3yr2CBgYFcc801OCdIg5iYGDp27OhOXObMmcPPP//syxCNMcZUU1dccQXr16/n/PPP93UoxhhTJpa8+Njtt9/Ov//9bwAyMzOZMmUK77zzjvt9W1jTGGOMMcYYJ0teKpFatWqxa9cupk+fDsD27dtp1KgRH374oY8jM8YYU1387W9/Y8SIEb4OwxhjysSSl0omLCyM6OhoAMLDw/nrX//KZZddBsCyZcu49957OXXqlC9DNMYYU4WFhoYSFhbm6zCMMaZMbMB+JdawYUN3KwzAb7/9xn/+8x+ee+45ANauXUtERAStW7f2VYjGGGOqmEmTJvk6BGOMKTNrealCxo8fz549ewgKCgJg4sSJeZr+t23bRmZmpq/CM8YYU4VYfWGMqYosealiAgMD3c/fffddZs6cCYDD4aBv377uxTLBuSCmMcYYk9/NN9/MwIEDfR2GMcaUms+7jYlItxIUy1TV37weTBUTGxtLbGws4ExeXnvtNRo0aADAyZMnadSoEa+++ip33nknzjXQcE/RbIwxpuSqW13Vp08fTp8+7eswjDGm1HyevADLgDVAUb+q44DYCommigoICGDw4MHufYfDweTJk+nZsycAa9asYeTIkcyfP5/u3bv7KkxjjKmqqlVdlbuV3hhjqpLKkLysUdUriyogIv+tqGCqi6ioKKZNm+beFxE6duxIixYtAPj444+ZN28ec+bMoW7dur4K0xhjqopqV1dlZ2ezfv16u6FljKlSfD7mpbjKoKRlTNEuuugivvjiC+rVqwdAYmIi+/fvJyIiAoD58+fzwQcfuLuXGWOM+UN1rKueffZZevTowf79+30dijHGlJjPkxcR2SwiU0Skpa9jqUluv/121qxZg5+f85/A7NmzmTlzpntMTGJioi/DM8aYSqU61lU33XQT8+bNo3Hjxr4OxRhjSqwydBsbBYwEvhWRk8A84ENVPezbsGqWb775hhMnTgBw5swZYmNjmTx5Mo888oiPIzPGGM8rbgC+qv6S76VqV1c1a9aMZs2a+ToMY4wpFZ+3vKjqRlWdrKotgXuB5sBKEVkiIjaisIL4+fkRHR0NOPtB33ffffTt2xeAAwcO8OSTT3Ly5ElfhmiMMZ70D9f2KrAKeB2Y7Xr+av7C1bWuUlVmzZrF22+/7etQjDGmRMSTYxxEZEhR76vqJyU8z+XAi0B7VQ3yQGgAdO/eXdeuXeup09UYb7/9NnfccQc7d+4kNjaW5ORkwsLC3F3OjDG+JyLrVNVGXpeSiHwCPJEzxbGIdASmquqNJTj2crxQV5WUp+q0a6+9FhHhyy+/tOn0jTGVQlF1mqe7jV3veowGLgFyZl65AvgJKDR5EZGLcDbLDwX2ALOAjzwcnymDsWPHMmDAABo1agTAvffey6+//ppnzIwxxlRRbXOvzaKqv4vI+YUVro511bx58wgPD7fExRhTJXg0eVHVcQAi8i3OO1FHXPuNgLcLOkZEngZGAKeAD4BLVfWgJ+My5ZeTuABcc801dO7c2Z24/P3vf+eqq66y6TaNMVXRryIyB/g/1/4Y4Nf8hapzXZUz62RCQgK7d++mW7eSrMdpjDG+4a0B+81yEheXYzj7BxckDRioqju8FIvxsOHDh7ufnzp1ihkzZuBwOOjevTuqSkpKCrVr1/ZhhMYYU2LjgP8B7nPt/wDMLKBcta+rbrrpJjZu3MjOnTsJCqrwXnDGGFMi3kpevheRb3DOxgLOu1WLCyn7ZXGVgYh0K2DmF1MJ1KtXj0OHDuFwOABYsmQJo0aN4ptvvqFr164+js4YY4qmqmki8hqwUFW3FVG0XHWViAwEXgL8gTmq+vd87zcH3gEiXWUmqerCUnyUcnvmmWdITk62xMUYU6l5ZcCCqo4HXgO6uLbXVXVCIcXfEpG6IlKvsA14wxtxGs+oXbs24eHhAERHR3PllVfSrl07wNkyYwtfGmMqKxH5M7ABWOTa7yoiXxRQtMx1lYj445zB7BqgPTBKRNrnKzYFmK+qF+CckvnfnvmEJdehQwd69uwJwKJFizh9+nRFh2CMMcXy5jovvwDJqrpYREJFpI6qJhdQLgJYBxQ1UjC+oBdFpC3wYa6XWgB/U9V/ljVoUz4dO3Zk3jxng1t2djZXXHEFF154IW+++aaPIzPGmAI9AVwMLAVQ1Q0iEldAuTLXVa7z71TV3QAi8gEwCNicq4wC4bmu5bP1Y06ePMmwYcMYPXo0s2bN8lUYxhhTIK8kL6457+8C6gEtgSY4W2L65S+rqrFlvY6rib+r65r+wCHg07Kez3iWqnLnnXe6F0HLzs7myJEjNG3a1MeRGWOMW6aqJuabaeuc5uLy1FU468ADufYPAj3ylZmKcwHMCUAYcFU5rlcu9evXZ9GiRXTo0AFwDuQPDw+32SWNMZWCt76J7gEuBZIAXP2Eo710rRz9gF2qus/L1zElFBAQwPjx4xk0aBDgXC+mdevWbNq0yceRGWOM2yYRGQ34i0hrEXkF59T+FW0U8LaqNgWuBeaKyDl1tIjcJSJrRWRtfHxhDT3ld+mllxIZGQnArbfeSr9+/awLsDE1QHx8PB9//DHJyQV1lqocvJW8pKtqRs6OiARQwJ0sDxvJHxMEmEroqquuYtKkSbRv7+zqvXnzZjIzM30clTGmhpsAdADScdYhScD9Hr7GIaBZrv2mrtdyux2YD6CqPwPBwHn5T6Sqr6tqd1XtHhUV5eEwz6WqjBgxglGjRiEiqCqLFy8mKyvL69c2xlS8L774glGjRrFx40Zfh1Io8cadFBF5FkgAbsFZMfw/YLOqPlZIeQGaquqBgt4vwfUCcfYP7qCqx/K9dxfOLmw0b978wn37rGGmMjh79iwtWrSgf//+zJ0719fhGFPlFbUasfGMstZVrht423H2EDgErAFGq+qmXGW+Bj5U1bddi2R+DzTRIirp7t2769q1a8vwScru559/5pJLLuHNN99k3LhxqKotbmlMNfPLL7/4fL2nouo0b7W8TMI5cPE34G5gIc6ZVArk+nIuz5SQ1wC/5E9cXOeu0LtUpmRCQkKYM2cO99/vvMGZnJzMmjVrfByVMaamEZEFIvJFvm2uiNwnIsG5y5a1rlLVLGA88A2wBeesYptEZLprtjOAB4E7RWQjzhagsUUlLr5y8cUX8+mnnzJ06FAA5s+fz6WXXsqRI0eKOdIYU9mdPHkSgG7duqGqrF69ulJ2F/XWVMkOVZ2tqsNU9UbX8+I+/S8iclEZLzkK6zJWpYgIf/rTn7jwwgsBeOmll+jRowe7d+/2cWTGmBpmN3AGmO3akoBkoI1rP78y1VWqulBV26hqS1X9X9drf1PVL1zPN6vqparaRVW7quq3Zf1A3uTv78/gwYPd0+MHBAQQFhZGgwYNAFi8eHGl7m5ijCnY8ePHadCgAa+99hoA8+bNo0ePHqxatcrHkZ3LW93GfuPcMS6JwFrgKVU9WcAxW4FWwD4gBed0lKqqnYu5VhiwH2ihqolFlfVFE7spmeTkZBYuXMiIESMA5xoDPXv2dA8YNcYUzbqNlY2IrFHViwp6TUQ2qWqHfO+Vqa7yhspYp3Xu3Jk6deqwYsUKAOtWZkwVcfLkSWbNmsUNN9zA+eefT1JSEp9//jnXX3+9T36LFVWneXPMSzbwvuulkUAocBTorarXF3BMTEHn8uTsYZXxi96cKyEhgSZNmnDTTTfZGgPGlJAlL2UjIluAAaq637XfHPhGVc8XkfWuRSNzl/d6XVVSlbFOO3XqFMePH6ddu3akpKRwySWXMH36dPesk8YYUxJF1WneWqTyKlXNPdLnNxH5RVW7ichNBR2gqvtEpAtwmeul5apqbc81UGRkJCtWrKB+/fqAsykzKyuLxo0b+zgyY0w19CDwo4jswtmKEgf8P1er/jv5C1tdVbR69epRr149wDnlalRUlPu7PD4+nmPHjtGxY0dfhmiMKcDmzZuJi4sjJCTE/dqZM2f47LPP6NOnD82bN/dhdHl5a8C+v4hcnLPj6h/s79otcH5FEbkPeA/nejDRwP+5FusyNVDXrl3di1vee++9dO/endTUVB9HZYypblR1IdAa5/TI9wFtVfUrVU1R1X/mL291VcnFxsayePFievfuDcCrr75K586dOXQo/yzRxhhfys7O5qKLLmLy5Ml5Xj927Bg333wzCxeWZ04tz/NWy8sdwJsiUhvnnawk4A7XnawZhRxzO9BDVVMAROQZ4GfgFS/FaKqI6dOns2HDBvfdgNTU1Dx3BowxppxaA21xrq3SxbWeybuFlLW6qowmTJhAhw4daNKkCQBTp06lSZMm3HnnnT6OrGbIPf7o888/Z9KkSXzzzTc0b96cL7/8kmeffZa5c+cSExPD4cOHycrKqlR32433OBwO3n33XeLi4vK83qJFC9avX0+nTp18FFnBvDXb2BpV7QR0BbqoamdVXe26kzW/kMME5ziZHNmu10wN16ZNG4YPHw7A0qVLiYuL45dffvFxVMaY6kBEnsCZeLwCXAE8C/y5qEOwuqpM6tevz7BhwwDnD+mffvqJ1atXu9+fO3cu+/fv91V41dqGDRto27atu+6sX78+7du3JygoyF3Gz8+PnCUl3n33XWJiYjhx4gQAp0+fJjs7+9wTm2qhVq1aDB069Jy1XUSErl274u/vX8iRvuGtlhdE5DqcqxYH52T6qjq9iEPeAlaJyKeu/cHAG96Kz1RN0dHR9OnTh7Zt2/o6FGNM9XAj0AVYr6rjRKQB8H9FlLe6ygNEhG+//Za0tDQADh06xC233MLzzz/Pgw8+SHp6Op988gkDBw6kbt26Po62alJVkpOTCQ8PJy4ujmbNmpGeng5A79693d35AP70pz/xpz/9yb0/fPhwGjVqxHnnnQfA/fffz5o1a9i0aZPNHlcNbdmyBYfDQYcOHc557+DBg8yePZvbbruNmJgC5yupcF5peRGR14ARwAScd6SGAYV+YhHxA1YC44BTrm1cQf2NTc3Wvn175s+fT1hYGFlZWQwZMoRvv62UyyEYY6qGVFV1AFkiEg4cB5oVVNDqKs8LDnauA9qkSRN27tzJzTffDMBPP/3E6NGj+emnnwDYvXs3zzzzDEePHvVZrFXNrbfeyvXXX4+qEhERwffff0+vXr1KdGyLFi249dZb3fs33ngjEyZMcCcuQ4YM4fnnn/dK3KbiPfnkk3mS19ySk5N56qmnWLduXQVHVThvtbxcoqqdReRXVZ0mIv8Avi6ssKo6RORV15SU1h/IlMixY8fYvn07p0+f9nUoxpiqa62IROJckHIdzgUrfy6ooNVV3tWyZUv38z59+rB69Wp3K/vKlSuZNGkSQ4YMoWHDhixYsIBXXnmFd999l4YNGxIfH096ejpNmjSxlgGXAQMGcOTIERwOR7m7/Vx//R8rXGRlZVGrVi33ObOzs7n33nsZN24c3bvbbO1V0eOPP17ojYF27dpx6tQpIiIiKjiqwnlrtrE01+NZEWkMZAKNijnmexEZKvatY0qoSZMmrF+/3r2w5RdffMHSpUt9G5Qxpspw1TczVDVBVV8D+gO3quq4Ig6zuqoC+Pv7c9FFFxEeHg7A6NGjOXHiBK1atQIgIyODhIQEd5eyWbNm0axZM3c3tHnz5nH33XeTs5bd1q1bK+VK4Z6UlpbG+PHj+fRTZ4/GMWPG8NBDD3l8vEJAQAAffvghDzzwAAA7d+7kvffeY/fu3QCcOHGCd999l6SkJI9e13jP+eefzxVXXFHgeyJSqRIX8F7yssB1J+s5nHen9vLHgpWFuRv4CEgXkSQRSRYR+5dvilSrVi3A2bf36aef5rHHHnNXVsYYUxR1flkszLW/V1V/LeYwq6t8pH79+u5WlaFDh7J69Wr3gPNBgwbx5ptvumei3LNnD8uXL3eXf/HFF/nzn/+Yh+H++++nZ8+e7v2XXnqJRx55xL2/YMECPvjgA/f+Tz/9xPLly93727dvZ+fOne79kydPkpiY6MmPW2p+fn6sWrWK3377rUKv27ZtW+Lj4xk8eDAACxcu5NZbb3UnM6dPn7alDiqx5ORkvvjiC/fkDAVZvXo1o0aNIiEhoQIjK4KqenTDmRBdkms/CIgowTGXejqW/NuFF16opvo6c+aMHjx4UFVVk5OTddWqVT6OyJiKA6xVL3+HVscN50KUF5WwbIXUVSXdrE4ruR07duiyZcvc+7Nnz9bJkye79ydMmKADBw5071933XWa+8+3f//+2qtXL/d+nz59tG/fvu79nj17av/+/d373bt318GDB7v3hw4dqo888oh7/5tvvtGtW7eW+3NlZ2frm2++qWfPnlVV1bS0tHKfs7wcDoeuW7dOHQ6Hqqo+/PDDWr9+fXeMpnJZsWKFAvrll18WWubbb7/VZs2a6caNGyssrqLqNI+PeVFXn2DgAtd+OpBegmP+lXOMMWURFhZGWFgYADNmzODZZ59l586dlWZ2DGNMpdQDGCMi+4AUnJPMqKp2zl/Q6qqqq1WrVu4uZwB33HFHnvdffvnlPPsffPABmZmZ7v2ZM2fm2X/66adzEloAHnroIQIDA937Y8eOdXd5A2jQoAH16tUDnDeNx4wZw6BBg5gzZw4Ab731Fv369Sv1uirr16/ntttuIzMzk7vuuivP1Me+IiJ5ptwdNGgQTZo0cbeKjR8/nmbNmvHoo4/6KkSTS9euXVm5cmWRs7heddVVlWoac8n9n89jJxV5HueAx0+0hBcoyzGl1b17d127dq03Tm0qmaSkJBYtWuReH+bUqVPuisOY6khE1qmqjZYtJREp8O6Gqu4rpLzX66qSsjru6iN8AAAgAElEQVStalJVtmzZQkBAAG3atCE+Pp7o6GiefvppJk+eTHZ2NkePHnUv5pnf8ePHWb16tXt2qKVLl9K3b98qMVGBqjJs2DDi4uJ47rnnAPjyyy/p379/pUi8TOVRVJ3mrTEvOX2CM0rRJ7gsxxhToPDwcHfisnnzZmJiYvjoo498HJUxprJxJSnNgCtdz89SdN1odZUpFxGhffv2tGnTBoCoqCh27drlbg1atmwZTZs2ZfHixQDs2rWL999/H4fDAcATTzzB6NGjOXPmDACXX355lUhcwPnZP/74Y5599lkAfv31V66//npmzZrl48hqrmXLlvHdd98VW+6dd95h4MCB+PieDeCl5EVV66iqn6rWUtVw1364p48xpiQaNmzITTfdRN++fX0dijGmkhGRJ4BHgcmul2pRxCKVVlcZb2jRooV7dfvWrVszY8YM94QCS5YsYcyYMezb52wMfOCBB1izZg21a9f2WbzllZNsderUiW+//da9pszy5ct59dVX83TRM971zDPPMGnSpGLLZWVlkZWVxdmzZysgqqJ5q9uYAGOAOFV9UkSaAY1UdbUnjykta2I3qsqjjz7KuHHjOP/8830djjEeY93GykZENuAcw/KLOtdvwbVG2TljXlzveb2uKimr02qGxMREjhw5QmxsrHtRz+pqwoQJfP7552zfvr3af9bK4tixYyQmJrpbAisLX3Qb+zfQCxjt2j8DvOqFY4wplQMHDvDOO++wcOHC4gsbY2qCDNfYFQUQkbBiyltdZSpUREQE7dq1qxE/5l9++WVWrVpFcHAw2dnZTJw4Mc+U1MbzGjRoUOkSl+J4K3npoar34FqsUlVPA4FFH1KmY4wplebNm/P7778zceJEAHbv3k1WVpaPozLG+NB8EZkFRIrIncBiYHYR5a2uMsZLRIRGjZxrmm/ZsoU5c+awenWFN2rWGGfOnOHf//43u3btKlH5e+65hyFDhng5quJ5K3nJFBF//riTFQU4vHCMMaUWFRWFiJCSkkLfvn257bbbfB2SMcZHVPV54GPgP0Bb4G+q+koRh5SprhKRgSKyTUR2ikiBHcxFZLiIbBaRTSJS3MLOxlRrHTt2ZOfOnYwaNQqAxYsXs3XrVh9HVb3s3r2be+65h/Xr15eofExMDK1bt/ZyVMXz+DovLi8DnwLRIvK/wI3AFC8cY0yZhYWFMWPGDNq3b+/rUIwxPiIiE4EPVbX46XacSl1XuZKdV4H+wEFgjYh8oaqbc5VpjXPSgEtV9bSIRJf+0xhTvURHO/8bZGdnM378eKKjo/nhhx98HFX10bFjRw4dOpRnTaKiPPLII16OqGS8kryo6nsisg7oh3PBr8GqusXTxxhTXjfddJP7+d///ndCQ0OZMGFClZl20hhTbnWAb0XkFPAh8JGqHiuscBnrqouBnaq6G0BEPgAGAZtzlbkTeNXVDQ1VPV7WD2RMdePv78/SpUtJSUkBICMjg+zsbPfCl6Zs/Pz8aNy4camPy8rKIiDAW+0fxfPKlUXkZeADVS3VIEZV3QpYm6CpcA6Hg1WrVhEWVtxYXWNMdaKq04BpItIZGAEsE5GDqnpVEceUtq5qAhzItX8Q6JGvTBsAEVkB+ANTVXVRKa5hTLXWsGFD9/OJEyeyYsUKfvzxR6u3y2HRokUcOnSI22+/vUTlVZX27dtz9dVX89JLL3k5usJ5K21aB0wRkbY4m9c/UFWbz9FUWn5+fvznP/8hMzMTEeHw4cOkpKRUir6dxpgKcRw4CpwEfNFlKwBoDVwONAV+EJFOqpqQu5CI3AXcBc4JSIypia699loaNmxoiUs5zZ07l1WrVpU4eRERRo4c6fOlJryyzov75CL1gKHASKC5qvr0l6DNiW9KatCgQaxdu5Zdu3bViOkpTdVn67yUjYj8P2A4EAV8BMzPPRbFQ9fohbMlZYBrfzKAqs7IVeY1YJWqvuXa/x6YpKprCjuv1WnGwPbt29myZQuDBg3ydShVTnZ2NgkJCdSvX9/XoZzDF+u85GgFtANiKEETu4jEiMhVruchIlKnmPKRIvKxiGwVkS2uCsKYcnv55Zd544033ImLN5N8Y4xPNQPuV9UOqjq1JIlLaesqYA3QWkTiRCQQ5w29L/KV+Qxnqwsich7ObmS7S/dRjKl5pk6dyt13382ZM2d8HUqV4+/vX6bE5cyZM+7xR77gleRFRJ4VkR3AdOB3oLuqXl/MMXfinK5yluulpji/zIvyErBIVdsBXQAb4G88IiYmhoEDBwLw2WefMXDgQE6fPu3jqIwxnqaqk1V1g4hEi0jznK2w8mWpq1Q1CxgPfIOznpqvqptEZLqI/NlV7BvgpIhsBpYAD6vqyfJ9OmOqvzlz5vD9999Tu3ZtwG42llRmZiaTJ08u9To6+/btIyIignnz5nkpsuJ5a8zLLqCXqp4oxTH34JyRZRWAqu4oaqpIEYkA+gBjXeUzgIyyBmxMYZKTkzl79qzNamJMNSQi1wMvAI1xjnuJwZlgdCjkkFLVVTlUdSGwMN9rf8v1XIGJrs0YU0KhoaF06OD87zpz5kxWrlzJnDlzqFWrlo8jq9yOHTvG888/T8uWLbn44otLfFzz5s2ZNm1aqY7xNG9NlTxLROqKyMVAcK7Xi5qcO11VM3KmqBWRAFyLgBUiDogH3hKRLjgnCbhPVX3XjmWqpZtvvpkxY8bg5+dHWloaCxYs4MYbb7TplI2pHp4CegKLVfUCEbkCuKmI8qWtq4wxFeTUqVMkJCRY/VwCTZs2JS0tjezs7FIdJyJMmeLbZRi91W3sDuAHnM3g01yPU4s5bJmI/BUIEZH+OAdOLiiifADQDZipqhcAKcA5qxaLyF0islZE1sbHx5f6sxgDztnIAF5//XWGDx/Or7/+6uOIjDEekunqnuUnIn6qugQoauKD0tZVxpgK8thjj/HJJ58QEBBAUlISp06d8nVIlZq/vz+BgYGlPi4rK4uNGzeSkeGbDk/eGrB/H3ARsE9VrwAuABKKPoRJOFtSfgPuBhaq6mNFlD8IHFTVVa79j3EmM3mo6uuq2l1Vu0dFRZXyYxiT1z333MOiRYvo0qULAHv37vVtQMaY8koQkdo4b7i9JyIv4bwZVpjS1lXGmArk7++PqjJy5Ej69etHVlaWr0OqlL744gv++te/4nA4ynRs165dWb9+vRciK563kpc0VU0DEJEg14JebYs5ZoKqzlbVYap6o6rOFpH7CiusqkeBA661ZMC52rFHp7c0Jj9/f38GDBgAwK5du2jfvj3//Oc/fRyVMaYcBgFngQeARTjHbBY1wUyp6ipjTMUTER5++GEefvhhn64EX5mtXLmSt956y92zpDT69OnDe++9R6tWrbwQWfG8ss6LiHwKjAPuB64ETgO1VPXaIo75RVW75XttvatLWGHHdAXmAIE4p5Qcp6qFTgllc+IbT8rMzOS5555j7NixNG7cmKysLPuSND5j67yUn4j8SVW/LKZMqesqb7E6zZiSWb58OaGhoVx44YW+DqVScTgcZUpeKkJRdZpXF6l0XbwvEIFzSuNzOseJyChgNNAbWJ7rrTqAQ1X7eSoW+6I33jR8+HDq16/PzJkzfR2KqYEseSm/ghKTXO9VWF1VUlanGVM8h8NBt27dCAoKYuXKlTaY30MOHz7Mxo0bueaaa7xy/qLqtIq4TdxWVV8v4v2fgCPAecA/cr2eDNioaFMlOBwO2rRpQ506xa1VZ4ypxIr6VWN1lTFVkJ+fH1999RUOh8MSFxdVZezYsYwaNcq9pl1pzZkzh6lTp5KYmFjhv30qInn5C1Bo8qKq+4B9QK8KiMUYr/Dz8+Opp55y7//000+8++67PP/88+6Fs4wxld7dhb1hdZUxVVeTJk0A54/2hx56iI4dOzJu3DgfR+U7CQkJLFu2jF69yv51duutt3Lttdf6ZA28ikheSpTmikgyf8yVHwjUAlJUNdxbgRnjLatWrWLx4sW20q8xlZyIhAIPAs1V9U4RaY2zx0CBY1+srjKm6srMzOT333+v8XVz3bp1yz1bakxMDDExMZ4JqJQqYpROUbO2uKlqHVUNd1UAIcBQ4N9ejcwYL3nggQf49ddfqVOnDtnZ2bz44oukpNj6qcZUQm8B6fzRonII58KVBbK6ypiqKzAwkAULFvD8888DcPz48TJNFWycfvzxRz799NMKv663FqlsICJviMjXqnpQRNqLyO0lPV6dPgMGeCM+YypCaGgo4JzlZOLEiXz5ZZGTGBljfKOlqj4LZAKo6llK2GPA6ipjqp7AwED8/PxISUmhT58+/OUvf/F1SBVu7ty5DB8+nNdee40HH3yQmTNnkpBQ3HKM5/rnP//JQw895IUIi+atbmNv47yblbNw13bgQ+CNwg4QkSG5dv1wrnCc5qX4jKkwl19+ORs2bKBz584AbNiwgbZt2/qkn6gx5hwZIhKCqyuYiLTE2RJTIKurjKkeQkND+ctf/kK3bgVOMFgtHTp0iC+//JLnnnuOXbt28dFHHxESEkJqaipTpkzhk08+oW/fviU+3wsvvOCTiYq8lbycp6rzRWQygKpmiUh2Mcfk7l6WBezFuXiYMVVely5dAEhJSWHAgAFceeWVzJs3z8dRGWOAJ3AuTtlMRN4DLgXGFlHe6ipjqgER4f7773fvv/fee7Rr165KrgWTnZ1NamoqZ8+ezbMlJiaybds2fv/9d5YtW8bmzc613Nu2bcuUKVMYNmwYnTp1Yt26ddx8880MGDCA9957j6FDh5bous2bN/fmxyqUt5KXFBGpzx93snoCiUUdoKo1d9oHU2OEhYXx3nvv0ahRIwCSkpLw9/cnLCzMx5EZUzOp6nci8gvQE2d3sftU9UQR5a2uMj7jcDhIT08nIyMDf39/atWqRa1atSrtQoO5FTRIvixTF+f8GaSlpbkfz549S0pKinsraD81NRWHw4HD4UBV82yZmZm8//771K9fnwEDBuQpU5D8cefeL+55SV/LzMzMk4gUlJzkbBkZ5yyjmEd4eDg9evRg3LhxDBw4kA4dOuS5Zvfu3fnxxx/585//zPDhw3n//fcZMWJEkefMMXv2bCIjIxk2bFiJynuCVxapFJFuwCtAR+B3IAq4UVXPmQtfRF7hj5lbzqGq93oqLlvQy1Q2jz76KHPnzmXbtm22RowpF1uksmxE5Abgv6qa6NqPBC53jWXJXa7C6qqSKmudlpqaSnBwMDt27GDt2rUcOHCAgwcPkpSU5P6hd/bs2Tw/9PI/z//jL/cPvcLeczgcZGVlkZ2d7X7M/RukoN8j+V8ryW+Wwn48FvVeSct54hwlLZedne1OVNLT00lPTycrK4uCBAQEUKtWLQIDAwkMDKRWrVoEBwcTERFBeHg4ERER7i0yMpLIyEgiIiIICgoiJSWFpKQkTpw4QXx8PMePH3dvJ06ccP8wLurvori/x+L4+fkhIgQEBOTZchKznM+flpZW6J9BcYKCgvDz83NfK2fL2VdVdwyqmqdsYZ+7qM9e0PPSvBYYGEhISAihoaF5ttK8VqdOHdq0aUPjxo3zJEX9+/dnwoQJ57SwpKSkcM011/DTTz/x0UcfccMNNxT753rRRRfRtGlTjw/cr/BFKlX1FxHpC7TFeSdrm6pmFlLcsglTYw0ePJj69eu7E5fly5fTo0cPAgMDfRyZMTXGE6rqrnVVNUFEngA+y1euWtRVo0eP5qOPPqJ169Zs2bLF/XpERAR169YlNDSUsLAwgoODCQgIcP+4y/kRl/+HX0EbUODr/v7++Pv7ExAQ4H6ev8WgoDvxRf3Yz6+oH9Flec9X5cD5gz4oKIjAwECCgoLybIGBgTgcDjIyMsjMzCzwMTU1laSkJBITE9m3bx+JiYnuraAZtoKCgoiOjiY6OpqoqCjat2/PeeedR3BwsLtMeVoc8j8vKLnNSWyzsrLIzMx0J7k5nzs4OLjA52FhYe4t599w7i0kJKTErVOqynXXXYfD4eDrr7+udgtbJiUloapkZ587miMsLIyvvvqKq6++mmHDhvHiiy8yfvz4Iv8MvvvuOyIiIgp8L+eGhad/03gleRERf+BaINZ1jatdWe0L+cuq6jv5jq3tev2MN2IzpjLp1auXe5Gow4cP069fPyZOnMjf//53H0dmTI1R0C+ac+rG6lJXdenShXnz5nH27FlmzpxJ7969iY2NtcV0axCHw8GZM2dITEwkPT2d2rVrU7t2bcLCwqrdD/WyEBFGjhxJRkZGtfzzqF+/PsuWLSv0/Tp16vDtt98yevRo7r33XhYsWMBf//pX+vTpU2ACGBkZSXp6Ojt27GDz5s3ubdu2bezYsYN//vOf3HXXXR79DN4a87IA5+wrvwElmkBbRDoCc4F6zl2JB25R1U1eitGYSqVRo0YsWLCADh06ALB9+3bWrFnDyJEj8ff393F0xlRba0XkBeBV1/49wLrCClf1uur+++/nvPPO48Ybbyz0bqmp3vz8/AgPDyc83NZVLcwtt9zifr506VK2bNnCX/7yl2qZzBSkTp06fP7558yaNYtJkyZxxRVX0LhxYy644AJiY2MBOHPmDIcOHWLfvn3s3LnT3XIoIsTFxdGuXTv69etHp06dPB6ft8a8/KqqnUt5zE/AY6q6xLV/OfC0ql7iqbhszIupSh599FFeffVV9uzZQ1RUlK/DMZWcjXkpGxEJAx4HrnK99B3wlKoWuKpsRdRVJWV1mjHeN3bsWFatWsUvv/xSLZY4ePTRR9m7dy8ffvhhicqfPXuWzz//nM8//5wtW7awf/9+/Pz8CA0NpWnTpjRt2pQVK1Zw4YUX8uSTT3psKYgKH/MCfC0iV6vqt6U4JiynMgBQ1aWuSsWYGmnGjBncfPPN7sTlkUceoV+/fgwYYOvhGeMpriRlUikOKVNdJSIDgZcAf2COqhbYN1REhgIfAxepqmUmxvjYm2++yfHjxwkJCSErK4vDhw/7bIpgT4iMjKR+/folLh8aGsqoUaMYNWpUoWVyJjuoKN5KXlYCn4qIH85ViwXnYsRFtVHuFpHHcTbHA9wE7PZSfMZUen5+fnTs2BGAxMREPvnkEyIjI93JS0V/WRhTHYlIFPAI0AFwj0xW1SsLOaTUdZVrHOirQH/gILBGRL5Q1c35ytUB7gNWleGjGGO8wM/Pj4YNGwLw5JNP8vLLL/P777/TpEkTH0dWNpMnT/b4OSv6t4i3JgZ/AegFhKpquKrWKSZxAbgN55TKn7i281yvGVPjRUREsGXLFiZOnAjAf//7X/r27cv+/ft9HJkxVd57wFYgDpiGc9HJNUWUL0tddTGwU1V3q2oG8AEFL2z5JPAMzjGjxphKZuzYsUyePLnKJi7ekpaWxrXXXsusWbMq5HreSl4OAL9rKQbUqOppVb1XVbsBFwF/U9XTXorPmConZ95+cE51mJ6eTnR0NOAcOGeMKZP6qvoGkKmqy1T1NqCwVpey1lVNcNaLOQ66XnNzrY/WTFW/KtOnMMZ4XVxcHI888ggAe/bsYcSIEZw4UeiatpXOihUriIuLw9Nj5YKDg3E4HBU2uZC3kpfdwFIRmSwiE3O2og4QkfdFJNzVd/g3YLOIPOyl+Iyp0gYPHszKlSvdXxiXXXYZ995b4WvkGVMd5KxBdkRErhORC3DOJFYgb9RVri7WLwAPlqDsXSKyVkTWxsfHl+eyxphy2LBhA8uWLSMxMdHXoZRYSEgIvXr1cneD86RFixZxxx13ePy8BfFW8rIH+B4IBOrk2orSXlWTgMHA1zib8G/2UnzGVHk5fUyzsrIYMWIEvXv3Bpyr5y5durRMqxwbUwM9JSIROBOHh4A5wANFlC9LXXUIaJZrv6nrtRx1gI44b/rtBXoCX4jIOTPtqOrrqtpdVbvbLITG+M4NN9zArl27aNmyJeBs1ajs9W63bt14//33adq0qdeukZlZ2Jr0nuOVAfuqOq0Mh9USkVo4K4R/qWqmiFTufwXGVAKBgYFMmvTHZEkfffQRY8aMYcmSJVx++eW+C8yYKkBVv3Q9TQSuKMEhZamr1gCtRSQOZ9IyEhidK4ZEnGNnABCRpcBDNtuYMZVbWJhzosHvvvuOq6++mnnz5jFy5EgfR1W4jIwMj692nyMzM5OOHTsyfPhwnnzySa9cI4dHW15E5F+uxwUi8kX+rZjDZ+EcKBkG/CAiMUCSJ+MzpiYYMmQI7733Hn379gVg3rx5vP/++5X+jpAxviAiLVx11gkROS4in4tIiyIOKXVdpapZwHjgG2ALMF9VN4nIdBH5s2c+iTHGV6688kpef/11hg4d6utQCuVwOGjQoIHXEotatWoxaNAgunbt6pXz5+bRRSpFJElVw0Wkb0Hvq+qyUp4vwPWl7xG2oJepiQYMGEB6ejpLly4FbIrl6soWqSwbEVmJcxrjea6XRgITVLVHKc7h0bqqpKxOM6bySU5O5pZbbuHpp5/m/PPP93U4bqmpqcyYMYPLLruM/v37+zqcYhVVp3l6zMsucCYpBW3FBFlfRF4WkV9EZJ2IvAREeDg+Y2qcr7/+mo8++ghwzlLWqVMnvvrKJjQyxiVUVeeqapZr+z9yrfeSn9VVxpii7N+/nzVr1lS6pQxCQkKYPn261xOXlJQUjh496tVreHrMS1RRs4qp6gtFHPsB8AOQ0+Y2BvgQuKqoC7oGNyYD2UCW3Xk0Ji8/Pz9yBvbGx8cTFRVFgwYNADh9+jQiQmRkpC9DNMaXvhaRSTjrIAVGAAtFpB6Aqp7KV75MdZUxpmbo0KEDO3bsICQkBHDWs3Xr1vVxVHDo0CEaNmzo1emMHQ4HLVu2ZODAgbz99tteu46nkxd/oDZQlj4pjVQ1d0e8p0RkRAmPvUJVq85E28b4SMuWLVmyZIl7f8aMGcyePZu9e/cSEWE3j02NNNz1eJfrMaf+Gokzmck//qU8dZUxpgbISVxWrFjBtddey8cff+zzrlrXXXcdzZo1Y8GCBV67hp+fH8899xytWrXy2jXA88nLEVWdXsZjvxWRkcB81/6NOAc3GmO8ZMyYMTRr1syduLz//vv07t2b5s2b+zgyY7xLRC4CDqhqnGv/VpytKXuBqQW0uOSwusoYUyIdOnRg6NChXHDBBb4OhcmTJ1OnTnGrlpTfzTd7f5UTTw/YX6+qpfobEpFknHe3BOfsLQ7XW37AGVUNL+b4PcBp1zlmqerrhZW1wY3GFC4xMZEmTZowbtw4XnnlFcAG91clNmC/dETkF+AqVT0lIn1wdgebAHQFzlfVG/OVL1dd5Q1WpxlTdTgcDvbu3UuLFkVNZlg97Nixg02bNjF48OAyn6MiB+z3K+0BqlpHVcNdj36qGuDa/EpYGfRW1W7ANcA9rkrIzVYjNqZkIiIi2LJlC4899hjgXD24Xbt2rFu3zseRGeMV/rlaV0YAr6vqf1T1ceCcPg8eqKuMMTXYlClT6N69O4cPH67wa//4449eH0Sf2zPPPMPYsWO9tmClR7uNFdHMXiIiUhdoTa6ZXlT1h2Kuecj1eFxEPgUuxjmYMuf914HXwXmXqjzxGVPdNWv2xyLg6enpNG3alNjYWAB++uknDhw4wNChQwkI8Mr6tsZUJP9cUxz3448xL1BM3ViWusoYU7PdeeedREVF0ahRowq9rsPhYNiwYVx22WXMnz+/+AM8YMqUKUybNo1atWp55fyV5heIiNwB3Ac0BTYAPYGfgSuLOCYM8FPVZNfzq4GyjrkxxuTSo0cPvv/+e/f+nDlzWLRokXsRrpMnT1KvXj3rVmaqqnnAMhE5AaQCywFEpBWQWNhBZamrjDEmLi6OBx54AHDWn5GRkV6d+SuHiLBo0aIKratzbnp6i6e7jZXHfcBFwD5VvQK4AEgo5pgGwI8ishFYDXylqou8G6YxNdPs2bNZvnw5AQEBqCpXXHFFhQzMM8YbVPV/gQeBt3F2P85pmffDOfalMGWpq4wxBoDjx4/TpUsXnnrqqQq5nojQpUsXOnfuXCHXy7FlyxZuvfVWTp8+7fFzV6bkJU1V0wBEJEhVtwJtizpAVXerahfX1sFVGRljvMDf35+WLVsCzmboe+65hxtvdI5pzsjIYPTo0axatcqXIRpTKqq6UlU/VdWUXK9tV9Vfijis1HWVMcbkiIqK4vbbb+f666/3+rUcDgePP/44W7Zs8fq18ktNTWXPnj1eGWtTabqNAQdFJBL4DPhORE4D+3wckzGmAP7+/tx9993u/R07drBkyRJuueUWwNkkfvDgQbp06eKrEI3xFqurjDFlJiJMmzbNve/NWT137NjBc889R/v27Tn//PO9co3CdOvWjR9+8M5QwEqTvKjqDa6nU0VkCRABWBcwY6qADh06cODAAfcX8FtvvcXDDz/Mrl27aNGiBadPn6Z27dpeG7xnTEWxusoY4ylTp07l9OnTvPTSS145f9u2bTlw4AC1a9f2yvl9pdIkL7mp6jJfx2CMKZ3cM5CNGzeOpk2buueznzRpEl999ZU7wdmxYwdRUVFERkb6Klxjys3qKmNMeSQkJJCcnIzD4cDPz7MjOdLT0wkKCiIqKsqj560MKmXyYoyp2urXr8/IkSPd+0OGDKFr167ulpk77riD1NRUVq9eDcDSpUuJiYkhLi7OJ/EaY4wxFe2FF17weNICzq5oQ4YMoWHDhrzxxhseP7+vWfJijPG6AQMG5Nl/6qmnSE1NBZxfsiNHjqR///7MnTsXgDfffJMePXrQoUOHCo/VGGOMqQg5icvevXtZv349N9xwQzFHlIzD4aBXr17UrVvXI+erbCx5McZUuMsuuyzP/uLFi91f4klJSdxxxx1Mnz6dDh06kJmZyd/+9jdGjx5Np06dfBGuMcYY4zWPPvooS5cuZeDAgYSEhJT7fP7+/kyZMsUDkVVOlrwU4x//+AevvvoqDRs2pEGDBkU+hoaG+jpcn0hLS+PAgQPs27eP/R5WTnAAABLcSURBVPv3k5CQQHp6untLS0sr9nlB72VkZBAcHExkZCR169YlMjLynK2g13NeCw4OtgUUXTIyMkhMTCQpKYnExET3Vth+amoqQUFBhISEEBwcTEhISJmfh4eHF/llLCJ07NjRvR8eHs7hw4fdycyOHTv4xz/+wQUXXECnTp3Yv38/jz32GI8++mie46oqh8NBdnY2Z8+e5ciRIwQHB3t9gS9jjDGVxwsvvIDD4Sh34pKdnc3dd9/NXXfdxcUXX+yh6CofS16K0aJFC3r16sWxY8fYsWMHP/74IydOnCiwbO3atYtNcmJiYmjQoEGV+VGtqiQkJLB//3727dvn3nLvHzt2rNDja9WqRXBwMEFBQQQFBRX4vG7dunlez3kvMDCQtLQ0Tp8+TUJCAgkJCRw6dMj9PKfbUWECAwPzJDRxcXG0bduWdu3a0bZtW9q0aUNYWJin/8gqTEpKCjt37mT79u1s376d3bt3k5CQUGAykpaWVuz5goODiYiIICIigpCQEHcSmZqaSmpqqjuhLIvo6GhiY2ML3fJ/YTds2ND9vH379iQmJrr/z+zdu5fvvvuOBx98EID//ve/TJs2jbfeeosWLVp4ZeBjYRwOBwcOHCA4OJgGDRqQkZHB/Pnz6dKlC+effz579+7l8ccfp1u3bjRu3JidO3cya9Ys2rVrR0hICPv37+f3338nICCArKwsAG655RbeeeedConfGGOM7zVp0sT9PCEhocyT2Rw9epTvvvuOnj17VuvkRf5YVLj66969u65du7bc58nMzCQ+Pp6jR49y7NixIh8LWlk0KiqKLl265NnatWtHYGBguWMrLVXl6NGj7N27t8DEZN++fSQnJ+c5JigoiObNmxMTE0NMTMw5z+vVq+dOPrz5IzItLY3ExER3MpOQkJAn0cn92qlTp9i1axd79+4l97/55s2buxOanKSmXbt2NG7cuFIkmFlZWezbt49t27a5k5Tt27ezbds2Dh48mKdso0aNqFevHhEREYSHh7sTkZLul+TfX3Z2NmlpaeckNUU9P336NPv27WPv3r3uf2f5k6AGDRoUmtjExMSck9zk/B2KCF9//TXTp0/n22+/pU6dOrz88su8+OKLbNiwgYiICE6dOkXt2rXL/P9rw4YNhIaG0qZNG1SVMWPG0L9/f6677jrWrl3LddddR48ePYiNjeXo0aMsW7aM0NBQUlNTKej7VUSoV68esbGx1K1bl/j4eLp27Urnzp0577zz6NixI926dSt1nCKyTlW7l+lDmirJU3WaMaZyePzxx5k7dy6bNm0q1c3VEydOULduXfz9/UlKSiI8PNyLUVaMouo0S168LD09nePHj7uTmd27d7Nx40Y2btzI77//Tnp6OuBsoWjfvj1dunShc+fO7qTGE1PcJSUlsWfPHvbs2cPu3bvzPO7Zs+ecu/J169YtMCnJeR4dHV0pftiXRWpqKjt37mTr1q1s27aNrVu3up+fOXPGXa527dp5WmlyHlu3bu2R/qi5qSrHjh07JznZvn07u3btIjMz0102MjLS3WqU89imTRtatWpVZVqRHA4HR48eZc+ePe6EJve2b9++PJ8Z/khu4uLiaNmyJS1atKBly5a0bNmSxo0b50mSFy5cyGeffcbrr78OwPjx4/nwww85fvw4IsLmzZsJDw+nadOmAKxYsQIR4ZJLLgFg9OjRtGnThqlTpwLOVqBLLrmEQYMG8euvv/LGG2+QnZ2d599LaGgojRs3pkGDBoSFhdG0aVOaNWtGdHQ0DRo0yPMYERHhlf8/lrxUbiIyEHgJ8AfmqOrf870/EbgDyALigdtUtcjFLy15MaZ6Wb58Od9//z2TJk0iODi4RMccOnSICy64gIceeohHHnnEyxFWHEteXCrbF31WVhbbt293JzM525EjR9xlGjVqdE4rTZs2bfKsqZGZmcn+/fvPSUxyHk+ePJnnuuHh4bRo0YK4uDj3Y84d7piYGOrUqVNhfwaVhapy+PDhcxKarVu3sn//fnc5EaFZs2bu8U0i4t7Ksp+VlcXu3btJSkpyXyMoKIjWrVu7E5PciUr9+vWrbOJYUg6HgyNHjriTmdxJzu7du9m/fz/Z2dnu8kFBQQUmNTn/tn/++We2bdvG//zP/wDQv39/Tpw4wfr16wG46KKLqF+/Pl9//TUHDhxg3Lhx+Pn5cd555/Hrr7+ydetWHA4H4Oxa16FDBzp37kznzp3p1KkTnTp1Ijo6uuL/oPKx5KXyEhF/YDvQHzgIrAFGqermXGWuAFap6lkR+R/gclUdUdR5K1udZozxHFUttL4/c+YMGzZsoHfv3qgqjz/+OKNGjapWM3Ra8uJSVb7o4+Pjz0loNm/e7O4Tn/MDqk6dOuzZs4cDBw64f1yBsxUnZ82M/ElKixYtqFu3brX/AexJKSkp7Nixw53Q7Ny5091ipqrurkE5z0uz7+/vT1xcXJ5EpVmzZvj7+/vgk1YNOcn6rl272L17N7t27crzPHeLCDj7EudObPz9/YmIiOCCCy7gt99+Y8mSJezatYvt27eTmJjoPi42NpZOnTq5E5XOnTvTqlWrPDcOKhNLXiovEekFTFXVAa79yQCqOqOQ8hcA/1LVS4s6b1Wp04wxpbNq1SomTZrEE088weWXX86ZM2dYs2YNffr0wd/fn7vvvpv333+fI0eOULt2bV+H6xVF1WmVsxau4aKiorjqqqu46qqr3K9lZGSwZcuWPAlNamoqvXv3PidBadKkif349aCwsDC6du1K165dfR2KwZmc57Su5KeqxMfHF5jUfPPNN3laNXPUqVOHTp06MWrUKHeS0rFjRyIiIiri45iaoQlwINf+QaBHEeVvB772akTGmErLz8+PgIAAWrVqBf+/vfuPtbqu4zj+fE1ERZtgDofCAJXJwFCcGpVlUzIwBrWZETS0aP7RL2O1prHpav7jLK22Mp0mVk5LtLqSaTd0a7n5s0hQUS7i8mdoKlb4C3n3x/cDHQ/3cu/5db/fzz2vx3bG+f643/u673vu983nfH8c4LbbbmPJkiX09fVx1FFHsWLFCpYtW5bN6eLt5sFLJkaPHr37tDEz658kxo8fz/jx45kzZ84ey7dv386WLVvYvHkzEcGsWbOYPHnysN2dzGwwkj4HnAicOsDy84DzoLjhiJmNPCeddBK9vb27p2fPnk1vby8TJkwAYPr06WVFqwQPXsysa4wZM4aZM2eOqPOCLQvPApNqpiemee8iaS6wEjg1It7sb0MRcTVwNRSnjbU/qplVza47olrBbzeamZl11gPANElTJY0GFgM9tSuk61yuAhZGxNYSMpqZZcGDFzMzsw6KiB3AV4A7gceAX0fEI5K+K2lhWu0y4CDgZknrJPUMsDkzs67m08bMzMw6LCJuB26vm3dRzfO5e3yRmZntoatulSzpRaD+Q78OBV4qIU6znLeznLfzcsucS97JEdH6p9paNgboaUORy2u6Pzlnh7zzO3s5cs4OzecfsKd11eClP5IezOmzEZy3s5y383LLnFtes8Hk/JrOOTvknd/Zy5FzduhMfl/zYmZmZmZmWfDgxczMzMzMsuDBS7pffkact7Oct/Nyy5xbXrPB5Pyazjk75J3f2cuRc3boQP6uv+bFzMzMzMzy4CMvZmZmZmaWha4dvEiaJ+lxSX2SLig7Tz1JkyTdLelRSY9IOj/NP0RSr6RN6d9xZWetJWkfSX+TtCZNT5V0X6rzr9KnS1eGpLGSVkvaKOkxSR+oco0lrUivhw2SbpS0f5VqLOlnkrZK2lAzr996qvCjlPthSSdUJO9l6fXwsKTfSBpbs+zClPdxSR8f7rxmrRppva8K+5F6Q+2DkvZL031p+ZSScw+5H1at7o30xirUvV29UtI5af1Nks4pMXvDfbOVfVFXDl4k7QP8GJgPzAA+K2lGuan2sAP4RkTMAOYAX04ZLwDWRsQ0YG2arpLzKT5BepdLgSsi4mjgFWB5KakG9kPgjoiYDhxHkb2SNZZ0BPA14MSIOBbYB1hMtWq8CphXN2+ges4HpqXHecCVw5Sx1ir2zNsLHBsRs4AngAsB0t/fYmBm+pqfpH2JWRZGaO+rwn6k3lD74HLglTT/irRemRrph5WpexO9sQp1X0WLvVLSIcDFwPuBk4GLNTxvtq6ixb7Z6r6oKwcvFL/kvoh4MiLeAm4CFpWc6V0i4vmI+Gt6/m+KncgRFDmvT6tdD3yynIR7kjQR+ARwTZoWcBqwOq1StbwHAx8BrgWIiLci4lUqXGNgFHCApFHAGOB5KlTjiPgz8HLd7IHquQj4eRTuBcZKmjA8SQv95Y2IP0bEjjR5LzAxPV8E3BQRb0bEFqCPYl9ilouR2PtK34/UarAP1v5Mq4HT0/rDrol+WKm601hvLL3ubeqVHwd6I+LliHiFYgBRP6gYluxN9M2W9kXdOng5Ani6ZvqZNK+S0iHN2cB9wGER8Xxa9AJwWEmx+vMD4FvAzjT9XuDVmhd01eo8FXgRuC4d4r9G0oFUtMYR8SzwPeAfFDvmbcBDVLvGMHA9c/g7/ALwh/Q8h7xme5PVa3iIva9qP1MjfXB39rR8W1q/DI32w8rUvYneWKW612q01pX5HdQZSt9sKXu3Dl6yIekg4Bbg6xHxWu2yKG4VV4nbxUlaAGyNiIfKztKAUcAJwJURMRv4L3WniFWsxuMo3pmYChwOHMgwvMvSTlWq52AkraQ4heWGsrOYdZtcel+tTPvgLln1w1ojoTfWq2qtBzNcfbNbBy/PApNqpiemeZUiaV+KnfcNEXFrmv3PXYdm079by8pX50PAQklPURz+O43i/Nmx6TAuVK/OzwDPRMR9aXo1xc67qjWeC2yJiBcj4m3gVoq6V7nGMHA9K/t3KOlcYAGwNP5/P/nK5jUboixeww32vir9TI32wd3Z0/KDgX8NZ+AajfbDKtW90d5YpbrXarTWVfodNNo3W8rerYOXB4Bp6U4UoykuJuopOdO7pPMvrwUei4jLaxb1ALvuKHEO8LvhztafiLgwIiZGxBSKet4VEUuBu4Gz0mqVyQsQES8AT0s6Js06HXiUitaY4pD4HElj0utjV97K1jgZqJ49wLJ0J5U5wLaaQ+alkTSP4rSPhRGxvWZRD7BYxZ1qplJcPHl/GRnNmjQSe19l9iNN9MHan+mstH4p77Y30Q8rU3ca742VqXudRmt9J3CGpHHp6NMZad6wa6JvtrYvioiufABnUtwRYTOwsuw8/eQ7heKQ4cPAuvQ4k+K8zLXAJuBPwCFlZ+0n+0eBNen5kemF2gfcDOxXdr66rMcDD6Y6/xYYV+UaA98BNgIbgF8A+1WpxsCNFOccv03xTt7ygeoJiOJuI5uB9RR3iqlC3j6Kc3F3/d39tGb9lSnv48D8sl8PfvjR6GOk9b4q7EcG+DkG7YPA/mm6Ly0/suTMQ+6HVat7I72xCnVvV6+kuL6kLz0+X2L2hvtmK/sipQ2YmZmZmZlVWreeNmZmZmZmZpnx4MXMzMzMzLLgwYuZmZmZmWXBgxczMzMzM8uCBy9mZmZmZpYFD17MzMzMzCwLHryYmZmZmVkWPHgxG4SkGZLOlTRJ0nvKzmNmZtYJ7neWAw9ezAa3L/BV4FPAf+oXSpoi6XVJ69r9jSUdIGmdpLckHdru7ZuZWXeSNFHSZ+pmt9zv3Les0zx4MRvcJOA6oA8Y6J2ozRFxfLu/cUS8nrb7XLu3bWZmXe104IS6eS33O/ct6zQPXswSSXeld4vWSXpD0tkAEbEGWB0Rt0fEa0PYzhRJGyWtkvSEpBskzZV0j6RNkk5uZD0zM7N2knQKcDlwVup5R0JT/e5ASb+X9HdJG/o5kmPWdh68mCURcVp6t+gqoAe4pWbZCw1u7mjg+8D09FgCnAJ8E/h2E+uZmZm1RUT8BXgAWBQRx0fEkzXLGul384DnIuK4iDgWuKPNUc324MGLWQ1Jy4D5wNKIeKeFTW2JiPURsRN4BFgbEQGsB6Y0sZ6ZmVk7HQNsbHEb64GPSbpU0ocjYlsbcpntlQcvZomkTwNLgbMj4u0WN/dmzfOdNdM7gVFNrGdmZtYW6UL6bRGxo5XtRMQTFNfNrAcukXRRO/KZ7Y3/c2QGSFoAfAlYEBFvlJ3HzMysg6bQhgvqJR0OvBwRv5T0KvDFVrdpNhgfeTErXA9MBO5JFy8uLzuQmZlZh2wEDk0X2X+whe28D7g/3Tr5YuCStqQz2wsVp9ebWbMkTQHWpIsVO/U9ngJOjIiXOvU9zMzM9qaRfue+ZZ3iIy9mrXsHOLiTH1JJ8cFhO9u9fTMzswYM2u/ct6zTfOTFzMzMzMyy4CMvZmZmZmaWBQ9ezMzMzMwsCx68mJmZmZlZFjx4MTMzMzOzLHjwYmZmZmZmWfDgxczMzMzMsuDBi5mZmZmZZcGDFzMzMzMzy4IHL2ZmZmZmloX/ATsKikUixRNrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXwV1fn/P89NgLCENRggkLDvgoUIaHH3i1DAtYqtrQstWpFWtNaq/aq1WqtfcUFbqVaxtb9W7bduFDdca/kiUqCCkU1kR0DWAAIJyTy/P2Y7M3Nm7tybm9wkPG9f19w5c85znnNmQs5nnnPOEDNDEARBEARBEAShvpPItgOCIAiCIAiCIAhxEPEiCIIgCIIgCEKDQMSLIAiCIAiCIAgNAhEvgiAIgiAIgiA0CES8CIIgCIIgCILQIBDxIgiCIAiCIAhCgyA32w4IgiAIgpA6S5YsOS43N/cpAIMhDyMFQWgcGADKqqqqfjh8+PCvdBmyJl6IqDmANwGcyczVmvNNAbxjna+qa/8EwYaI2gFoA+B0AK8y897seiQIQn1D+Zv2KwA3MPMETZ53AFycqX9DcnNzn+rUqdOAjh077k0kEvLSNkEQGjyGYdDOnTsHbt++/SkA5+ryZPNJzWQAL+mECwAwcyWAdwFMqlOvBCHIcAA/BjARwLez7IsgCPWTyQBeAqD9m2bxZwBTM1jn4I4dO+4X4SIIQmMhkUhwx44dy2FGlPV56tAfP5cBeJWIWhHRu0S0lIg+JaLzlDyvWPkEoVFBRExEXxPRr1Mo8x4RHSGi+bXpmyAIaXEZgFet762J6DUiWk1Evyci+2/tHADfyWCdCREugiA0Nqx/10I1SlbEizUlrCczbwBwBMAFzDwMwBkAHiQisrKWATgxGz4Kxx5E9DgR3aE5tQTAYwD+AeDvGaxyKDP/wqr7TSL6lcan84hoOxHlMvOZAH6UwfoFQcgAvr9pADACZrR2IIBeAC4EAGu6WDMi6pANPwVBEBoD2Yq8FADYZ30nAPcS0XKYa1yKABQCgDWlrJKI8rPipXCsMRpAIKrBzHuZeQMz/7EW17v8CcD3FOFu830Af5F1X4JQr1H/pgHAImZeZ/0New7mvy02XwHoUpfOCYIgNCayJV4OA8izvl8GoCOA4cx8AoAdyjkAaAYzOiMIGYeIEkR0MxFtAHA8gOeJ6MYsuPIKgA4ATlF8awdgAoBns+CPIAjxUf+mAYB/Kpd6nGflbxRs2rQpd8KECT27des2eNCgQQNOO+203suXL2+2ePHivFGjRvXt3r374JKSksE/+9nPOhuGAQB49NFHOxDR8FdeecV5MPnnP/+5LRENf+aZZ9oBwHPPPddmwIABA/v16zewV69egx544IECO++MGTMKevToMahHjx6Djj/++AFvvfVWK/vciBEj+n344Yct6rALjkkuvvji7u3btx/ap0+fQbVlJycnZ3j//v0H9u7de1C/fv0G3nnnnYXV1VFLyoR0iOrnuXPn5ufn55/Qv3//gf379x948skn9wWAG2+8sUvz5s2/sXXrVmfjrxYtWnzD/h727wIALF++vNlpp53Wu6SkZPDAgQMHfOtb3+q5efPmlDYQy4p4sZ5e5xBRHsxdnL5i5qNEdAaAEjufFVrfxcxHs+GncExwK4DxAH4CYA1MsfAAEXWrSyeY+TCAvwG4XEm+BMAqZl5Wl74IgpAavr9pADCCiHpYa10mwYroWpHVTgA2ZMXRDGMYBs4999zep5566oHNmzeXffbZZyvvu+++rV9++WWTCy64oPfNN9+8fcOGDWVlZWUrPv7441b3339/R7tsnz59Dj/33HPt7ePnn3++fb9+/Q4DQEVFBV1//fUlc+fO/Xz16tUrysrKVowZM+YAYIqaZ555puOCBQtWr1+//rNZs2ZtvPLKK3ts2rRJXv1Qh0yePHnXnDlzPk+Wb+7cufkXXXRR93TsNGvWzFi1atWKtWvXfvbee++tefvtt9vcdNNNErXMMMn6ubS09OCqVatWrFq1asWCBQvW2Olt27atuueeewr99qL+XTh06BBNnDixzzXXXLNz48aNZStWrFg5derUndu3b6//4sViHsxQ+l8AlBLRpzAHbquUPGcAeC0LvgnHANZ0xF8AuAJANwD/YeZFADYD6J8Fl/4E4NvKAOhyK00QhPqP/TcNAP4N4LcAVgJYD+BlK304gIXZmgb6xBNPtO/Tp8+gnJyc4X369Bn0xBNPtE9eKpy5c+fm5+bm8s0337zTTjvppJMOr1y5Mq+0tPTghRdeuB8A8vPzjVmzZm2aOXNmZzvfyJEjD/7nP/9pWVFRQeXl5YkNGzY0GzRo0CEA2LdvX6KqqooKCwurAKB58+Y8dOjQCgCYMWNGp9/85jdbOnfuXAUAo0ePPnTJJZfsfvDBB4+rSVuE1Bg3btzBjh071vg+jmunqKio6qmnntrwzDPPHGdH8ITMk0o/f+c739k9Z86c9jt27MhR08P+XRg7duzBJ598sv2wYcMOfve73y23z02YMOHAiSeemNIMq2yKl98BuIKZdzHzScx8PDNfxcwDlEWP3wXwRPZcFBo5ZwJYbd1vQwH8x3pS2g7mvPQ6hZnnA9gF4Hwi6gVz0e9f69oPQRDSwv6b9gEzn8rM45m5HzP/iJntUcD3ATyeDeeeeOKJ9nfffXfRQw89tOnQoUNLH3rooU133313UU0EzPLly5sPHTr0kD/9s88+yxs2bJgnfdCgQRWHDh1K7NmzJwEARIRTTz11/0svvdT6r3/9a9uxY8c6a4YKCwur/+u//mtfcXHxkIkTJ/aYNWtWe3say9q1a5t/85vf9Ng+8cQTD61cubJ5uu0QGgYDBw6srK6uhjpVScg8/n5evHhxK3va2M9//vNOdr5WrVpVf+c739l13333eaIvYf8uAEBZWVlz/78N6ZC1G4CZlxLR+0SUE/GSyleYeY2muCBkgk4A9ljfT4C5k9ipAMoBLM+ST8/CjLj0A/AWM+/Ikh+CIKRAsr9pFmXM/G6dOmYxY8aMzrNmzdowceLEAwBg/dxw4403Fl9zzTV7khSvFS677LI9jzzySOGBAwdyHnnkkc133XWXE5l54YUXNi5atOirN954I//RRx/t9M4777R+8cUXN2TDz/rK5MmTu5WVlWV0fc/gwYMPzZ49e3NN7QwZMqR/ZWVl4tChQ4ny8vLc/v37DwSAX//611suuuii/TX3tHEyYsSIft/73vd2/eQnP9ldUVFBp5xySt8rr7xy59SpU/ccOHAgcdZZZ/WZMmXKV1OmTNm7e/funHHjxvW+7rrrdlxxxRX7tm3blnveeef1mj59+vbvfve75Zs2bcotLi6ucXSstLT04Pvvv79Wd+6WW275aujQoQPvuOOO7TWtJxWyGXkBM8+OekklM8tCZaE2WQVgOBH1hPkypD0wp3rczMzZenfCswDOBjAFMmVMEBoUUX/TrPN/qEt/VNatW5c3ZsyYg2ramDFjDq5bty4vrEwyjj/++MPLli0LDJ4HDhx4ZOnSpZ70FStWNG3RooXRvn17Zy7KGWeccWjVqlXN9+zZkztkyJAKv50RI0YcvvPOO79677331rz55pvtAKB3796H/+///s9je/HixS0GDBjQaDZBaAwsX7581apVq1Y8/vjjG88+++x99pqJmgiXFStWNM3JyUFRUZHsvlmLpNLPBQUF1RdccMGeBx54wJm2GfbvAgAMGjQo8G9DOkjoTTiW+RDA0zDf45IHc/3VPcz8PBGNAjATwCEA/2TmX/oLW4tvfwtgCIAqmAvsBwG4BeZuQj0BXMbMZXEdYuYNRLQA5jS2Oek3TRAEwaVnz55H5s2b18qOvADAvHnzWvXs2TPt3TwnTpx44Pbbb6cZM2YU3HTTTbsA4OOPP24+cODAIw899FDnV155Jf/8888/cPDgQbruuuuKf/zjHweezt59991bmjdv7nlYVF5envjXv/7VcsKECQdsm126dKkEgBtvvHH7bbfd1nXEiBFrOnXqVL1gwYLmL7zwQoeFCxeu8ttu7GQiQtJQ+PLLL3OnTJlSctVVV32VSGT1uXutsmjRotX292bNmrF6nJ+fb6jHHTp0qFaPO3fuXKUepxN1Saeff/GLX+woLS0dUF1dTUD4vwt79+7NmTJlyu6HH3640/PPP9/m0ksvLQeAN954o1VBQUFVKuteRLwIxyxWdOWnRLQIwFXMPFY5PR7AXcz8uvJ2bD8TARjMfApgbrtspTdh5rFENA7AZAC6rZcrACwhokeZ+XafX6frKiOitwGMArAoXgsFQRBMbrrppm3XXnttdwAbxowZc3DevHmtrr322u6333771nRtJhIJzJkz54upU6d2mzlzZqdmzZpx165dKx577LHNL7300tpp06YVT58+vYlhGLj44ot333rrrYG1hJdcckngSbxhGHjggQcKp02bVpKXl2e0aNHCePrpp9cDwGWXXVa+ZcuWpqNGjRpARNyyZUtj9uzZ60tKSpxdSS+44II+ubm5DADDhg07+MYbb6xLt42CnokTJ/ZYuHBh/t69e3MLCwuH3HLLLV/ecMMNuzJpp6KiItG/f/+BVVVVlJOTw5MmTdp95513ylTqDFPTfu7cuXPVuHHj9j799NOFQPS/C61ateJXX3117U9+8pNuP//5z7vl5ubygAEDDs+aNWtTKj5T9mbHCEL9gIjuANCBma9X0joB+G+Yi/f/wsyva8r9HMAXzPx3Je10ABOZ+adENBjAT5n5qtpugyAIxx7Lli3bMHTo0NgDxieeeKL9jBkzOq9bty6vZ8+eR2666aZt2VrvIgiCEMWyZcsKhg4d2l13TiIvgmAujl/gSytn5mnWxhFLALwOAETUlZm3WHlWwlyf8nfrnB15UZ8IUK15LQiCkALXXHPNHhErgiA0dES8CMc8zHyZJvkaIroQ5u/IHwGAiHIBPAfgFCvPPwCMJaL5AI7CXPMiCIIgCIIg1BIiXgRBAzM/AuARX/IwmLuB2XkYwFRfng+sD6yF+lfWlo+CIAiCIAjHGiJeBCEmzLwIslheEIT6g2EYBiUSCVm8KghCo8EwDAJghJ1vvPvNCYIgCELjpmznzp1trD/0giAIDR7DMGjnzp1tAIS+ZkIiL4IgCILQAKmqqvrh9u3bn9q+fftgyMNIQRAaBwaAsqqqqh+GZZCtkgVBEARBEARBaBDIkxpBEARBEARBEBoEIl4EQRAEQRAEQWgQiHgRBEEQBEEQBKFBIOJFEARBEARBEIQGgYgXQRAEQRAEQRAaBI1OvBDRiURURUTfTrEcEdGjRLSWiJYT0TDf+dZEtIWIftuQfSKi8yxbnxDRYiIaLT7Vb3+sMpdZtj4logVENDQVnywbt1o+rSaic3zncojoP0Q0t4H71J+IPiKiCiK6KVV/asmn04mo3LqfPiGiOzLlExFtsPr/EyJanKpdQRAEQWhoNKr3vBBRDoD7AcxLo/g4AH2sz0gAs6yfNncD+LAR+PQugDnMzEQ0BMDfAPQXn+q1PwCwHsBpzLyXiMYBeNJnMxIiGgjgUgCDAHQB8A4R9WXmaivL9QBWAmjdwH3aA+AnAM5PoUxt+wQA/2LmCbXk0xnMvCsd24IgCILQ0GhskZcfA3gRwFdqIhH9jIj+bT0lviuk7HkAnmWThQDaElFnq/xwAIVIT4DUK5+Y+SC7L/dpCcB50Y/4VD/9sXxawMx7rcOFALoqPn2PiBZZT9+fsASzzqfnmbmCmdcDWAtghFW+K4DxAJ5qBD59xcz/BnDUfy5bPkVRU58EQRAE4Vij0YgXIioCcAHMp9xq+hiYT8BHADgBwHAiOlVjogjAZuV4C4AiIkoAeBBAylNQ6qNPVv0XENEqAK8BmCw+1X9/fPwAwBuWTwMATALwTWY+AUA1gMvi+mR9fwTAzTDfatuYfHKoBz6dRETLiOgNIhqUQZ8YwDwiWkJEV6fhlyAIgiA0KBrTtLFHAPycmQ0iUtPHWJ//WMetYA5A407bmQrgdWbe4rPbUH0CM78M4GVr4H03gLPFp/rtjw0RnQFTKNjrcM4CMBzAvy2bzeGL8iWxNwHAV8y8hIhObyw+acimT0sBlDDzQSL6FoBXYN43NfLJYjQzbyWi4wC8TUSrmDnl6a2CIAiC0FBo0OKFiK4DMMU6bAPgeWsQUADgW0RUBYAA/IaZn4go+y0AWwF0U7J0tdJOAnAKEU2FOVhtSkQHmfmWBurTt5j5SwBg5g+JqCcRFRzrPtU3f0LsFsCcsjSOmXfb2QD8iZlv9ZW9AMCd1uEPI3w6F8C51qA6D0BrIvp/zPy9huqTfe382eqDT8z8OhE9rtxPNfEJzGz//IqIXoYZFRTxIgiCIDRemLnRfQD8EcC3re9jAHwMoJV1XATgOE2Z8TCnvRCAUQAWafJcCeC3DdknAL0BkPV9GMxBEIlP9dcfK38xzLUOJ/vSBwL43PYDQHuYT/n95QcBWAagGYAeANYByPHlOR3A3Ibsk1LulwBuqg8+Aeik3E8jAGyy7o0a+QRzPVa+laclgAUAxqbaV/KRj3zkIx/5NKRPg468xIGZ51lzyz+yIiAHAXwPwekZr8N8krwWwCEAVzVSny4CcDkRHQVwGMAkZrbnzYtP9dMfALgDQAcAj1t1VzFzKTOvIKL/tnxLwFyofh2AjWphZv6MiP4GYAWAKgDXsbtbVaPxiYg6AVgMczcwg4imAxiY5X76NoBrrajrYQCXWvdTjXwiokKYUxsBM4r+V2Z+s4a+CoIgCEK9xn4aKAiCIAiCIAiCUK9p9JEXQRAEQWiMLFmy5Ljc3NynAAxGI9o9VBCEYxoDQFlVVdUPhw8frt3ERsSLIAiCIDRAcnNzn+rUqdOAjh077k0kEjKNQhCEBo9hGLRz586B27dvfwrmZjkB5EmNIAiCIDRMBnfs2HG/CBdBEBoLiUSCO3bsWA4zoqzPU4f+CIIgCIKQORIiXARBaGxY/66FahQRL4IgCIIgpMzatWubjBw5sm+vXr0G9e7de9Ddd999nH1ux44dOSeffHKfkpKSwSeffHKfnTt35gCAYRi48soruxUXFw/u27fvwPnz57fIXguEOOzatStn7NixPXv06DGoZ8+eg955552WgFzjxsTFF1/cvX379kP79OkzSE1P5xo/9thjHUpKSgaXlJQMfuyxxzrUhr/HtHghoquz7YOf+uZTffMHEJ/iIj4lp775A9RPnwRBR5MmTfDggw9u+eKLLz7797//vfLpp58+bsmSJXkAcOedd3Y+/fTTD2zcuLHs9NNPP3DHHXd0AoD//d//bbNu3bq8DRs2lM2aNWvj1KlTi7PbCiEZV199dbcxY8bsX79+/WcrVqxYccIJJxwB5Bo3JiZPnrxrzpw5n/vTU73GO3bsyLn//vu7LFq0aOXixYtX3n///V1swZNJjmnxAqA+DhLqm0/1zR9AfIqL+JSc+uYPUD99EoQAJSUlR0ePHn0IANq1a2f06tXr8KZNm5oCwJtvvtn2mmuu2Q0A11xzze433nijHQC8+uqrbS+77LLdiUQCZ5111tf79+/P3bhxYxPV7v79+xOnn3567379+g3s06fPoD/84Q/t6rptgsnu3btzPv744/zp06fvAoC8vDwuKCioBuQaNybGjRt3sGPHjlX+9FSv8SuvvNLm1FNP3V9YWFjdsWPH6lNPPXX/Sy+91MZvd+rUqUW9evUa1Ldv34FXX31111T9ld3GBEEQBEGoEatXr266YsWKFqeddtpBANi9e3duSUnJUQDo1q3b0d27d+cCwLZt25p079690i7XuXPnyo0bNzax8wLASy+91LpTp05HP/jgg7WWrYw/uRXisXr16qbt27evuvjii7uvWLGixZAhQ77+wx/+sLl169aGXOPGT6rXeOvWrU26du3qpBcVFVVu3brVI1y3b9+e8/rrr7dbt25dWSKRwK5du1K+9seUeKEWxzGMSgBkJuS2AOW1dxc7EvlL6I+T5nOTyZeLlO/qSftrTtN8NGtV6PgUqErnVWQe9iToPKXAF/ewWfNWaN32OFYTQ1qr9cM163UgzEaUfbtcy5b5KOhYGFikGtYObZLPWW2dyXxRLmLr1q3RuXNnj0/+axzH11T9COtzAGjXrjVKunVmfX9474uo+iOva1hfU3ANMQHoWJCPPj0LOfI+IMW/lPzh6PY4B26XdC5siUH9Ctit1zwfXZ+TXVOfrl81l4B0l4VBBHTr0gzDjm/NnrLk9Svs+tkJS5Z//RYzjw1UITRaJk+e0q2srCyjawsGDx58aPbsP2xOlq+8vDxx4YUX9rrvvvs2t2/f3vCfTyQSoKh/rHwMGzbs8C9+8Ytu1157bdF5551XPnbs2IMput4oefe2Z7vtXrM1o9e4Q9+iQ2fde3noNa6qqqKVK1e2mDlz5qYzzzzz66uuuqrb7bff3mnmzJlfqvnkGmcGY+GPuvG+FRm9xtR24KHEqN8n/T1ORqrXOIwOHTpUN2vWzJg0aVL3CRMm7Js0aVJ5qjaOKfGC6kqg2+kAJcyPM4KyjongzKRz8iTc0YtzrJwDzPO2PWVUSgTkEpBjDTRyCcghIAdAgswPACTAzrGbBhCZ6QQ3naw8ZA10ADh5SClvH5M1SPLkVfI77jv5/eU1eZOUdwSaJy+FlkegvC+vzyaIQuonTxtcGxT0yU7z2PCWV/M4/qs2FQMBu/7+oHB/g33I+n7VXRtfmqce6x7R5+UQm7r0GGnkr09pg3XOvYfZkw5N3U55T35fXuUcfPnsvAm4x2H5gj4o5TVpbjt96cRIaNLcegzFrpJOhi+vgYRT3nDSzHRDSTec3wenAQnz36REp4UFEIQ6oKKigsaPH9/r4osv3nPFFVfss9M7dOhQZT9t37hxY5P27dtXAUDnzp2Pbtiwoamdb9u2bU3VJ/IAMGTIkIqlS5euePHFF9vcfvvtRe+8887+GTNmbKu7Vgk23bt3rywsLKw888wzvwaASZMm7b3vvvs6AXKNjwVSvcZFRUVH//nPf+bb6Vu3bm162mmnHVBtNmnSBJ988snKOXPmtP773//ebtasWcctXLhwTSp+HVviRRAEQRAaIXEiJJnGMAxceumlJX379j3yy1/+cod67pxzztn3xBNPdLj33nu3P/HEEx3Gjh27DwDOPffcfY8//vhxU6ZM2fP++++3zM/Pr/YPbDds2NDkuOOOq5o6deqedu3aVT/99NMixgFERUhqi+Li4qpOnTpVLlu2rNnQoUMr5s2b17pfv35HALnGtUEmIiSZJNVrfP7555f/6le/KrIX6f/zn/9s/fDDD29RbZaXlycOHjyYmDRpUvnZZ599sFevXsen6peIF0EQBEEQUubtt99u9corr3To06fP4f79+w8EgLvuumvrpEmTyu+6665tF1xwQa+SkpKCoqKiypdffvkLALjkkkvKX3vttTYlJSWDmzdvbjz11FMb/HaXLFnS/NZbb+2aSCSQm5vLjz/++MY6bpqg8Nhjj2267LLLelZWVlJxcXHFc889twEA5Bo3HiZOnNhj4cKF+Xv37s0tLCwccsstt3x5ww037Er1GhcWFlb/7Gc/+3L48OEDAODmm2/+srCwsFqta9++fTkTJkzoXVFRQQBw9913pyzYiPnYeb8VNWvLMm3MOx3Jcd/J7y+vyZukvG7alEwbC/c32IcybUymjdV42tgSZi6F0KhZtmzZhqFDh+7Kth+CIAiZZtmyZQVDhw7trjt3rG+VLAiCIAiCIAhCA0HEiyAIgiAIgiAIDQIRL4IgCIIgCIIgNAhEvAiCIAiCIAiC0CAQ8SIIgiAIgiAIQoNAxIsgCIIgCIIgCA0CES+CIAiCIKRNVVUVBgwYMPCMM87obaetWrWq6ZAhQ/oXFxcPHj9+fM8jR44QABw+fJjGjx/fs7i4ePCQIUP6r169umm4ZaE+cNdddx3Xu3fvQX369Bk0ceLEHocOHSJArrGQPUS8CIIgCIKQNvfcc09h7969D6tpN954Y9dp06bt2LRpU1mbNm2qZs6cWQAAM2fOLGjTpk3Vpk2byqZNm7bjxhtv7Jodr4U4rF+/vsmTTz5Z+Mknn6z4/PPPP6uurqannnqqPSDXWMgeIl4EQRAEQUiLL774oslbb73VZsqUKc7LMg3DwEcffZR/1VVX7QWAyZMn7/7HP/7RFgDmzp3bdvLkybsB4Kqrrtq7YMGCfMMwPDY3btzYpLS0tF///v0H9unTZ9Cbb77Zqg6bJPiorq6mr7/+OnH06FEcPnw40bVr16NyjYVsIuJFEARBEIS0uO6667r9z//8z5ZEwh1O7NixIzc/P7+6SZMmAIDu3btX7tixo6l1rmmPHj0qAaBJkyZo1apV9Y4dO3JVm7Nnz25/1llnla9atWrFypUrPxs5cuShumuRoNKjR4+j11133fYePXoMOe6444bm5+dXX3jhhfvlGgvZJDd5FkEQBEEQ6jMP/OjZbutXfNkikzZ7DOxy6Ge/v3xz2PnnnnuuTUFBQdUpp5xyaO7cufmZqnfUqFFfX3PNNd2PHj2a+Pa3v7335JNPPpy8VONn52/v7Va5aV1Gr3HT4p6HOk67LfQa79y5M+e1115ru3bt2k87dOhQPX78+J6PP/54+wsuuGB/TeqVayzUhGNLvFSWv4UvXi2oq+oYwFHrIwiCUIfsSp5FEGrG/PnzW7399ttti4qK2lRUVCS+/vrrxHnnndfj5ZdfXn/gwIGco0ePokmTJtiwYUPTwsLCSgAoLCysXL9+fdNevXodPXr0KA4ePJhTWFhYpdodN27cwQ8//HD1iy++2Gby5Mk9pk2btmPatGm7s9PKY5t//OMfrYuLiyu6dOlSBQDnn3/+vgULFrT60Y9+tEeusZAtjinxwsxjs+2DIAiCIGSaqAhJbfG73/1u6+9+97utADB37tz8Bx98sPDVV19dDwCjRo068Mwzz7S7+uqr986ePbvDhAkT9gHA+PHj982ePbvD2Wef/fUzzzzT7qSTTjqgTjkDgDVr1jTt2bNn5U9/+tNdFRUVtHTp0hYAjvmBbVSEpLbo3r175dKlS1sdOHAg0bIXJacAACAASURBVLJlS+O9997LHz58+KFEIiHXWMgax5R4EQRBEASh9nnwwQe3TJo0qdc999xTNGjQoEPXX3/9LgC4/vrrd1100UU9iouLB7dp06b6hRde+MJf9q233sp/9NFHO+Xm5nKLFi2q//KXv6yv+xYIAHDmmWd+PXHixL1DhgwZkJubi0GDBh268cYbdwJyjYXsQcycbR8EQRAEQUiRZcuWbRg6dKhMERQEodGxbNmygqFDh3bXnZPdxgRBEARBEARBaBCIeBEEQRAEQRAEoUEg4kUQBEEQBEEQhAaBiBdBEARBaJgYhmFQtp0QBEHIJNa/a0bYeREvgiAIgtAwKdu5c2cbETCCIDQWDMOgnTt3tgFQFpZHtkoWBEEQhAZIVVXVD7dv3/7U9u3bB0MeRgqC0DgwAJRVVVX9MCyDbJUsCIIgCIIgCEKDQJ7UCIIgCIIgCILQIBDxIgiCIAiCIAhCg0DEiyAIgiAIgiAIDQIRL4IgCIIgCIIgNAhEvAiCIAiCIAiC0CAQ8SIIgiAIgiAIQoNAxIsgCIIgCIIgCA2COhcvRDSbiL4iojIl7QEiWkVEy4noZSJqq5y7lYjWEtFqIjpHSR9rpa0lolvquh2CIAiCIAiCINQt2Yi8/BHAWF/a2wAGM/MQAGsA3AoARDQQwKUABlllHieiHCLKAfA7AOMADATwHSuvIAiCIAiCIAiNlDoXL8z8IYA9vrR5zFxlHS4E0NX6fh6A55m5gpnXA1gLYIT1WcvM65i5EsDzVl5BEARBEARBEBopudl2QMNkAC9Y34tgihmbLVYaAGz2pY/UGSOiqwFcbR7kDEeTVvG8oLjuxs4YMy+lZjKuzdjm4uaNl49iNocAJGJWTYjnJoFjN4ec/2nS1eMUujJue+LmAwEU4kC6fprXJ1Znxr8+ZNcfXSBBrMnDTn3evNrkoM2wxzGa8okEJ7FmkhMzHxHHskkAEglD517ggMCghBHdbjLr/KTswC5m7hjLWaFRUFBQwN27d8+2G4IgCBlnyZIloX/T6pV4IaJfAKgC8JdM2WTmJwE8CQDUrC2j62npeBZxKhFzHE9mXt0oyk8i7mXJsWwmqzoHSOTEsEcA5cI3egrJmkBOIsc5rctG1qepr9kE/fe8HLYGqRzZPTkE5Gqao9ozjxl5TYJ5dOTmqAPfYP32cSIBNM0l7bkom2H9AzBycyjQnrDBbNMm4WpQbX+zpkBCvTdCyiQSQJNc9R5yM/qFZ7NmQA7leHNq7CZygCY5wXuIYIV6leMWzZVsEb8aubmMHE0fuULJpEnOUeTlKed9BlXbTZtUIZGwBIIvg3rd8vIq0TSHXb+JnWvnFCEAMJDXzAwgJ8CeC2IKFlfYtGx+CE2auAKGSBEo5Ipuoio0a1Zpmkq4dQLm7wol2EnL7/mvjRCOKbp3747Fixdn2w1BEISMQ0Shf9PqjXghoisBTABwFjPbf6G3AuimZOtqpSEiPZNeZdAWA+wOgBD1gJbjPel1DCV7zJ6KOSBes9mbTfcMPZlJe9jlFzHJHQg2yN+til5KgeiO8oujTJDUJoV8D0lmWLdDyo5qBBkDTOG3V7Jr7rdMcHuYfO1K516ybbBVIDTKF2JQ7Sa2/VBtKpUxmd6b/UJgcoWLm5UcIcPWd1J+59kwv9gihtmyaZ9X7Jj1s0ec2aaI2Dk2f/1jxc4EQRAEoVFQL8QLEY0FcDOA05j5kHJqDoC/EtFDALoA6ANgEcy/4X2IqAdM0XIpgO9m3rOwwWwNhgoZNWmNylSboaO3FM2qZGBkxMoA0jcuBABUK1WHRT3C3NPZNOAOLPVxBR3uWdbUxJbhZP7p0sOugPPcPCLqEJWu2nYG4poODpRXrwUD8E3hYuULa8rpjikki+2PWoM9EDfYnBLmv+7s6w9dX9p2LV0BZsBQbIX+WihGPW1zgxgeVWNUG0CON78qepzIDbn96Z53HSKrtGEA5h2qiBDPFEd22uUKGVXE2J3DIKvdDO80NEEQBEHIJvOnj8UJfRcjr81hHClvjk/WlGL0I29mxHY2tkp+DsBHAPoR0RYi+gGA3wLIB/A2EX1CRL8HAGb+DMDfAKwA8CaA65i52lrcPw3AWwBWAviblbe2vUe8oXQUvvyZepxf52EBAwbUIVjNzBPcg6A99nySDeTVMSg0x8mJLpG6vWgI7lP0sPOpYhjWoFYnROOqL00WrU37HJL3iyePIjr8NlO6ne0IhFWQjaA9rUhh7xlPMIhhLyVxoi0wrPSAA6Z8sc/puteJhlmG2VGs5K47Ylv9mBaciJLjg2vQjTKp8UtBEARByD7zp4/F8AGLsHjLuTgyZiMWbzkXwwcswvzp/s2G06POIy/M/B1N8tMR+X8N4Nea9NcBvJ5B12KgG5qlov80A4zYUY6aDE7SeZ6fmk1dNMVzHBUFUI1oozPqc+70cYZ55FrUt8ILhXxn5afOZlTvhvWTOuj2T61KF2bFR2VAHO2Rz4b9P+fpv1LK3+CIyxRokpJgWOVyNK6ETV3ziIVAhCJY3nNfOf/jYBN8oRq28jj9wAgsN2O7oE8F2VERXUSKyIqkEKzpYHYt/tiR1wAHhHwm5bQgCIIgpM8JfRfj4zVnoGf+P7HsL4/j9Htn44PbgNK+czJiPxvveTmGqckAI8lzbY742HN/Ah/2fVKrUueCPxLjn7qjfgLlOVil16b1pDqJH8me2oc96U/VTjKbrCmsjd2FVOL0RRrCJax/7clF6dyJ2qhWzL60owWeSILfsIXBbuRIzaIx6RXHqnjy2YyKGNl3lKNllA85YRNN2w3zo/OJiAEyrI++Vtsv10eypoQpUophrmkJRFpU6awNBwmCIAhCVshrcxgj+r6PLr23I2f9uwCA0hv+B3ltDmfEvoiXOqemT0hDBi/R6gVwJnkZMcuwMndG99E/u1fHj+q4zjMFJ4VWqmXiDOa1g3YEe4NhDpKr2fxpTtsKxmFiaT7rBFuD7mpDtZncF20j1KfsEQPv2ChTjWx7hsdmdAVqZII0J5iVwXySixDadnbvE2vcbvajxhetaLHr0ShkT3SG1dQQb1RfrLz+ep3F9OrNbosWRVDoBKu95bX5w/SByPy4U8r8BV2HyPrPdULUiyAIgpBdKg8fwua7egAAcppW4f8+vwKjZv4TALD44ZtxpLx5VPHYiHhJi6j4QZxyqZ2KtpdqdZExiRr4oq8+br7QaAyCw0s2wkWA/7tukKwrw8ww/wuXf1H489hTgqLwj7kDiRqbaWELDOj9TFZUFS6BvtOIEfV74NrqIi/+sopBe2yvdTMkXGZrbtVvnU3A8PjlETu+KJEdm7F3FAtcO6tzDOse0ph07Dp+WZWYu4VRUF2DwMww2LXqlLeNs+VTKi8gEgRBEIQMs/Kt11D+aF906fMVjMocGJUEPnoEB3fuwge3TcbIklfwyZrSjNQl4iVlajJI0AzBaiQUIuyF2owxJI8zSPYN7Mh7KlB9WOwmWfNJKeHKi0i30oJDnl7X1eUJRAZSECpJNWqErVhrSZTEsGsdKUZCDQbvIXtgToAb9PO1QdccgmZgr1ZJ8Kx7saQA2L7DfEb94scT4LBFB+BESzwXzReRA3vLu+9wIbf/yRIxRCB7upkbzlEiVnbd5NlGWaSLIAiCkC2WTD8RvbdPQtsu+7Bk0QlIfG83lqw8CaVd5yBvXglKu87BkpUjMrbbWL3YKrlhUAvDgxqbtCVATcqrjlD4qRik4olfNauDVq8DyfJ5z0WJqFDB4Mlrp7I2b+QDbt85XfTFf8V0kQWPkNE57kO1qbmSKaCv0ONvEp8IwStnz8ZLKHkcgaLYScVnO0KTCBNFEcbs+tXrY18HR1yovwoJXXl/R7BrWBUxlqIipVeC38hzXi/9vUfsaXsySS8IgiAImefQ3r3YcO9pGHriF4BB+HDN93DmI78HAI9QaQVgdAbrFfGSlEyLlhjziWKjPK+ONEkIbI1UI3vwTsGBPrtOLOikgVeweJZPR1euseGP6EQJFk+6MhBM5rv/8oV6qosAaE5H+pnGrZL+03j/ldCc8rc9ZiUBWxF24pi0hY8tYjyCQ3d9klwH9cAWB+quZ6wIDPUFlf4GOP8nOAKHAOfdLKS8T8cVT8q0MI9lO039fXTjL/b6IkroJKMgCIIg1B4f/PLHGNb+efT7xiFsXV2Igyc/ijO/P6FO6hbxkpSwQUG6AoRqxWQ2UKtNFgOKEi3uGm/9TmLRz6HD69GNZaO7Si9c1LMJja4LFUSRdak1IlIvRgkZXd+wquDC8pKv/oj6WM0Y0Xhtf2t8VgUHQ/mpnk/Wz2oZVcSoNjTuevwlt7zfL0DZ0IABc8tjq5y1tbElZYLXh5R8nnNsvkVTESL24nx74b7ZJv8cNluc2HX5Wim6RRAEQahD/jl9IkaXvgcAWPjxSfjmzHfqtH4RLylTU6Vgz03JhC+KSSDCZhqjm6Q2DRjI0UYNUvXAeW5MppBJZyGWZ5zpeBhMi4YUW3qPDSOtGXWR7VcFR6q3RdhkI8MAKKEM0BGSMcqmpqFRGxHo2qjb7lgdetvrQigRLjjtY499ddzuExxORMIn0Ah+I15h5vilzgADwIZhvqAycLOz5zuxN1ndeM2xTQwwg609lp3dxpyO8No1F/K7LTBsAUO21GdwjbeiEwRBEITkrFv0EfjVyzF6xJeoKG+GjzdMwBkzn61zP0S8pEy6AwXSjX602YKjw4hn8nHm7WizRJSLNYJWB/pJogYhEQNdREQdpHqLcSBvGGp5htdm9BP91K5tPJvJcfqCFd9rYlDB84JKnx2vyfgVOC+o1BVJwU9P5ES5aFrxGmLXuW+U8s57IpW2B+p0SkdPQbRT2IqSOPVpFCGbi1zcyItthQAm385mUIUdgRI6ic3eJM81NDevCERpBEEQBKEWeP/OaRjd649IDGJ88WkxCqe/izMKu2TFFxEvDYJ0nvWr6MrpbFrD6Mi5ROqBd9hvF1MHn/6lxGFP1gHziTkndINHs0QqIiOsp+zBvH/6lzsdR+9vlN1omzF802R0BEKG9gN03kHKQCKhqzJ5fIq9Y3NP1MR01voRcnn861occalUbb9IM6Dhk4gXXf22r36x5brHVjH76vtCMHYZjfixX06pXp9AFIwY6tuOvFPC7KiJWQc7U8zYK7a0QtH9bdNOMxMEQRCEDFF19CgW3XQORg9bBBCwYmlvHD9jWVZ9kq2SGxSqRADSFzNRNn2EBovCpYTOIvk+qXhkH9uv14wqr9qPnKrF1pvcA5nS71PbphqRiVVOl2jrSAbSmRUUeslI42d4icDZUPFmT9dKcoFCr7/votsv/DTUuX86O7qbSlOJLWLs6IkdmXGiI6pw8dn0rMRS/HCiOwxna2VTdDFAhifRNefvSXval/lxhYy9bTKUd7ionaS8b0bdM1kQBEEQMsQnL76Aiqc6YeTIj3FgVz5WtZqddeECZCHyQkSzAUwA8BUzD7bS2gN4AUB3ABsAXMLMe8n8qz0TwLcAHAJwJTMvtcpcAeC/LbP3MPOf6rIdmREO6ZpMYTTrzjOJbzPFpoU9IDcA5GhqiRuRUJ9RkyY9qmxYmg6DbT+DlnXxqWQCyolyhJ3XlFenUIXZTIsIR+PaVIfbft/9/aNrOymZ2UoIdUsTvjPCbs3Q8Jp7jnxptohxIyMae+xeC7fNwbCSHdlRbXqmh7FOU7ATVfK+WNKKpChlmMnqT3V6mLKtsiJqRLsIgiAINWX+9LE4oe9i5LU5jMqDzTCgSRVyWldjxxcFaHdDGY5vlZ9tFwFkJ/LyRwBjfWm3AHiXmfsAeNc6BoBxAPpYn6sBzAIcsXMngJEARgC4k4ja1brnAOLFDnSkE92I40umbSJpMMa2739IrT7FJnjn4+siKQiUDVTh2HRfUFk7U2TsCUR+TwIpUQNvP5qMUW1VHEmZSDEQdetReEadr7rjqP4IiA1NRMTzcdSAFbiwRYE9Fcxn3x+HdISBpu6gn8pdqvPLMp6wy1uCI0HmFMGEXcx21LpDDSXCY3erR7AoddnRlQSR8yFnupkZymJmd0MHR+EqL6qs0S+7IAiCIJjCZfiARVi0/hxsKCtC05YVyGlajbXLi9Hl9o1oXk+EC5AF8cLMHwLY40s+D4AdOfkTgPOV9GfZZCGAtkTUGcA5AN5m5j3MvBfA2wgKogyT4QFC1Kg9NiFzaTJhM2UbtmCJfiBuPxTX5iP/ueCAOs7Y3m8/vh5w64vTjqTWfBGDqC712GR/QjRauzUQw6GiheCdHhXDIsOMUKiRkEB5RxiE2GbvsVb8+gqpb7T3pCtt8VThn1JGcNUJ+ev3OasahzvJzJyaR0HBovhopwRlPgXyO1MICeZaG3IzyLoXQRAEoSac0HcxPl55Mkb0eBM9jt+K/TtaY/7SMehasjPbrgWoLwv2C5l5m/V9O4BC63sRgM1Kvi1WWlh65oizWhgwRxGxB4rk+1lTdPNjwvLFhQKmo/LZgiXCUugxw/fWdeVMqj0U5m4yH/Rng/0VdTeE2ozoQ489jrCZ9DpoZ1rVSMOqrU/4b1n/IFxTie5uU5vhWbiv3m5RtzJpDlUlrGYh36mQjrCnaAWEriJYCJb4UtJ1E+PIk279blgX1gBAbO8o5r+72ffTLs/OtDK2BJHzLhgGmK0HBTlWmr6JgiAIghCLvDaHcdKQfyHRpArbv+iIDj9dgdKvDyFvXkm2XQtQ7xbss7t6NSMQ0dVEtJiIFsOoTLU0Mic0VNj7dD3FJ+1hJtMrH/V4OnlJW76wx07Qpm64BriTY7xVh9kKdyyOcElOdCe6A8iaE3y+HlGp7rsvmaB4H/e2DeRhzymPTQ1xbzf/lfP4af30b2ccmB6mBAT9IsheZ6PuhBbHUY9P5I0QgeFZv8NkxTasivybFNvxOkcsWV9UYcoGgQ03MuPfjMHbbnJ2ILMjSGpkyLbCBiybtfHv1LELEbUnoreJ6HPrp3ZaMhFdYeX53FqHaacPJ6JPiWgtET1qrd8MtUtE/YnoIyKqIKKb6qaVgiAIwBfzP8ShWe1BBFRXJrDkwB0oun0D8lq0wOKHb8aR8ubZdjFAfREvO6zpYLB+fmWlbwXQTcnX1UoLSw/AzE8ycykzlyLRNEW3MqEq/ISMLGtLJwEIWRkQXmGcZrORUq/4NZoBbxXVlms6m36Pw57sh9WRTAp5JZb5sQenfnv27lfxbYb7F+gHaxDvn+6U5GoFLpW9U5daMOAf+fvSW4PjozWAdxbNJ2m07qWY9iDd3t2N2Ztma3kPpBEU/r5jd9c0Z3cydn0NvY0Vm552si0GvMdGtWG+qBLs+Q+ObetuIdeWbZjZFCzM7s1tGPZLKs1MzpoW750GIgMEgvo4R+07NYJjBLfNE2pG2DpMhyRrL2cBmAJ3zaY9rTnM7h4APwEwo1ZaIwiCoOGDn30XRavORdP8ChzelwciA0e2rMbBnbvwwW2TMbLkFXyypjTbbgaoL+JlDgD7qdUVAF5V0i8nk1EAyq3pZW8BGENE7aw/FmOstFogmapIddDgy1+roiVG/WHE8EsdfAfPJBd9YYP9aHvJp5QFBvNJPUlmIZ0c8XHa73sSX1PUJ/uO2dDrmvxa+W2mbsWbxx6vqyLJ76Y/yqL1y7oY6uZhkVEN+8AprNiy61Xskf1/K0wY7EIr8miV8btqi0XPDgTKWUfwOQLHEtCWj052pT1mmXi/Z0JahK3DVNGuvbQewLVm5oXWTIJn4V3HGbDLzF8x878BHK2V1giCICiseucNHPxdAU75xquorszBR1umodXU3Viy8iSUdp2DvHklKO06B0tWjsDoR97MtrsBsrFV8nMATgdQQERbYD65ug/A34joBwA2ArjEyv46zG2S18LcKvkqAGDmPUR0N4B/W/l+xcz+TQBScUqXmLa5JJV5D/3jjtBqY/roHwFq83FIevpttodQCY8dvdDQeUOeL/5mEIKp6fuoRge8sQY9FPJdZ9OTN6I7I+WwPWgOOpkWqoBRoy7xPXKFhnN9FAUS9yWVgLdPyFet+rLPVLzzaYHASy/VeoN3vi1N2JPuWeeixqjIjazoXyBKyv8BkAF1RYrrG5nrVsiMzti/AObsIn0HqveDuvMeeVomZIiwdZgqUWsyt2jS49oVBEGoNT64/VqMKHoeTdtW4sCOVjAu/BinlHQHAI9QaQVgdHZcTEqdixdm/k7IqbM0eRnAdSF2ZgOYnVLlziPQhkiY4KhJkYgMaVQXLEbOwC1KADhlWRk0KvkM59heDRNPaIT6qAxonQE9goPGVJrOSsNjD7TtsiEF0rwEkWVUEZKq3bBeV9ejRBnViyYEGurs/EWuTUWPqFn1dWo7Ofyc1hapaea94X8u4L4vRiOGKRgOClbNSnTIFjJmTvW9k0FB4/5OufU11H/XsgcRvQOgk+bUL9QDZmaiKEmeHunaJaKrYb46AMXFxZl2SxCERsq6RQvR9sMLMLr/fhz9uin+VXYhzvjNn7PtVlrUl93GjiH8w7B0yqdArKo0I7uk5aKf3dvPhf0vqUwF26uEPy3FJ/Oh9pWIRI5jxe1fbRAL+ivoPLHn6CsUy6bPeCASkw7k+aGJcoTfl5FRIp/NsItuR9bs65dUxJAyIUqdLpXMMc+UME025ZqDgbCxI6m+wCtu/YLFnu5nbl9sBPzSuWm+38XpOUWoKFEizzw3tXFKfMeO2GhbIUTBzGeHnSOiHUTUmZm3+dZhqmyFOYvApiuAD6z0rr50e01mHLvJ/H4SwJMAUFpaKiE3QRCS8uH//DdObPM7NO1SiX1bW+PIOa/jjKu/kW230qa+rHlpYJDySadshMlM4X0sG7OQMn8+xlR6QnhPhDUnLF9U8/2uZHJdiFuHvsFxL0sqLoX1V9I60m23YtxvwrWZXLjEvj6+Mh4bFLQZuAfY/dhpsdtO8EzhUwUG+WyClGhKwFGvHfMLOaIj0BdkKjN1DZi2rYo4MSMs3o8fZobBruNqNMrWLuQ1KmSGsHWYKtq1l9a0sP1ENMraZexyeNdxJrMrCIKQEXZtWI+1t/XFyV0eQSLXwOJFJ6DDz7ahaEjDFS6ARF5SIGxwUMNBQ6bHHJmyl8yONvoRPsJUnx37B5bRA2R9JCQZqXeD+xQ8snwKhsOmOiXNm+J8MW22ZKEiO1uEltYlptqvyhKPcFei7LL+UCv+yFuXru+95ciyyVYUxk1Vdb92upsjYNSNvq03srAlhRlIEJm/F8q6IHJNBDCterfBUMUbg5DwtRPMol0yj3YdJhGVAvgRM/8wydrLqQD+CKA5gDesT5TdTgAWA2gNwCCi6QAGMvP+2m2mIAiNlY8efxDfaPortBtchd2b2uHAN/+MkT84I9tuZQQRL3VOzMURsW0pRuKOACNRRpmRNpPbjxt5cX4qo/d0B8m6p/rJfNLnCFn/orlskd2uGUgHynGIzZjXQL0L1J+p9aG3Mp1NPxRyMhDdsfKoL4V3owZumaiXVPrTGGawg5SGRok4uz3+aW6eOnXKWvHfa9Y3P82aZ2ZLX7LXsABg8q7VCt7dpNgLttjOb/aXKozccJLMHcoszLwb+nWYiwH8UDnWrr208g1Owe52eKeaCYIgpMXBPbux8q6xKB2+CmwA68u6otevV+G4RvSUS8RLUjJ8sWvj5qmN+zFp6EGdOkP+8Z6Cd6gWJii8Y0bd83H1WD+9S2czdfTDQIb18DyFUWJEwMMhqZ+pNqJGmjikZEhynPb5TahTqjznU3BajVx41sQkNP7YwjCOMLIuhisOVL/Jsz4m2HbfneuoInaEkQEy7yFb6Dhrbtz3xniteNfYuBWbNtmw2hyxQ5kgCILQuJk/fSxO6LsYeW0Oo2J/MzRrcRTDRhrYu6Uttvd/BIPvvTjbLmYcES9J0T8NTd9c1ByedG2mYidmJaHNTj41zC9W1C++59VOmiNeSFNWQ7Kn/o7YCPMn2nJgshrBnMyTo7ERGZnw+eXHiThEiA5/H4baAdwNA3yqKFBUuR5RNgHfepOIxodGath33ckceCfIG3Hx1OsTG7o1NYFtkA2AE958UdEY//bJbAcyrGthqDcTGYFfCTWO4rTLOuPoHCanPQRWfv0ZgBHcbQyuOLfeye4INEc8sRLDYdTKGjBBEASh/jN/+lgMH7AIC9dPQJODmzHyxMWgXAP7d7RCq2mfY3CLFtl2sVYQ8ZISuuFQKs+fNdRJFC/N0U1U9IUNGNa2UmG7PkQ+5YZ3fO0O/moSNQmS4vIRTUlfKtfEZkhN7NrVvePE71Wceg0DzntIAlGNNBx3RARr7Cm+JcPfd2xYB4ngvaGrP5lRVmyGvtuFdYWD511RZDhLWygQ3bHFLiPBrvCwzaj3t3mPW5EW5SEGkbtWRnWEGUio9TGBiZU1OLaEEvUiCIJwLHJC38VYWjYYJw2dgyYtjuLAjnyUbRyCE/ouRV4jFS6AiJc0qGkkRveYOZnJFOuJdDFq6B0xtyY8d3BAqvw/bEDqmQUD75N5dTjmFTKprYXRPa33RzhImztF+yE2U/FVFQdAuOBI546zhZF/UyrdIDzUhv0/ZYztlEottOW99uTatI8j3v0YmuwEM5REXV/qp3tx8JqRV9awHVNR9YXHkPVOI+eFk66sATGYNFPAbJ+YALJfUOk5E2is93fMQNQmGYIgCELj5fDBr5HX5jBOHL4UiSaMHesKUPDTz3DCwSPIm1eSbfdqFdkquUbU1cChBk9X1Tk4cW2y7xNlOtSiPn4SGVXR1OUVMlbpFMWVxx6b04H8U200m986NpKNzW2bgfQIe6od3YJwOxqTyTAUsxmRsf3wnU1eXpOL1b60B+0hpjwvXoQrVFWjdl8a3g23QrvAjWjAO7L32VSvt78d9n3lt+P4S8FyzFaEx2fXMWEvpifD1yFuLq9fBGbz42mdIsDI80tpKNYk+iIIgnAs8f4NF4KeLwIR9axpfQAAIABJREFUUHGgORbvvxNd/nsjmjZvhcUP34wj5c2z7WKtIuKlzqnJQCM47Ko5Ef5EDpzDhvvRg/ZUUcej9lgxrp2wXlajHAZHC644V8sZiLMbQXCiChqfYt0BakQijdslUDW5g/Fgu1Xvou3p7AK+wXzUjcEhNVnn1JdDGnBFof+u14qWkDQ7SXldinValVBRyllvUHnHpKlTnPrZmwh/nepPWFPIzA8RWwKG3LVQmhuJnP+AQEhNEARBaJTs2bQZn944FKcMfwu5zY9i+xcFyG16FEc2r8LBnbvwwW2TMbLkFXyypjTbrtYqIl7SpibDcU25lMzFFECeEV5cm5xy0/yRCe/UluRPzaOq00Z3YjY9DF30QLGe1FZ0xMkrYuL6x+qJqEhMOmgiB0Gb4VdBHW5rIy8RxzrLSa+3JnLi9yV44JZ3gh5qXX57DJjTrpT3tGhEkDdS5AoGf3TJtmmQG47xCBrbLtmRGVgvprR+2kLE4yeB2d6JjD3lVSfJFjqCIAhCo2Xhj09G8zePx8DStdixvgBLvr4bRbdvxJKVo1DadQ7y5pWgtOscLFk5AqMfeTPb7tYq9WrNCxHdAHMPfQbwKYCrAHQG8DyADgCWAPg+M1cSUTMAzwIYDmA3gEnMvKEOvExynAzNo+m0Bx4hBWs6kIkT3iDfoMxT2JvGyk+/WlYHxuFVxh+1p9t0s8lej7W2KIU6QjRqZNZkii9uVWpCxPUkCs+kjd4kqzfsvJJRrSlw3VUBofSF+5JGfdM88QydUxQsByi7dkX8Siag9JMjGFg5Vu9wsiIpVhk7my2E1PapztqL9gGAvPPR1Gl53g3KVb9FvQiCIDRG1n30ETD3+ygdtQ0wCPOXjcdp9/8NRdZ5Vai0AjA6K17WLfUm8kJERQB+AqCUmQfD3JX2UgD3A3iYmXsD2AvgB1aRHwDYa6U/bOWrLe+A4DCrBrZ8ZjNFRuzFN+COqYKToULGj+6UqqQ1xZ5gFVqnXzwlR3nCHStXfH/C2qv66LGZQtN17Q6ri0Izkecud8bq1qDffsGkP6oBXxm/WQbA5NVkCX8+cgf32t80f5RDSXJefKkRBqQx5iT5OsiOQjnnwhrkqcCfprEJMqd9UWg2X2pQvZJPyDBg7iSndJgs3BcEQWhcVFVV4bObBqHLZ2NRPHAbtq7phLWdXsBp9/8t265lnXojXixyATQnolwALQBsA3AmgL9b5/8E4Hzr+3nWMazzZ5Fucnh9JGOiRT/lJUiqQ+04RfwvqfT+ZzcybAoRQ7+GxS0ZtJWs49RhX9iT/WgL0WdStWkYmkRNOe30IuVcMvyC0L8oPkpouGm+ipxBsSIONOm6unQuhwkn0jhGuo/Gntp2/0nPveAXMlZhdecwWwTZ9gylvCm+VPXhr5V861K8SswAnHUsps9qXrs2NdpCVt8o+X0vA2KDwc7CJRbpIgiC0IhY+sJfUf5wN/QftgEA4eOt16Hkri/Q/7/GZ9u1ekG9mTbGzFuJaAaATQAOA5gHc5rYPmausrJtAZxIWRGAzVbZKiIqhzm1bFcteIcMqQ3TFiPcXtJqQobNARfVgwRi61TPSDU+YbOd/INyfz576FbT3tXVkboyTz4ETOdN8DWrMblBtS9Tqlznja+B/uulMxtVle6cYzNE9UXNnAurS1fGSQv59VWrtzf58myrrK7fIVbskZXfjdLZ0w4J5ChO590tqlhiQiJhvZDSmV5mixQ16kfOO3WiXtzq2gy2TxAEQWhYlO/ciS33nYnBx28EdTKwdU0h8r73Jr7Zu2+2XatX1Js/eUTUDmY0pQeALgBaAhibAbtXE9FiIlqM6soaWEp9GlOIRwgMQfyPwrUnQkZ6oS6qviYJAQTqjAEbjlW1R3Q9xAj2ni5P4Il5yEfrTsQnypbXppvCIK0tdavheDaT++f0ixJp8EQiYrbdOWbTT79NfySDPOWtNjOgbH7lDODtXb+MOI33+2bZsbeoVj/2lsja6In1Ue8LT59ZNlW7um2ww6Izpl12bIEBNswPDDfNqDYAw+khXY87IoXtxjg+EdiwG2P1ocEwrBuJyJMZrpw3QGSArGtilzUX8cMTybFtCoIgCA2XDx+8B01f6YP+w9fh673NUUYPoPiX63CcCJcA9SbyAuBsAOuZeScAENFLAL4JoC0R5VrRl64Atlr5twLoBmCLNc2sDcyF+x6Y+UkATwIA5bXN0F94/3C9hnED1Rz5T6Rp22MzFRup1WlHTfTP672ExIwC5/yiI8pmFH6h5D4hj1Mqnu2aRoxsG/aDfEaKlysJnhdURue0vUgaSQl9kWZaDloCxao+TKSF1WUnq9PrHO0O16adRJ5M4Ta996Y1qc4SCMGIETkd44/yOF+d7ZMVP211CXvhPQFsvg7Ticwkgr9bZN8s9k9BEAShQTF/+lic0Hcx8tocxpHyZvh6Xwuc3G0fjGrC5lWd0OmWT/GNFi2y7Wa9pd5EXmBOFxtFRC2stStnAVgB4H0A37byXAHgVev7HOsY1vn3mP3PXGuTGJEQLam66H/SGzMKo2ZNmiEFmyHmvc+izWfUHpRm68o4T799Rdy1B+4KmLg9GBb9sKMHaiQirh2dTXvFQiDKEdc3f1f5owfp3mrKZQ2820WJ6ig1R5rTbousRHgcm1FmyPMjMJi3IylxL7Kna3T1s7c/g3GT4MoqJ+rj8Y890UH/CyrhHJJjEyAwGebHLu+5AK6AsWM6oPBtj93fGztapK51EREjCILQEJg/fSyGD1iExVvOxfuLz0defgUKuu/Fwd0tsbnH39H9V18gT4RLJPUm8sLMHxPR3wEsBVAF4D8wIyavAXieiO6x0p62ijwN4M9EtBbAHpg7k9Wlx9bPVEeV6T6u1j0/TmIrqYs1iB+EjLC8FpUtZdOrxbHpRmLImmoTr1zoOV9EwvVN7efUfPbb5BABoxNAukw1ie6ElQmPxHhjXFF1BvyyxEHYGhanhjBBp4k82gImEWIzSvyF5ve3XddQza8WKXsee6J4dvCDfMXUBf26KIxrAQBbAsZeB2OeU0W1Wz8HLLjCLd3fLkEQBKEuOaHvYnxcdiJK2vwL3Uq/hFGZwJdrO6KgcD96nXZOtt1rENQb8QIAzHwngDt9yesAjNDkPQLg4rrwS08tDBa0JnWJKTxlJed/EWhGjzEIG+TqIithVmPKMI+9JjHyxm2FPZjP8dSCwBH50iIH9wGbvvNRNjWG044nahz1CI6QzDG0gFNCPe+8wV7zrwoBnve2RPoMODFhw+tatGix8/rabQsVUm5MUyME4oNuGcVX05xb2LlnVXtWnUyGx2bY74crTqw+txf5K6LFXt/ij1F6hDb50wRBEIT6yv6du9CizWGMHjUfALD+s2K0nfwyCiYUIG9eSZa9azjUp2ljDYQkj5eTEjInJi2TUY+507WZWu26j3reRtdqVbik4q7hjuNCfUoVb3yIQo5SI0qwhQqETM/+8XV8cNqUP3OIXwhvj9+eunZcbStrGh56/9hCyErjuHtOEDzRNE91Pr+cpJCb1xOVs4+JrI+/EezGUuygi7+ttjBxwyWOLduuF7MTDGZHHGk3c4gz91EQBEHIKu9MvwSJFwaACDAqc7Bg+Xj0uXclOvbuj8UP34wj5c2z7WKDQcRLbMKGsakOGnx2ko6OoxYAZHD0XgPc6kxfvbsyeTOpD9+Tu8ohn0DF0YIgJew2hJRPxWjIQD2sVp8LKVUTsBvDT2fgrliJLEbwvJMmtmiNEC2OXf/HPq+IGOUwECsMrDPyDfTV16T4pal/jZHWt0Bf2MJDHxVxd1Ijxz+/bVIr8XxjqO998di0tmBzxQ55+kfIDETUnojeJqLPrZ/tQvJdYeX5nIiuUNKHE9GnRLSWiB6130EWZpeILiOi5VaZBUQ0tG5aKghCbbPoT0/j0O/b44wRryG3WSXWlXVDdWUCRk4rHNy5Cx/cNhkjS17BJ2tKs+1qg0HESywyOTRQ5sKnZDb6mbljs84gZaBlC5bgIDYs2hI2pcwaTmrtReG3R8p3f/3RNvVnPU/gY9o0krxDVB2ga20yYr+k0m8z7sct5ywZd9P8QkJpiGNDIyB1LnuujWLQmSKlGNBt7azthrBpaH6fQhrvFyw6ZU2A8w4Y9aZyxbm14N/qKPfOdf02FGPeF156RblnfZgSiVF/Gxyb5psvnZtEXlOZcW4B8C4z9wHwrnXsgYjaw5zmPBLm1OY7FZEzC8AUAH2sj73tf5jd9QBOY+bjAdwNa4dMQRAaLmvmf4hl04fiG5iOJq0qUL6tNXaPfB997l2FJStHobTrHOTNK0Fp1zlYsnIERj/yZrZdbjDEWvNi/SOdDIOZ99XQn3pGLaiBGk3v8Je155LEzV8buBJG513C//TY991rRX8URD9Q89eReuujB4CUPIvWn2R5IvP5lV0SGNYi9xQgv3FVUCAoUPTlk9lXhA0DlPBmUG3o7iWdD+7aEOs4sK1whEFo+t4WNXYZtQ7Le/seUDdjcDUPOQLX6VVLfdovkzT9tNMsm3Yepz7yLOInX+d4bVpCR9duoSacB+B06/ufAHwA4Oe+POcAeJuZ9wAAEb0NYCwRfQCgNTMvtNKfBXA+gDfC7DLzAsXuQpivBRAEoQFSVVWFRdefjhEn/Qc0Ati5sQN29b0Hg396uZNHFSqtAIzOgp8NmbgL9r+0PlF/I3MAFNfYo3pFWNygJiYjRlLxEjU2w4rYdaXyVDbEvxglwh6EA14P/DWE1Zhqb4fVEX/8755l5f9qWiIkSpKKb4F05Sl/cs/C7dh5DEW9OeXI80Pjm2JBCQ76Y32BHdTiCCr2+UgAG6599adaj8e84oQzScsvMAzAIP1dH+azp21qpMvKYzDAhuHsvqCedr+z2y4rkyNslIaQdcJcv+NOC2NLhdi7jamL910ho4o1VzaRNeVNIi8Zp5CZt1nftwMo1OQpArBZOd5ipRVZ3/3pce3+AKbQEQShgfHur27B0Gb/DyO/uRfVlQksXz4IpQ8tRKdsO9bIiCteVjLzN6IyENF/MuBPAyTVwT5FHtaY1LVHmvUYMKwRnXfuoTL1xVdEd+wRGOQdHOpspuxmRP3hvkXXFyXS0oKDA3GVdOoxDDMSYT/Nr8Ed6knL5AsqyR7I20IrSYQnFN8FsW2q9jy/Fp78+vuV/CqFTWWhXxtPlrD17voViADa9ZG9PbIdnbFPqZ1r5kkkfH57RCnBfROSkCpE9A6gHVP8Qj1gZqa4+7OngM4uEZ0BU7yEPogloqsBXA0AxcWN7HmhIDRQ1i5YgPYLvo3TepXDqCJ8snQIBt7xBkqvbJtt1xolccXLSRnK08CJOxRO02TAbIxJ/clshmatuf/BaTPm/9WoRVgtaln1Cb+a7o7VdJbj+2fj2FQG814/klv2D07VRL/NVCIpScVBOpdLCaTY72EJj8REV+BEFJyn/0opXWem4qMS5QCAHJ2AC3HPIw6sGybgoybS4m03B5vgC9Uw3N3EnMiKzye2C6p9a69H0WzLbF8TtsqQpyEhjXVysMfvmgj8YxVmPjvsHBHtIKLOzLyNiDoD+EqTbSvcKWCAOdXrAyu9qy99q/U91C4RDQHwFIBxzLw7wu8nYa2JKS0tlQsvCFmkfOdOlN15EUqHLUdul6M4Up6H1S1/heEzrsu2a42aWAv2rXeqgIguJqJ86/vtRPQSEQ1T8xw7+CfU1FVdnufD8YpG2kyzDRQs6bXmGVYmSVUMxLBZ06f+gTfYh/hESOKvz17gfSwhUZTAIFaTz7EZ5lwSdEXsN9ine9fq7pi4fQkgZMevoFGD7QXp0f4Eohp+5evzMex9Oa449tmxBYWzcN41y2xGeHRbOJtFGCADgOGEcTiQy+uX+V4X9a5zf8lc4em/CnX571D9g4huI6K/EtFzRPTXDJqeA+AK6/sVAF7V5HkLwBgiamct1B8D4C1rWth+Ihpl7TJ2uVJea5eIigG8BOD7zLwmg+0QBCFDzJ8+FgcfL0DVX1ri4OMF+PSGwWjxek+MGr0EFYea4t/bf4yW1+7GsMtFuNQ2qb6k8nZm/l8iGg3gLAAPwNxVZWTGPWu01HCaWeYnLaVpM3yRsL+FUZGIZDX+f/bePN6OqszXf959TshAZhIgJCEBEgghGoYDhEFQgxoQQdp2QlsUhLZxovvaTrTaKt2Ntt1o90W7uYjD/XnFvmhDfrQyyKCCzZBACBCGRCEkISGBQMgcztnv/aOGvapqVe3a5+xz9tkn78Nnc3ZVrfWud1XVTq1vvWvwRWLKKO74LXmRTa1FYrKlNRZny7eZpDdBsWZ11Yrb5V4fa/eA7w7NvQvdKEcUmcm5QHUXqXQjGlJboDKaYct7H5W8qTJBjbig/G5XkjgRkozMScqmApVItLhhKb/fEnYNE6kZcM9lPA2z1NImZXxkvJn/DrQloqrn94PdK4H/EJGLgNXAewBEpAv4mKp+VFU3i8jXgQfDPF+LBu8DlwI/BEYSjF/5VZFd4MvAfsB3w1nmulXV5k01jEHCPZct4rgjH+D+1e9kWMexzN5yJUd2PQNVWP3EQRz85cdZMGyfVru519CoeOkJ/74duEZV/0tErmiyT21AXxoMBf1fGiqnhAjKNMrr0aiwylr3vvHP2V8kavLyRl2gyvpTyqaCav4q5b6Ge719efMy1LVZkKdevbMZkoWltUPSnni+lbi2UVctZzsvAJUWTLn3SsbRHHmd91NyEvtFS7Rdzf2JpNdliWIzwXdNXPC4XgpVNJXHbzf4HgmYUIq4ffE06BSmqlS1WpuyOv2j0TAS2fwhGe3CYSLybmA7gKr+shlGw25bCz37lwAfdbavA67LSTevAbsfde0ahjG4OPrwJfx+5VuZNfK3TB39M9gXNj67H2MnbufQr69stXt7HY2u87JORP4deC/wSxEZ3gsbbYyvSdKEN5+5Jup1CcntB9MHt8o3giTzcbu0JH1Xsu+4XTfzXc63medPr5Bsbq896dsVz23URl962QvI52dMyl7iTGZa940U0sAvIpUwiiVk7yHic5xY50Zrf3yeRg37WAB6nMqOffGtbhMm15qJ2LbUNlwxUVuosuZk3B3MiUgl1puBxFoutUUvBZEqcZezyAON4zMEIkoSkwfsxZMl/wYYBUwGJrXYF8MwhiCbnlvDiHE7OXn2rUw7cj09uzu4d+X7GHvJQ4wYu5eNmBgkNBp5eQ/BYlvfUtVXwgGHf918twYbzWwY9KYPUMkOTE1xs3Ej0WDmQiup7j/1G7x9e5Psa7sX1yxZXpHAaKQ7Wb10EhrM+NhAIb5z6YtQ1PNVfGcqlbdu1y8P0ZieiptNkt+LTPruFw3/V8lRg0U/r1jgpAzG92Ylddz3eib3BolkWWhTojFamkyGu8/Jk4jhpZRbJpdk1d3ex8pojRQRWdBqZwzDGDp0d3dz96f+hNMX3Il0Bi+P7lv1Pk7+0rWcLsLdX7yQrmkjGd1qR/dCGoqaqOoOVf2Fqq4Mt9er6m3NckZExovIDSLypIg8ISInichEEbldRFaGfyeEaUVE/kVEVonI8mjigObT7DeaUtyyaohkH/yBRRLf0/+5sRg3udssi8Zk15pubpebrK38uEXNpluGL1euBU/kJV1bn90im2W6t+XVzHnJXxe33m6eeDsdRfD6nw4LEAuMRGM/vH1zy8LfjE40xyPbbuRAsvsT0xJL1l4khosmSkj4KSQuc2LGtOhvOL10VZP1UVdtSXpVlZphcbcdEVQbiB/d5a7fUZQleSWjqIykHQ9DO1rVcMKAvXqVl/Oc7+e0zAvDMIYUd378TLZ++2DedOodaE+Fl9aMR6jy2i5l+4svcfcXL+TEGTey7GkbmtYKSokXEXmoGWlK8B3gFlWdA8wHngA+D9yhqrOBO8JtgDOB2eHnEoKJA/qBXvbjKbLn6wnlLaJ8wz2bv0768oZK58rtzkOi2ZVJV2u2Zf0tewbyyvDldxu0cQM5epVfUEY0tqHQputLiVPpiruEP1kdETfW69U7WqQyLQISn1S+Wv+m5AmIb083YJj6ZPa5/klmV2wv23XNOZ6y6QqNzPWRmq30ucj9WaTOAUK0lEtMVWvTN0eCJbhNgpwZ+ymhJSqISi29Eq6iWfNSVWNhU7On4bHIXi19TSK5F8lzY+w9HCAih4nIocBBrXbGMIz25q5vfJ1Xv7M/p5/yW0ZN2sqyh4+h509Ws//n1rH0iQV0TVvMiNtm0DVtMUufOIFTv31Lq13eKynbbexIEVlecFyAcX1xRETGAacBHwZQ1T3AHhE5l9pc+j8imEf/c8C5wI81WJ76vjBqM8VZvbjJ9KK/TFmaZTLR1cj1t0q8RHizCBepTDcm06Ih3hc1qJ19kvobvfVO2/Q1Vku7GaYtN0OZ29L2d9WJphpu9JIVtS1jceBp6Gd9zLfrHosWqSy7QGUs21LRiLS4qGp5m5AUA+nzFtdbiS9Qqv0fkxRatY3o3ora99UgKJG/tkvqBo1jFk50SqPv4Q7tqYYziXkccw1H90Zoskq2Piph1ER7AKdLWTxdW7KWgjiTSUg8IUBwrwS/nIYnchha/A0QzUv6ty30wzCMNubXX/pL5nT+J284bBNahVeeH8vmY7/PcR8+K07jCpXRFKwka/Q7ZcXLnBJpeuonKeQQYBPwAxGZDywFPg0c4AiSDcAB4fepwBon/9pwXz+Jl4h0c7HRpqwnbV4LtC+CKWGzHwSXr5jU3sSZ8TR48wSK+xY9bdOboY5vQtkzWb4V6IuA9Ja4nlHjt4mXy526udiseL7lpKrjZ0Puh8LFjex49UGdstzJtpwgWmBenP3U6uBKovS9mCxOajZVsyImPhmamF45TiYQDMB384kjOsJpkUPxWDu3mvzdRNGi+Jg3trRXoarPEbzMMgzDaJgnfn0X1V9+gjce9ywAq5+cRudZ32XGhxayX2tdMwooJV5UdXV/O0Lgy7HAJ1X1fhH5DrUuYpEfKtLYnKAicglBtzLoHNkkV2OP6N07+N6+t8979dsXiiRFYzlrXkZrhWQvVV6URgENowXp45HNxN4Sp9F3OO9MSvz/4tsrz2bUSC6MGOXtT+1w36RLX+byc6MPTsSoUvElqX9CVXEXkE9ETcR3YX3uOA37+ItTtDvWpIyIk/SGkJkqOb1OTs29KN4UXf1a2CnRYysUC5GoUIgnAsver7U7KehqlpxjTxJhHY2jRDX5pLHYSuRLRJLCEx9H64augBGRfVV1u4iMVtVtddJeCPxRVe8eGO8Mw2hXVtxxO2N/9+ccevCLdHb1sGXDGFZsfyenfv3fWu2aUYJGZxvrT9YCa1X1/nD7BgLx8kLUHSyc3WxjeHwdMN3JPy3cl0BVrwGuAZAR4wfBU7434iPzmrcPttKkYxIlxVVBy9IVMW6TrrfeupEYEDo8jTWf1/W6akV+JUmJpAbIRDlKVthbUtTQTjW8y1KUvBr2Z0pGObIxrqLIWGJfuqtWnuAqiv6kjKpjM71IZdqfMvrbjRhlxYEmE6aOu/dxpntfyqZEO91ZEhJmXbUW3NlBPcPfiRCOgamJzHg65dSgfqHWnazp7zQGDxNE5CPAKqBe5/KbgWP63yXDMNqFey5bxNGHL2HEuJ3s2jKSh588Bn2thxOPX0rn4d1sf2kUj+3+OMf91d9aN7A2YtCs0aKqG4A1InJEuGshsAJYDFwQ7rsAuCn8vhj4UDjr2AJgS/+Nd/HRD1EQ7yv5onf9ZW2W8bPxLii+1OJ86nXVcmuXlybbfQxvH/90w7bslUnWWjN78vIUHldnoHfdMlM2c5yP1w1phIIISNyYzzmXPqHgE4du9sjHvPui1C3mKtVQtLjnMuFb0c+D5L3o7osjRqRWeXF0a6Q9alLDWVsllV4IooYoqFRroR/1uxhFlYKPs9YLKcGmEp5PxV3zJbYZT6HWuLhtIxYSjIM8VET2Tx8UkWHh38OAPap668C6ZxjGYOWeyxZx3JEPsGTtOWw+9XE2bxjDguN/zylvuJ89O4ax7KF5jPnERo77i79ttatGgwymyAvAJ4GfiMg+wB+BjxAIrP8QkYuA1QRrzQD8EjiL4I3cjjDtAFDiNW8hnhhB2dfRjdDrxkz5jK7y9eXKi2HkvUHPs6G+NDlu9iW6UzbqUloYeV6IFwm5uOhmXm7PLZTYJQUJ67jinq1S1zQnIuJNo6lrXdMDmSiQK64iYeArKLs77N6Y0xM1GoYSnadIMFTS94ejjpRAgMRdCJ3IWXy+nYpF41cqCafdCEswIxkQTMBQKzCsq+ZUeMjwAHAhMF1VN3qO/72IfBu4gmDc5QcH0jnDMAYvRx++hPueeQe7d1fo/I+TmDrnVao9wp7tnYy8ZB3H7TO81S4avaSueGmkz3FfUdVlgG/S7IWetEptlpkBoFkNBPF+LaakiGmKi+Vbz8moSK1BVyZ33tv9bAn19tQXBI3VqHyqujadguulTfjoVWuedEV+lKhw1lb+Ou1xA74R7R2WkRYOkvrrFxZJI5rcjPPXohApnxoQt270Ke7+5TiZ7gaojuhIeqS4M4BFEZtKJduFLOmjUFvo1a1dSlJHQig1xij9+xtKqOoT4de82S7HEsw8+Q+YcDEMI6S7u5sR43Zy8qwb6RzVTffuDlYsm8WY9/8701YspNOES1tTptvYBBH5BHv1rHDNfLPp9F/pbd7c7WZQ1jFxGk2abEg65EVd3B5E6UashN15XJvphmpeeaT256Xx+VaU2ld23Vx1Lk9cB83md4+l9/uK8TXoy3yK6uCuCZN2ILaRakTXmtxZH+PsTmGJQfTh/rx1aYqNJn1MnI/QRrryCdHi+O6uMSPRdqK8dP+3sOuX1H4NcZkVqCLBOJao3ITDmvo4ViX6hUmyDIVqPCd00K1saEqXLCKyj4i4M6/cDUxQ1eXAytZ4ZRjGYGHHtm3c+rE/YesLG/OtAAAgAElEQVS3D0YEOkZ2s/LRGex62yO87puP8Oz/vYZdW5o9eZMx0JQRL4V9joc2RU3f3prMa4mVypy/23uoyb4XFJ4nNVwRAdk36G5v/rTN3E+dlpo7bKKe5/6c+ekbOaNlGpR17aUVRk6SxPlt0FFJG3dOc3xGUqIlr/wi/2JxkLYZNfTdOpSwFQsfrdlrREQm/BJHtEQ2nYiPijgiJpLX6SIk9isWHI4w1aqgVWfePE0KKHXsEAmeqJ6R2NLary32UYX8mNnQQUQ+TTAV/ioReUJEPqGqP1XVvwNQ1f/VWg8Nw2gVO7du59eXLGLYz6dwxmm3MmrCdp5fOZnXtnWyQRbQMWwMd3/xQk6ccSPLnvZ18DHaiTJjXur1OR7CFPTfaYZJl76Ij1w3oyZ8I4tUNt5tzP2bccHjYoSbp+pk9DWOE7Zy9ItrLyoz2bWtHpmSMrYSYzFycvn25112nzgo45nPS7dRHO2I8xXYr43WkHhHWgxFNjPjeEqc2Dgv2XNS1fANSsquOhvudU1c3yiIGSZQDRewJ3svJFx1FHWcJl2AcwKqPdXg5yPew7GYiKMq6k58XHNIwhNbrUJNskeLTKoj4DSuV7BIJbH9oN61iynhSagO4ZUqw2nzHyJY9+tIVd0oIpOBr4rI11T1y6310DCMVvHy+vU89bXzmHvEM7zpjduodgtrnz6Q/T99H9MnTOaeyxbRdfhiRtz2M7qmjWTpEyckFps02pO64qVEn+O9hLxGffnGvjd9YdZGbefRD29ltYqGkxYnw3fFkYu8fW5jMCs4PDZLnMa0kKkXHfDnLLbbrKsTNVCVZBQiXUbZO6IarpkT2WvEz6LrhPp97DUaChUl0wUtUX4J9RZHKJyl7dMRHXHSJzKnysyuFSOxUMiuvRNEYSqajsc4dt2CRZ2IS7BApcTKKDoRYZpK8txHPwyJdwxd0eJwF8EaYJOA34vIqwTPo0eBj4nIVar6cisdNAxjYNmycTNLv3Q+p5zw3xz/hm72bB/GQ8sXMP9vbmDG6AlxOleojGavHv8wpGhotjERmamqz/aTL21AM5qtqXy5r4fTCdLN/Bwf6tqrd7B8vRJv5+Ntcbb9DStfY1whsVaIK2LSln0vmXMjMZpN4zbmk6JJvYaKznjsp3giPAWnsih6k1nbpazWzSkkfW7dt/iSTpxD1K6uvf3P2optFrWnCyoeTYnsW6SxyFwqYJF7Lt1oTLre0b0V3w+JOjk5hVr3rZSI0SijKxalijsixS1XVWvrugjhrGexhCV9M3oXqoxtDl0Ro6o3AjeGU+L/JUHXsdcD84GJwJ0iMlZVD2uhm4ZhDADPLX+MnuvPY/LUlzn99J3s2T6M1U8exORP/47j9zuw1e4ZA0SjUyX/guANWIyILFDV+5rnUruQbQYNSgpf1fehDpI1nZV2yQZY3VI8viZthlYLW8f18S382DcZ5++qVdam5hTUlzvMW47bfavBaEyUL9NtyrkUhdGRovOSMppeoLLApCMS6tvM8zGjU5y/EmfSzP2t1fB4Jbk/+BIpnOL73/VLnRshFjJKOHA/3a8tEi4exTZ0+TjwH8AygqjLkcCjqvrGcHp9wzCGAOmFJZc93cXsT13DU9/4EF3HLGf4vN107+pg6YqFHPul6zl0+KhWu2wMMKUWqRSR94jIlcAYETlSJPHO8Zr+cW2o0mjDO/0+vz+6irg2y9quM60uyfZjnt5opM1VDT9l8mTfW2fLjBaTzGteKuXPts+mL18pm6lL3qsFKuuZzthUzzevO3GadD20muyylbChtU8u7vFQHMfXxxETsT+JDcexcJ+k8iQcj4vxX420r9GQeLfseAYzxVlDUkHCdVp85UfJpDYjmUjtbIpEY18yoTGSd2roUTxv8tBXL6q6EjgRuAEYQdB17Lzw2J5mliUiE0XkdhFZGf6dkJPugjDNShG5wNl/nIg8KiKrRORfJJw6Ls+uiJwrIstFZJmILBER691i7JW4C0vueutq7l95Bicccw8TfzeXU05/kGq1wvJlc9H3ruOEKxbTacJlr6SUeAHuJVjtfgLwzwSzvTwkIjcDO/vLucGLr9XUSN4Ck6Wp05rNtPKaYLOgKLfI9P56IkKoTVVbhnoN+Xp20tlr4sBvOO+lfj2bRZSxmSmj0cvjaZdnBIfHpu8apr8X2kzlSdwHdaJd8WVwAwoaiqIySI5I8thMRFN8N6+kd8eSIeu7BCqrmpLCWdGStAfBFMjxfGHRvRhFyVSpam3RyvRil0IkhIa+eIFApKjqf6nq36vqv/bjWJfPA3eo6mzgjnA7gYhMBL5CIKhOAL7iiJzvARcDs8PPojp27wDmq+rRBBPkXNsflTKMwc7Rhy/h/tXvZOJp5/Pol87h5Dm30TFMkU7lgafOZtTHXuCYbz7IiH3HtNpVo4WU6jamquuAH4vIH1T1XgAR2Q+YCTzZf+4NNnwNhD42Gupmb7Dz0AC2YVI9bEj2wU8StcdctVzO1fIt9r5Uvfa2O78OjRaSabiWzdiMS+6LRviKaOSkSblfgLdoyaaJgyQ5dn2XPu/UxNGQaMNjMysmJLSpYfcsT7o4OpItKNjlqqpg4L2qK2AkiO5UHHvR15RYimOZUhMrkQ11phzLvJNQ+tyV0shwLvDG8PuPCNaT+VwqzduA21V1M4CI3A4sEpG7gbFRd2oR+THwTuBXeXZTC0DvS/PD64bRFowYt5PDNtzNlJd+hpwG217cl2XrFnL8Eb/kpK/+rNXuGYOEspEXACLhEn5/SVWXqur25rs1GGmWKki/Au5FvsS+wUDSt7xOaEIjHvete1z6jX89S8Xvy2tHokOlbCa6HeX7Gb9lT9sseQp8kY76DXffdnL5RFcQxPtL+JS5SyWpnxJ2xZ+n0NHIDXVslPwtuZGWzPVxlZFjMz0mKTgUnQgnofh/odWwku79mLaY7YRZs5tegjLqThf3s0tNCmA0hQNUdX34fQNwgCfNVGCNs7023Dc1/J7eX2hXRM4TkSeB/yKIvhjGXkFPTw93/flCXrjiYAAOmvMC3bs6WfrISYz95Avs7h5jC0saCRodsL8X0g+hjF538cjJ15IeI268RQpUcK27S5poeIQ/GlNUKX9DLdWULNVgL2s7tqXlbXoCHl6bhX42em0lWX9fmfn7JLHTGzVJRzQk8afIraSNlJ16kyf4bEkkFqKoiXj8JbkvI85InWupCaOK46MicXRDfXVOCBT3IkQLSjrHI1EUR3tq4sMnc8S1p1qzWSWYSjkxoN8oi4j8GvBNT3S5u6GqKv0Q2krbVdX/BP5TRE4Dvg6c4csnIpcAlwAcfPDBzXbLMAaMl5/fyINfuYiu2Us57fQtqMKWDePYd+x27nvmXXR95pv85vKLOHHGjcH6LK122Bg0DDrxIiIdwBJgnaqeLSKHANcD+wFLgT9T1T0iMhz4MXAc8BLw3v6ZxrleE7RRPK9nnUN1dvhpsJtRMb0zkn77n/6eHhPhpukpKLVRb9zAgNNTp4S97NttX4oOj40yvudd8ngcSFoU+OwUnIzonCZWm/dU3GfC61so0tKBlowILfDbtZW+/oTiQKmJkMS9khY3Hn/dxRujcSJulCQ+JxSfQ9deJISE2tTNgYHaaBZnIjAIo1UJP8JCA7ErtWscnYjoO9XUApUaHk4KfnUqGOiUeNLw8jNYGBlU1SsOAETkBRGZoqrrRWQK4FugeR21LmAA0wi6ga0Lv7v714Xf69pV1d+KyKEiMklVX/Qcv4Zwopyuri5TrUbb8djtv2Hsby/kwMM2svBNVbp3dvLskwfRveAKjvjAe21hSaMug068EKyi/AQwNtz+BnCVql4vIv8GXEQwGPIi4GVVnSUi7wvTvbd/XMprmkfHGmk9eNI3q/GRK2KqBM3uskZKOKRVqnR4owYR9d78u3njxl9qf18pr+t819VjTxuxWRKt2W1kjZMiokUqezMlclH6qvbeR9+dFc1Oll4zpWwRceQlzKTi2PQImaKfsriJccRDtRoPbfEtUBlkUSqaUybOPR3OLKahyqlNiZztYxhEf4TkykmhWAorXJupzGgyi4ELgCvDvzd50twK/L0zSP+twBdUdbOIvBquS3M/8CHgX4vsisgs4A9hNOZYYDjBSznDGDL86pMf4pB9HmT2Uc/TeWQ31W7hoUcXcMxXbuSwEbUB+LawpFGPhsa89DciMg14O+FMK+H0km8mmBoTggGO7wy/nxtuEx5fGE1H2b+o8+kNOa9+vSbzyhHnU8fF2mvfAht17OXgvilPv1nX8D9f+nRe92/0PRqynI6H5C186SPrU/hm3vnUBmNnTlop+8U2yxNlz50WuTd3ttTOZXJK6NpxcTdK+pnwMW200XqHFXenmPberTl2E6c+rSojP1OCoq5PTtowBpKIzvhnfZPgPnBuhtoAfFCp1hx0/VEJPlElxa0RmeiZK/KV5MB+o6lcCbxFRFYSdN+6EkBEukTkWoBwoP7XgQfDz9eiwfvApQTPsVXAHwgG6+faBd4FPCYiy4CrCXoS2MU12p7du3Zz88cv5MUrp/KWBT9n9nHP8fLGcSx/5RN0/tlWjv+HO+gcYTOHGY0x2CIv3wY+C0R38n7AK6raHW67Ax/jwZKq2i0iW8L0mTB7/9Fo1KUv5UBztWZe/KB8fdK1T1pMy5P61t1V4NM5o+ZgsFHume4rS50GshtBkJL+Ftl0x0g04pdvkcp48cImXnKNehl5xVX9e1mVaAH5hI9xxKjO5fGNa9EovRNtqIYHKiXqLpkvxJcw8jUdicnqreiO1aQdRyy4+WKbUZ0c35M+hdLRyZ+IoqjbPUxSXchSNtNhoVrHsYYEvVEOVX0JWOjZvwT4qLN9HXBdTrp5Ddj9BkHvAcNoS9ILSz604nUcNHodUw5+iTNP2UW1W9i6cTQrOy7ihM//vXewmWGUZdCIFxE5G9ioqktF5I1NtBsPbqSzXWerSDesmymYemlT8hep9DWDG4/r1PJFNmPRUTJvvQBGNdMwjFLUcpY5O25jXl17BYGxejYzDeJeRHJ8+6IgU8LPhGfi9c8nUiO/omgMkfjMu0CRNvAqwNQxqV2feGyMr24pW3n2Yx/xdXvzN/5rIswjbFMiruLuc7ty1YIvjqhX56+Gor0mZFQlEYSpDchPyvl4dri9ZI0XwzAGJ9HCkvevfifVnuOY+fy3OXnBA0gFqj3Co48fw6xP/JgJUw7lhFY7awwJBo14AU4BzhGRswhWTx4LfAcYLyKdYfTFHfi4DpgOrBWRTmAcnj7C7uBGGTG+ia8o+6HBkDFZJA8asVnGV/eNbmN1q9fIzbOWly/tVdpmmc4U9c5cwqamjxZTHHHqnX+xzTzB05s7N6fLlN9P8XxLbudFndIN+bI9yXznIBH8cAWcePL4IlYkIzmJgIUjtCTcmWcvuhbJujsRmlQZkc2qVAvXMnIH40e9XGvjkpJ2gy5lGo5zifI54tqd4czWeTEMo0UcffgSHn74CObP+hVjJv4M2Q92bhlBR2c3nX/2PEeP2LfVLhpDjEEz5kVVv6Cq01R1JvA+4E5V/QBwF/CnYbILqA2cjAY+Eh6/c2D6CKdjCI2KGI+LuWGJ9NvWkggFNpuHW0Ttu8YfZ06k3NEkQhl3iyzk+9Q4ydxev6S8/cLoR17aPlxy7w6PvcSuRMEl7KaOeWIS+b+OVOWV7PV3u2GJ1trkUTettJfpcnMFYOq6hVKgdpdKJnlcdhxViaMhEguOWDjE0RYJxu5EAimKSEV1S/UtjIfphWIm+ITdzcJZAuJxNglVF4ypkcQ+wzCMgeO2f/gHNlxxMCPG7eTE05Yz5oBX2bNtOEvXfgje9STDRnUzzISL0Q8MpshLHp8DrheRK4CHge+H+78P/G8RWQVsJhA8/UQzGwbp17tlKNm1a4DbL27jM92s9DVq3XwVyrjbWCs+L2JQJpaUHjtQlL5sR7vcrk4O6fOU0RIlrqmv3oUCyeNfXprEfiER1aiXJyojHQXJnJN6gtAjvqL88duXtE85BvPa+okuZR5Hs+LQiYCkbMbXNOybV3GVkGs244wrK2v245cAzqFKKrxj414MwxgInn/6GZZ/45PMm/oEbzrsBSrDFK3CM09O58CPLWb01MM5Abj7ixfSNW0ko1vtsDEkGZTiRVXvJpgvH1X9I2S7SarqLuDdA+pYU9D8llWZvJn3x6kW04CRHPNSPALGTVfb6xMx4k2dLtnfUIv2FnfbKSJfcuX7mG8zPQFBrj0tsFlCefnqnedX2X2Z20qK92ejGgXlJCIPtTzSwK0cRTVUPOdYUsI6x2B0fVy94kakov2aqnu2i1YUAUkpzvDCVgFRQSpRJNJ3tqqp2mkclVH31xUtlBkOCAomdEjP62cYhtFcfn3V95i48hped9JK3rJQqXZXWPvMFDYOO4nXNr7AcUc+yP1XX0nXX36TJVd91haWNPqVQSleBh9l3t03Yq7AXmExBQczb+oHVs3kBQrSUYDMuAsaP7u+hpqvjMb7RNZvAjaiO+tFJEqZKlJNqd3xuc0LvdQlq7bS16u0+Ck45vOz6B5xNxKnIxI+ORo+3p1zshOiJcrv2nR8cWeEEw2nRXZkSFCEpMSSILUBNmg1+FKJRExitrF0vaUmrtyyE980nChBSs3MZhiG0Qhrn/wjL179J8w+ci2nT9pF5QBlz/ZhrHvuQA7+zN0cMu5ADgnT2sKSxkBi4qU0eb36G6UR0dKLcuIWkNsUamSRypJlahUNF6l024a+hqdvnIt6/uJtpJV0J2dfFN0pZ7d2VJ3/u1Sr6ZTlfC2SRbGAk8bFgWs7vgYa+FnpcPYXRDXUPaIpW+FG3JhP+1gmKuQIgfR9Ua2Gs4l57Lr1EsdGnF8TyQFq400kmz7jtzgxi1BjuNMdRz5Ve6pQwTttddzdMLzR1PE1OF4LA0VTMVerimo1Ga2JTpSzL7gfpDZ+RkBVanmcBSyrVbemhmEY9UlPb7zs6S5O+qf/4taPn8/B+6zgsLnrmHLSblTh2aen0XHSFzjk/A8zy2PLFpY0BhITLw2R1/TrpZipm60XtvssgsqX6UZN/O/ri73wCQB1/tbair1rmGnqb/lalU/VjPhWfP402X2qr7jRgzxh5KSOvCgWUJqKnPSVsOtXrYGfU349ze90vUtM2yHJe8tNXzci4/ikSDx3c1bERIk0MyaoFoTRpJMEwi2aPSxa6wUN5hYLpkzWQDQlynLWgXGnZDYMw2gAd3rjrnd/k//++qW8Yf6t7P5fk3nbabsBeGXDWB5/4VSO+Ph3mfWBaS322DBqmHhpiGZFXzzmcs0Wddzx+NCQi32rgy+6End5if/vJEi9/Xfz+NqS0SiACu6ImvL9+9O1S0c4kmcy32rRGS+0WXB6i6IXmbVdenuZnHyZhTS9kZh84RoFBjKLVIYqM9G1qegCpcvN8zHtSj3xEm2kRVpKEGo6fXxvacKnpEAL7tDITmJNG9d/x6P4HEk1UWqtXqFNDQRMFOmrzTaWX9c4KhiGZMTZaxiGUYajD1/CvavezvYt3ehPj+T0o3fTMaIHHd7NK+vHsmbcX3D0X32Z/VrtqGF4MPHSa5r57r3RckuWWddFX4KStnOSpUVM2Rm84sw5eqwW4XEad3VORV5zrmxEoqF4lWMzuwhisc1cP3vhR1E5UBMI2Xq78jDfz0hoJnK4XbWK6p53rlMG47VitDb7V3rygyLxV3SS60ahPILRXVslIbid7lyZbBL1Lyy6/0ObYWVjYYSzSGWi/HQs0S1voP8dMgyjHdnx6nbuvexPeNPCnSyYcQsjJ+5AFXZvHc5jL53H6w+6gf3+x3oTLcagxoZ5Dnp8LcIGuou4r9lz6U33k3yb6chKUepGggtKOHNTibRlm3KqQW8g8ZxnxX9m6p2pqtZWh8+UV8+mkLnk8TofTSA2nbGZ38jO0yTpeqgSrMfi+VdFoH4vJ/fkhIVWSZ7LhC91fhqJe0v9dZecez+xxgyhaHbvEkdcENWbMNIitZnDPJcz2B+v6RJ9ov1OlEidAhzhUrMpsRIz6WIYRh67du5i8SUf5OFLj6XnukN58xn3BP/OdPTw6FML2Hz0rez7sc28+nIHu7aMbLW7hlEXi7z0ir40FXLepze79dEre77OW+WK8eVw39L7rLp567y0T3pZpyHfm6rX2txJ6dUfjcK8cxUXmxfValTAeNRj+u7LCpi8eExBNKfApqTSpQMEudc9EhdONKYUQn6EJmUz7gqWSUg2muJEQcQ1FqfXuIuahhEjX13T6isatC+uEnIcVlWqYeUrlURWx6ZJF8MwkvT09PDLr36TA1/4BfOOW8VZp+9BBLZvHsXTKw5j165O5sx+lldem8Gs/edw9xcvtOmNjbbBxEtp6sUOemmnbvYGOw/1uR3TuIFajoIGv2RrUr+k8iqlUBA0RB3R0oDR9AxaRVkTsqEZl7xO3riIVGu4MJtQapHKeoIlSuMWnVtuKoqS29FRUvtzzr1PminJgfYZ33z+xSLGXZ8lWpFF42hZJRrD4jggNROOH9F9J6HNbCQs6E4nmXFLqJp+MQyDnp4ebvvm1cx44d+ZdfRznHl4FZkDu7fuw0trJrDlyL/h8PM/xtgwvU1vbLQrJl4GnMzr38byBZmdfXVa8P2I9w20s6fiOVpPZOTZrEeeMCpqWPvxvQEvbmgXNrzTjWpfPs2xWVLEuHeB+7cRQSeewqIGsiQTJlN5br+8LnFpUQBOZMX57vNRUzsVR0gV5MO1T/JcZRYRde05+9NlB2ZTUcpo8cjwqERjWKhJGonTeGvoFVbukchGLboT9W2zRSoNY2/BN73xlslnMH/P1YwZv5O3TNuGzFCqPcK6Px5A5xv/noPe8F5GiXBAypZNb2y0KyZeCukHNdCnV6Q5eZsRJogp222s1kxOtSFTlpKRDNe6O34lr+GW72O+R2WtlLWbsNdIK7HOqcwTWN5EZSmKYtQtIqkCfF2qGhFE6eO1+ELyZ5D+SXi7GHq6omW6lFWy/sbC0CNwMvdsuEOjfM65VAQkvShlOrNbVrjtDJxRDbuJRSImLEgc4eNYIZZC6fpE6cO+jiLJiTEMwxiauNMbb1tzIEfxH5x4zL1I5XdIB1RfE/6w6lBGnPwpDn7rhczwLU5lGEMAEy+FlIkbNGoyp0Vb9Nq4rs28LO775v4nt0tPyoP0Gchr4zd6tvPK8Pnjx33b7f9WyYuSNOBbRNzhKGw050dF6hcUX+lw3EXGZlFUI2dHdOckjvei8onZ3cI8Ws3emYl7IuVv+tq6dmMRU4WqJNOloy0Jo5KyGwUyUqJIq9X4X0r3HnfjKHG9wkS16I5bEedEOF3DErON4Qj+0Gitnpq0GXZ3i6+5YRhDlpc3beaYOfezdtUBHDX+10yY8RJSgZ49HWh3B4+/9EGO/tS/ckSl7ILUhtG+mHjpM2UjFRFSuNlnGnWn1+VUqRL8I5n3bqeeIHHffLuNv2a6X3b4SPJ4cVOwrM3SaLYh3leqVZBoxfcGozFF162qxVNBN4KEIgYhs/BjQxopdUFimx4hk0if2nCPJ0SfEitNkfQ1kthKRZNdv9IRyWhwPqLxlMjB/rBjWeImCNIkBulrEP2piVKvvDQMY4jwwC9+yfqbfsQREx/nkHlr6BjTzaHHrOG1ncN4cd0E1m0/iiM+/kNG/HoWx1z23Va7axgDxqCJKYrIdBG5S0RWiMjjIvLpcP9EEbldRFaGfyeE+0VE/kVEVonIchE5tv+91NSnv03mlZPp8JJvMxfJ+ZQnypEuKuqFn+6JXxSRUc/35LDl4I20NNC/P92QjG061Y0ao5pIVY74NIvfZlnf3O3caZF7IxhCf5RAdGQiKAlRU1yAG1GIfNT06XJviLIuRj5qbYppryc57rniNz0Gxncus66J83+nCuE1DWMgyXsz5zYJzlHtRpDwBKtoZrHKyL/gr4Td0urcOAkxpmjmF2I0i7znjifdBWGalSJygbP/OBF5NHw+/YuE08nVsysix4tIt4j8af/W0BiMdL/2Gjdf8R3u+vAbeeWfpnDszndz9ttuZvbxz7BndyfVbuGhRxcw/MLNHPi5tRz3tVtZ8p3LbXpjY69j0IgXoBv4H6o6F1gAfFxE5gKfB+5Q1dnAHeE2wJnA7PBzCfC9gXd5oBoOUWspLTBKtGhzXeyjAJNs7qRFvxgqlEg5DcK0zb5GJ3yN2jyTZc54nuCoO8tWlN+TLrbZuKaMy/HZzIiY2tG6Nn2auKFz6QimhHhNGa1qEDmq51JCcqeNOnnTPqbNRqu3pO3EWkJq+WIRo2GEx3fdIZxhrApUSQ7mT4aJXN9UJewS5nycYEwtxuN/XWA0lbznToyITAS+ApwInAB8xREj3wMupvaMWlTProh0AN8AbuuPChmt5Z7LFrHtu5Po/sm+bPvuJO65LLgl1jzxDDdcdAmr/voI9P9MZNGML3LaWx9k1KSt7N46nOVPnUz1rMcZc+lLPPDwqcyb+TC/ufyjbNv0Yjy98bKnu1pcO8MYWAaNeFHV9ar6UPh9K/AEMBU4F/hRmOxHwDvD7+cCP9aA+4DxIjJlgN3uBb1pZKRjHM1sqPTWpuQ2UnsRKyoopWYzaiuWtZNXIzfKETXma+/fk9bLnhk3IpEvEBoPiiWiHH0krl2uvWTzOp03nVKdA4nGfMGNIUX1cI9LaoFKx2biKvluLM++6PokT36d31SiklmDkr45o1RRlMUVQvFXN8aTLigYvB91KYvFnmcNmNqSmdSP2Bi9Ie+54/I24HZV3ayqLwO3A4vC59BYVb1PVRX4McnnVp7dTwI/BzY2tSZGy4kG2i9Zew47zniGe5edRNe837Pr2vHsf+8xnLfwJxxyzFoQZf3q/Vkz+gqGfXAz+35sM8d89XaGjZ8JBLODLX3iBLqmLWbEbTPomrbYpjc29lO4VN8AACAASURBVEoG5ZgXEZkJHAPcDxygquvDQxsgnu1vKrDGybY23Lfe2YeIXEIQmYHOZoZWe9tYqNP/pXQZJVqzkvlSh961kBuMBWXS1qtlppnXSNXL2AwFRyWn/r6Ge719jS6kGecvcLzXi1SKdzNlTzzfktt50ZwompLnY+K8SB17JAVMZFOrQEcqT95PyckfJ8lUHqCa+xNxp212hUfwXbMXPNRBVanW8nhulNhuLEo0ufClkyeIxChVrcbjjCRz8qKIkUVemkzec8cl7xk0Nfye3p9rV0SmAucBbwKOb0YFjMHD0Ycv4cEH5jJn5h3Iz47izSfvorJPFdUedm0ZwVMvnMJhH/gq+87sYnodWza9sWEMQvEiIqMJ3j5dpqqvivNGUVVVpLGntKpeA1wDICPG9/EJ72stNSpifC2aorRFCRoRQs0nK1ryT2/0bjkd6nPbYv6zq6ltfyM/r0FcNFg93RCOxijUE3GlpaCn7Lq+1LvkZX1KKz5JbsZJJCeRz67Hp7zrlmfI51ae72kR4/MybSNXAEo2X+3uyq68klm0MlVAfF8m7heN/2iUx+32laqsxM5q7f4DyIyPCURMIk3ofU1kDdCPfgghIr8GDvQcutzd6M1zpwwpu98GPqeqVakTRXNfyB188MHNdstoAo/8+j5W/eQaTppxJ+MmbWPEhJ2csvBhAKrdwprV09m1/1s4fPT3GX3pS7y+xf4aRrsxqMSLiAwjEC4/UdVfhLtfEJEpqro+DMdHIfV1kHhJMS3c1x+eNd9WQyZLtmib4mbjRnxrTOTJPLexWdjgLhkFKiNMypy9MutkJF7a17GXPl7Pz4zNnEJ8EsO3XUZmJ23lNH9Tt6tPUNQjGtNTcbNJ8nuRyYR4wLkzFDqcyibOd4F/PoGjjhaJZz6L0vg61+ae4Jpi0VDBuGu7+LO6d4F7glOiKHU0UETZNEY5VPWMvGMikvfccVkHvNHZngbcHe6fltofPZvy7HYB14fCZRJwloh0q+qNHr/jF3JdXV124QcBD9x4B2t/8QNOmPl7Jk17mTkVZd5bXgOCqHH1tQrP/vFg9j3jixz0hvdzqFS4+4sXcvC0kYxuse+G0Y4MmjEv4Wws3weeUNV/dg4tBi4Iv18A3OTs/1A469gCYIsTjm+mZ4PIZPo5Va19HfAXr7UCg4lek/9FTei0x24zLTtEQp2c/v+i1EVv/NOioUx0QOukSje6fWVkbJboOha1a/Nspt/3esshJQrdiEHKP9++YL+nILeujgGR4rKKxsy442Rw8zsGJPWB7LmMyna7ESaGsqTr69gmZVNwhFWldm+69VFXbYlnHr1EWCV1ksAZiO+L84QD+1OKVSRlz82nisaDq8rPwGeUJu+543Ir8FYRmRAO1H8rcGv4HHpVRBaEz7UPkXxuZeyq6iGqOlNVZwI3AJf6hIsxsPgG2ff09PDbHy/mxj97L89dfhh7rhvL/JfO49xF/8mUOS/QOWoPGzdOYMW6RWw75iY6PrCVB5adwvSp61l5yx1sf3GzDbQ3jD4ymCIvpwB/BjwqIsvCfV8ErgT+Q0QuAlYD7wmP/RI4C1gF7AA+0j9u9bIfT5G9dAsuIrOrgTIzr+R766+/+1CZXL5S041kX7qqkzr3hXYvfEm/QC+fM7/8PKHiLaPEqXQb3HXFWJ1bJn4HH41DSTue444rHtMhC019yUQ0CvzOKy++B3JOZvTzaORe8A5p8aX3CBuoRYeiUyA4kwVAQrBI2B8w2uNen6DrYbRfUmNYNMhLbTvOKuLYq0Vu3LExPtkT9CZr1r9NhoP3uSMiXcDHVPWjqrpZRL4OPBjm+Zqqbg6/Xwr8EBgJ/Cr85No1Bh/RIPv7nj2HnTtOYdLKazjhpHup/mQcC6pCx5nBk6vaI2xcsx+vjDyF2e/7a/Y58GimiyS6hZz67Vu457JFdB2+mBG3/YyuaSNtoL1h9AHRZkxj1CbIiPHKtDeWTV1uv1Tyk2bIaU6n88cr5NYz3EFmdb+MzbCJVhlW0sXOEuWGSTuG5QqE2ot0ZZ+OWgJPezr+u2+nG3nJpou3RelMLSLs87iCMnxYthwfHZXgU0vk/11UgOHDpNC/iM6Cy1PLpwzrEDo6ao1mf7rgS2dn/lTR7u59hkFHpVKzmSdeBIZ1VpI70unCjZHDQaQj6afH50oFOjv8Trq+VARGjiA7GD31HaCzQ+koWDg6Sr9Px2uMGEEiIuT66W4P7+xGKv7uXOLkGTF8V3AfVdJ1CMWG1ETMiOHdsfhI2JNQlAhAlX1HbWfYMDdvGD+T2j6AjkqVfYbvrt3D0bGoPhJJf2XsrN8tVVV7lbsX0dXVpUuWLGm1G0OGnu5ubv+Xa9n+8N28/Q23sPXF0YyfugUFOoYFvzVV2Pjcfrwy9gxmv/czdO53pBMlNQyjWYhI7jNtMEVe2oR0o7bRSEXeq2bf4T5EfRI2++8f1qh7Dbheavx/VwskGqd4GotO7vRA7N706W/8SpUvI/eS9YK4nu5A74K0jaCOzfp5PcLFl6KEn+UdrEU9VAMh4xWidQSb271O4/8Ff6K8iV9TogKauReT26EcqUZiJZUgnplBEdXEsZpYqqZ2RN3WgqhKPHg/cW41KQ4TIk/DSu89L58Mowz/50//gjnbn2LciN1s2TWcJ/c9gvNvyC4Dt3vnLu76/g2Mefhqxo3axr4jX2PiAa9wxoFbkTODNBNGvUy1p8JLG8bz6sR3cOCbL2Lf+07joC88x0EDXC/DMGqYeOkVfWm19aZbltvsaiBv3aR9a32mc9dqJuF39SYWJ320rQQDG91IRVIgpHKVOI2+w8VnUqjXGPTZjN595zW869pI7YjHYjR4uYsKikRMRbIisiyqJGZQi9dNqaRs5pxCbwQoOuXhjmrY9q+UdC4TIRIyM4UlzifZ4e/RveXOIJbt2qaxqAiETPb6uPGWoK6KuuPSwBE3QcWDrmHilKe5orD2C0j+BiRVK8PYW/k/f/oXnLz/PYw79lXGjNrM1h0TmfjQJv6/8y5hwiknsevh2zn58N8zYtQeOjqqvHnidjoWhhGVqrDt5VFs3TSa9ZunMnPqMyx57h2c9nc/ZgowBbj7ixfSZYPsDaPlmHjpFX15797b1qjbeM/GOrzUDdz0oR45Lays4Kg16Xpb82QkRrzrsfi0TFFzLn1qannT0qoBP1NRjrKRCW9JUSM5b6xJHfKSxwteSjqakYxxFRWXua20Nj6j8EIXibuU0WrUi0pqgiEdHfFv+Mt3I0bZKI5HZCcEXu0+dte1iXSIazMWEk73ruhPTdao8zcSMI6kCkNRlaibmjPmxfU1caqt24phsGDyvUw4ZiMP/3Ehr6zexRFTnmLWSX/kPT3PIvJTKm+PhAq8+tIYnlszk92vjWDY69/F7PMuY3zHCAAmEIx5Of7ImwPB8pffZMlVn+XEGTcGY1VaWEfDMEy89IF+aCzUeyUf00DD2n3dXUjvumX5LPsiKz5yG6OpMiqp7d7ayrOfzFT/PNRt3GtScOWVKal9RZeqV0PTchxIRE48lNACsfmMPcX7r4r4MhQZrdQ2XT8LRYtrwxFKktoXBz80FeXwRI9qwkniA5JKL4RRQwGVat3IViRsJXHBa+IoEi3BIpVBpMWJzTgRIo9PhtGG3HPZIo4+fAkjxu1k15aRLHu6q3Aw+/o/rGXJDbey8/EHOGLMfUw5aDM7t45k+oL1IMqpR92EzAvSahWks8ozz8ymuv/xTDrxHCa+fhETK8OYWOCTDbI3jMGLiZeG6WszIacF5zVbr5lccKzXbpbP6L75rStiUg3KdJqiF/beRnKBT71BM+qhCd1wcpwpOle96lVYhOd289+B2b19EjG+PDlCKvfWp9Y+d6dDzrvn4v054iGz4n0kTHIuSKKcaFsiGZOupNb2OhGjhMmM49HkC+oM+NXM32hSlXhuELd+kRIyjDYlmtXr/tXvpOvdYYTjyBv53Sffyo4jP8qOe3/GEZOfZNvWkUyauI0DZrzI5PE7WXSgUJle+x1We4LfyLaNo9nz2jBemXQuh779o9x0xQ2ce+K3mf2lZQVe+LHV7A1jcGLipTRl4gcN2imVtahrl6el24J2TLox53UhaoRSa7DWdzX5RjkhJ0qcRrc5WO60lBcsZWymx16UtlcmQlEvSYm8yYa7ZLJlhIJ4BICnqMw1S4lWTxs+313PJUn/ItwGvU/A5Psa3rmROHBsJHyTZBlBWvfuqgkNV8AFExBI0CXMc78mz717rycFTMImUEESY8PKLLBqGM2m0WiJS7VaZe3KNay85yEWHH4/f1xxEDteWMfyvz6Hw2eup2OfbhYcfy/acx8db++J82kVXtvVyWs79mHNhun0jDuSEdPmMfm4t7PvwfN5+d8PZvOjB7Bs1DksuugvufErV3H0jl/x6tbxhVEWwzDaCxMvpWj2q/Ci1lq9vNDQK/1+I/kGOi+akG5Wpd8vp9/MlxJCdY75Gso+su3w/KhLUUM7r4yq5s+SlcinOTaLdGstayKJeL6X8VU8V8Q7Q1lajHka5b6mtCtaM5EDkkKqtN8Jo8nEeeUlsmutjvH5lqwvmrGfjo7UIiiRBKmEF1UlkCWixNMyq/dMee45kTi9xD4Fw/W1qsG9VVFsiUqjLH0RHGk73mjJp9/KxHd/g6f/61fs3LCJzl0vMbljNXNmr2brK6Po7KwyftJWxkx5lck7hnHgPj1UxnUz58RnmcOzsf1qTyDQVz83k106np7OCcw+/wuMnHYsnR37AHC4x6/xZ15FR+cned29/z8vXHwbrxu7m8mnrGPMW/61l2fMMIzBiImXQvpBDfSpi0dO5KUvr9/7jK/ZGxC8JU69PU599+UrE6coI0rqRka8OYvTN/uM1rVZQolloiUNOpqJuTiCAig1hqO+/aSYTY81ydQhZcOn4xJdytwISZqCsT+Je1HIdFOLz4U40REVVHz3tcRiKRYcztTJWg2FTSRiNLSZPt9OREhSPgUipjY+JuiiZstUGvXJExz3XLaIU799C6rKtle2suGPz7Ph6Wd4ZfVadm/bxa5NG9hv+xJe696Hbh3OCNnCwrfez/pVkxn1wmM8//enccIRG+jZ3cGCY/+bnsffzJzX7YHXJcvfnzBysrszmNlr+whefXE/ph30LJvW78eOaedx6NveT8eko/jdlz9J17TFzPqb5Q3VsTLzPYx5C4w+6Jvw6qMw9gjkqH+lMtPWAjWMoYSJl0JKvPrui0kXr/mSZea6GbXaqkDBCn8ZY72ra1FcKP2OOWo4KtkS60U2VOp38IpslhUyOSUlvsXjGerk8u3P8ze2WxB1KNrv2o4b0s6OdIQk/9o4V0Frad1OUUBiquS6jqX8SQjX8DxG0an0PaB1/a3ZjSbjUoWqJK+9101HTSWui1tZR5VUe6rBz0e8h5FI1Ej2HlEnDBTJ/GoVgt+kI0JwJw+odWMTJDvVc3xyFNGoO1lySmbDSHP04Uu4f/U7kfWr0J/O5XVj92HH5lGccPS97PnhWLp3DkP2dDBtWDeHjt9NdUoFKkplrv9fr+nzNjB93gYguAe7d3UinVVeenksI3fsZtOrByAHncCYGUdSHb4fBxyzkI7RU+gMF2GeHH4iUbXqqS0cdNahLPnyJ/s0q1dl5nvAxIphDGlMvJQmr1HfaGM/lb7Zr0y97vTDe1mtUg0FUXIR+fwuX0Vv7d3GX1Zw1O8WUz9W08hZKC6vTue9hhFqjfm8CEGjVMM1c6JITCM2CqMrmuxW1Rdc0RFv5/hQWJ6bX4K3u24UxUkSRk6cneK/X8XJEEVbSEVCXG8VqKg/Ipi8rgqizgKVQSRFEsonODEahC4TWWMRmhI6/fIbN4YUI8btpOvd32Tb949l1KTtjKxup+e1DirDqlS7K1RF2f7acF7buS9jq1t5detotusUemQkw/c8z87OaYyds4AREyYxetXf8tiaEzn+r/8n7DMBhu/HPZdfRNe0xUz9/GqA0mNMbFYvwzAaxcRLQzQjEpPKl24nZyInvgN1yi7tZmEztS7u2+fadvR+Odmtpihv/IZfSXShCdtunpKgjBrJi6Pkn8nGRFKiDewIhPTfMr5loiaQ6VrVMO651JSIyUQ2iguI2tWxTSc6k6lw/dOY8RHiBezpaKCuCZGbiVA46SQZjUnWW7NVSIVqotEs8XlQEoPm4+LToanUQpWJ+ye8JhrmEXF/DenYEYnzHI58aUjgG3s3u7aMZMlVn+X0rz4OlWFQGR4LjtGXvsg+kFh8cWyBrXsW38JxRz7Ab678h2ANlK9d1Kdoic3qZRhGI1TqJxm8iMgiEXlKRFaJyOcHtvR0h5qBosEWbaGLfahDustNxloyduLuyfXa44ridrAJcudFKMriRndc3/pCvPijuy8nipIRVTmFp7uUNYIvi2ogEHp71ZVsXl+9ve5GEQvxnIOU0aoGkaN6a9sk7LgbHkd9ftYEnNQ2JflxpyLO1L0K6d5acVZRkGr4SRSXKFwTPkrYJSyhUoIxLbEmSlcuUlIYRiHLnu7ixBk38puvfJrtm7fxm8sDwbHs6a6GbZ367VtY+sQJdE1bzIjbZtA1bbFFSwzDGDDaNvIiIh3A1cBbgLXAgyKyWFVXtNazejTazaxM/KCvuDbL+pc/SDj93riRCERRmiJ7PjFSr4Ge9xa+N7iRk6JuVaWCYungnKdbVW+Im8Va8yXZ/UhS33Jdqp07N8oR7fQNr3Lb1wU3jisgEtE4J08qKJJ1LEc0Jh0P/id5Y0VcX4jSuqGclM0oTChBtzC3UF91JZoAQGoGEgPzoz51GZVX8yY05PffMFI0u3uWRUsMw2gVbStegBOAVar6RwARuR44FxgA8dLbd/YFcYfE7rIBscI4RonWYpq+NdzzGrwKheuDFEVkfI193xv5vkRRokZy2fr72sfpfWWiBt78Bc7Xs5nNkCysr+cyL5qTbqTnCbS0qMsVoY7fUdtefXNOeFVBMn/8x2MzETZJ35tO3tq9Gc4glrpP4nopVMOuXHn3c6L+4UYcVXH74oVGVZWqVmtTOqd+bJI++YZRgAkOwzCGAu0sXqYCa5zttcCJ/VtkP7QQmm2yz/bKG8iKlvzWtftyupGS3IZimbZ7r6sfK4fmdQWsF73wUio0U8JuRjX4i2noxX1ORKOonnmiTJxjGbMJgZFNkBsZkmxZrn7PiitnfJYmz4U4ziUG6TsFBF/dyE0tpFVzPYywVFI+4kRXgg3H19qifHGhqmH3Qqmds5zJBgzDMAxjKNPO4qUUInIJcEm4uY0/3PRUK/3JYRLwYqudaJTu5GZuHXYNgC9NoC2vQQqrQ+tppf8zWlSu0SKWLl36ooisTu1ut9+Q+du/mL/9S7v5C+3jc+4zrZ3FyzpgurM9LdyXQFWvAa4ZKKd6g4gsUdXGR00OItq9Du3uP1gdBgPt7r/RXqjq5PS+drsHzd/+xfztX9rNX2hPn9O082xjDwKzReQQEdkHeB+wuMU+GYZhGIZhGIbRT7Rt5EVVu0XkE8CtBEN5r1PVx1vslmEYhmEYhmEY/UTbihcAVf0l8MtW+9EEBnW3tpK0ex3a3X+wOgwG2t1/o/1pt3vQ/O1fzN/+pd38hfb0OYFow/OvGoZhGIZhGIZhDDztPObFMAzDMAzDMIy9CBMvA4yITBeRu0RkhYg8LiKfDvdPFJHbRWRl+HdCq30tQkQ6RORhEbk53D5ERO4XkVUi8rNwEoVBi4iMF5EbRORJEXlCRE5qp2sgIn8Z3j+PichPRWTEYL8GInKdiGwUkcecfd5zLgH/EtZluYgc2zrPa+TU4R/D+2i5iPyniIx3jn0hrMNTIvK21nht7A2IyKLwPlslIp9vtT9p2vXZ127PunZ7tg32Z1m7Pbf2lmeUiZeBpxv4H6o6F1gAfFxE5gKfB+5Q1dnAHeH2YObTwBPO9jeAq1R1FvAycFFLvCrPd4BbVHUOMJ+gLm1xDURkKvApoEtV5xFMWPE+Bv81+CGwKLUv75yfCcwOP5cA3xsgH+vxQ7J1uB2Yp6qvB54GvgAQ/q7fBxwV5vmuiHQMnKvG3kJ4X11N8LuZC7w/vP8GE+367Gu3Z13bPNva5Fn2Q9rrufVD9oJnlImXAUZV16vqQ+H3rQT/sEwFzgV+FCb7EfDO1nhYHxGZBrwduDbcFuDNwA1hksHu/zjgNOD7AKq6R1VfoY2uAcFkGyNFpBMYBaxnkF8DVf0tsDm1O++cnwv8WAPuA8aLyJSB8TQfXx1U9TZVjdZsvY9gzSkI6nC9qu5W1WeAVcAJA+assTdxArBKVf+oqnuA6wnuv0FDOz772u1Z16bPtkH9LGu359be8owy8dJCRGQmcAxwP3CAqq4PD20ADmiRW2X4NvBZoBpu7we84vw41hI8lAYrhwCbgB+E3QGuFZF9aZNroKrrgG8BzxH8Q78FWEp7XYOIvHM+FVjjpGuX+lwI/Cr83q51MNqPtrrX2ujZ127PurZ6trXxs6ydn1tD4hll4qVFiMho4OfAZar6qntMgyngBuU0cCJyNrBRVZe22pc+0AkcC3xPVY8BtpMKow/yazCB4I3JIcBBwL5kw8Rtx2A+52UQkcsJusb8pNW+GMZgpV2efW36rGurZ9tQeJYNpvNZj6H0jDLx0gJEZBjBP94/UdVfhLtfiMKL4d+NrfKvDqcA54jIswRdE95M0Md2fBj2hSAkua417pViLbBWVe8Pt28g+Ae/Xa7BGcAzqrpJVV8DfkFwXdrpGkTknfN1wHQn3aCuj4h8GDgb+IDW5p9vqzoYbU1b3Gtt9uxrx2dduz3b2vVZ1nbPraH2jDLxMsCEfWa/Dzyhqv/sHFoMXBB+vwC4aaB9K4OqfkFVp6nqTIKBXneq6geAu4A/DZMNWv8BVHUDsEZEjgh3LQRW0CbXgCDEvkBERoX3U+R/21wDh7xzvhj4UDh7ywJgixOmH1SIyCKCriXnqOoO59Bi4H0iMlxEDiEYxPlAK3w0hjwPArPDWZr2Ifi3eXGLfUrQbs++dnzWteGzrV2fZW313BqSzyhVtc8AfoBTCUKMy4Fl4ecsgr60dwArgV8DE1vta4m6vBG4Ofx+KMFNvwr4v8DwVvtXx/ejgSXhdbgRmNBO1wD4KvAk8Bjwv4Hhg/0aAD8l6Nf8GsEbwovyzjkgBLMn/QF4lGA2msFah1UE/Yaj3/O/OekvD+vwFHBmq/23z9D9hM+Rp8P77fJW++Pxr22ffe30rGu3Z9tgf5a123Nrb3lGSei8YRiGYRiGYRjGoMa6jRmGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG2BiRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4Mow4iMldEPiwi00VkTKv9MQzDMIzeYs80o90x8WIY9RkGfBI4D9iWPigiM0Vkp4gsa3bBIjJSRJaJyB4RmdRs+4ZhGMZehz3TjLbGxIth1Gc68ANgFZD3luoPqnp0swtW1Z2h3eebbdswDMPYK7FnmtHWmHgxjBARuTN8I7RMRHaJyHsAVPVm4AZV/aWqvlrCzkwReVJEfigiT4vIT0TkDBG5V0RWisgJjaQzDMMwjEaxZ5oxVDHxYhghqvrm8I3QvwOLgZ87xzY0aG4W8E/AnPBzPnAq8Bngi71IZxiGYRilsWeaMVTpbLUDhjGYEJEPAWcC71LVnj6YekZVHw1tPg7coaoqIo8CM3uRzjAMwzAawp5pxlDExIthhIjIu4EPAOeq6mt9NLfb+V51tqskf3dl0xmGYRhGaeyZZgxV7EYyDEBEzgYuBc5W1V2t9scwDMMweos904yhjI15MYyAHwHTgHvDwY0XtdohwzAMw+gl9kwzhiyiqq32wTDaGhGZCdysqvP6sYxngS5VfbG/yjAMwzAMe6YZgx2LvBhG3+kBxvXngl4Ei4pVm23fMAzDMFLYM80Y1FjkxTAMwzAMwzCMtsAiL4ZhGIZhGIZhtAUmXgzDMAzDMAzDaAtMvBiGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG2BiRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4MwzAMwzAMw2gLTLwYhmEYhmEYhtEWmHgxDMMwDMMwDKMtMPFiGIZhGIZhGEZbYOLFMAzDMAzDMIy2wMSLYRiGYRiGYRhtgYkXwzAMwzAMwzDaAhMvhmEYhmEYhmG0BSZeDMMwDMMwDMNoC0y8GIZhGIZhGIbRFph4MQzDMAzDMAyjLTDxYhiGYRiGYRhGW2DixTAMwzAMwzCMtsDEi2EYhmEYhmEYbYGJF8MwDMMwDMMw2gITL4ZhGIZhGIZhtAUmXgzDMAzDMAzDaAtMvBiGYRiGYRiG0RaYeDEMwzAMwzAMoy0w8WIYhmEYhmEYRltg4sUwDMMwDMMwjLbAxIthGIZhGIZhGG1BZ6sKFpGRwC3Am1W1x3P8W8AvVfXOAXfOMJrM0qVL9+/s7LwWmIe9NDCaSxV4rLu7+6PHHXfcxlY7s7eS90wTkR8CN6vqDSJyPfAlVV3ZIjcNoynYM83oR+o+01omXoALgV/4hEvIvwL/CzDxYrQ9nZ2d1x544IFHTp48+eVKpaKt9scYOlSrVdm0adPcDRs2XAuc02p/9mLqPdMAvgd8Frh4YFwyjP7BnmlGf1HmmdZKtfwB4CYAEfmciDwqIo+IyJUAqroa2E9EDmyhj4bRLOZNnjz5VftH3mg2lUpFJ0+evIXgDajROj4A3CQB/1NEnhKRXwP7O2l+B5whIq18cWgYzcCeaUa/UOaZ1hLxIiL7AIeq6rMiciZwLnCiqs4HvukkfQg4pRU+GkaTqdg/8kZ/Ed5b1nWjRbjPNOA84AhgLvAh4OQoTrYRpwAAIABJREFUnapWgVXA/Ba4aRjNxJ5pRr9R75nWqofdJOCV8PsZwA9UdQeAqm520m0EDhpg3wzDMAyjEdxn2mnAT1W1R1WfJ9v12Z5rhmEYfaBV4mUnMKJEuhFhWsMwDMMYrJR9poE91wzDMPpES8SLqr4MdIjICOB24CMiMgpARCY6SQ8HHmuBi4YxJHn3u989c+LEifNnz559VH/Z6ejoOG7OnDlzZ82addQRRxwx9ytf+coBPT1FY5jbi6L63XzzzWPGjBlz9Jw5c+bOmTNn7sknn3w4wF/91V8dNHLkyGPWrVsXj3UYNWrUMdH35557rvPss88+dPr06fOOOuqoI08//fRZy5cvHw6wfPny4aeffvqsGTNmzJs7d+6RZ5111qFr1qyxMRODiNQz7bfAe0WkQ0SmAG9KJbfnmmE0CXum9Z12fKa1so/0bcCpqnoLsBhYIiLLgM8AiMgwYBawpHUuGsbQ4sILL3xx8eLFdadpvfnmm8e8613vmtkbO8OHD68++eSTK1atWvX4nXfe+fTtt98+7jOf+cyQ6SZTr35dXV3bnnzyyRVPPvnkit///vdPR/vHjx/ffcUVVxyQtletVjnnnHNmnXbaaVvXrFnz2OOPP/7ElVdeue75558ftmPHDnnHO94x+8///M83rV69+rEVK1Y8cemll27asGGDiZfBx23AqcB/AiuBFcCPgf+OEojIAcBOVd3QEg8NY4hhz7S+047PtFaKl6uBCwBU9UpVnauqR6vqF8PjZwM3qGp3yzw0jCHGmWeeuW3y5Ml9/k2VtTN16tTua6+99tkf/OAH+1er1b4WO+hopH7vf//7X1q8ePHEF154ocPdf/PNN4/p7OzUz372s5uifSeddNLORYsWbbvmmmsmHnvssdvOP//8LdGxs88+e+vxxx+/q+mVMfrK1cAFGvAJVT1CVd+iqmep6g1hmvOBf2+hj4YxpLBnWnNpl2day97eqepDInKXiHTkzIvfCfzTQPtlGP3NhRdeOP2xxx4b1Uyb8+bN23HdddetaabNZjF37tw9PT09rFu3rnP69OlNfRlxwgknHPHBD37wxU996lMv7d69W97whjcc/uEPf3jTpZdeunnr1q2VhQsXzr744os3XnzxxS+/9NJLHWeeeeasj3/84y9ccMEFr6xfv77z3HPPPeyyyy7bcP7552957rnnOg8++OCG/XPrB7BkyZLRc+bMmQtw7rnnbv7GN76xAWD06NE973//+1+88sorD7jqqquej/IvX7585Pz583f4bD/22GMjjz32WO8xY3BR4pkGwaD+/z2QfhlGf2PPtOZhz7RytLTrgapeV3Ds/w6kL4ZhwOtf//o5e/bsqezYsaOyZcuWzugfrL/7u79b+653vevVVvvXDnR1dW276667VvmOff7zn984f/78uV/+8pet29AQpOiZFh7/wUD5YhiGPdOawWB8plm/acMYYAbr2ySA5cuXPwlB2PcHP/jBfj//+c+f7avNFStW7NPR0cHUqVOb3gX0gQceeCr6Pnz4cHW3x4wZU3W399tvvx53e8qUKd3udm/eUEGyfo888khh2kmTJvWcd955m//xH/8xXrjwda973c4bb7xxgi/9UUcdteu3v/3t6N74ZRiGMRDYM6152DOtHLaomWEY/cbzzz/fefHFF8/4yEc+srFSGXr/3PSmfpdffvkLP/rRjyb39PQIwDve8Y6te/bskW9961uTojT333//yFtuuWX0xRdf/NLSpUtHX3/99eOiY7/61a9GP/jgg2Wn5TUMwzCahD3TsrTimTb0zrxhGLm84x3vOOTUU0+d88wzzww/4IADXn/VVVdNqp+rMTu7d++uRNMuvulNbzp84cKFr37rW996vsheO9HX+k2ZMqX7zDPPfHnPnj0CUKlUWLx48R/uvPPOsdOnT583a9asoz73uc9NnTp16mujR4/Wm266adXVV1+9/4wZM+YddthhR1199dX7H3jggTaRiWEYez32TOs77fhME1VttJ6GYTTII4888uz8+fNfbLUfxtDlkUcemTR//vyZrfbDMIyhjz3TjP6m6JlmkRfDMAzDMAzDMNoCEy+GYRiGYRiGYbQFJl4MwzAMwzAMw2gLTLwYxsBQrVar0monjKFJeG8NveWeDcMYrNgzzeg36j3TTLwYxsDw2KZNm8bZP/ZGs6lWq7Jp06ZxwGOt9sUwjL0Ge6YZ/UKZZ5otUmkYA0B3d/dHN2zYcO2GDRvmYS8NjOZSBR7r7u7+aKsdMQxj78CeaUY/UveZttdNlSwi1wFnAxtVdV4fbb0JuMrZNQd4n6re2Be7hmEYhlGGZj7TQnsHA9cC0wEFzlLVZ/tq1zAMo1nsjeLlNGAb8ONm/EPv2J0IrAKmqeqOZtk1DMMwjDz+H3v3HR5VmTZ+/HsnIRWSACZ0ktCliyigCCoiqOuCIN0C1n1/ggUbrLgC+spaVlddFxGsvIqia0MRFRcQUaqASu+9hJJCSJ/798dMxiSkZyaTcn+u61wzZ+Y559xDmWfu8zRP12kishT4X1X9TkRqAw6r04wxlUmNa+pT1R+AU7lfE5GWIrJIRNaJyHIRaVeGU98IfG1f8sYYYyqKJ+s0EWkPBKjqd65zn7E6zRhT2dS45KUQrwMTVPVC4CHg32U4x0hgnkejMsYYY0qvrHVaGyBBRD4RkfUi8pyI+HstSmOMKYMaP2Df1Sx+CfCRiHvSjCDXe0OA6QUcdkhVB+Q6RyOgE/CNd6M1xhhjClfOOi0AuAy4ANgPfAiMBd7wbtTGGFNyNT55wdn6lKCqXfO/oaqfAJ+U4BzDgU9VNdPTwRljjDGlUJ467SCwQVV3A4jIZ0BPLHkxxlQiNb7bmKomAXtEZBiAOHUp5WlGYV3GjDHG+Fg567Q1QKSIRLn2rwQ2eyFMY4wpsxqXvIjIPOBnoK2IHBSR24ExwO0ishHYBAwqxflicU4puczz0RpjjDGF82SdpqrZOMfIfC8ivwECzPZO5MYYUzY1bqpkY4wxxhhjTNVU41pejDHGGGOMMVVTlU5eROQBEdkkIr+LyDwRCfZ1TMYYY4wxxhjvqLLdxkSkCfAj0F5VU0VkPrBQVd8u7JjzzjtPY2NjKyhCY4ypOOvWrTuhqlHFlzTVhdVpxpjqqqg6rapPlRwAhIhIJhAKHC6qcGxsLGvXrq2QwIwxpiKJyD5fx2AKJiJvAn8CjqtqxwLeF+Al4FrgLDBWVX8p7rxWpxljqqui6rQq221MVQ8Bz+NcSOsIkKiq3/o2KmOMMeYcbwMDi3j/GqC1a7sLmFkBMRljTJVUZZMXEamLc/rHOKAxECYiNxVQ7i4RWSsia+Pj4ys6TGOMMTWcqv4AnCqiyCDgXXVaiXOtlUYVE50xxlQtVTZ5Aa4C9qhqvGtl+0+AS/IXUtXXVbW7qnaPiipbd/CVK1eyZcuW8kVrjDHGFKwJcCDX/kHXa8YYY/KpysnLfqCniIS6+gv3A7ySYdx7773cc8897v0XX3yRzz77zBuXMsYYYwpV3t4E//rXv3jggQe8EJkxxlSMKpu8qOoq4GPgF+A3nJ/ldW9c69133+X555937//rX//i66+/du8PGDCAWbNmufdTUlK8EYYxxpjq6RDQLNd+U9dr5yhvb4K9e/eyadOmskVpjDGVQJWebUxVnwCe8PZ12rVrl2d/586dpKamApCRkUFAQAB+fs48MCUlhYiICJ577jkeeOABsrKyWLx4MT169KBu3breDtUYY0zV8wUwXkQ+AHrgnIDmiDculPtGnDHGVEVVtuXFl0SE0NBQAAIDA/nqq6+48847AcjKymLatGlceumlAGzdupVrrrmGhQsXApCcnMzChQvJysryTfDGGGMqlIjMA34G2orIQRG5XUT+IiJ/cRVZCOwGdgKzgf/no1CNMabSq9ItL5VRREQEjz32mHu/ZcuWLFmyhA4dOgDwySefMHbsWFasWMEll1yCw+Fwt9oYY4ypflR1VDHvK3BPUWU8ZcWKFcyYMYOZM2fSrFmz4g8wxphKxpIXLwsJCeHyyy93748aNYro6Gh69eoFwNSpU1m6dCnff/89tWrV8lGUxhhjaoKMjAwOHTrEmTNnfB2KMcaUid3yr2CBgYFcc801OCdIg5iYGDp27OhOXObMmcPPP//syxCNMcZUU1dccQXr16/n/PPP93UoxhhTJpa8+Njtt9/Ov//9bwAyMzOZMmUK77zzjvt9W1jTGGOMMcYYJ0teKpFatWqxa9cupk+fDsD27dtp1KgRH374oY8jM8YYU1387W9/Y8SIEb4OwxhjysSSl0omLCyM6OhoAMLDw/nrX//KZZddBsCyZcu49957OXXqlC9DNMYYU4WFhoYSFhbm6zCMMaZMbMB+JdawYUN3KwzAb7/9xn/+8x+ee+45ANauXUtERAStW7f2VYjGGGOqmEmTJvk6BGOMKTNrealCxo8fz549ewgKCgJg4sSJeZr+t23bRmZmpq/CM8YYU4VYfWGMqYosealiAgMD3c/fffddZs6cCYDD4aBv377uxTLBuSCmMcYYk9/NN9/MwIEDfR2GMcaUms+7jYlItxIUy1TV37weTBUTGxtLbGws4ExeXnvtNRo0aADAyZMnadSoEa+++ip33nknzjXQcE/RbIwxpuSqW13Vp08fTp8+7eswjDGm1HyevADLgDVAUb+q44DYCommigoICGDw4MHufYfDweTJk+nZsycAa9asYeTIkcyfP5/u3bv7KkxjjKmqqlVdlbuV3hhjqpLKkLysUdUriyogIv+tqGCqi6ioKKZNm+beFxE6duxIixYtAPj444+ZN28ec+bMoW7dur4K0xhjqopqV1dlZ2ezfv16u6FljKlSfD7mpbjKoKRlTNEuuugivvjiC+rVqwdAYmIi+/fvJyIiAoD58+fzwQcfuLuXGWOM+UN1rKueffZZevTowf79+30dijHGlJjPkxcR2SwiU0Skpa9jqUluv/121qxZg5+f85/A7NmzmTlzpntMTGJioi/DM8aYSqU61lU33XQT8+bNo3Hjxr4OxRhjSqwydBsbBYwEvhWRk8A84ENVPezbsGqWb775hhMnTgBw5swZYmNjmTx5Mo888oiPIzPGGM8rbgC+qv6S76VqV1c1a9aMZs2a+ToMY4wpFZ+3vKjqRlWdrKotgXuB5sBKEVkiIjaisIL4+fkRHR0NOPtB33ffffTt2xeAAwcO8OSTT3Ly5ElfhmiMMZ70D9f2KrAKeB2Y7Xr+av7C1bWuUlVmzZrF22+/7etQjDGmRMSTYxxEZEhR76vqJyU8z+XAi0B7VQ3yQGgAdO/eXdeuXeup09UYb7/9NnfccQc7d+4kNjaW5ORkwsLC3F3OjDG+JyLrVNVGXpeSiHwCPJEzxbGIdASmquqNJTj2crxQV5WUp+q0a6+9FhHhyy+/tOn0jTGVQlF1mqe7jV3veowGLgFyZl65AvgJKDR5EZGLcDbLDwX2ALOAjzwcnymDsWPHMmDAABo1agTAvffey6+//ppnzIwxxlRRbXOvzaKqv4vI+YUVro511bx58wgPD7fExRhTJXg0eVHVcQAi8i3OO1FHXPuNgLcLOkZEngZGAKeAD4BLVfWgJ+My5ZeTuABcc801dO7c2Z24/P3vf+eqq66y6TaNMVXRryIyB/g/1/4Y4Nf8hapzXZUz62RCQgK7d++mW7eSrMdpjDG+4a0B+81yEheXYzj7BxckDRioqju8FIvxsOHDh7ufnzp1ihkzZuBwOOjevTuqSkpKCrVr1/ZhhMYYU2LjgP8B7nPt/wDMLKBcta+rbrrpJjZu3MjOnTsJCqrwXnDGGFMi3kpevheRb3DOxgLOu1WLCyn7ZXGVgYh0K2DmF1MJ1KtXj0OHDuFwOABYsmQJo0aN4ptvvqFr164+js4YY4qmqmki8hqwUFW3FVG0XHWViAwEXgL8gTmq+vd87zcH3gEiXWUmqerCUnyUcnvmmWdITk62xMUYU6l5ZcCCqo4HXgO6uLbXVXVCIcXfEpG6IlKvsA14wxtxGs+oXbs24eHhAERHR3PllVfSrl07wNkyYwtfGmMqKxH5M7ABWOTa7yoiXxRQtMx1lYj445zB7BqgPTBKRNrnKzYFmK+qF+CckvnfnvmEJdehQwd69uwJwKJFizh9+nRFh2CMMcXy5jovvwDJqrpYREJFpI6qJhdQLgJYBxQ1UjC+oBdFpC3wYa6XWgB/U9V/ljVoUz4dO3Zk3jxng1t2djZXXHEFF154IW+++aaPIzPGmAI9AVwMLAVQ1Q0iEldAuTLXVa7z71TV3QAi8gEwCNicq4wC4bmu5bP1Y06ePMmwYcMYPXo0s2bN8lUYxhhTIK8kL6457+8C6gEtgSY4W2L65S+rqrFlvY6rib+r65r+wCHg07Kez3iWqnLnnXe6F0HLzs7myJEjNG3a1MeRGWOMW6aqJuabaeuc5uLy1FU468ADufYPAj3ylZmKcwHMCUAYcFU5rlcu9evXZ9GiRXTo0AFwDuQPDw+32SWNMZWCt76J7gEuBZIAXP2Eo710rRz9gF2qus/L1zElFBAQwPjx4xk0aBDgXC+mdevWbNq0yceRGWOM2yYRGQ34i0hrEXkF59T+FW0U8LaqNgWuBeaKyDl1tIjcJSJrRWRtfHxhDT3ld+mllxIZGQnArbfeSr9+/awLsDE1QHx8PB9//DHJyQV1lqocvJW8pKtqRs6OiARQwJ0sDxvJHxMEmEroqquuYtKkSbRv7+zqvXnzZjIzM30clTGmhpsAdADScdYhScD9Hr7GIaBZrv2mrtdyux2YD6CqPwPBwHn5T6Sqr6tqd1XtHhUV5eEwz6WqjBgxglGjRiEiqCqLFy8mKyvL69c2xlS8L774glGjRrFx40Zfh1Io8cadFBF5FkgAbsFZMfw/YLOqPlZIeQGaquqBgt4vwfUCcfYP7qCqx/K9dxfOLmw0b978wn37rGGmMjh79iwtWrSgf//+zJ0719fhGFPlFbUasfGMstZVrht423H2EDgErAFGq+qmXGW+Bj5U1bddi2R+DzTRIirp7t2769q1a8vwScru559/5pJLLuHNN99k3LhxqKotbmlMNfPLL7/4fL2nouo0b7W8TMI5cPE34G5gIc6ZVArk+nIuz5SQ1wC/5E9cXOeu0LtUpmRCQkKYM2cO99/vvMGZnJzMmjVrfByVMaamEZEFIvJFvm2uiNwnIsG5y5a1rlLVLGA88A2wBeesYptEZLprtjOAB4E7RWQjzhagsUUlLr5y8cUX8+mnnzJ06FAA5s+fz6WXXsqRI0eKOdIYU9mdPHkSgG7duqGqrF69ulJ2F/XWVMkOVZ2tqsNU9UbX8+I+/S8iclEZLzkK6zJWpYgIf/rTn7jwwgsBeOmll+jRowe7d+/2cWTGmBpmN3AGmO3akoBkoI1rP78y1VWqulBV26hqS1X9X9drf1PVL1zPN6vqparaRVW7quq3Zf1A3uTv78/gwYPd0+MHBAQQFhZGgwYNAFi8eHGl7m5ijCnY8ePHadCgAa+99hoA8+bNo0ePHqxatcrHkZ3LW93GfuPcMS6JwFrgKVU9WcAxW4FWwD4gBed0lKqqnYu5VhiwH2ihqolFlfVFE7spmeTkZBYuXMiIESMA5xoDPXv2dA8YNcYUzbqNlY2IrFHViwp6TUQ2qWqHfO+Vqa7yhspYp3Xu3Jk6deqwYsUKAOtWZkwVcfLkSWbNmsUNN9zA+eefT1JSEp9//jnXX3+9T36LFVWneXPMSzbwvuulkUAocBTorarXF3BMTEHn8uTsYZXxi96cKyEhgSZNmnDTTTfZGgPGlJAlL2UjIluAAaq637XfHPhGVc8XkfWuRSNzl/d6XVVSlbFOO3XqFMePH6ddu3akpKRwySWXMH36dPesk8YYUxJF1WneWqTyKlXNPdLnNxH5RVW7ichNBR2gqvtEpAtwmeul5apqbc81UGRkJCtWrKB+/fqAsykzKyuLxo0b+zgyY0w19CDwo4jswtmKEgf8P1er/jv5C1tdVbR69epRr149wDnlalRUlPu7PD4+nmPHjtGxY0dfhmiMKcDmzZuJi4sjJCTE/dqZM2f47LPP6NOnD82bN/dhdHl5a8C+v4hcnLPj6h/s79otcH5FEbkPeA/nejDRwP+5FusyNVDXrl3di1vee++9dO/endTUVB9HZYypblR1IdAa5/TI9wFtVfUrVU1R1X/mL291VcnFxsayePFievfuDcCrr75K586dOXQo/yzRxhhfys7O5qKLLmLy5Ml5Xj927Bg333wzCxeWZ04tz/NWy8sdwJsiUhvnnawk4A7XnawZhRxzO9BDVVMAROQZ4GfgFS/FaKqI6dOns2HDBvfdgNTU1Dx3BowxppxaA21xrq3SxbWeybuFlLW6qowmTJhAhw4daNKkCQBTp06lSZMm3HnnnT6OrGbIPf7o888/Z9KkSXzzzTc0b96cL7/8kmeffZa5c+cSExPD4cOHycrKqlR32433OBwO3n33XeLi4vK83qJFC9avX0+nTp18FFnBvDXb2BpV7QR0BbqoamdVXe26kzW/kMME5ziZHNmu10wN16ZNG4YPHw7A0qVLiYuL45dffvFxVMaY6kBEnsCZeLwCXAE8C/y5qEOwuqpM6tevz7BhwwDnD+mffvqJ1atXu9+fO3cu+/fv91V41dqGDRto27atu+6sX78+7du3JygoyF3Gz8+PnCUl3n33XWJiYjhx4gQAp0+fJjs7+9wTm2qhVq1aDB069Jy1XUSErl274u/vX8iRvuGtlhdE5DqcqxYH52T6qjq9iEPeAlaJyKeu/cHAG96Kz1RN0dHR9OnTh7Zt2/o6FGNM9XAj0AVYr6rjRKQB8H9FlLe6ygNEhG+//Za0tDQADh06xC233MLzzz/Pgw8+SHp6Op988gkDBw6kbt26Po62alJVkpOTCQ8PJy4ujmbNmpGeng5A79693d35AP70pz/xpz/9yb0/fPhwGjVqxHnnnQfA/fffz5o1a9i0aZPNHlcNbdmyBYfDQYcOHc557+DBg8yePZvbbruNmJgC5yupcF5peRGR14ARwAScd6SGAYV+YhHxA1YC44BTrm1cQf2NTc3Wvn175s+fT1hYGFlZWQwZMoRvv62UyyEYY6qGVFV1AFkiEg4cB5oVVNDqKs8LDnauA9qkSRN27tzJzTffDMBPP/3E6NGj+emnnwDYvXs3zzzzDEePHvVZrFXNrbfeyvXXX4+qEhERwffff0+vXr1KdGyLFi249dZb3fs33ngjEyZMcCcuQ4YM4fnnn/dK3KbiPfnkk3mS19ySk5N56qmnWLduXQVHVThvtbxcoqqdReRXVZ0mIv8Avi6ssKo6RORV15SU1h/IlMixY8fYvn07p0+f9nUoxpiqa62IROJckHIdzgUrfy6ooNVV3tWyZUv38z59+rB69Wp3K/vKlSuZNGkSQ4YMoWHDhixYsIBXXnmFd999l4YNGxIfH096ejpNmjSxlgGXAQMGcOTIERwOR7m7/Vx//R8rXGRlZVGrVi33ObOzs7n33nsZN24c3bvbbO1V0eOPP17ojYF27dpx6tQpIiIiKjiqwnlrtrE01+NZEWkMZAKNijnmexEZKvatY0qoSZMmrF+/3r2w5RdffMHSpUt9G5Qxpspw1TczVDVBVV8D+gO3quq4Ig6zuqoC+Pv7c9FFFxEeHg7A6NGjOXHiBK1atQIgIyODhIQEd5eyWbNm0axZM3c3tHnz5nH33XeTs5bd1q1bK+VK4Z6UlpbG+PHj+fRTZ4/GMWPG8NBDD3l8vEJAQAAffvghDzzwAAA7d+7kvffeY/fu3QCcOHGCd999l6SkJI9e13jP+eefzxVXXFHgeyJSqRIX8F7yssB1J+s5nHen9vLHgpWFuRv4CEgXkSQRSRYR+5dvilSrVi3A2bf36aef5rHHHnNXVsYYUxR1flkszLW/V1V/LeYwq6t8pH79+u5WlaFDh7J69Wr3gPNBgwbx5ptvumei3LNnD8uXL3eXf/HFF/nzn/+Yh+H++++nZ8+e7v2XXnqJRx55xL2/YMECPvjgA/f+Tz/9xPLly93727dvZ+fOne79kydPkpiY6MmPW2p+fn6sWrWK3377rUKv27ZtW+Lj4xk8eDAACxcu5NZbb3UnM6dPn7alDiqx5ORkvvjiC/fkDAVZvXo1o0aNIiEhoQIjK4KqenTDmRBdkms/CIgowTGXejqW/NuFF16opvo6c+aMHjx4UFVVk5OTddWqVT6OyJiKA6xVL3+HVscN50KUF5WwbIXUVSXdrE4ruR07duiyZcvc+7Nnz9bJkye79ydMmKADBw5071933XWa+8+3f//+2qtXL/d+nz59tG/fvu79nj17av/+/d373bt318GDB7v3hw4dqo888oh7/5tvvtGtW7eW+3NlZ2frm2++qWfPnlVV1bS0tHKfs7wcDoeuW7dOHQ6Hqqo+/PDDWr9+fXeMpnJZsWKFAvrll18WWubbb7/VZs2a6caNGyssrqLqNI+PeVFXn2DgAtd+OpBegmP+lXOMMWURFhZGWFgYADNmzODZZ59l586dlWZ2DGNMpdQDGCMi+4AUnJPMqKp2zl/Q6qqqq1WrVu4uZwB33HFHnvdffvnlPPsffPABmZmZ7v2ZM2fm2X/66adzEloAHnroIQIDA937Y8eOdXd5A2jQoAH16tUDnDeNx4wZw6BBg5gzZw4Ab731Fv369Sv1uirr16/ntttuIzMzk7vuuivP1Me+IiJ5ptwdNGgQTZo0cbeKjR8/nmbNmvHoo4/6KkSTS9euXVm5cmWRs7heddVVlWoac8n9n89jJxV5HueAx0+0hBcoyzGl1b17d127dq03Tm0qmaSkJBYtWuReH+bUqVPuisOY6khE1qmqjZYtJREp8O6Gqu4rpLzX66qSsjru6iN8AAAgAElEQVStalJVtmzZQkBAAG3atCE+Pp7o6GiefvppJk+eTHZ2NkePHnUv5pnf8ePHWb16tXt2qKVLl9K3b98qMVGBqjJs2DDi4uJ47rnnAPjyyy/p379/pUi8TOVRVJ3mrTEvOX2CM0rRJ7gsxxhToPDwcHfisnnzZmJiYvjoo498HJUxprJxJSnNgCtdz89SdN1odZUpFxGhffv2tGnTBoCoqCh27drlbg1atmwZTZs2ZfHixQDs2rWL999/H4fDAcATTzzB6NGjOXPmDACXX355lUhcwPnZP/74Y5599lkAfv31V66//npmzZrl48hqrmXLlvHdd98VW+6dd95h4MCB+PieDeCl5EVV66iqn6rWUtVw1364p48xpiQaNmzITTfdRN++fX0dijGmkhGRJ4BHgcmul2pRxCKVVlcZb2jRooV7dfvWrVszY8YM94QCS5YsYcyYMezb52wMfOCBB1izZg21a9f2WbzllZNsderUiW+//da9pszy5ct59dVX83TRM971zDPPMGnSpGLLZWVlkZWVxdmzZysgqqJ5q9uYAGOAOFV9UkSaAY1UdbUnjykta2I3qsqjjz7KuHHjOP/8830djjEeY93GykZENuAcw/KLOtdvwbVG2TljXlzveb2uKimr02qGxMREjhw5QmxsrHtRz+pqwoQJfP7552zfvr3af9bK4tixYyQmJrpbAisLX3Qb+zfQCxjt2j8DvOqFY4wplQMHDvDOO++wcOHC4gsbY2qCDNfYFQUQkbBiyltdZSpUREQE7dq1qxE/5l9++WVWrVpFcHAw2dnZTJw4Mc+U1MbzGjRoUOkSl+J4K3npoar34FqsUlVPA4FFH1KmY4wplebNm/P7778zceJEAHbv3k1WVpaPozLG+NB8EZkFRIrIncBiYHYR5a2uMsZLRIRGjZxrmm/ZsoU5c+awenWFN2rWGGfOnOHf//43u3btKlH5e+65hyFDhng5quJ5K3nJFBF//riTFQU4vHCMMaUWFRWFiJCSkkLfvn257bbbfB2SMcZHVPV54GPgP0Bb4G+q+koRh5SprhKRgSKyTUR2ikiBHcxFZLiIbBaRTSJS3MLOxlRrHTt2ZOfOnYwaNQqAxYsXs3XrVh9HVb3s3r2be+65h/Xr15eofExMDK1bt/ZyVMXz+DovLi8DnwLRIvK/wI3AFC8cY0yZhYWFMWPGDNq3b+/rUIwxPiIiE4EPVbX46XacSl1XuZKdV4H+wEFgjYh8oaqbc5VpjXPSgEtV9bSIRJf+0xhTvURHO/8bZGdnM378eKKjo/nhhx98HFX10bFjRw4dOpRnTaKiPPLII16OqGS8kryo6nsisg7oh3PBr8GqusXTxxhTXjfddJP7+d///ndCQ0OZMGFClZl20hhTbnWAb0XkFPAh8JGqHiuscBnrqouBnaq6G0BEPgAGAZtzlbkTeNXVDQ1VPV7WD2RMdePv78/SpUtJSUkBICMjg+zsbPfCl6Zs/Pz8aNy4camPy8rKIiDAW+0fxfPKlUXkZeADVS3VIEZV3QpYm6CpcA6Hg1WrVhEWVtxYXWNMdaKq04BpItIZGAEsE5GDqnpVEceUtq5qAhzItX8Q6JGvTBsAEVkB+ANTVXVRKa5hTLXWsGFD9/OJEyeyYsUKfvzxR6u3y2HRokUcOnSI22+/vUTlVZX27dtz9dVX89JLL3k5usJ5K21aB0wRkbY4m9c/UFWbz9FUWn5+fvznP/8hMzMTEeHw4cOkpKRUir6dxpgKcRw4CpwEfNFlKwBoDVwONAV+EJFOqpqQu5CI3AXcBc4JSIypia699loaNmxoiUs5zZ07l1WrVpU4eRERRo4c6fOlJryyzov75CL1gKHASKC5qvr0l6DNiW9KatCgQaxdu5Zdu3bViOkpTdVn67yUjYj8P2A4EAV8BMzPPRbFQ9fohbMlZYBrfzKAqs7IVeY1YJWqvuXa/x6YpKprCjuv1WnGwPbt29myZQuDBg3ydShVTnZ2NgkJCdSvX9/XoZzDF+u85GgFtANiKEETu4jEiMhVruchIlKnmPKRIvKxiGwVkS2uCsKYcnv55Zd544033ImLN5N8Y4xPNQPuV9UOqjq1JIlLaesqYA3QWkTiRCQQ5w29L/KV+Qxnqwsich7ObmS7S/dRjKl5pk6dyt13382ZM2d8HUqV4+/vX6bE5cyZM+7xR77gleRFRJ4VkR3AdOB3oLuqXl/MMXfinK5yluulpji/zIvyErBIVdsBXQAb4G88IiYmhoEDBwLw2WefMXDgQE6fPu3jqIwxnqaqk1V1g4hEi0jznK2w8mWpq1Q1CxgPfIOznpqvqptEZLqI/NlV7BvgpIhsBpYAD6vqyfJ9OmOqvzlz5vD9999Tu3ZtwG42llRmZiaTJ08u9To6+/btIyIignnz5nkpsuJ5a8zLLqCXqp4oxTH34JyRZRWAqu4oaqpIEYkA+gBjXeUzgIyyBmxMYZKTkzl79qzNamJMNSQi1wMvAI1xjnuJwZlgdCjkkFLVVTlUdSGwMN9rf8v1XIGJrs0YU0KhoaF06OD87zpz5kxWrlzJnDlzqFWrlo8jq9yOHTvG888/T8uWLbn44otLfFzz5s2ZNm1aqY7xNG9NlTxLROqKyMVAcK7Xi5qcO11VM3KmqBWRAFyLgBUiDogH3hKRLjgnCbhPVX3XjmWqpZtvvpkxY8bg5+dHWloaCxYs4MYbb7TplI2pHp4CegKLVfUCEbkCuKmI8qWtq4wxFeTUqVMkJCRY/VwCTZs2JS0tjezs7FIdJyJMmeLbZRi91W3sDuAHnM3g01yPU4s5bJmI/BUIEZH+OAdOLiiifADQDZipqhcAKcA5qxaLyF0islZE1sbHx5f6sxgDztnIAF5//XWGDx/Or7/+6uOIjDEekunqnuUnIn6qugQoauKD0tZVxpgK8thjj/HJJ58QEBBAUlISp06d8nVIlZq/vz+BgYGlPi4rK4uNGzeSkeGbDk/eGrB/H3ARsE9VrwAuABKKPoRJOFtSfgPuBhaq6mNFlD8IHFTVVa79j3EmM3mo6uuq2l1Vu0dFRZXyYxiT1z333MOiRYvo0qULAHv37vVtQMaY8koQkdo4b7i9JyIv4bwZVpjS1lXGmArk7++PqjJy5Ej69etHVlaWr0OqlL744gv++te/4nA4ynRs165dWb9+vRciK563kpc0VU0DEJEg14JebYs5ZoKqzlbVYap6o6rOFpH7CiusqkeBA661ZMC52rFHp7c0Jj9/f38GDBgAwK5du2jfvj3//Oc/fRyVMaYcBgFngQeARTjHbBY1wUyp6ipjTMUTER5++GEefvhhn64EX5mtXLmSt956y92zpDT69OnDe++9R6tWrbwQWfG8ss6LiHwKjAPuB64ETgO1VPXaIo75RVW75XttvatLWGHHdAXmAIE4p5Qcp6qFTgllc+IbT8rMzOS5555j7NixNG7cmKysLPuSND5j67yUn4j8SVW/LKZMqesqb7E6zZiSWb58OaGhoVx44YW+DqVScTgcZUpeKkJRdZpXF6l0XbwvEIFzSuNzOseJyChgNNAbWJ7rrTqAQ1X7eSoW+6I33jR8+HDq16/PzJkzfR2KqYEseSm/ghKTXO9VWF1VUlanGVM8h8NBt27dCAoKYuXKlTaY30MOHz7Mxo0bueaaa7xy/qLqtIq4TdxWVV8v4v2fgCPAecA/cr2eDNioaFMlOBwO2rRpQ506xa1VZ4ypxIr6VWN1lTFVkJ+fH1999RUOh8MSFxdVZezYsYwaNcq9pl1pzZkzh6lTp5KYmFjhv30qInn5C1Bo8qKq+4B9QK8KiMUYr/Dz8+Opp55y7//000+8++67PP/88+6Fs4wxld7dhb1hdZUxVVeTJk0A54/2hx56iI4dOzJu3DgfR+U7CQkJLFu2jF69yv51duutt3Lttdf6ZA28ikheSpTmikgyf8yVHwjUAlJUNdxbgRnjLatWrWLx4sW20q8xlZyIhAIPAs1V9U4RaY2zx0CBY1+srjKm6srMzOT333+v8XVz3bp1yz1bakxMDDExMZ4JqJQqYpROUbO2uKlqHVUNd1UAIcBQ4N9ejcwYL3nggQf49ddfqVOnDtnZ2bz44oukpNj6qcZUQm8B6fzRonII58KVBbK6ypiqKzAwkAULFvD8888DcPz48TJNFWycfvzxRz799NMKv663FqlsICJviMjXqnpQRNqLyO0lPV6dPgMGeCM+YypCaGgo4JzlZOLEiXz5ZZGTGBljfKOlqj4LZAKo6llK2GPA6ipjqp7AwED8/PxISUmhT58+/OUvf/F1SBVu7ty5DB8+nNdee40HH3yQmTNnkpBQ3HKM5/rnP//JQw895IUIi+atbmNv47yblbNw13bgQ+CNwg4QkSG5dv1wrnCc5qX4jKkwl19+ORs2bKBz584AbNiwgbZt2/qkn6gx5hwZIhKCqyuYiLTE2RJTIKurjKkeQkND+ctf/kK3bgVOMFgtHTp0iC+//JLnnnuOXbt28dFHHxESEkJqaipTpkzhk08+oW/fviU+3wsvvOCTiYq8lbycp6rzRWQygKpmiUh2Mcfk7l6WBezFuXiYMVVely5dAEhJSWHAgAFceeWVzJs3z8dRGWOAJ3AuTtlMRN4DLgXGFlHe6ipjqgER4f7773fvv/fee7Rr165KrgWTnZ1NamoqZ8+ezbMlJiaybds2fv/9d5YtW8bmzc613Nu2bcuUKVMYNmwYnTp1Yt26ddx8880MGDCA9957j6FDh5bous2bN/fmxyqUt5KXFBGpzx93snoCiUUdoKo1d9oHU2OEhYXx3nvv0ahRIwCSkpLw9/cnLCzMx5EZUzOp6nci8gvQE2d3sftU9UQR5a2uMj7jcDhIT08nIyMDf39/atWqRa1atSrtQoO5FTRIvixTF+f8GaSlpbkfz549S0pKinsraD81NRWHw4HD4UBV82yZmZm8//771K9fnwEDBuQpU5D8cefeL+55SV/LzMzMk4gUlJzkbBkZ5yyjmEd4eDg9evRg3LhxDBw4kA4dOuS5Zvfu3fnxxx/585//zPDhw3n//fcZMWJEkefMMXv2bCIjIxk2bFiJynuCVxapFJFuwCtAR+B3IAq4UVXPmQtfRF7hj5lbzqGq93oqLlvQy1Q2jz76KHPnzmXbtm22RowpF1uksmxE5Abgv6qa6NqPBC53jWXJXa7C6qqSKmudlpqaSnBwMDt27GDt2rUcOHCAgwcPkpSU5P6hd/bs2Tw/9PI/z//jL/cPvcLeczgcZGVlkZ2d7X7M/RukoN8j+V8ryW+Wwn48FvVeSct54hwlLZedne1OVNLT00lPTycrK4uCBAQEUKtWLQIDAwkMDKRWrVoEBwcTERFBeHg4ERER7i0yMpLIyEgiIiIICgoiJSWFpKQkTpw4QXx8PMePH3dvJ06ccP8wLurvori/x+L4+fkhIgQEBOTZchKznM+flpZW6J9BcYKCgvDz83NfK2fL2VdVdwyqmqdsYZ+7qM9e0PPSvBYYGEhISAihoaF5ttK8VqdOHdq0aUPjxo3zJEX9+/dnwoQJ57SwpKSkcM011/DTTz/x0UcfccMNNxT753rRRRfRtGlTjw/cr/BFKlX1FxHpC7TFeSdrm6pmFlLcsglTYw0ePJj69eu7E5fly5fTo0cPAgMDfRyZMTXGE6rqrnVVNUFEngA+y1euWtRVo0eP5qOPPqJ169Zs2bLF/XpERAR169YlNDSUsLAwgoODCQgIcP+4y/kRl/+HX0EbUODr/v7++Pv7ExAQ4H6ev8WgoDvxRf3Yz6+oH9Flec9X5cD5gz4oKIjAwECCgoLybIGBgTgcDjIyMsjMzCzwMTU1laSkJBITE9m3bx+JiYnuraAZtoKCgoiOjiY6OpqoqCjat2/PeeedR3BwsLtMeVoc8j8vKLnNSWyzsrLIzMx0J7k5nzs4OLjA52FhYe4t599w7i0kJKTErVOqynXXXYfD4eDrr7+udgtbJiUloapkZ587miMsLIyvvvqKq6++mmHDhvHiiy8yfvz4Iv8MvvvuOyIiIgp8L+eGhad/03gleRERf+BaINZ1jatdWe0L+cuq6jv5jq3tev2MN2IzpjLp1auXe5Gow4cP069fPyZOnMjf//53H0dmTI1R0C+ac+rG6lJXdenShXnz5nH27FlmzpxJ7969iY2NtcV0axCHw8GZM2dITEwkPT2d2rVrU7t2bcLCwqrdD/WyEBFGjhxJRkZGtfzzqF+/PsuWLSv0/Tp16vDtt98yevRo7r33XhYsWMBf//pX+vTpU2ACGBkZSXp6Ojt27GDz5s3ubdu2bezYsYN//vOf3HXXXR79DN4a87IA5+wrvwElmkBbRDoCc4F6zl2JB25R1U1eitGYSqVRo0YsWLCADh06ALB9+3bWrFnDyJEj8ff393F0xlRba0XkBeBV1/49wLrCClf1uur+++/nvPPO48Ybbyz0bqmp3vz8/AgPDyc83NZVLcwtt9zifr506VK2bNnCX/7yl2qZzBSkTp06fP7558yaNYtJkyZxxRVX0LhxYy644AJiY2MBOHPmDIcOHWLfvn3s3LnT3XIoIsTFxdGuXTv69etHp06dPB6ft8a8/KqqnUt5zE/AY6q6xLV/OfC0ql7iqbhszIupSh599FFeffVV9uzZQ1RUlK/DMZWcjXkpGxEJAx4HrnK99B3wlKoWuKpsRdRVJWV1mjHeN3bsWFatWsUvv/xSLZY4ePTRR9m7dy8ffvhhicqfPXuWzz//nM8//5wtW7awf/9+/Pz8CA0NpWnTpjRt2pQVK1Zw4YUX8uSTT3psKYgKH/MCfC0iV6vqt6U4JiynMgBQ1aWuSsWYGmnGjBncfPPN7sTlkUceoV+/fgwYYOvhGeMpriRlUikOKVNdJSIDgZcAf2COqhbYN1REhgIfAxepqmUmxvjYm2++yfHjxwkJCSErK4vDhw/7bIpgT4iMjKR+/folLh8aGsqoUaMYNWpUoWVyJjuoKN5KXlYCn4qIH85ViwXnYsRFtVHuFpHHcTbHA9wE7PZSfMZUen5+fnTs2BGAxMREPvnkEyIjI93JS0V/WRhTHYlIFPAI0AFwj0xW1SsLOaTUdZVrHOirQH/gILBGRL5Q1c35ytUB7gNWleGjGGO8wM/Pj4YNGwLw5JNP8vLLL/P777/TpEkTH0dWNpMnT/b4OSv6t4i3JgZ/AegFhKpquKrWKSZxAbgN55TKn7i281yvGVPjRUREsGXLFiZOnAjAf//7X/r27cv+/ft9HJkxVd57wFYgDpiGc9HJNUWUL0tddTGwU1V3q2oG8AEFL2z5JPAMzjGjxphKZuzYsUyePLnKJi7ekpaWxrXXXsusWbMq5HreSl4OAL9rKQbUqOppVb1XVbsBFwF/U9XTXorPmConZ95+cE51mJ6eTnR0NOAcOGeMKZP6qvoGkKmqy1T1NqCwVpey1lVNcNaLOQ66XnNzrY/WTFW/KtOnMMZ4XVxcHI888ggAe/bsYcSIEZw4UeiatpXOihUriIuLw9Nj5YKDg3E4HBU2uZC3kpfdwFIRmSwiE3O2og4QkfdFJNzVd/g3YLOIPOyl+Iyp0gYPHszKlSvdXxiXXXYZ995b4WvkGVMd5KxBdkRErhORC3DOJFYgb9RVri7WLwAPlqDsXSKyVkTWxsfHl+eyxphy2LBhA8uWLSMxMdHXoZRYSEgIvXr1cneD86RFixZxxx13ePy8BfFW8rIH+B4IBOrk2orSXlWTgMHA1zib8G/2UnzGVHk5fUyzsrIYMWIEvXv3Bpyr5y5durRMqxwbUwM9JSIROBOHh4A5wANFlC9LXXUIaJZrv6nrtRx1gI44b/rtBXoCX4jIOTPtqOrrqtpdVbvbLITG+M4NN9zArl27aNmyJeBs1ajs9W63bt14//33adq0qdeukZlZ2Jr0nuOVAfuqOq0Mh9USkVo4K4R/qWqmiFTufwXGVAKBgYFMmvTHZEkfffQRY8aMYcmSJVx++eW+C8yYKkBVv3Q9TQSuKMEhZamr1gCtRSQOZ9IyEhidK4ZEnGNnABCRpcBDNtuYMZVbWJhzosHvvvuOq6++mnnz5jFy5EgfR1W4jIwMj692nyMzM5OOHTsyfPhwnnzySa9cI4dHW15E5F+uxwUi8kX+rZjDZ+EcKBkG/CAiMUCSJ+MzpiYYMmQI7733Hn379gVg3rx5vP/++5X+jpAxviAiLVx11gkROS4in4tIiyIOKXVdpapZwHjgG2ALMF9VN4nIdBH5s2c+iTHGV6688kpef/11hg4d6utQCuVwOGjQoIHXEotatWoxaNAgunbt6pXz5+bRRSpFJElVw0Wkb0Hvq+qyUp4vwPWl7xG2oJepiQYMGEB6ejpLly4FbIrl6soWqSwbEVmJcxrjea6XRgITVLVHKc7h0bqqpKxOM6bySU5O5pZbbuHpp5/m/PPP93U4bqmpqcyYMYPLLruM/v37+zqcYhVVp3l6zMsucCYpBW3FBFlfRF4WkV9EZJ2IvAREeDg+Y2qcr7/+mo8++ghwzlLWqVMnvvrKJjQyxiVUVeeqapZr+z9yrfeSn9VVxpii7N+/nzVr1lS6pQxCQkKYPn261xOXlJQUjh496tVreHrMS1RRs4qp6gtFHPsB8AOQ0+Y2BvgQuKqoC7oGNyYD2UCW3Xk0Ji8/Pz9yBvbGx8cTFRVFgwYNADh9+jQiQmRkpC9DNMaXvhaRSTjrIAVGAAtFpB6Aqp7KV75MdZUxpmbo0KEDO3bsICQkBHDWs3Xr1vVxVHDo0CEaNmzo1emMHQ4HLVu2ZODAgbz99tteu46nkxd/oDZQlj4pjVQ1d0e8p0RkRAmPvUJVq85E28b4SMuWLVmyZIl7f8aMGcyePZu9e/cSEWE3j02NNNz1eJfrMaf+Gokzmck//qU8dZUxpgbISVxWrFjBtddey8cff+zzrlrXXXcdzZo1Y8GCBV67hp+fH8899xytWrXy2jXA88nLEVWdXsZjvxWRkcB81/6NOAc3GmO8ZMyYMTRr1syduLz//vv07t2b5s2b+zgyY7xLRC4CDqhqnGv/VpytKXuBqQW0uOSwusoYUyIdOnRg6NChXHDBBb4OhcmTJ1OnTnGrlpTfzTd7f5UTTw/YX6+qpfobEpFknHe3BOfsLQ7XW37AGVUNL+b4PcBp1zlmqerrhZW1wY3GFC4xMZEmTZowbtw4XnnlFcAG91clNmC/dETkF+AqVT0lIn1wdgebAHQFzlfVG/OVL1dd5Q1WpxlTdTgcDvbu3UuLFkVNZlg97Nixg02bNjF48OAyn6MiB+z3K+0BqlpHVcNdj36qGuDa/EpYGfRW1W7ANcA9rkrIzVYjNqZkIiIi2LJlC4899hjgXD24Xbt2rFu3zseRGeMV/rlaV0YAr6vqf1T1ceCcPg8eqKuMMTXYlClT6N69O4cPH67wa//4449eH0Sf2zPPPMPYsWO9tmClR7uNFdHMXiIiUhdoTa6ZXlT1h2Kuecj1eFxEPgUuxjmYMuf914HXwXmXqjzxGVPdNWv2xyLg6enpNG3alNjYWAB++uknDhw4wNChQwkI8Mr6tsZUJP9cUxz3448xL1BM3ViWusoYU7PdeeedREVF0ahRowq9rsPhYNiwYVx22WXMnz+/+AM8YMqUKUybNo1atWp55fyV5heIiNwB3Ac0BTYAPYGfgSuLOCYM8FPVZNfzq4GyjrkxxuTSo0cPvv/+e/f+nDlzWLRokXsRrpMnT1KvXj3rVmaqqnnAMhE5AaQCywFEpBWQWNhBZamrjDEmLi6OBx54AHDWn5GRkV6d+SuHiLBo0aIKratzbnp6i6e7jZXHfcBFwD5VvQK4AEgo5pgGwI8ishFYDXylqou8G6YxNdPs2bNZvnw5AQEBqCpXXHFFhQzMM8YbVPV/gQeBt3F2P85pmffDOfalMGWpq4wxBoDjx4/TpUsXnnrqqQq5nojQpUsXOnfuXCHXy7FlyxZuvfVWTp8+7fFzV6bkJU1V0wBEJEhVtwJtizpAVXerahfX1sFVGRljvMDf35+WLVsCzmboe+65hxtvdI5pzsjIYPTo0axatcqXIRpTKqq6UlU/VdWUXK9tV9Vfijis1HWVMcbkiIqK4vbbb+f666/3+rUcDgePP/44W7Zs8fq18ktNTWXPnj1eGWtTabqNAQdFJBL4DPhORE4D+3wckzGmAP7+/tx9993u/R07drBkyRJuueUWwNkkfvDgQbp06eKrEI3xFqurjDFlJiJMmzbNve/NWT137NjBc889R/v27Tn//PO9co3CdOvWjR9+8M5QwEqTvKjqDa6nU0VkCRABWBcwY6qADh06cODAAfcX8FtvvcXDDz/Mrl27aNGiBadPn6Z27dpeG7xnTEWxusoY4ylTp07l9OnTvPTSS145f9u2bTlw4AC1a9f2yvl9pdIkL7mp6jJfx2CMKZ3cM5CNGzeOpk2buueznzRpEl999ZU7wdmxYwdRUVFERkb6Klxjys3qKmNMeSQkJJCcnIzD4cDPz7MjOdLT0wkKCiIqKsqj560MKmXyYoyp2urXr8/IkSPd+0OGDKFr167ulpk77riD1NRUVq9eDcDSpUuJiYkhLi7OJ/EaY4wxFe2FF17weNICzq5oQ4YMoWHDhrzxxhseP7+vWfJijPG6AQMG5Nl/6qmnSE1NBZxfsiNHjqR///7MnTsXgDfffJMePXrQoUOHCo/VGGOMqQg5icvevXtZv349N9xwQzFHlIzD4aBXr17UrVvXI+erbCx5McZUuMsuuyzP/uLFi91f4klJSdxxxx1Mnz6dDh06kJmZyd/+9jdGjx5Np06dfBGuMcYY4zWPPvooS5cuZeDAgYSEhJT7fP7+/kyZMsUDkVVOlrwU4x//+AevvvoqDRs2pEGDBkU+hoaG+jpcn0hLS+PAgQPs27eP/R5WTnAAABLcSURBVPv3k5CQQHp6untLS0sr9nlB72VkZBAcHExkZCR169YlMjLynK2g13NeCw4OtgUUXTIyMkhMTCQpKYnExET3Vth+amoqQUFBhISEEBwcTEhISJmfh4eHF/llLCJ07NjRvR8eHs7hw4fdycyOHTv4xz/+wQUXXECnTp3Yv38/jz32GI8++mie46oqh8NBdnY2Z8+e5ciRIwQHB3t9gS9jjDGVxwsvvIDD4Sh34pKdnc3dd9/NXXfdxcUXX+yh6CofS16K0aJFC3r16sWxY8fYsWMHP/74IydOnCiwbO3atYtNcmJiYmjQoEGV+VGtqiQkJLB//3727dvn3nLvHzt2rNDja9WqRXBwMEFBQQQFBRX4vG7dunlez3kvMDCQtLQ0Tp8+TUJCAgkJCRw6dMj9PKfbUWECAwPzJDRxcXG0bduWdu3a0bZtW9q0aUNYWJin/8gqTEpKCjt37mT79u1s376d3bt3k5CQUGAykpaWVuz5goODiYiIICIigpCQEHcSmZqaSmpqqjuhLIvo6GhiY2ML3fJ/YTds2ND9vH379iQmJrr/z+zdu5fvvvuOBx98EID//ve/TJs2jbfeeosWLVp4ZeBjYRwOBwcOHCA4OJgGDRqQkZHB/Pnz6dKlC+effz579+7l8ccfp1u3bjRu3JidO3cya9Ys2rVrR0hICPv37+f3338nICCArKwsAG655RbeeeedConfGGOM7zVp0sT9PCEhocyT2Rw9epTvvvuOnj17VuvkRf5YVLj66969u65du7bc58nMzCQ+Pp6jR49y7NixIh8LWlk0KiqKLl265NnatWtHYGBguWMrLVXl6NGj7N27t8DEZN++fSQnJ+c5JigoiObNmxMTE0NMTMw5z+vVq+dOPrz5IzItLY3ExER3MpOQkJAn0cn92qlTp9i1axd79+4l97/55s2buxOanKSmXbt2NG7cuFIkmFlZWezbt49t27a5k5Tt27ezbds2Dh48mKdso0aNqFevHhEREYSHh7sTkZLul+TfX3Z2NmlpaeckNUU9P336NPv27WPv3r3uf2f5k6AGDRoUmtjExMSck9zk/B2KCF9//TXTp0/n22+/pU6dOrz88su8+OKLbNiwgYiICE6dOkXt2rXL/P9rw4YNhIaG0qZNG1SVMWPG0L9/f6677jrWrl3LddddR48ePYiNjeXo0aMsW7aM0NBQUlNTKej7VUSoV68esbGx1K1bl/j4eLp27Urnzp0577zz6NixI926dSt1nCKyTlW7l+lDmirJU3WaMaZyePzxx5k7dy6bNm0q1c3VEydOULduXfz9/UlKSiI8PNyLUVaMouo0S168LD09nePHj7uTmd27d7Nx40Y2btzI77//Tnp6OuBsoWjfvj1dunShc+fO7qTGE1PcJSUlsWfPHvbs2cPu3bvzPO7Zs+ecu/J169YtMCnJeR4dHV0pftiXRWpqKjt37mTr1q1s27aNrVu3up+fOXPGXa527dp5WmlyHlu3bu2R/qi5qSrHjh07JznZvn07u3btIjMz0102MjLS3WqU89imTRtatWpVZVqRHA4HR48eZc+ePe6EJve2b9++PJ8Z/khu4uLiaNmyJS1atKBly5a0bNmSxo0b50mSFy5cyGeffcbrr78OwPjx4/nwww85fvw4IsLmzZsJDw+nadOmAKxYsQIR4ZJLLgFg9OjRtGnThqlTpwLOVqBLLrmEQYMG8euvv/LGG2+QnZ2d599LaGgojRs3pkGDBoSFhdG0aVOaNWtGdHQ0DRo0yPMYERHhlf8/lrxUbiIyEHgJ8AfmqOrf870/EbgDyALigdtUtcjFLy15MaZ6Wb58Od9//z2TJk0iODi4RMccOnSICy64gIceeohHHnnEyxFWHEteXCrbF31WVhbbt293JzM525EjR9xlGjVqdE4rTZs2bfKsqZGZmcn+/fvPSUxyHk+ePJnnuuHh4bRo0YK4uDj3Y84d7piYGOrUqVNhfwaVhapy+PDhcxKarVu3sn//fnc5EaFZs2bu8U0i4t7Ksp+VlcXu3btJSkpyXyMoKIjWrVu7E5PciUr9+vWrbOJYUg6HgyNHjriTmdxJzu7du9m/fz/Z2dnu8kFBQQUmNTn/tn/++We2bdvG//zP/wDQv39/Tpw4wfr16wG46KKLqF+/Pl9//TUHDhxg3Lhx+Pn5cd555/Hrr7+ydetWHA4H4Oxa16FDBzp37kznzp3p1KkTnTp1Ijo6uuL/oPKx5KXyEhF/YDvQHzgIrAFGqermXGWuAFap6lkR+R/gclUdUdR5K1udZozxHFUttL4/c+YMGzZsoHfv3qgqjz/+OKNGjapWM3Ra8uJSVb7o4+Pjz0loNm/e7O4Tn/MDqk6dOuzZs4cDBw64f1yBsxUnZ82M/ElKixYtqFu3brX/AexJKSkp7Nixw53Q7Ny5091ipqrurkE5z0uz7+/vT1xcXJ5EpVmzZvj7+/vgk1YNOcn6rl272L17N7t27crzPHeLCDj7EudObPz9/YmIiOCCCy7gt99+Y8mSJezatYvt27eTmJjoPi42NpZOnTq5E5XOnTvTqlWrPDcOKhNLXiovEekFTFXVAa79yQCqOqOQ8hcA/1LVS4s6b1Wp04wxpbNq1SomTZrEE088weWXX86ZM2dYs2YNffr0wd/fn7vvvpv333+fI0eOULt2bV+H6xVF1WmVsxau4aKiorjqqqu46qqr3K9lZGSwZcuWPAlNamoqvXv3PidBadKkif349aCwsDC6du1K165dfR2KwZmc57Su5KeqxMfHF5jUfPPNN3laNXPUqVOHTp06MWrUKHeS0rFjRyIiIiri45iaoQlwINf+QaBHEeVvB772akTGmErLz8+PgIAAWrVqBf+/vfuPtbqu4zj+fE1ERZtgDofCAJXJwFCcGpVlUzIwBrWZETS0aP7RL2O1prHpav7jLK22Mp0mVk5LtLqSaTd0a7n5s0hQUS7i8mdoKlb4C3n3x/cDHQ/3cu/5db/fzz2vx3bG+f643/u673vu983nfH8c4LbbbmPJkiX09fVx1FFHsWLFCpYtW5bN6eLt5sFLJkaPHr37tDEz658kxo8fz/jx45kzZ84ey7dv386WLVvYvHkzEcGsWbOYPHnysN2dzGwwkj4HnAicOsDy84DzoLjhiJmNPCeddBK9vb27p2fPnk1vby8TJkwAYPr06WVFqwQPXsysa4wZM4aZM2eOqPOCLQvPApNqpiemee8iaS6wEjg1It7sb0MRcTVwNRSnjbU/qplVza47olrBbzeamZl11gPANElTJY0GFgM9tSuk61yuAhZGxNYSMpqZZcGDFzMzsw6KiB3AV4A7gceAX0fEI5K+K2lhWu0y4CDgZknrJPUMsDkzs67m08bMzMw6LCJuB26vm3dRzfO5e3yRmZntoatulSzpRaD+Q78OBV4qIU6znLeznLfzcsucS97JEdH6p9paNgboaUORy2u6Pzlnh7zzO3s5cs4OzecfsKd11eClP5IezOmzEZy3s5y383LLnFtes8Hk/JrOOTvknd/Zy5FzduhMfl/zYmZmZmZmWfDgxczMzMzMsuDBS7pffkact7Oct/Nyy5xbXrPB5Pyazjk75J3f2cuRc3boQP6uv+bFzMzMzMzy4CMvZmZmZmaWha4dvEiaJ+lxSX2SLig7Tz1JkyTdLelRSY9IOj/NP0RSr6RN6d9xZWetJWkfSX+TtCZNT5V0X6rzr9KnS1eGpLGSVkvaKOkxSR+oco0lrUivhw2SbpS0f5VqLOlnkrZK2lAzr996qvCjlPthSSdUJO9l6fXwsKTfSBpbs+zClPdxSR8f7rxmrRppva8K+5F6Q+2DkvZL031p+ZSScw+5H1at7o30xirUvV29UtI5af1Nks4pMXvDfbOVfVFXDl4k7QP8GJgPzAA+K2lGuan2sAP4RkTMAOYAX04ZLwDWRsQ0YG2arpLzKT5BepdLgSsi4mjgFWB5KakG9kPgjoiYDhxHkb2SNZZ0BPA14MSIOBbYB1hMtWq8CphXN2+ges4HpqXHecCVw5Sx1ir2zNsLHBsRs4AngAsB0t/fYmBm+pqfpH2JWRZGaO+rwn6k3lD74HLglTT/irRemRrph5WpexO9sQp1X0WLvVLSIcDFwPuBk4GLNTxvtq6ixb7Z6r6oKwcvFL/kvoh4MiLeAm4CFpWc6V0i4vmI+Gt6/m+KncgRFDmvT6tdD3yynIR7kjQR+ARwTZoWcBqwOq1StbwHAx8BrgWIiLci4lUqXGNgFHCApFHAGOB5KlTjiPgz8HLd7IHquQj4eRTuBcZKmjA8SQv95Y2IP0bEjjR5LzAxPV8E3BQRb0bEFqCPYl9ilouR2PtK34/UarAP1v5Mq4HT0/rDrol+WKm601hvLL3ubeqVHwd6I+LliHiFYgBRP6gYluxN9M2W9kXdOng5Ani6ZvqZNK+S0iHN2cB9wGER8Xxa9AJwWEmx+vMD4FvAzjT9XuDVmhd01eo8FXgRuC4d4r9G0oFUtMYR8SzwPeAfFDvmbcBDVLvGMHA9c/g7/ALwh/Q8h7xme5PVa3iIva9qP1MjfXB39rR8W1q/DI32w8rUvYneWKW612q01pX5HdQZSt9sKXu3Dl6yIekg4Bbg6xHxWu2yKG4VV4nbxUlaAGyNiIfKztKAUcAJwJURMRv4L3WniFWsxuMo3pmYChwOHMgwvMvSTlWq52AkraQ4heWGsrOYdZtcel+tTPvgLln1w1ojoTfWq2qtBzNcfbNbBy/PApNqpiemeZUiaV+KnfcNEXFrmv3PXYdm079by8pX50PAQklPURz+O43i/Nmx6TAuVK/OzwDPRMR9aXo1xc67qjWeC2yJiBcj4m3gVoq6V7nGMHA9K/t3KOlcYAGwNP5/P/nK5jUboixeww32vir9TI32wd3Z0/KDgX8NZ+AajfbDKtW90d5YpbrXarTWVfodNNo3W8rerYOXB4Bp6U4UoykuJuopOdO7pPMvrwUei4jLaxb1ALvuKHEO8LvhztafiLgwIiZGxBSKet4VEUuBu4Gz0mqVyQsQES8AT0s6Js06HXiUitaY4pD4HElj0utjV97K1jgZqJ49wLJ0J5U5wLaaQ+alkTSP4rSPhRGxvWZRD7BYxZ1qplJcPHl/GRnNmjQSe19l9iNN9MHan+mstH4p77Y30Q8rU3ca742VqXudRmt9J3CGpHHp6NMZad6wa6JvtrYvioiufABnUtwRYTOwsuw8/eQ7heKQ4cPAuvQ4k+K8zLXAJuBPwCFlZ+0n+0eBNen5kemF2gfcDOxXdr66rMcDD6Y6/xYYV+UaA98BNgIbgF8A+1WpxsCNFOccv03xTt7ygeoJiOJuI5uB9RR3iqlC3j6Kc3F3/d39tGb9lSnv48D8sl8PfvjR6GOk9b4q7EcG+DkG7YPA/mm6Ly0/suTMQ+6HVat7I72xCnVvV6+kuL6kLz0+X2L2hvtmK/sipQ2YmZmZmZlVWreeNmZmZmZmZpnx4MXMzMzMzLLgwYuZmZmZmWXBgxczMzMzM8uCBy9mZmZmZpYFD17MzMzMzCwLHryYmZmZmVkWPHgxG4SkGZLOlTRJ0nvKzmNmZtYJ7neWAw9ezAa3L/BV4FPAf+oXSpoi6XVJ69r9jSUdIGmdpLckHdru7ZuZWXeSNFHSZ+pmt9zv3Les0zx4MRvcJOA6oA8Y6J2ozRFxfLu/cUS8nrb7XLu3bWZmXe104IS6eS33O/ct6zQPXswSSXeld4vWSXpD0tkAEbEGWB0Rt0fEa0PYzhRJGyWtkvSEpBskzZV0j6RNkk5uZD0zM7N2knQKcDlwVup5R0JT/e5ASb+X9HdJG/o5kmPWdh68mCURcVp6t+gqoAe4pWbZCw1u7mjg+8D09FgCnAJ8E/h2E+uZmZm1RUT8BXgAWBQRx0fEkzXLGul384DnIuK4iDgWuKPNUc324MGLWQ1Jy4D5wNKIeKeFTW2JiPURsRN4BFgbEQGsB6Y0sZ6ZmVk7HQNsbHEb64GPSbpU0ocjYlsbcpntlQcvZomkTwNLgbMj4u0WN/dmzfOdNdM7gVFNrGdmZtYW6UL6bRGxo5XtRMQTFNfNrAcukXRRO/KZ7Y3/c2QGSFoAfAlYEBFvlJ3HzMysg6bQhgvqJR0OvBwRv5T0KvDFVrdpNhgfeTErXA9MBO5JFy8uLzuQmZlZh2wEDk0X2X+whe28D7g/3Tr5YuCStqQz2wsVp9ebWbMkTQHWpIsVO/U9ngJOjIiXOvU9zMzM9qaRfue+ZZ3iIy9mrXsHOLiTH1JJ8cFhO9u9fTMzswYM2u/ct6zTfOTFzMzMzMyy4CMvZmZmZmaWBQ9ezMzMzMwsCx68mJmZmZlZFjx4MTMzMzOzLHjwYmZmZmZmWfDgxczMzMzMsuDBi5mZmZmZZcGDFzMzMzMzy4IHL2ZmZmZmloX/ATsKikUixRNrAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -614,7 +614,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydeXxVxfn/P8+9CSFACIRAgEASlrAkSBDiRt21Fgu4W1z6rUqLVsVq/Vqq9Wet1fp1V7RKtYp+269VWxdErLjUrRQBAQXDKkLY9yUQst57nt8fZ7lz5pxz7w0kZOF587rknDkzzzxzztxkPjNzZoiZIQiCIAiCIAiC0NIJNbcDgiAIgiAIgiAIySDiRRAEQRAEQRCEVoGIF0EQBEEQBEEQWgUiXgRBEARBEARBaBWIeBEEQRAEQRAEoVUg4kUQBEEQBEEQhFZBSnM7IAiCIAhCw1m0aFGPlJSU5wEMg3RGCoLQNjAAlEUikZ+NGjVqh1+EZhMvRJQOYDaAM5k56nO9HYCPrOuRI+2fIAiCICSL8jft9wB+yczjfOJ8BOBSZt7bGHmmpKQ837Nnz6Hdu3ffGwqFZNM2QRBaPYZh0M6dO4u2bdv2PIDz/OI0Z0/NRABv+gkXAGDmOgD/AjDhiHoltEmIqCsRFRDR1UTUtbn9CaK1+CkIgoeJAN4E4Ps3zeKvAG5oxDyHde/efb8IF0EQ2gqhUIi7d+9eAXNE2T/OEfRH50oAbxNRJyL6FxEtJqJviOh8Jc4MK54gHC6jANwEYDyAS5rZl3i0Fj8FQXBzJYC3rePORPQuEa0ioj8Rkf23diaAyxsxz5AIF0EQ2hrW77VAjdIs4sWaEtafmcsB1AC4kJlHAjgDwKNERFbUMgDHNYePgtDSISImooNE9IcGpPmYiGqIaE5T+iYIRxPa3zQAOB5mJ0QRgAEALgIAa7pYGhF1aw4/BUEQ2gLNNfKSDWCfdUwA7ieipTDfcckFkAMA1pSyOiLKaBYvhVYHET1DRL/1ubQIwFMA3gHw+hH2KUxE1UR0jM+1vxHRS0pQQ/0sYeY7LVuziej3PnmcT0TbiCiFmc8E8PNDKoggCEGof9MAYAEzr7X+hr0C4GTl2g4AvY+kc4IgCG2J5hIv1QDaW8dXAugOYBQzjwCwXbkGAGkwR2cEIRlOBuAZVWDmvcxczswvNdbLssliNWBWwuyFdSCiUpjTw37TSH7+L4AfKyOXNv8F4GVZ+EIQmgz1bxoA6FO51PP2Vvw2wYYNG1LGjRvXv2/fvsOKi4uHnnbaaQOXLl2atnDhwvYnnnjioIKCgmH5+fnDfvWrX/UyDAMA8OSTT3YjolEzZsxwOib/+te/diGiUS+++GJXAHjllVcyhw4dWjR48OCiAQMGFD/88MPZdtxHHnkku1+/fsX9+vUrPuaYY4a+//77nexrxx9//ODPP/+8wxG8BUcll156aUFWVlZJYWFhcVPZCYfDo4YMGVI0cODA4sGDBxfdfffdOdFovFfKhEMh3n2eNWtWRkZGxoghQ4YUDRkypGj06NGDAODWW2/tnZ6efuzmzZudhb86dOhwrH0c9HsBAJYuXZp22mmnDczPzx9WVFQ09Ic//GH/jRs3NmgBsWYRL1ajLExE7QFkAtjBzPVEdAaAfDueNbS+i5nrm8NPoXVARCEimkJE5QCOAfAqEd3azG7plEETLwAeAfAoM29ppDxmAOgG4BQ7wHrpfxyAvzRSHoIgaGh/0wDgeCLqZ73rMgFWh4rVsdATQHmzONrIGIaB8847b+Cpp556YOPGjWXLli1b8cADD2zesmVL6oUXXjhwypQp28rLy8vKysqWz58/v9ODDz7Y3U5bWFhY/corr2TZ56+++mrW4MGDqwGgtraWbr755vxZs2Z9u2rVquVlZWXLzznnnAOAKWpefPHF7nPnzl21bt26ZdOmTVt/9dVX99uwYYNs/XAEmThx4q6ZM2d+myjerFmzMi6++OKCQ7GTlpZmrFy5cvmaNWuWffzxx6s//PDDzNtuu01GLRuZRPe5tLS0cuXKlctXrly5fO7cuavt8C5dukTuu+++HN1evN8LVVVVNH78+MLrrrtu5/r168uWL1++4oYbbti5bdu2li9eLD6A2Uv+MoBSIvoGwE9g9lDbnAHg3WbwTWhd3AFgLIBfAFgNs7H+MBH1bVav3CwD4PQsEdF4AIUAHmqsDJi5GsDfYX6PbH4EYCUzL2msfARB8MX+mwYAXwL4I4AVANYBeMsKHwVgXnONgj777LNZhYWFxeFweFRhYWHxs88+m5U4VTCzZs3KSElJ4SlTpuy0w0466aTqFStWtC8tLa286KKL9gNARkaGMW3atA1Tp07tZcc74YQTKr/66quOtbW1VFFRESovL08rLi6uAoB9+/aFIpEI5eTkRAAgPT2dS0pKagHgkUce6fk///M/m3r16hUBgJNPPrnqRz/60e5HH320x+GURWgY5557bmX37t0Pux4nayc3Nzfy/PPPl7/44os97BE8ofFpyH2+/PLLd8+cOTNr+/btYTU86PfCmDFjKp977rmskSNHVl5xxRUV9rVx48YdOO644xo0w6o5xcvTAK5i5l3MfBIzH8PM1zDzUOWlxysAPNt8LgotHet9qDsBXAWgL4CvmHkBgI0AhjSnbxrOyAsRhQE8AOBOZq5q5Hz+F8AlSg/wT6wwQRCaFvtv2qfMfCozj2Xmwcz8c2a2WwH/BeCZ5nDu2Wefzbr33ntzH3vssQ1VVVWLH3vssQ333ntv7uEImKVLl6aXlJR4foctW7as/ciRI13hxcXFtVVVVaE9e/aEAICIcOqpp+5/8803O//tb3/rMmbMGOedoZycnOj3v//9fXl5ecPHjx/fb9q0aVn2NJY1a9akf+9733PZPu6446pWrFiRfqjlEFoHRUVFddFoFOpUJaHx0e/zwoULO9nTxn7961/3tON16tQpevnll+964IEHXKMvQb8XAKCsrCxd/91wKDRbBWDmxUT0CRGF42xSOYOZV/skFwSbMwGsYuZyIioB8JU1VaMrzBdjmwQi+hTAaQGX/8PMJ2thywAUElEqgGsA1KIJpnIx8xwi2gXgAiL6EuaqRxc1dj6CILhJ9DfNooyZ/3VEHbN45JFHek2bNq18/PjxBwDA+ll+66235l133XV7msOnK6+8cs8TTzyRc+DAgfATTzyx8Z577nFGZl577bX1CxYs2PHee+9lPPnkkz0/+uijzm+88UZ5c/jZUpk4cWLfsrKyRn2/Z9iwYVXTp0/feLh2hg8fPqSuri5UVVUVqqioSBkyZEgRAPzhD3/YdPHFF+8/fE/bJscff/zgH//4x7t+8Ytf7K6traVTTjll0NVXX73zhhtu2HPgwIHQWWedVThp0qQdkyZN2rt79+7wueeeO/DGG2/cftVVV+3bunVryvnnnz/glltu2XbFFVdUbNiwISUvL++wR8dKS0srP/nkkzV+126//fYdJSUlRb/97W+3HW4+DaE5R17AzNPjbVLJzDJPX0hETwD2H94RAL4CcCqACgBLmypTZj6dmSngowsXwJzjXgvgWAD3ALhV6Y1tbP4Cc8TlxwDeZ+btTZSPIAgK8f6mWdf/fCT9UVm7dm37c845p1INO+eccyrXrl3bPihNIo455pjqJUuWeBrPRUVFNYsXL3aFL1++vF2HDh2MrKws5/feGWecUbVy5cr0PXv2pAwfPrxWt3P88cdX33333Ts+/vjj1bNnz+4KAAMHDqz+z3/+47K9cOHCDkOHDm0ziyC0BZYuXbpy5cqVy5955pn1Z5999j77nYnDES7Lly9vFw6HkZubK4vPNCENuc/Z2dnRCy+8cM/DDz/sTNsM+r0AAMXFxZ7fDYeCDL0JrZ2VAEYRUX+Yu7HuAfASgCnM3GI2b2NmJqLlAP4EYD4zf9qE2f0FwP8DMBzAL5swH0EQWgn9+/ev+eCDDzrZIy8A8MEHH3Tq37//Ia/mOX78+AN33XUXPfLII9m33XbbLgCYP39+elFRUc1jjz3Wa8aMGRkXXHDBgcrKSrrxxhvzbrrpJk/v7L333rspPT3d9bu6oqIi9O9//7vjuHHjDtg2e/fuXQcAt95667bf/OY3fY4//vjVPXv2jM6dOzf9tdde6zZv3ryVuu22TmOMkLQWtmzZkjJp0qT8a665Zkco1Kz97k3KggULVtnHaWlprJ5nZGQY6nm3bt2i6nmvXr0i6vmhjLocyn2+8847t5eWlg6NRqMEBP9e2Lt3b3jSpEm7H3/88Z6vvvpq5mWXXVYBAO+9916n7OzsSEPeexHxIrR2PgfwAsz9UdrDXADiPmZ+lYhOBDAVQBWAz5j5d3pia/WfP8Js6EdgvuBeDHP54lqYIzsTmfmbRvC1DOZoyIRGsBWINYVuLoASmDt6C4JwlHPbbbdtvf766wsAlJ9zzjmVH3zwQafrr7++4K677tp8qDZDoRBmzpz53Q033NB36tSpPdPS0rhPnz61Tz311MY333xzzeTJk/NuueWWVMMwcOmll+6+4447PFN5f/SjH3l64g3DwMMPP5wzefLk/Pbt2xsdOnQwXnjhhXUAcOWVV1Zs2rSp3YknnjiUiLhjx47G9OnT1+Xn5zurkl544YWFKSkpDAAjR46sfO+999YeahkFf8aPH99v3rx5GXv37k3JyckZfvvtt2/55S9/uasx7dTW1oaGDBlSFIlEKBwO84QJE3bffffdMpOgkTnc+9yrV6/Iueeeu/eFF17IAeL/XujUqRO//fbba37xi1/0/fWvf903JSWFhw4dWj1t2rQNDfGZWlDntCAcMkQ0AcA1zDxGCbsXwBfM/E8iCvlN0yKi8wB8n5lvss5DMKed3QdzyeEhAB5k5vOORDkaAhHVwBRYTzLzXUmm+RDAiTA30TurKf0TBKFpWbJkSXlJSUnSDcZnn30265FHHum1du3a9v3796+57bbbtjbX+y6CIAjxWLJkSXZJSUmB3zUZeRHaCoMBrNLCngbw/4joSpgjMv/0STcUwGf2CTMb1h6PX1nTzlYQUS+fdM0OMzd4rjozf78pfBEEoeVz3XXX7RGxIghCa6ftThwUjjYGw9zjRaWCmSfDXN3rQTuQiPoocVbAHGmxr9nfiRFkMhjA1qZxWRAEQRAEQWgIMvIitAmY+Uqf4OuI6CKY9fwlACCiFACvILYL/TsAxhDRHAD1MN95AczVyt4BkAPgp03nuSAIgiAIgpAsIl6ENgszPwHgCS14JJT9VaypYTeoEaxpYyuZ+bam9lEQBOEwMAzDoFAoJC+vCoLQZjAMgwAEbich08aEowpmXtCcey0IgiA0ImU7d+7MtP7QC4IgtHoMw6CdO3dmwlyh1RdZbUwQBEEQWiGLFi3qkZKS8jzMPa6kM1IQhLaAAaAsEon8bNSoUZ7l1QERL4IgCIIgCIIgtBKkp0YQBEEQBEEQhFaBiBdBEARBEARBEFoFIl4EQRAEQRAEQWgViHgRBEEQBEEQBKFVIOJFEARBEARBEIRWgYgXH4hoOhHtIKLANabjpB1FRN8Q0RoiepKsHQ+V6/9NRExE2Y3ob18i+oSIlhPRMiK6uSX7TETtiWgBES2x/L2ngenHENEqy9/bfa4/SUSVjeGrYjNMRF8R0awGpmsOX8ut5/k1ES1sYNrmqL9diOh1IlpJRCuI6KSW6i8RDbbuq/3ZT0S3tFR/BUEQBKGtIeLFn5cAjDnEtNMATAJQaH0cO0TUF8A5ADYcpn86EQD/zcxFAE4EcCMRFTUg/ZH2uRbAmcxcAmAEgDFEdGIyCYkoDOBpAOcCKAJwuVpWIioF0LURfbW5GcCKhiRoRl8B4AxmHsHMpQ1M1xz1dyqA2cw8BEAJGnafj6i/zLzKuq8jAIwCUAXgrZbqryAIgiC0NUS8+MDMnwPYo4YR0QAimk1Ei4jo30Q0RE9HRL0AdGbmeWxuoPMXABcoUR4HMAVAo26uw8xbmXmxdXwAZuMvt6X6zCb2aEOq9WGrV/ozy9/3Ld90jgewhpnXMnMdgFcBnG+VJQzgYcvfRoOI+gAYC+B5JaxF+hpES60LRJQJ4FQALwAAM9cx876W6q/GWQC+Y+b1rcRfQRAEQWj1iHhJnucA3MTMowDcBuAZnzi5ADYp55usMBDR+QA2M/OSpnSSiAoAHAtgPlqwz9Y0rK8B7ADwIYDFAJ4CcInl73QAfwjwd6OfvwAmA5jJzFsb2d0nYDYqDcv31BbsK2A2fj+wGtLXWmEttS70A7ATwIvWtLzniahjC/ZX5TIAr1jHrcFfQRAEQWj1pDS3A60BIuoEYDSAfyhT1NMakL4DgN/AnBLSZFh+vgHgFpgN7RbrMzNHAYwgoi4wp90MBjAMwIeWv2EASTfsiag3gEsBnN6YfhLROAA7mHkREdm2W6SvCicz82Yi6gHTx5VouXUhBcBImA3/+UQ0FcB9aLn+2nm0A3AegDtay+8HQRAEQWgLiHhJjhCAfdY8dwdr6s8i63QmzPnsfZQofQBsBjAAZg/zEqtx0wfAYiI6npm3NYaD1mjAGwBeZuY3iahzS/cZAKwpQp8AuBDAMmZ2vaxtvQfwjnX6JwBLAPT18fdYAAMBrLH87UBEa5h54GG6+D0A5xHRDwG0B9AZwD0t1FcAADNvtn7uIKK3YIqklloXNgHYxMzzrfPXAfy+Bftrcy6Axcy8vbV81wRBEAShTcDM8vH5ACgAUKaczwVwqXVMAEoC0i2A+dI8AXgPwA994pQDyG5EXwnm/PkntPAW6TOA7gC6WMfpAP4Nsxd7DYCTrPBUAMU+aVMArIXZ2GsHUyD4xatsgjpxOoBZVr4t0lcAHQFkKMdzYb4U3iLrgmXv3wAGW8e/g/kuUIv117L5KoBrlPMW7a985CMf+chHPm3lI++8+EBErwD4AsBgItpERD8FcCWAnxLREgDLYL147cMNMF/sXgPgO5gNlKbmewD+C8CZFFvC9Yct2OdeAD4hoqUAvgTwITPPBHAJgActf7+GORXHBTNHYL4v8j7MhQn+zszLmthf3Ye6FuxrDoA5ll8LALzLzLPRcusCANwE4GWrPowAcD9asL/WOznfB/CmEtxi/RUEQRCEtgQxy8I2giAIgiAIgiC0fOSdF0EQBEFohSxatKhHSkrK8zAXEJGZFIIgtAUMAGWRSORno0aN2uEXQcSLIAiCILRCUlJSnu/Zs+fQ7t277w2FQjKNQhCEVo9hGLRz586ibdu2PQ/zfWgP0lMjCIIgCK2TYd27d98vwkUQhLZCKBTi7t27V8AcUfaPcwT9EQRBEASh8QiJcBEEoa1h/V4L1CgiXgRBEARBaDBr1qxJPeGEEwYNGDCgeODAgcX33ntvD/va9u3bw6NHjy7Mz88fNnr06MKdO3eGAcAwDFx99dV98/Lyhg0aNKhozpw5HZqvBEIy7Nq1KzxmzJj+/fr1K+7fv3/xRx991BGQZ9yWuPTSSwuysrJKCgsLi9XwQ3nGTz31VLf8/Pxh+fn5w5566qluTeGviJdGgoiubW4fGoL427SIv01La/K3NfkqCA0hNTUVjz766Kbvvvtu2ZdffrnihRde6LFo0aL2AHD33Xf3Ov300w+sX7++7PTTTz/w29/+ticA/OMf/8hcu3Zt+/Ly8rJp06atv+GGG/KatxRCIq699tq+55xzzv5169YtW758+fIRI0bUAPKM2xITJ07cNXPmzG/18IY+4+3bt4cffPDB3gsWLFixcOHCFQ8++GBvW/A0JiJeGo/W1kARf5sW8bdpaU3+tiZfBSFp8vPz608++eQqAOjatasxYMCA6g0bNrQDgNmzZ3e57rrrdgPAddddt/u9997rCgBvv/12lyuvvHJ3KBTCWWeddXD//v0p69evT1Xt7t+/P3T66acPHDx4cFFhYWHxn//8565HumyCye7du8Pz58/PuOWWW3YBQPv27Tk7OzsKyDNuS5x77rmV3bt3j+jhDX3GM2bMyDz11FP35+TkRLt37x499dRT97/55puZut0bbrghd8CAAcWDBg0quvbaa/s01F9ZbUwQBEEQhMNi1apV7ZYvX97htNNOqwSA3bt3p+Tn59cDQN++fet3796dAgBbt25NLSgoqLPT9erVq279+vWpdlwAePPNNzv37Nmz/tNPP11j2Wr0nlshOVatWtUuKysrcumllxYsX768w/Dhww/++c9/3ti5c2dDnnHbp6HPePPmzal9+vRxwnNzc+s2b97sEq7btm0L//Of/+y6du3aslAohF27djX42R9V4iWbenIdrHtKBFIvkvOfEqafa3EodtA+nIHMdjnsMaqZ8A8Lyj926Bj2S+sbTlp6d7y09l2QkdmHoYW7TRA8b4IG+q7l0wBfdd/84qdmdEWHnL4u88mkixeeVNkSXOOA8HDXrkjL6xv8Iq1vOj7ksjjptWu+yZyqFIuf2j0T6QN7s17llZoHbxVUqo/ra6FVK5/8SPsJYi3cz3YsTqeeHZBTlMVBeas+OjZJz9/9dXWnZVfelEzcgHxycsMYOjyN/fxz21R8cvKlOPFJC4v9Tlu0tPZ9Zh4D4ahh4sRJfcvKyhr13YJhw4ZVTZ/+542J4lVUVIQuuuiiAQ888MDGrKwsQ78eCoVA3l8ugYwcObL6zjvv7Hv99dfnnn/++RVjxoypbKDrbZJ//eYvfXev3tyoz7jboNyqs+7/SeAzjkQitGLFig5Tp07dcOaZZx685ppr+t511109p06dukWNJ8+4cTDm/bwv71veqM+YuhRVhU78U8LvcSIa+oyD6NatWzQtLc2YMGFCwbhx4/ZNmDChoqE2jirxUoc6nBD6PihEAIXMnwBAISBEpqAJWTPpiIBQyPppNRKUeM51O64TRkqYEl+NZ4U5LcWQZgMwrynhelwmpWVKBHbCoeQVs8OxVpgZxxUXQMg6txv2ahyCy64TFoK/TZcNBISRJyw4LqC23pxwxMJc4eQf7kkfEG7j8UuPR5wwL08cxy47adS47rzMc1LjO3bsa+yEkRrfSk/EVhWKpScyG8hkXTfDgJATnx0bdlgIPmFK+pATxwwPqeHWNU+YFR4LM3ziGgg7YYYTN4xY/LAdF9a59RMAwmQgBDZ/WunttLGfql3DSRNLb/oQi2dY8di6ZtuN5RVGzKewk1fMRuycY3HJCgcQtu51GGSdE0IghK2HGAJZYSGErLAwmWcAEO71bTYE4QhQW1tLY8eOHXDppZfuueqqq/bZ4d26dYvYve3r169PzcrKigBAr1696svLy9vZ8bZu3dpO7ZEHgOHDh9cuXrx4+RtvvJF511135X700Uf7H3nkka1HrlSCTUFBQV1OTk7dmWeeeRAAJkyYsPeBBx7oCcgzPhpo6DPOzc2t/+yzzzLs8M2bN7c77bTTDqg2U1NT8fXXX6+YOXNm59dff73rtGnTesybN291Q/w6qsSLIAiCILRFkhkhaWwMw8Bll12WP2jQoJrf/e5329VrP/jBD/Y9++yz3e6///5tzz77bLcxY8bsA4Dzzjtv3zPPPNNj0qRJez755JOOGRkZUb1hW15entqjR4/IDTfcsKdr167RF154QcQ4gHgjJE1FXl5epGfPnnVLlixJKykpqf3ggw86Dx48uAaQZ9wUNMYISWPS0Gd8wQUXVPz+97/PtV/S/+yzzzo//vjjm1SbFRUVocrKytCECRMqzj777MoBAwYc01C/RLwIgiAIgtBgPvzww04zZszoVlhYWD1kyJAiALjnnns2T5gwoeKee+7ZeuGFFw7Iz8/Pzs3NrXvrrbe+A4Af/ehHFe+++25mfn7+sPT0dOP5558v1+0uWrQo/Y477ugTCoWQkpLCzzzzzPojXDRB4amnntpw5ZVX9q+rq6O8vLzaV155pRwA5Bm3HcaPH99v3rx5GXv37k3JyckZfvvtt2/55S9/uauhzzgnJyf6q1/9asuoUaOGAsCUKVO25OTkRNW89u3bFx43btzA2tpaAoB77723wYKNmI+e/a06UxbLtDGZNibTxmTa2FEwbWwRM5dCaNMsWbKkvKSkZFdz+yEIgtDYLFmyJLukpKTA75oslSwIgiAIgiAIQqtAxIsgCIIgCIIgCK0CES+CIAiCIAiCILQKRLwIgiAIgiAIgtAqEPEiCIIgCIIgCEKrQMSLIAiCIAiCIAitAhEvgiAIgiAcMpFIBEOHDi0644wzBtphK1eubDd8+PAheXl5w8aOHdu/pqaGAKC6uprGjh3bPy8vb9jw4cOHrFq1ql2wZaElcM899/QYOHBgcWFhYfH48eP7VVVVESDPWGg+RLwIgiAIgnDI3HfffTkDBw6sVsNuvfXWPpMnT96+YcOGsszMzMjUqVOzAWDq1KnZmZmZkQ0bNpRNnjx5+6233tqnebwWkmHdunWpzz33XM7XX3+9/Ntvv10WjUbp+eefzwLkGQvNh4gXQRAEQRAOie+++y71/fffz5w0aZKzWaZhGPjiiy8yrrnmmr0AMHHixN3vvPNOFwCYNWtWl4kTJ+4GgGuuuWbv3LlzMwzDcNlcv359amlp6eAhQ4YUFRYWFs+ePbvTESySoBGNRungwYOh+vp6VFdXh/r06VMvz1hoTkS8CIIgCIJwSNx44419H3rooU2hUKw5sX379pSMjIxoamoqAKCgoKBu+/bt7axr7fr161cHAKmpqejUqVN0+/btKarN6dOnZ5111lkVK1euXL5ixYplJ5xwQtWRK5Gg0q9fv/obb7xxW79+/Yb36NGjJCMjI3rRRRftl2csNCcpiaMIgiAIgtCSefjnf+m7bvmWDo1ps19R76pf/eknG4Ouv/LKK5nZ2dmRU045pWrWrFkZjZXviSeeePC6664rqK+vD11yySV7R48eXZ04Vdtn5x/v71u3YW2jPuN2ef2ruk/+TeAz3rlzZ/jdd9/tsmbNmm+6desWHTt2bP9nnnkm68ILL9x/OPnKMxYOh6NKvBzA3vc/Mv6eDSNxXEEQhFbMrsRRBOHwmDNnTqcPP/ywS25ubmZtbW3o4MGDofPPP7/fW2+9te7AgQPh+vp6pKamory8vF1OTk4dAOTk5NStW7eu3YABA+rr6+tRWVkZzsfkBq0AACAASURBVMnJiah2zz333MrPP/981RtvvJE5ceLEfpMnT94+efLk3c1TyqObd955p3NeXl5t7969IwBwwQUX7Js7d26nn//853vkGQvNxVElXph5THP7IAiCIAiNTbwRkqbi6aef3vz0009vBoBZs2ZlPProozlvv/32OgA48cQTD7z44otdr7322r3Tp0/vNm7cuH0AMHbs2H3Tp0/vdvbZZx988cUXu5500kkH1ClnALB69ep2/fv3r/vv//7vXbW1tbR48eIOAI76hm28EZKmoqCgoG7x4sWdDhw4EOrYsaPx8ccfZ4waNaoqFArJMxaajaNKvAiCIAiC0PQ8+uijmyZMmDDgvvvuyy0uLq66+eabdwHAzTffvOviiy/ul5eXNywzMzP62muvfaenff/99zOefPLJnikpKdyhQ4foyy+/vO7Il0AAgDPPPPPg+PHj9w4fPnxoSkoKiouLq2699dadgDxjofkgZm5uHwRBEARBaCBLliwpLykpkSmCgiC0OZYsWZJdUlJS4HdNVhsTBEEQBEEQBKFVIOJFEARBEARBEIRWgYgXQRAEQRAEQRBaBSJeBEEQBKF1YhiGQc3thCAIQmNi/V4L3NhExIsgCIIgtE7Kdu7cmSkCRhCEtoJhGLRz585MAGVBcWSpZEEQBEFohUQikZ9t27bt+W3btg2DdEYKgtA2MACURSKRnwVFkKWSBUEQBEEQBEFoFUhPjSAIgiAIgiAIrQIRL4IgCIIgCIIgtApEvAiCIAiCIAiC0CoQ8SIIgiAIgiAIQqtAxIsgCIIgCIIgCK0CES+CIAiCIAiCILQKRLwIgiAIgiAIgtAqOOLihYimE9EOIipTwh4mopVEtJSI3iKiLsq1O4hoDRGtIqIfKOFjrLA1RHT7kS6HIAiCIAiCIAhHluYYeXkJwBgt7EMAw5h5OIDVAO4AACIqAnAZgGIrzTNEFCaiMICnAZwLoAjA5VZcQRAEQRAEQRDaKEdcvDDz5wD2aGEfMHPEOp0HoI91fD6AV5m5lpnXAVgD4Hjrs4aZ1zJzHYBXrbiCIAiCIAiCILRRUprbAR8mAnjNOs6FKWZsNllhALBRCz/BzxgRXQvgWgDo2IFGDRnYzrnGCV1JHCP5FJyURWYAlJxRjn856TzV2OzJPCAek8tPDvSR4tpUkxmalg7y2+D4Nm2iTPDeTH/bBkIAJ7pX5GszKI0ZF4E+2ESYXDE89jh21eDkno9hJNkvwQF5epwhwEjOpFlBEvtJQfZ8nKGEX5wENv3yjyaKYRoNJYwXi05GHEfVL0mUA5659kCYASNOoRSTB6K7djFz9yS9FdoA2dnZXFBQ0NxuCIIgNDqLFi0K/JvWosQLEd0JIALg5cayyczPAXgOAEaVtOcvZvdJkAIwkmylRTiadHsugmhgA1ENj7CSO9uCIsgmx71u264zvEKHtTiA2U6qRxgAeWzq5weNFLAiNgwtrh0/aoRQh1RfvwCCYTXhGMCBSBoYYcUGueLbNuujIUQsm2q4GT/knNdGCNWcDih5qPmptmsjqYgqAiZ2ncCKzepIGLVGmnNuKGXR/amuTzX9UdqjLrts3ueq+hREOCXWbmW/cgFsALXRduoNdD8XtsQiAzW1qQCHXNf8jg0DMKIpPsbc52wAVBMCrOfjugE6ESAUJbMxb5XV1349EK4j73Ufm6E6IMQ+IkY7pzoDKbUB19ltO6VGk8t6XMv/8ME6hCNKuC4m7LgGI6VGiah/Oe2KYAC0/yDCUeUhGrGa5FQAAFwfAWpr7R6DmA22jCuV66Pql9dDOKooKCjAwoULm9sNQRCERoeIAv+mtRjxQkRXAxgH4Cxmp4tyM4C+SrQ+VhjihB9Rgvq39TZWyKfR7J8u1guvdl77iRTioN5bNYwRAjmNbL/4pJ0Hhfn76yVen7veILe98m9buz0OHpCy0xNcpSI4NzF2//S74E7FrlAfm5543nvlucdKALEabj5ttn20syIznr9fAZla6dkxpMUhxH+YidSqas/wCfNJT3FrQgNtEpIf+QnwB4D5hU2mUnPQMQNE8Aw1kvJhuJ+BIzCUgpH1kBkw1QxiFYDUeEq+gJW3Et95rokKJQiCIAhtgxYhXohoDIApAE5j5irl0kwAfyOixwD0BlAIYAHMP9mFRNQPpmi5DMAVR9Zrk8ZuMhhoWBstEXabT7fpJ4aC0uvYQsh3dMATm33bzbpcUW36+cdKHt6RoVjuqigikGU55PKNfVJ6UWOTVQaGYZB1L8npXNd94lgQiNntK9lpOWaTWXk+3lEvNUBt1/vrC4ZhN4r91axPuN0g1/2E+zYogwN+vunp2XV3yd8fvylZcWzGjQuAo3DKSPFsQRGLvj0DsTDDMBDWexL0Y92Oq9LbQka5GDViX0onnnskRR2BcYkgEDzDeUHzNgVBYc4tYzBi0EK0z6xGTUU6vl5dipOfmN3cbgmCIDSI5lgq+RUAXwAYTESbiOinAP4IIAPAh0T0NRH9CQCYeRmAvwNYDmA2gBuZOWq93D8ZwPsAVgD4uxX3iNKQ5kKijm89bmCGQY2tONGD8kiiX9yxY/+MtbcM620Wd/Nft6uXW79u+2j30pPite6fk19cx830DHV2T0z6qPmz6oFPZ7pq07BkEIgsHw1r5MQrf7x56CWA8wqJwQSCbTOoNIph5dyTr+UWx+uJ128CgNiQTSIH4tgLsu3YYO08jt14FSrIL104+KXz9StOGmWww+uTEhgkEl3XbLFhChQmVTmRpaTIGpHR/VVFi55RY3d3CG2VObeMwaihC7Bw03moOWc9Fm46D6OGLsCcW/TFP5O3V/lMNiIvd0TlM9mHbEcQBKGhNMdqY5czcy9mTmXmPsz8AjMPZOa+zDzC+vxcif8HZh7AzIOZ+T0l/J/MPMi69ocjXY5DIVnBENhWTGAgXkeyrnuS1D9OWrXTnZW87BCyxIzXWa/Dev6mPfcIjSqMGnLf3HKClHDzyB4H8QoZ8mRkl9uwLuijHgy25ncZ0EWMqR98ym51rtvvdZNtw7IfkzfKvdQay652NMVsspWlN5bumOv2wJmjpn5UpRoP/UFqbrsrmU/NSzSaElSZk4hv34+gtQPI+c/HFivX7FEpLV8igIisnwH+2CMmTnpyX7NvElkRbKfVykhaGtsYG3A/NEEIZsSghZi//gL0PXYg6v9vGHqlfIlV20fh2KELsOLOYZh3z5Xg2j3gaB0+u+1SfPnSnwAAkfp6lL3zBvZsWO/YamwhJAiC0BBaxLSxo42GjMLo6dQD9f2JRGJEVanxOtmDzr2d2OQTz254hyyR4G5G+7WH3e1OvSvcHokxLcdyJNc9jP10ixb7tQIoNtQUpPhHSg6sjMLExkTcd8AzskK2dDJby7ZNO6bBZvmcPFRbxLHXH1y2bY9D2n2yfmoP3T1ylFwNI7UFrwsRDxw0pOR2XA/TK6fdoLdPEtnUw3WbanryOWe4XwPyyydO5Xd971iPoowEqqMmQEyhOpFZTRiz7HyRrQrr+E3e8rvSqvYO5TeKcDTRPrMapZc+hJoXS9C5zwF0zjkAYC0AYFDxOgDrYLwxAwBw8kggGnkPB5/9DSKREIZ2rUb1P9tj474uiEZDOPG4LTiwsyNyumzG+r9MwjHd5qF8Q28cO3gB9pR/i6XPP4Q+378cA087MynfZDqbIAgNQcTLYdBQEZJs3Hh9qHob0FCO/f0hhOD/PrQ+5T6k2QjyI7h96xrHsGLE3jdheNupsXaoLST00RI9V/PYX1jZ8oBjFzgmGEhJx67/CSEy3z2xCVHMJikpwyCEYfgIp5BzxLYgIICtXndVeJl2rPtPMcmno4oYV0hDKlIycf2Ur69oIH/BAO3YFgxKtEBf/Cqcr1JL0kc9vRbPHvygoLh2mMu2o4J9fCPY64vYgyeK8rVsaWlJkd+2Q3Y8J29NPbmUqZWWQnBe3peRFyEBNRXpWPj4FOyu/AmMRevQDlUo6LYBg0eU46svBqN9aj3apUbRrl0dOnc1Xz0NEZCSWo+6kIGQAWRn7kMoxVxRL6PbQXQOz3Hsd+m1HwDQfu4InFIE1K76B7Z92RmR+jB69NyN8vV5SC+5BNXVdYh88w5qh/0cx155I+b84kyMKl6MeevOw3H//RgWPj4FJwydgTm3jBEBIwiCLyJejhCN3d7UbSZKE9SB7WdPj6uPcrjHN9S4XtkTm6gV5Jc9tmBOwbGb6u5xnViOsd5ub2ls2RMTY4QwsWMx1iaNiRYnDzYc2aOPKqkjKKRO4WHdT1vqAAZYGwnxGXGxfzpDKP4NUJeIYeV56G3k+Indke1g25Dd06+nTaZiqTBMVaa09z3oq6HF81lr4wf6o5bPTwT5lJt8wv3ikn5N8839BQn4VqpGVEVHHLsffps82WLIJd7s58Vwhn2S/aUhHLV8vboUJwydgfnrL0DpXX/EwsenYFD+HCxcfiJOfjG+SDCiUezduQ/b123GnvVbceyeK/Hv+cdhT/tRCB3Yio7R7RjYsxz9jtmILat6omt2JShkIKN9NVK61iHULooBg9YB1Q+bBo8BgCmoe+kOnHhcFBQGirp9jI1/vgDZaYSDB9Jw7JAFYGbs37EN6Z0z0S69Q5PfI0EQWgciXg6Tho6+HDIcP594M2+SDVdFiN/0JjUfvQ2nxjV8UgRLDa9Ntz9q+obcaTud26pq0y+JPc0sNhLkk6smSlg59rigCQLXVDIrxPeVfStj171UOvD1xrwrK+eiZs/juxYhqNHvY86DV7fG3r9RRzB0W0k+UtIP4lVMXVQE6Al1UCSuuqeA6/qX0hET9oPyUUGOP5pjrjmgykpk6gNWDTnDpqwJJkHw5+QnZmPOLWNQOmgm2n/wGkr7pGPRiuOTGt0IhcPo1rMbuvXsBpw0HHNuKcVpo+dj/vpeKL3vISx8fAoK8udiYdlJLnvb1m/Dqn8vxrYly2Fs+w7ta7ehc8o+ZHWqQMf0GnTsVIecoVtRV9kOmZmV6NbhK5Ayx7nufzORUhtGqGMdVnw3GGmFZ2Pv5m2IbluLgTe/jKy8fI+vMgVNENo+xEfRH75RJe15XiNvUqkS707a21kmutv1rExJUtozvnHj2FTDag3/NpyejhmoczaJ9Gv0x46rjBRXHPcL/bGGuLpJpTu/mCgxX/cHKpVNKnUfVdv10RDqlY0vY3ZDjj3A2qQS6S7Hg2zWRFMQRdjTuDXlBjl2a+rCqEU71zPSl4m20x2MWBtFcuweOfdHETUH61MR5bDyvMm1Sq5nk0q/esGKv+yzSaXXQdMnAzCiYY/I0uNxFKBaa5NKPzGghtmbVFrhjgzUK5y6SWWCytmgTSrrfGypH4twjYFwgLBx7LHPJpVQBINik6L2JpVaJXJUvZ2GQRXVCNvL4TnhhpLGfKAciQC1NVrFNWJxFAH1UfXLi5i51FsKoa1SWlrKzbVJZWOJhMpnsjG/fCw6nfJTrP90LkJblqKoxxIMOGYjdq/vjs499iOtcw0oxXCtXVFXnYLKio5ICUeQ3qEO2zInY8/iT1A0sAxLvynGoF+/ga//eCdOyJ+RtEgTBKHlQESBf9Nk5KUROdTRj4QGA9LrutO/XcdK49sdT4/vt1t8kG0zTBUgXreDOrJVv3TszmnDk8o/np8vbifVUQ5VkPjFI00wkhPXuYdEYCPk2PQIDI+XpI2IWFfIWsXMaX+awxR2e9R/FEoxC7he8nffXGWEI+hh6356b6gniu80qSDbdoM+0ZBNskOXhORXBPYrc9BoT5B7aoVxldWuIPEcV6aBufJSRJprNEcNVB6+80zV0RzrAcQdMhKEpkcVA50AnHyIdr5eXYrRQ9/B/C/C+OHt5ihOv/yt+LJsNE5+YjZqa2qx8N05KP/kc6TtWobuaZuRm7MHHTvUoUOXKqRlViPczkDfyOPoO9y0OfK4Jdjx15PQo2Me9uzshNJjvgAzu6f9CoLQahHx0gQknKGTIK3eRjtUe2obKFG7z8920K95n05sK1yfIuUODRYk7Dryax+7LakbQrqnd5k/7ZYzOY093R5p/saagvr2md7cta0XwT7ptMSxyEo4WQ1VJls0xaZuOUk5lpR1E65CqVOyXArMN28PCXwNjBcU17lFqtc+6YMqpp/wilch1WPlnvk+TPtW6RXTp2yqFnQ5RvAKGI9Aij1PZW3sWLjjj3Xi2gtHc1K/B/ZqD2AErgUtCK2ARNPZ0tqn4aSLz8JJF5/lSXtwfyXmvvUxtn46B50OrMS54/6FLct6ISPrILpmHECPzEXOV6j2xS7YtzsTHdOrcGB/R+Rc/wFCXQZh6/Iy9C4+xte3b/94LXqG3kJ6ZhWqKzpgm3EhCic/12T3QhCE5BDxcpg0RFAk00dqbhDeeD2p9ihGnM7xgCvehj0Qa+cZ9lvZyrQqv/iuNppznV3X3GKIERvt0G1qLXkrZsx+zDI75/4tX33CXawM+tiJ26bB5s4vZoe5u+ye+0mAOi3TKbXdqrbaq4bBWilixjwd84GYyy0bbJVN7/X3T2L91ASGXzyGWTnj2YlnwHmgWmM8GTFlj1IE+aVmY8S5rtll7dxTWS2NYkQNhO1RMj2xnp9uSxcohvXco85uoooQsU5U5aoOxQWWxwi+j4LQCjjUUZyOnTvh9KvOA646D4A5BW0tTsXpt03Hd1+txKKXXsPAurdRNGoN9m3KQufuB9CuSzU6ZFUD741EXV0Y3cMG9n+Sjm0dr0D/sRMx54nH0ON7FyJ13T+Rm/o6/vXuCGxY3Q95g9bhrLGv49s/QgSMIDQzIl4OA7+2RBD2myyJRASD446S6BuVB/nltZsc+oiEjd5Gi7XzWJEK7nR+dnQ/bVvuznt1PMXff/+RGfczMYyYENIVQEiLG6QsdZuuUR97bxd7ypmWTm9x21OonFcclLyJ7XEq9j4Dp5dfS4fYTCS70e7sbROklH0a2EQ+UYMUb5A9n7iekQ+Ce+8TI6B+xKvAfhUh4AvjDF4E3AffcNWeLZBDALRXWZz9cRQh6uujIzpsMancdGdpZLtCMFwrsXn80zJwlBoFFEYQji7sFdU+/Q1Q+suH0KPjegwtKsdCawra5m83Yt4LryB1w1z0ydiInjl7kNV3LzpkVmFA+Hngo+dxcjFQv+VthDoa+G5pLoqGb0Tn0SfgQJdz8K93n8MZY94EIOJFEJoTES9HCL0tEq+pEXeEJs70n3hiJih/PSzqO0IBT5i9kz27wu2zkNP49msD26tsef1Q5YwqO9y726tTtNSfbrFEzrQxtxiIiRhbNLkElC0GHIERZzUxJ5gBGC4RY7dpXbOfAoSnKqS8o1OWKLRnCGlZG8oDYuc/INmpRB7h4lVryi3TVZdqSImrDK44i2+p2lG1F2+pX78vgj7VS4/nvonmDz8Ro1WVQB8RE50qTs102fERHh6lqj5E8t5Tly+2OFIEDwDv7qR6gQTh6CTRFLTcwr64+IEprjS7t+7CnOdeAa/+DL07lKNfwXakd65GalY1Bh+3AQCQF3kKO7d2w44hXdE+sxrzpz2EE66f4slfEIQjg4iXwyCZaWA2cTqoA+Mmm7kenz0R9aPAdlpSPgTNYFEb3uSMIVBA/KAX9r1TxtSz2F4s3nuqj1jERnTcQsnO3eW5dep6NUE7cokcLW+z/ahIEFbKze7Y+j4yIH1PGO+Ykz4WpfqpmfcprWbY75Lfi1ZBlSSOgHYNGDWk0gfZ1KtIosrq56suYvQ0flO/giu38tOe4scxjeHkp1ckt/L0CCLHPvvbcO31YmdkD7f5fRsF4eikoVPQuvXKxvl33wTgJiessuIAal8uwDffDEGovg59cneha68K5PTdBQAY2fH32P7wU6iozECntErsGfoghl14eeMXRhAEX0KJozQuRDSdiHYQUZkSlkVEHxLRt9bPrlY4EdGTRLSGiJYS0UglzVVW/G+J6KojXY5DQW38+n1s9PN49vQO8qD2JGlx1LCgBnlQ2tgVf2JpzBSshcc++lhJTH64G+9aKZm1jnK3l3771ev5urEEAntTqONLMSmml1MVSbFufu/z0OWU5U3clatUn2N++j0/T/s/yYrE8V6ad52TO8yv8jK8j8zXD4rZS1T5E9n0+OlzroQx4F4BLt7NhBI5zpfW0RoGtIpkOa6msX/rOqMutnhW6w9iIsazZrqPzaR+YwiCkAydMjOw8D+DMHzECmSdfgG6T/kGK2smou5gKjaX9cL21T2Q0bEaAwavR07Bbgyu/Bl2PpqLjff1w/YH+2Bb2WKPzTm3jEHlM9mIvNwRlc9kY84tY5qhZILQNjji4gXASwD0b+3tAP7FzIUA/mWdA8C5AAqtz7UApgGm2AFwN4ATABwP4G5b8LRkEjUv/EWCEqY24lhr3ySwHU/Y6NeD2rzx2ot6c03d0yRY/MSa8CEnxC0DVGHi337V47vbh0El0Rv79spfukCJpQiWbaqH9qv3Cdvutg+k3oWYP/ap0x62T5R2rGcaGvnbiydinHf14z10VwJ/O343hROJFtteIsUdL0zPP6TF1YWP9v2J+6W0bFAoKJ7PA1Efqv4eiv7lcXoSbBuKmImtvODxx7RvncigiyA0CevyL8Oiz4eg5/7HQTNyUNjuJSz8tAgf4yb0uW8t9py9CG/+50b8e/YIbF3eGx3S6tCr3w5k992Lbl+dgt2P98KuR3pj+4N98MWtZ2HU0AVYuOk81JyzHgs3nYdRQxeIgBGEQ+SITxtj5s+JqEALPh/A6dbx/wL4FMCvrfC/sLlk0zwi6kJEvay4HzLzHgAgog9hCqJXmtj9wyJeG0Nv7DphCRomDREtBHf8xA3s+OjvpPh1kKv5EOxxFX9r8Lkez3+vdVMSxN6pibUWg3xSU6pX7TB2fmriAvHupSWHXA6TlkOsrWq2de1RlQT30rpI9jGUczsnW5Doif1voDeOXiA13C++/v6Jy+GAC/EeaiKbcSD1sbN2rOWj6gavIe1Y36zH9pF94quBTjJWfFCUk/PSvhJPd9TO36kYbM0bFNUiCE3F1fffjJd+A3wydRG6cHvsoxrkXTwKV99/MwCgz6B8XPr0Q078XZt34L3HnkbXHZ+if+9t6J67F+17HAQR0K3PPNRUtMeo3JnY+6dPcNq9K/HZXUDpoJnNVTxBaNW0lHdecph5q3W8DUCOdZwLYKMSb5MVFhSeAHVJ2mCMJBsFRlLW7JyVn3ESEdztm3hNlPiN+lgsfapTomZPvBGa2PVYK5GUMG88rx0/MRNbs0wduXHbj9nzvn5vPlu9a9udr73QgE5MgsXO7TBGrNvdGd3gmK/6xp6qTTNWyOwg10dJVJscOycoosbjo7t4ziaVjuOk/vArpD9+gsX7oPzjBk0583M4KCgZm7qg8SNIeOn5KYMlgcJIXQjBla/1MNWH5BEw1oG6XLW6aoDh46hqE4it4qCKcD1fOywZUSoIQoO5+v6bgfuTi5ud2wOXPHqPc75/z37MengaOm7+CGf8YC64LgXp2ZXo0LUa9f+XjcKMbmifWY15U76PEx/6sIlKIAhtk5YiXhyYmYkab91PIroW5pQz5OUmV9xk2wINbjM0JDIlIU7YFd03C7U5H++d7IaIsKBGdWCnexxbOsrir5Y0dAsv//S6aFGGNJg0HxnqSJFPKldozA+3NPPrcPe7F56BB1ZskmkzJuBicUkz6Hsv9YphD7n4Lbcbt7KS91oi5amG2fF9xE9MxAWohEOwmRQ+8cj5L078ePfBHvUAENsAVcvApbTt0RJdLbE7rt8N0J+bSyzZlYgadk8EQThidM7qjAv+59cAfo3KZ7Lx5dYxqNxXgox1MzE4fyO6F+wAEXDciLnY92QONu3OQ5eUndjQeSJG3/zb5nZfEFo0zfHOix/brelgsH7usMI3A+irxOtjhQWFe2Dm55i5lJlLs7s1c3FJ+/hg9+QfantEN2/biirHifLwc1ONb27TaMCA/To7wVA+dpg6thKzw441Uo4NbbyLAz6GZc3tu23P9EC1r+6ao9sC3J54x05id8vaohIGK54ywWDzhXv7A9cxXGU0A9hRJgQGswGDGQaz1VFvlYKVe6k4rD8TD2zeS3NqUUCBoYX5oddRuxIZ8Nr1U3KA69WM2IpYWqYNtJnoO8R2RbeyJCP20fMh/UYGqE/DsDeUVESIfh+D/HZEDLkHUaKG4ot+o62POnKj27PTONETDUsJgtBcfL26FCf1fwed68pw3COvY3XkNETrw1g+bwC+XVCAMANDBi1HrwE7UZr5MNbdOxiL7zsPX946Guvmf+GyZZT/HdF3SxF9JQPRd0thlP+9mUolCM1HSxl5mQngKgAPWD/fVsInE9GrMF/Or2DmrUT0PoD7lZf0zwFwxxH2uUECwzXyESdhUEeq3ROfbEe0X3iitmq8Tmf93B4rYOssaBRHbx8m6igO2tvFdT2OETs1g6xNKmOh6sv97v1nGEwUp/3HrilnsZET/w0qHfeIPCuY+bV5yfqnltzvXoLcYZ7b4PeeiH6f7EQuVeqVbi4n4+H3gBU/3SNIWgGCbHtGlHz88vNVS88E794uyrnn9RJdqVsFID1/J14cGel5SLoYcf1GgKuQnjWmtS++60REiyC0dPz3nzkRJz9pLuu8f+9+zLz3IfTe/wEGFGxFbt+tyGu3CegPVHxxAZZ+MBx1nQYj3ViDPhmLsW1uX6TsPwaRzrXoueUmZHwfCBX8qJlLKQhHjiMuXojoFZgv3GcT0SaYq4Y9AODvRPRTAOsB2N/CfwL4IYA1AKoAXAMAzLyHiO4F8KUV7/f2y/uJSOYtFXb+SyJektgzPRqazoWPgaB2nd5G1ft2/dKo6eLZ9Lpk31U7xzhDS9CEnJYqNm1MtUjOMZRzPx/9NpV0iRTFgmuGD1Nsw0YrgbpiWsyatg+NNaJACDmNWeeaj87SV70ly4bayHYvLo1Y69lx9MZM4gAAIABJREFULlZ+grJpveU/2b35ySpYvXXOCH7vpAEK1yVcnAa862pim/G+LH4iSBMkgXu72GHxRl+ciOR7zSNqdL8cf+xyW6Mvfu+tqAldSydH4ez0aT96VQzF+Z4JgtByiLf/TOeunXHRY/cBuA8AMOf/ZqLivWkY0W8luvbcj+IBcwHMBTNQuakztmbkot2I47Bl6Q6Ev/gPopFfIut6ES/C0UNzrDYWtJPTWT5xGcCNAXamA5jeiK41KX5T5APjIoHA8RExidqUajL1egPaoh4b/uGqVAgWGfpohXmNfeLFzoIWHlCFi6thr/W8+4kY+38itvZbicULaTY1SeGEOTKLrEUD2C2OALv96l48wU5P2iaV3nvpv1CzZ6N1V5s4ucpG/oUJgP0rkctgogzttMrdjKfqk2mbqzfab5RE0w5gLapebu08SOR4stT3wQkSKX4CzlYmfu+2ePK3ahcZ8AgfQRBaPSf/+Dzgx+cBALat3Yy5D92PAeE5KB69Bh17HcApff8FNv4F49Qw5i86CQUZq1BXXYV26R2a2XNBODK0lGljLY+ECqLhJNiL8NBsJjhXG+ishar9tkFNoODrwTImNhrDAEIBbVK/hrlfO9bPS/9yqo12VTipqd33QZNIrIeoZTHP1W1E3DaV+2wrJmIYASMgMT/s94P8e9H1/P0EsJra1e5Oqr6RNXRDnmCngE4YeSuRGkdtzbNWoiBf/ISHLiT8jv3SBpVVuea0/a1jCkrvOrdOAiqSy33DzwlVkMBagE5VVYB3CpquSll7uJYTTl2TERhBaIv07J+Li/70NACgelo3fHXwv1D9zTcoGbIKnXtXYPRJc8xfEa/1xNp1Oeh393JQKLV5nRaEJqalvLDf8mhkkdHQbRncYwj+xOks9tgKajf6dVQn29md2Ct7tMHvituKuSCxW3C4xzw4dsTqRpD2GyOxlKSIDNVCrBObnY/jl6vRqd8F1ab7XZyYn7ZHMSlieNYs9tok2O3PZO66sgxCwAP3PD/SArVs2NlYMYnsg9DzMMzj4PY0xY9A8NpkJOennk4NV4knmNR7ZQ+mUMB11Z7neSiBfmXyRLcFiRIpaEUzUpwImiIoHDZENIaIVhHRGiK63ed6GhG9Zl2fr+5hRkR3WOGriOgHiWySyR+IaDURrSCiXzR1+YTWxdaluRiW9Xec+dBv0e3X67C63f9DzcFU1OzqgFA4ivzBW1D3v9n47p5B2PFgH8yd+vvmdlkQmgQZeQmikUdJKKAtEgT7nAR1PMczqV6P0ycMQvLve+v567hfl/BOD9Nbb+6Rg+RkESmh7ndSGKzlGW/jSyedFcUUEqz57bapp/cex9txxm3DaZMr09bUhIZmnNWbpYQT4NpKxDfnQBVJ7utqnEQF0Suhn2jw8ydY0XrDA216w12bVNp2gh6cmo9u01PRyf/L65nmpRpSCunyQ7GjP097A0q/Z6Sa9g4TCo0MEYUBPA3g+zD3EvuSiGYy83Il2k8B7GXmgUR0GYAHAUwgoiIAlwEoBtAbwEdENMhKE2TzapiraA5hZoOIejR9KYXWxLyd38PohXMQNX6CjA57kFuVhZ1f9cXcHSejz9gzEP14GooHrEVevy0IpTAyax/BqrtfR2XGCTiwpx4n/OYppHfKaO5iCMJhI+IlHgkaWIekbxI12tRo+kwRjUR5+7U/7bCg97GDbKvXgkWOe6NJf/vk07QjTzlJCff6w5qv9tUQ/F7YV330EzJmHH3FNLdN1Q5Amk33VccmmWqDPdfs6V8U60RnbYNPRvC9JDizhVRdYG5aSbGwoIa6jz3P9XgPUQ2Ps9iV32abCfNORo03xF6c71vcAS/FDyepPW1O3yxS3ZzIOVDEhbOsMcfO9WXQgjagdBQZYkqW9eUuhCbieABrmHktAFirXp4PQBUv5wP4nXX8OoA/EhFZ4a8ycy2AdUS0xrKHODavB3AFs/mAmXkHBEHhiten4W+XXI8hb6xCZvs+qKhJw8qOg3HF69PMCNeYL+1/9NSLaP/VcxhSuBEDBq4Fhb8D9wLWPTwf6WfchWjHgeg1bBgW3HERRgxaiPaZ1aipSMfXq0tdCwsIQktFxEs8mqJd0ACbfnsN+tmKN0pib/QY1LEcbzQmKEtSnEsocjhYMJjHZld5bDcVv5EaXYDo79GoIseWHSGXN+7dXlQZEksXVBKCPU2NHOGgj5wEDxSQy3nnrhF52sF2G9ZrI3iwRL3A9hBS0GhCIAzoU9wSPQQ1LE4l8lsZzmMzmYqpioRE+CnehDdUuxYkptjn5voWURMsQEz82LWG2FsBrLrhnDrZaIVx9s05pC4UITlyAWxUzjfBXLLfNw4zR4ioAkA3K3yeljbXOg6yOQDmqM2FAHYC+AUzf9sI5RDaEI5QsRjpE+fsm64BcA2i0Sg+fHQauq75C4qKy9GvcCNoyyRE60PAMqC0mDBv3SUovfQhLHx8Ck4YOgNzbhkjAkZo8Yh4iUdDGjyNZNOvjRavwzxR+8xu/0Ti2IsnQGz8fIoqb5aoox2sxVNnFvmLjpg4MGLNe+Wn36aU3tEaO5wcj2Mix76v3rJ7pIbjU8wzdTGAkHUvYi/P6z7qPjk2tfasvWcNUwiGoURQbbD7XgS17WPnRiySX2Pfd2SDgiuT/jDjVU7fyqiPMGjpowE+xrUZcB2IvQtkC8UgW6o9I+A6lOfmWSlMezBBqKM1Tp7WzfY8H0XIxJS/twAEwFAqU1OsBCI0B2kAapi5lIgugrma5il6JCK6FsC1AJCXl3dkPRRaFeFwGGOmTAYwGdFoFLPvexTdN7+O4pK1SOtSjXA7YFTuTPDfZ6Jz3QDMX38BSgfNbG63BSEh8sJ+Mvg2+JrGZlCHd4L+67hZGNp5Q+x7Op5hb1RuwL2jvT+qcLHP1RxjzS57ypn+xkywX/6+m7kZLu/ZiauOx7ASx2/qWix/hmHJGINtT42AMSLFJ3bbtEeW7CV1Dbvj3XA/Kdf9VgpHnta4licDbNiLQwQ8E4L3piWq3/7KM2ZPtx1og93nQSRj069iqpXdL40WRroNPV9LABmGIggdfwie1df8cCqqLRDNh86uFTzIetCxumF+dAVJSrltIWMVOtmX6YSGsBnmOyg2faww3zhElAIgE8DuOGnj2dwE4E3r+C0Aw/2cYubnmLmUmUu7d+/ewCIJRyvhcBhj756C459bgNSfmVVu6ZxB4LoQ0rtUY/ixZRja5QO0z6zG57ddiMqdu5rZY0EIRsRLEPEabEqUZCHV3iG2M5y2q2KDfD5q/Hjnfi6Rdg1afGjxzGN2iRjvWIa/H+58Y0f6amB62dyri/mXh8DWeyO2gIj972czqNHtVyonH2KADBC5d5hJ1M6338l2RmKIQc4/n4lzTm+9T0te7YBHrO0bWCCfh0jE3kpkCwFdIMSzF7v5pl3f+m6PLuijCglsBp0H+QVTD7DPLYuXxlMxgdg7+FoYEUAh8mzv4v+FYktYkWLAPuXYzWLEd1oVsGxYh6QIHaER+RJAIRH1I6J2MF/A17ulZwK4yjq+BMDH1v5kMwFcZq1G1g9AIYAFCWzOAHCGdXwagNVNVC7hKKddWhpqKtJR0eVYpF67Hu/On4S1i/PQNfsAiIDvjfwA+/88ElsXvodIfX1zuysIHmTaWBCNPRND6clFAtNBWdvtlCADyXRm221L9aefDTt+vBXIvOdmi1ffLDJZHz2tX8cmOzbVhjnBfyqYaYmU9LFzNbZ3gWXEOrc5diVIksUsmSIGIJg6QM2VYiULKHyIYuIjllNswpr9ro3TZlXLqTwgdl1MrvJ6Bg/iTKFyrxLgd919je1GvS44nHgca3QnaTNhxWR4KqbTvlfz8RllcV1ThYojODSbdq2yq7uhxHP8Ya38qmhTVZ7iu3rdycC66LvimTdIOHysd1gmA3gfQBjAdGZeRkS/B7CQmWcCeAHAX60X8vfAFCOw4v0d5ov4EQA3MnMUAPxsWlk+AOBlIvolgEoAPztSZRWOPr5eXYoThs7A/D8AZ931EBY+vh9969/E+pV9kJO7Fz3ydoNWX4KahWmoNQg7R/wDBaPPbG63BQEAQHwUTTcYVZLGc2fnJoxnuFpgwfHqfSfs+xO1Wlv2VPYg6ty5e1CvRZg9YX7nNYY3zG+9ImagztKz8WwygIPRFBjawJ13N3pC1CDUISWWhytu7NwAoTKaBu+mlqbNWPuPEImGUY+wT6e8e8yiLkKo5nQtvTceQKiOpsKA/e6Jv00GUFOfghpOc845oNxgoDqaaso5w112lz9MqKxPQdRwbyrmnmFljccwUBdJda7b7X/W0jCA2ppUgMPwoD1YZsCIpLgXsPKJywZANQRPf4dfRTKAUCSmilyiQaUOCNe5F1Zw2VTShOqBEMO9SJefzWoDqXpHoZbG9ielxvCKK+0nAQgfrEXY/qr7iTu2anMUSKmtdytV9eEotqmiCmGnYrASx3LG/hGJADW1cEZZPA87luaj6r8tYuZSn7sitFFKS0t54cKFze2G0EqZc8sY39XGotEoZv/2PuQfeBOFJeVISY8gWhfC+nV5qKjOQnWPM3DKbbKHjNC0EFHg3zQZeQmikTVdvJ53FbUZlyh6ItGi29Q7l+0wfUwiyI4e7u0Ud/VHA/Cu4WXHdI/+kGtcxZ0Xu9KYNr12XTvcuzy0r8bEhe9oDOvPh/4/e28er1dV3Y1/1w2BBNAQRiEBwjxDgEsACdYKWhwKdNBi/Vj9aX/aVn0FbX1R61ALvGqtoFastA7YWtFaX0gdUMuMQkiCEIFAiEAgCIKIUYYAuWe9f5y9z1577bXPc27y3Dz3yd1fPg/3nD2svfbw5FnfvfYQPQUJZKQI8shrSEDFjLhHdV73f/PyFp2LE7ISkYN8xiht4h1J6q3yRx1seElaBlKkl5TFLoDSPGlGnc+QqfPmvDWaT0CQIasLGhlCoKWbc4gQoGYnhBL2MHDJMj3Y1I9VPV1hTaGUl1FQUFCQgTxVbFsAC93ztGnT8MpzPwTgQ3jg9lW4/R/fhfnzlmPevvdhZNp9GHv2Vtz84aU49Kwv4qknxrDdnDlZIlRQMBGYVHteiOgsIrqdiG4joq8R0Qy3Nnixu434626dcOvNxv1RBi1W4QaK7ChT22NAPCnrPxYpGY9MwLbVcmrKcFJhUrUcwdDleQPey9Ay5VMFdh9bnp0/V5t414zXOdjTFkGx6xCX4GsdU0S7PV2OZqWR0kfwhGZpHMfhLYqkkb3Gnu4EC10Hmn805RGiTSJdZPbSkVo+ugzx3POrSEFdO7HwkgCBTDQfow98tqQcwSIZ9aaoSikbyXWfZlakz7MtBQUFBQB2P2RfnPLFRXjBB+/D1Y98DLffuA/WP70Fjtj/GtBl+2DbKw/Az8/dA0cftBhL15yKdS9bjaVrTsXRB92E6888ZdDqF2ymmDTkhYjmAPhfAEaZ+VDU64H9jcXnM/O+AB5HfaMxIG42BnC+S9c/TIQ90FFmZCttpB4+u2X35Satu4Gi9N7oj2Wy+L9dQiA/6fZ8aetJgmAj5E7L8RdFkntOt0zEWsnFYqk1bDkCLHtUh2h7GgwQuw3fxJ02/se0yCyofRbeMOIj5mnF6/xtH5EmnOalRl/K7/J6yuxWnMrT8AWLaY/ne6TzaybWVabf2e/TerJBQoi8kVTPTMgCPWnx5GYKLfktKCgYPF767rfj8E8vx7pT78L3rjwVv7xvRwCMXfZ6DBgBdsYy3POxl2K/M/4XFq8+HfP3L0saCyYGk4a8OGwBYKY7cnJrAA8BeAnqm4sB4GIAp7vn09w7XPxJ7mbj/qCDJT/uwjpkIP1Mwm5Sn272X0wdeqmh7VCZN7Uhw7lgPmYE4dysQCXikNhAj2+gDzoEuTK3XLwV14dEXqvWMjzWRB4GoG3ShKCQ1MifsxaTI0+QyJ8iZgxLr7MnMew6uvGwsN3mjc1LisDIGfnk+KukUdIG7DU2rc6z4kPl8na9VXYvcpIbmFpuLq1RTqXD5UfkTy60b8iD0jvpEKlLG5vyHhzxjW6Sa/Lj0vitQm19MkVARNu4v9sOWpeCgqmA7efshFf969ew6wdXYzG+BGZg/VPTccChq3DwkStRLTodOx9xJGbMenrQqhZsppg05IWZHwTwCQD3oyYtawEsA/BrZvZ3LMpbiqObjV36HfqnECbG89ITwaCWxrsMsz5WvLRsxtynEn8r8e7D2NDBf3x6b3S3NVHOnkon9rWvJm+JWTE5oiWftA0bp0lt3lxJJDT2S7lytmMi00xUe1ua45yFsOi6D2SQIxEaPccd92esGzJqMjZO+RaZ6Wqc9/AcNUccWwPJyBc5N5qOhCHA0Jmtgij8aSOPzb0viNtPkispYGrveZntTvBa2DNlQUFBX3HC61+DdWtnYsnPX47v/vh1+MXKnfGCPR7DAWNnAwz88hO7gqvuhxsVFHTBpCEvRDQbtTdlLwC7AdgGwEYvmCSitxDRUiJa+uhj4/gCTcSsZgeZFYJh3GWyuRekoa1ldZnIzhv54ZBiSWzkRx0UDI7+BopUh/lT1qqk7louEHaWBP3iXO5KSehdMrodgpfHlkWuR8jJrLhq9AcTWH385SLMZJTIYSKd6lKZGRXXf+v7X1w9ObSh3tKQH4717H3lLy20OlxXMSdRj1M/kHID1CIKPrurb+zOcInGWmS26ZQhaSzOznbX8ESfqBzLASLLcjKqyl8C6T0kKo+lsyYZnsS4cB6rwtKvioQbSJbDIX9TQSBdLuY7Z8riJABvBLA3Ee08YF0KCqYcblk5iuP3/m887/nrMevtS3DtDQsx9swIuCLM3u03eOqinbDsb0/G9e9+BX51/+pBq1uwGWDSkBcAJwO4l5kfZebnUN80fAKA7dwyMiC+jTh3s3GE6DbiHYyjY3uhxcIfL6lgKa8lc842I79rv/WIqFBWL/1y5CQnz75TJb6gMicntutSmhDHWocZy3lmSvSOqYInBmkpOq1/Mm1CkW5MSGgIGVWOhLT5itJ3X5aXWXtZpH8tLltyjNZ+dTZ2J09N1BAtFc9dpKPlGIWa2Xzlm5s6e+hpvVukzBCVHBjQS046kGreMWKkIaBlJ39KkCDqHDpdyBQvjdvNYlXy1bG1svflJgBvArCamR8ZtDIFBVMNCy+4HMtWLMDo3EWY8YM9cexhS3DTrSdg9QHX4UdXjaJ6ZgvMP/gGHH/0NRj7+vF46OarBq1ywZBjMh2VfD+A44hoawBPo55NWwrgKtQ3F1+C+ibjy1x6f7PxDYhvNp6U0AZpG3Lx3Kx9z0uw5mRzadql1GXpje35SXEfM6LMbxL/TyetZSrv3Qh5JL1IjUQ1T61qEBMk/+SfPVlo3inI84GV0ELWIi6PnZFJIB5p4slHKd28vR7ZtaIuvoRAtQC550HLY92Ijf5Ceo8Bl5yAbBEW3zCJAu2yo3RRWm+g58rqID83uIVM2RSk0pOIa/9S6AbyoZx6WDQqpQiJMFDwSMmBxxDMayzkkwOrmcDo/W/C5g5mXuEelw9UkYKCKYzcscv7HnsNnnj8t7j8Pf8fTjjweszedS1wx6vwq6ufh/XPboEnT/wa9jrhxIHoXDC8mDTkhZkXE9E3AdyM+kbinwC4CMB3AFxCROe4sC+4LObNxn2HZVxtrDxsmMwmq0Fi2mbkc+FtVeNMGun90OHscnpzXxOOQITCPg9dJjdPobSwtCw+CMAmLoFm6Hnx2CaOy9B6ALVbUpIIK0dk85Jb+uYMT3I6A87WbN5iYkXEie2pS0zayug4H0Y6QUtHEynS0gW9xjCJP9k00oAX4Tp9zo1kD778gGWEY6nzA898z5Gcpjdlw2sGHNUtCCX95Ahw1Iny6GVPWKKCernFpg6I6CBBYgoKCiYRtp39PLzyX74JZsblH/4w9lv3dex5yBqMbMGYvvSPsOSqkzBtr5fg0D98HbacufWg1S0YAkwa8gIAzPwhAB9SwfcAWGCkXQfg1ROrUH9FSZsmB71ypYvcXtDy2uRbYV35W51OmmUWFQHCXpjwLuNDHkkjYoM+tV1JPMeKy/oGz4ZqBT+ZrWokPSEEatZZWm3aXFJJoQyGJhqUpld+lzR1oFoRQRGQDgddf1NhmdciLVb6iOm0y8wOpCZOMJxeMi2WuhGTACyKbiU9vQaScJQ08qJLKtWzzzOiCog22zOS4eD327BIAwSXGRjmAQJTC98homsAfIiZ7x+0MgUFBSmICC//u78D8HdY8p+Xgq76CA45/D4ctdMicLUIT3/hvXjmDxbj1n94W7nwsqAVk2nPy+SDnrrfxDJ7Jc2YSImMNnk6bDxVtuUFS9M/SZsv1VMfqpzzhbB4sqRYesVemjiN2xcTSZZ54tTykGZtw8alcNQCmgzpegPeE9Ct1aU9m1spFHkK2jrUy2hLYzVHLo2T6RuGyehvuRGljRWTEd9LT62vHhSyTM0FLGLkZETtqeOVzBiKuFh6MdC4gnRnaObb5CfEF31aDT3lcCBqr/01RPQpItpp0AoVFBTkccyrT8fohTfj8ZfcjKuuOB7P/GYmtt7+acy48ggsOPJ6PLl2Bm4Z+2S58LLARCEvbbCt7Q1GM9M7TpnEDGpOpGLTct1Q0iHVkYtatJ1lPes0jPgwJ5sWBC2tMkIquYXdy+5FBzRxsWLi45+j9BTHStTlS4oSx8k2lPmttjLs/OaCSq2yPyDLZ2AVL3kAIptWjYZcp8u0OaJiO4VCHilPEA5vZwfrn7oNVCkzR2JyWdvq4AeoFmOl1x1mEQRPLhpPDNdERJMMrYO+z0WWx1y7wipO+0hWjrmsGhNg5meZ+TMADkJ9hP5NRPT3RPT8AatWUFDQgt32n4eTv/A/mP7mB3H5jX8KHhvByDTGjns+jn0e+yC233//cuFlQYJCXtrQw9DqShY2OJMjKTm+02ZzyRCryKqJ7aiK0sG6TyZ3FWUuFkpGvDoovecm9n9ou88TJXlfjWyFoLdFZOKrNltoF0lNYhmpTEDXmBsdgOguD10vx0+T/rE4gBTjdckZ77rxrHcY8bm0LZ4b2ZdZ+ZY8axnbiIjv4q2Rdc2gcXhZH1FWIIyeOADNUi6ZVpK0pgAXJteqMSEcHe0CK9XhBDT7YDwJasiSZ4deh8JgPJh5HTN/AsChqA9+WUZEfz1gtQoKCnpgy622wis//S8YmT6GKx/4W9y7fC622e4pHLLl32PBHpdixqyn8cSjvxy0mgWTBJ3ICxFt3+Gz3UQru0kRW9L9ldmCyH6SN+pZH5XHkiPNdR3fll+qrNPLd6tK2gaUT9JDYS/aklSku47xFZLSoqYoVGtr2c5SD2kNW94Wy3YP/acM5ObRyXJGp78Txk/ua+3NehsR/pqZqDCZ3pKhK557l2X2Ig9N8eJQ6155MjJ66pSD/v56mf5m+jZx2pUWPWdyJcRHEB0fHzoIMaGrBPGB+p67cv0JZeQCSKRrY2hTDEQ0j4hOAfDnAPYA8FsA5w1Wq4KCgq5Yt3Ymtvzt3dj3o3fhttlfw2037ofpWz8LIuCZrxyOZZ/+G9z1P2X/y1RH1w37P3eftl/Jaah/LDYPbKzx1EVmRl4/r5sjqKVHougu1UkmlhEmx6UXgUWOlHhwYkvW4SEmxHMiw17EpfX32979JvhKlBzrqGWnsiRVYXgq45/9EcrRrLzQMa6jID2N0UzihCpGxeFYZksXGdBGGn15FbGdwFLQB+Q243vICx4zuul3eSxCY7xrWPfGapaY08koX94lSW2yGp1gt5UgaVxVse6WTIssMeJ2lSesVVXY3M9CmB8XnihF8sRLlA5THkS0HMAc1Efu3wlgBYArAPwTgJUDVK2goGAcuGXlKI496FJc/T5g9KyPY+lNR2H90/fhVw9thx3n/hrzt74Q/PCFuOcDu2Gvj6wElcNKpiS6kpcVzHxkWwIi+kkf9Jl8aDEMxmszcPKQoja5Lfty/BZKWw7qkEbLiSeha03DccCxn0XbcPLdNvTjGH3Msm4TbdOyiPGkqm4yWULsAZIUKKS3wA25qNgTktrgJ04JR1MKp1dtSiJTrxQKviaOcydytcdAtwmxtHeNyjQGtRJukQqPXkxay6I0KoFPm5OtB1CbDEtmzqOkGkyv3ErSy7hEJ09K2GzqvJ51+vq4c7F4M5LNgfhoRZJBWtnlTD2cjvqS49ISBQVDjIUXXI7rzzwFo/svwowffB2jc2di2YrjsPCCy7HyuhvwxNf/EoeO/gx7HvRz/ObTL8CdDx+NdVvNw+98+MJBq16wCdGVvBzfpzTDgz7/BMpZ4F6izfho468tQROFXvKtyebcqiAtN7blfGx6t0sgJba9Gexpm94ET4qUSFlbM9ZJE4tAELR9S3pjtZCnL92MiE9zQaXUOm9bA3pC3clgirSNyoyMZdWW7iXaA85NJlsZlbfZWyGhPSI5Gb1ky3TSW+DLyw2MNvm9yIIqJvHAtOlpfYma/SZxsvA/JdyUx6LeoiPh4kinEYJIkJbGA+M7vcw6AgAz3zNoHQoKCvqD3IWX+594PHDiLbhn6a145At/gSPm34nRw64B8zW48b33YMG538HIyLSB6FywadFpz4u7UwVE9Goiep57/gARfYuIjpJpCmyYM/PjRFiC49e6x/Jzq3p62YI6fU6mJDfxdZGBJtjb5bvqw0kKEjJDeXHddb3DBnopI6U5Xp43bptnijWIax+HNvKIAYr11PJZV97LIk2PAkWSJExqDzh5FZKVRiGyNyhY4TWsNYay5LgZ8sixSl8ceeKHdplWnMVc0wZsnhmIt5vk9M31j1FGSK4Gjux0eTIgi5wR86Q0vyzZIoFSmYzOBQUFBZsr9h49Asd97gb88oQbsPTaQ7H+qek45rDr8NQ/74I158zDVWe/ftAqFkwwxnva2AeY+bdEtBDASahvuf9c/9WaBOhqpI1DHJwB1cvWGE9k7aUuAAAgAElEQVSxXWwXy67rYsfldCEjXSw99cFokpKSLF1SqoW188Wb9j5FdKJZYxfGp5SFvOLoZWdIy0Of/GekKZub/d66DdlrSACL43IZYa91SCX2jRNl+zCUo1LkMrR5F3p1uCYtvQZhL8IBRda6fJ+sNJpUdBmcLV+KhsRYBAi5MMrrBopPLm+8LCwIlCdqLMRRJKM+gUzUQaU3K04j3b7QUxBE9PuD1qGgoGBisfuhB+LYf16Mtb97C358zTEgVNh170dxwgGXYfH7T8X6Z57Cde98KZ64cEes/+o2eOLCHct9MZsJxkte/GKSVwK4iJm/A2DL/qo0SdDnGc3GwOkh057nj+Mtu6sLgbEmsLvYPD1sVPGeejisCyWF6dZoEUiGRuqrsaSm5EdqGEiDJwNST3ZukdhZoVtH+5qSCf5ICwYL0qL1ETIZbt9MvgdDOWx2OqlPEpgrHj0cNEl+7Rkw0mibu01wYJd5mdLGb4MmSRZjl8k9t2gbNtaroZvBYsWL0UnNv7qu/kxIFRcV954bSYI9oSknjuVw7qAVKCgo2DTYZd95OPHzV2Pd79+O668exbNPTsfoIVdg7D9egOOP+TFuvesQrHvZ6nLh5WaE8ZKXB4no8wD+BMB3iWirDZAxHOi3PeBtjA1UQ15SydFUb0iXy2/Js9DL/kt0UunkUhqbYvSWk5ZdP1Xg1ksqtdlHZoymMUqSYUt3sG0jna1beez2dnSE/JttMXunCAflQz0yipAuNUcwpJpWp1v5x+Hm40Se8SXoOEmQkLKcjha5yHlugHjQt8kzO9EJa2Qrl12OBbHI25Ql3pnFJZUWQyVERzF3mRWZeihsrqBgimGH3XfF71x0DcZeczeuueZEjGwxBhoBjjr0Vqz4xzOw5ytejxvvfVW58HIzwHiJx2sAfB/A7zHzrwFsD+Bv+q7VoGEZd/2SOa483Hxyy4r0exdjuw2WzEQtBB+DRTSs9DkNg9FPQm58ISVHObtRr5Q+UCYOsDw+8hACbcFalMziArqEiAO4DMTkHBDxTp1om4SsZUN2VNWsRDn06uQ2httlMCUkyyAtveTlG7P1e9QUkyMx44EgkCkT4+hPNr/0jDTni/tx5UWxCHdxsoM9EWouyfSkqZCWFpSGKSiYopi18/Z4yecvB40AV13zIjz35FY46vAbMPee38eRL/g+Zsx6etAqFmwkxkVemPkpZv4WM9/t3h9i5h/0Sxki2o6IvklEdxLRCiI63l2A+UMiutv9ne3SEhF9mohWEdFyf3BAfxRBJyNtXFN7HWVGcp3hwy2XVFoTw1ZRhtmVpCcjzsoTE456Oz0gl37FproOkWXpzfVwYXLru8ydt02DhRqTpaB/MPX0tnpfqq6v1gvOlqz/Y4QFaOk2fV8KmR1ST55TM7nOJIgVI7u3RlaekjAfYZSZ63T5nlQ2k94ax0Z83GMtabt8N8KA6Q2fTu/hUeWwDk8Hp+2pYaDZvGa2oScZSgaJAiJdJFE2dPVkVBKfJo09vgr6AyI6hYjucr8zZxvxWxHR1138YiKaJ+Le68LvIqLfG4fMTxPRExNVp4KCqYJ1a2diix12xfQ/vxdXX3Mixp6dhuft/AR4jHDDx96GJV/67KBVLNhAdCIvRHRzP9J0wKcAXM7MBwI4AvVFY2cDuIKZ90N96Zj/x/7lAPZzn7eg3wcHTMS8XcflMb3szK7oQkq8Wj0nkJUeMfGQhnxMOtDE5uxBFtI0hUjL0bXRK4LaaBurv4h0tz1EsiR5fHNcR4uaUepsUB1JYBBxQ2IkSWWKW5xknrRqqowOXgGNNkYrm7xtsLD1qpZHaVSwZVrEK0c0dKHeqwU0e+WbD5omtjfuK10agqNfcm2vM1peJ084WL1HBSuGqttA6tLzKLWCDQERTQPwWdS/NQcDeC0RHaySvRnA48y8L4DzAXzM5T0YwBkADgFwCoALiWhaL5lENApg9oRWrKBgiuCWlaM4ds9Lsfi8t+PYc/4dP7rzVVi/bhp4bAQLdv8yjtzyPbjh3ScPWs2CDUBXz8tBzruR+/wUwI4bowgRzQLwItQnmIGZn3VL004DcLFLdjHqy8jgwr/CNW4EsB0R7boxOsQKwTaONgLcQaa05XKTv+Mq05Cp463nXBovqxJXruf09XPJbKYK1MH/56XJifPaC6PlUnQ4lrz83eevwxhjYKwHMIbam+P/1s9wH+fpYSnDe3A4kjnmzieuN/kjPg1XKCllxVJ9xV0YM6oq7GWq2NWFRRt42eQz2yAwuGJUHCnQoWN7jC7Z0Nag7DRAfSVUkW2DR8Kqtk7HAFdGfJt8/azKIwDVmPENyukv80vGLgkKM3isCh1bAahEhmYgVTFpifQV3hjSFS8A8Is+yFgAYBUz38PMzwK4BPXvjoT8ffomgJOovjTqNACXMPMzzHwvgFVOXlamIzb/AOA9fdC9oGDKY+EFl2PZigUYnbsIM36wJ47d+/tYsvyFWHP4NbhjyV7gMcKCo2/AAx/ZG9e977W498fXD1rlgo7oeknlgR3S6Gvtxou9ADwK4EtEdASAZQDeCWAXZn7IpXkYwC7ueQ6AB0T+NS7sIfQDHdjCeAhFY7d0TWvIr2XY+180uuoWTQA3742l3ECbRiFfuItE7oNpI0neI2OZW7G/I/WapKniCysr98QAKva+HFkr7VFxRj+5VAywKjeQEKWR83AQexrWDlm2t1m9UGJZi7ysbLhTdFx823UUcaa8rvZwZsCaeshLaaqMpnoA6fe2wSWDPQGRw0mklXvkI4UVGaERhH/dvAxPJNlQINFdkUnAkRkWsnycJDnaI6P+siNV6dd1yoOZX9oHMdZvzLG5NMy8nojWAtjBhd+o8s5xzzmZbwewiJkfosRtW1BQsCHIXXiJo2/DrYu+gxnXvQd7H3Yfdp22COvv+B4enPk9zDly87pzfXNEJ/LCzKsnWhHUuhwF4B3MvJiIPoWwRMzrwUSUMVVsENFbUC8rw+5zxnHzqmWBbyyo24qeVsPV/6gZZ9xa+YzJ6Z7ppSXk7Vf5UyrDggxJYqRDL172lNMn0AttzTFIyJOxkpLIiyplHVhYmz6ETZm1DG8sMguiEdWFVDlwnVpFJKYWQ1EbRZdJinqMJGEs2sUvIYPZYdEwIPkueqxtsDVeIFGG7qRGBvcmEiqK5EvCxlmM5xaZFovX+1lkpygdExKjZeX0a5JQJp7DNhZPPLQ+/rxsqUTMWtEQkIaUiPSRQEF45Den3/9OFWxyENFuAF4N4MUd0ja/aXvsscfEKlZQsBnjiFNfCZz6Slz/+c9h30fPw47zfoWdl78Mt12yN554Zjsc/qFLsfXssopzMmIyHXO8BsAaZl7s3r+Jmsz8wi8Hc38fcfEPAthd5J/rwiIw80XMPMrMozvtMA7yAoxzGrsbNmZ5eqSOmJlrsbtaZbSpoQ3sVEbeO+AXZmmtQkh6kLL3j0iCEeJCDaUvRcYT/CZ3sb2fkMiUUk2a0wTLuHggWO1X264MUKXyhon3QMZ0X6beNKm3bOnGVm5kCh04pIkiWzo6Iheyy3IdHyvXisZp0EYa5HtOpm7oXmRMEboma+67p5mvSbQsPdx+KVZpZMX1e5NUNaYfsNAy1HtDkpprTpV3pqCP6PIb06Qhoi0AzALwWEveXPiRAPYFsIqI7gOwNRGtspSKftN22mnDalZQUNBg4Vv/Ei/42wdw9b1n4ldrZuOgI1bhmAVL8cDHX4hnn1o7aPUKDHRdNjbhYOaHiegBIjqAme8CcBKAO9znDQA+6v5e5rIsAvB2IroEtdt9rVhe1iel+iuq9UJAB2kjdSm+SxpLXptjybLbepUTlyG9LZzYwyn5CNveY7+Lpk/BwkxXNMXkgtVzT5kJGQg9IeuWIy6eVIXI9MYXSfhkematpVUrbjhVjlR6XSLnS9r4aZ7c8rAkD3WW2UpYvAEeeS1aZFqEoq3sHjLZ6jz9LGX7/rHSCWdJ7YDTCrn3kfDYTBl5PRNGxSpeemdUfDLCC/qIJQD2I6K9UBOMMwD8qUqzCPXv0g0A/hjAlW6FwCIA/0FEnwSwG+qDZW5C3VGJTGa+HcALvFAiesIdAlBQULCJcPIHzsXY2Efww3e/GSfs823se9j9eObf9sLq+3fCGpyI6U+uwfz9l2LGrKexbu1M3LJyNFqWVrDpMJk8LwDwDgBfJaLlAOYDOA81aXkpEd0N4GT3DgDfBXAP6o2Q/wLgr/quTccZ5s7ixilPz9CPx8MiZWh5VhlxmH1ffU63xsZqYoOXo82s8tRA6hDrS0n9YzubRCo9s62lxTKDpj4XO3taHswcn3Mmjy8GQmkhjGGTFosAxt6hmKaE15wjQJPhhg94ecksviUA4SCAtrHZi1FnGsWfJhyXqwrKDeiug1XGATExkMPCIEMk8+XKp7bvrRDU1Ft0gl6nJge51KtZSyrYlT+5QSre6EThY5KfAgkiejcRfY2I/pOIOt9LxszrUe9D+T7qky+/wcy3E9FHiOhUl+wLAHZwXpJ3wS11dmTkG6gn3y4H8DZmHsvJ7E9NCwoKNhbTpk3DKRd8GVv9/2tw9Y9ORrWesPcha7DwgEswetgNWLrmVKx72WosXXMqjj7oJlx/5imDVnlKoqfnhYi2YeYniWhbZp7Qs+eZ+RYAo0bUSUZaBvC2iVNmEsns4rKBZSDn03l1tE0nU7RMNGfjY3JRx2ij3daFor/BviOzTEuO16PSRKCHzDiFDb2JP40Pf8ORynEJJmlib+sywMHzZJIWBpjqdARhsyr7uafXo22QWB3di4Fm9p/E5IDsgWQNWksm9cjjozSR0gNTEb7WHXSSEI0R4nV5SJfZNd9TESjDo05H3YF6035ldFCT1stglW4i/rHarDDCzK8FACL6xHgyMvN3UU+UybAPiud1qPeqWHnPBXBuF5lGmm3Ho2dBQUF/seWMGTjps5dh7SO/xOIPn4YFL7wF02eux+E7fhe/veh/sPOJn8Xi64DR/RcNWtUpiS6el9lE9HaIQxqmBNpmeUWSfsts4DY1cI/TxbTItIj0mkDpwbDym+pA247aL0Hwfgs9lR9iKInRl1RKn0fV0AAtk6H1DmZcTG9I+EtkWea9LEb9k0s0KaSkSE9KyiGqF8RRbn+S2zMR3CaufJHI6k8fIHlBCPaz8klF4g6MOt1InxsUVsNnxrUmw63y5bu1jI3Vx0IbQdNuM4RmNz9CTrOsrrnhHmF5mEWU/EOjhxAsiUjEpJwbTBImUnmlu63Rk83mLYhwCBH9KRH9GYBdiegVg1aooKBgODBr5x3xwgt/BBBw640HYtsdnsRO8x7DrGXvwJyT/wgzZj09aBWnJLqQl5MAvBHA3kS088SqM4nQa4Z6gmQ2popbFkLuA+uj8llyLEOfkHa8tMG0ypb8tip5+TGNiOXV+Th6AtLJ7HZipkslpRGpUvK5yEjHSavYJCSrJ6f2a5SW2K388T0leAyZ9rZRSEDYkK7ZTUaIxf5y7zJ9G3kQekV0sAvh0HJyunZB7w6PRcYD03ZqSPKgFUqIjy9EsSWmOH1UiI9TgyUiLS7A9/N416JOTVwFYDrqhvoBNvJOsoKCgqmHdWtn4jfbHoG7X/AtPHDHbthl3qOY98AZqNaP4Oq/ec2g1Zty6EJebgLwJgCrmfmRXok3G1gzsZtAZiU+vSaauxZpycvdN2jl1+ojyhe8D5XxXOfzBCW+/pFEXIXKhXIiX75XSgNStQg+kDp1pWpn5QoenjiWmmc0Kce4Co4BJrD6yLDa/lSt7K95b2RXqNzllP6OmQqEikMbsqiC7oOkv5jBVLV3cpeBpcdqbmDqT+Q1kfXOlDPWIlOKsXQyZPJYSO8Pf0s+rhtYN6QmUA5V5S6U9AkY6tnQO5KtyAgRMFaJeqtvVXN5JSt5vgAKeZpyN+Zfic0edzPzxcx8MYC7mPkrg1aooKBguHDLylEcu+elePSar2GnM2/AjTceDVCFadMrHH/w5bjhvP5vuy7Ioyd5YeYVzLycmb+zKRSadGgx8sZjLvgJ1F4yfVozPLnOPY8upGS8nCy2XSVViUvRhEfbdHIhWzDHSOSV5EbrzVEoi1whjFGhJgSBQlkpg8zKb342UgbyVevZEBKSFC2us6RtcUmBzlSoL9IMMkPpsn4csjd6mHXxdxZK41orJhVsbOaWseQ7PTsokXa40N18M4mOLcN8lzKsd2/X95KjZVjsHIZzg2QgmU2dhsXfXfYelGbQKZdQU4YUJsvyD76DClrwB+L51GyqgoKCggwWXnA5lq1YgNG5izDjB3ti/sF34MZlL8S1170Q1XMjWDDvYjz68d2w6v374+EVdwxa3c0e4zoqmYjmMfN9E6TL5MIETGR2uaCyLT5cVmin8BPkvWTZZnK8SkWmlTahmPsV6eQFlT6llJrK1eV7EhCoCTf/pygEGEG4BtOnkmTNx01z6fw9MMHwjy+oZJe2IlcLrlMGmTEViQmFTzHSWMtNPIfaNOWpMUBggNhdcBm0itoxusgxlkcQp/M625aMdK2DLmfU64FgYTwkPKo82QNOy+xCDHIDFohWael8JJXMfSkAhFO90mATiX6s+s6zIhFPEO2jCBERor0uzdHJ6fgqMLELEe2DulV3G7QyBQUFwwl5LPK2AE50zw8svw2//tLrcOBRP8PsOWtx95dfg63P/D6ev+ucgeg5FTDeo5K/pQOI6Lg+6VLQA42ZYux5aZvIHg8P62U3hvlh64jjsIgsV2qbTWztTokXokkqFE/gx3LkkjXp70i1IMRXcKS2tHZXWG9OpluT5GXKNqon3NP9RwBAlJYYt6cN7YCTK5vSc5RtkLTgZWOaeXj8LjvZSU2haEhfeM8p2BInO02nV94lBpJTmptHPexU/Sl5kMlEm8hbUSXJUDkE80VE4izlktkEq9JAaycX/C3qG+nfCuDDg1WloKBgc8Puhx+Kw86/FUue+jgeW7099j/iXkz/70Pw0Ll74Pp/eP+g1dss0Ym8ENFriOijAJ5HRAcRkcx30cSoNmBMwISmee+FUWwvWy6SiW4yrTJy0DLbbMe0bE9tgqcCSTqOUtsaSYvSywwlpvoFSqVX3YTQeO5b7sDxtmYVGa31WWUjTV042kQf+0oE5SBuDOV6aVjSSOIwqZRayXqFdlRkxDCus33aOqgIyf4KZNJLwtwm0xncbMmzBmNbmS2kIsmr8xh2viQxDDtN+k62/s6b0pDI5sPBmwKg2WTj30f8NyTIqE8gsyrhy4y/C3X4SHgdmYB/sDYTMPP9zPy/3ee+QetTUFCweeKFb/0r7PK+B3Dlkj/A2Ppp2Hmvx3Dk8z6HZV+6YNCqbXbo6nn5EerLtmYD+CSAVUR0MxF9G8DmeU5cnycyI0OpI9psQ1N+B1m9bMU6vJuitryYYNgHPadWZ6AeFmKr1ZJp55MLztLDjCN5pqUt/TPa1xSnlPUmJzMlLWlrebu22+DgxvkhlDP16cmCvTh9d0lWYAtkGmFjm9lYZMitu5LyvI3P6FmXKG8rGTEcGC1sPSnWYouWxyshIFo31Ui+knKTTbNPRuroB4EgM1PY8UJE27i/Pe9GIaI3EdGLJ1ypgoKCKYuXnv/vWH/67bj1xgMwfavncMT09+Ohc/fAsrNG8dTjjw9avc0CncgLMz/oTmg5jZlfzsx7A3gpgA8BeMlEKjgwTMBEZnaNfK98zPUpUuIDdf/LeIiOtO+0qZWTp+1Jw76MJrzlPfNtk+WE+FJ0TxJiH4pfeRROKuslL9AWAje7ZPTdNEpGM8HOqm6pZagdAj6t9+XkbqixJu8JxthwCaPt2By3sRQmCUugg6phgpJGlShVTqLXvxRxI8TlRg2sWUQPuUK1SKaRpufA1M9aby0vuN2QJQh6L0qkh6uvlp1cZin1ZqCqDE8YxR9/LjZLeVMW47mL7NsAtppgfQoKCqY4ttvtBTjq0zfjzu3/HWvu3A07zXsMRxy9Aj/9+9Ow/tlncP2Zp+CJC3fE+q9ugycu3BHXn3nKoFUeKoxrzwsz/0g8P8bMy5j5yf6rNUnQY9Z5g7hIl5lsD0FS2pYV9dIpsZ0Qtjb0UsWcXIb3Y0gdumhjUaLgE8mRnNgWzmnsiVK6DEuWapt51kWewYXAxo0rFv1JaBVpK16RD3ZULSJN3CgqVx6pouJw9ZLfJYPQ6Wk3xO/WoLHS5mRA8YQuXhaZKWePt8XJYiwyo/J1svlZ10ExoqQdKcpb/5VEw9JfkZARxdZM8mMQoKmL1rvIiGi6+7sPgGeZ+fubVr2CgoKpisNPOw3zzrkbV694E558bBuMji7Ds1/aBcceeT1uvmsU6162GkvXnIqjD7qpEJhxYLwb9qcWehhKEyWzMZFyl1OqDfuWLaonoK34XHrLErXIgLzjJYRLr4lPr/aiNPnZNMH0rfW2TD3BHozK1OehN/VL70uQEtda0jLhQSI0NZHb6WN5cXvIYqIU7nQzf7+L3/+i05kEJh4CIrGPtDIacnLQYzSrjJEmCnKBOTbZhTjldMrBf8esG0+tL0aO6GiyEToL7RvYhLCofBEelWVMJchbSuVJdGEQol5z2LGvN2/0uovsPCKaA+AcAP+0STUrKCgoAHDyOZ/Blm++Dz/+0fHYcpvnMDKdccget+Khny7Bi8/7IhavPh3z9186aDWHBpOOvBDRNCL6idtPAyLai4gWE9EqIvo6EW3pwrdy76tc/Ly+KjIA0gLUNoi+C3Bj4G0aKc+6EzB/PljetrMupowvqAzGP4GT/0hI8ouj/K0xHMVouUHT0EbhSZ54pglSbIvGBES2l0/JQhMvs/J5M5dThjBVqtvg4mUSKhBVYCJUXN/54uWGCyrDJZWW0ySFu4nRPZodnHgAKE8iAtOsP2Mqf9pZShbH8jRyl1RKPSuk+mTIFIs85iWVvhsguIRVttSehGDWz3a+QFpyJIZdvVVl5QWVculYk58FoXGV956dKYoOd5E9H8BpAP4PgJ9vOs0KCgoKAmZuuzVO/Oz/AATc99M5mLXzb7Dn/a/BPX+7HyqahhmzNs8t5BOBSUdeALwTwArx/jEA5zPzvgAeB/BmF/5mAI+78PNduv6hy0zzhsprkdnP6+ak7ZdTRYa1yfHwdmYl6EQbCJYOsXdC2n/UsQVCel2POqaKUgUq1Uxmq/gcWQwXVNaUw198CbRfUCk9K7HO1MyWV95OrXys01pOtKvJ+DYQ15P4VWNgG4rpZyB4EyzIzrPS6EFk6igMcxmUg9bT+leqjehovSxdgXj1lY53g4QAVFWldPLekxbvi2T5QPCQ+KWglSicCeCRILMZREKI9gg1eV2luVxU6UFEWxLRTBF0NYDZzLwcwN2D0aqgoKCgxrq1M/EALcQNj30AT/xyG+x58M9x4v6X4NnfTh+0akODSUVeiGgugFcC+Ff3TqgPBPimS3IxgNPd82nuHS7+JJe+P8jNqKokXUFS3ngyShkASNzSbcb3KKJNjTZupQmI9FCQ8ErEcelbTk/p+9Db6rVe+VPJ5F4ebpZjefrh/w+IfdheZmboWLVq2s9N7WsSo+1LWTNhv4oKMcKyOOPgZPL/M3T0E/uOf4T94ZIBId/hQLSaKeoc7a2x0GK82zyGBWvrIdPSu83LoYPbHBKc0c/4AlEmrP6QaHNDx6Y9fX1Fo4v+b/6BYCC5kCapqCcugqn18Z++YQYRvRPAQ6hPxFxBRG9n5q8x87kAwMz/MlgNCwoKpjpuWTmKY/e8FGOPrAT+ZAl+dutc0BYVttz2OdzxnkNw7btO7y1kimNSkRcAFwB4D4JZswOAXzPzeve+BoC/snQOgAcAwMWvden7g37bAn6ydiNFs3FBpUd0MhU2jCvp9Na2gZRw+Pf8BZWasNg6pZaqlknq/9LG1jmDTpb1Ky+T9IQH0SofFhJ0z0V19ySGYpkAR7kk55Qayf3ZoaSgo2QCST3FpLvlcOmFZCjJNYsJcha/nZTFs73/hNu/EFZcO/MVHSmCPImJ2Krx7GWqMhuqnPBBDnUYEQl0p1eqMZpnz4BE+nhgCeKaRGplpjSI6FNE9AbUnvuDmHkOgBcBOJiIPjJY7QoKCgoCFl5wOZatWIDRuYvw/GsPxG57Poali+fjkXt2xgHz78MLj/4hrnvXKwat5qTGFoNWwIOIXgXgEWZe1s9z+InoLahvV8buc6aNMzP6ZhQ0c6YdZHYqlqixVFsmv3OT7T3la7tQpq9tLUo8MWGDfZ1D+iPi8sKujxBCKlaX5sNTmaGeMbkgchPajUa6fkECca2vv5tFmot+90zQJpajL6j07MevKqrkWceQLVS/pQdASx28ppK2IdIzIgnNs3QTGPEa1trCtoFllamT6W5sS2/FW2lzA1N2mC5XEkbPByQPk8a//pvTzwljAGAxehtipdufI10pUlSQHnaEKKmD7HCf3g0wkhWYsrgKwFEAdgTwYyL6DYDlAH4K4C+I6HxmLhcsFBQUTAosvODy5nlbAMe55yvfcRpOmH81Xjh6De75wP54gBfi+Pf/E7acufVA9JysmEyelxMAnEpE9wG4BPVysU8B2I6IPMmaC+BB9/wggN0BwMXPAvCYFsrMFzHzKDOP7rTDOMjLBNgDyRp7A3oG3orvaDtm87TJ7yrTy4jfYy9Hm1ke3+Lin61rIKUPJMi0fTs6b7A4pe/E9sZor0XwfwTd4jPPLHkNcSOuN+AbMhHJBKgHow2aBD31ZL3Zn1anK9TeoMxISLwVZMvMDaScTP9gnZRFxgfo/X2UXpMeOrL4mOQnkUHxo05DQrVoE74oTebR/+o2RymLRM0eGScvUVqQGbKETi0w86XM/EEAN6JeUnwygC8DWA9gewBXEtHPBqdhQUFBQW+85DOX4eH5V+Ge5XtgjwMfxAkHfR2PfuLgcKF0AYBJ9IvHzO9l5rnMPA/AGQCuZObXoZ5R+2OX7BhGA7cAACAASURBVA0ALnPPi9w7XPyV3M/eHa9R1kXkBshssvS4pLItv5alwzxYpcvJke8+bWRbZQmGVTZZtmBk4nuJFdh0EGidY/3z1qy0i8kZmHGMlNmLXHgtZb1tb43PRbIAkUI4i2rPDVKb1bTlhc3brAfLMRstIMuAVPg4PCfm1g0d2EZKxkOUyPibDky73jkIHmGnc8KaMjxJMUhZrizvOZHeEyZ32hhCWESahFKNl6f8sDm8DcC/A/hH1J6YQwH8lJmPBHDQIBUrKCgo6II9jz4K+310Ba6+44147skt8YJ9HsUvPronfnzBR/DrBx/sLWAKYNKQlxb8bwDvIqJVqPe0fMGFfwHADi78XQDO7mupE2EPbIjMzOZ8YOMmwXvZopa8mOjEXhJv9MdVZPF/S4q0MdM76bWOFL1pSM9Hqrn0vWh7Nm2zoE24QFPuZIn10s/NBv5IcNxeweasN3yPEDd7ZqI0WjPBSTLKI7tLfbyDYzyQjSns7fpBGNttg0rLy3dQFubhA22DvY04ycGtSZc9OFOhco+ar1PFaAZI0haOribhirD4Qw8KIjDz3QCORX2IywzUS8f+wMU9O0DVCgoKCsaFk8/9LJ497U4sv+lA7DDnV1iw48ew1XcPxVNrfzVo1QaOSbPnRYKZr0Z9vCWY+R4AC4w06wC8esKU6GDdU3v0BsnUcrntFCGx1t6aTDbsyZ5ps0WZeVLdRoSPIpRv14EzMnS41FFPsLN6zvFDgn1yWKxnLCdIF6SF4JZ51WiT2RApSu3MiOixagdt/Os6eQLDsZcmYjZtna4rK/bpZKFJR5s8KbpNHmDLbOvANrQNZqMc1uESoqz4FGKKJxRkOyeMkkWdciPWP0oyQggbhkTDyzQjaO+vKQxHUr7jPgUFBQVDi1m77IIjL1iGG/75Ahz63DnYeoen8cSXDsKSmX+NeSf/IXbaZ59BqzgQTEryMikwEYZBB5na5uxKLiwi1WYfdlUrR4B6yWqbUPd/Y7+MJwh5smY6GURsqg9lwm2bk6PYtBTLI5Jr20SmCKjL5mbiPdqBIz0rigi0ViIqQ+nfZSz3Y7wbjVJzo1Yak0I33oboZuSh5n8t6VU+a/tKkJYwUiXPd7DuJFYEk1NxkojKe3gieT5TD+JZUFBQUDDUOP4vzsSz6/4CN/7NK3DMUUtx5PQPg6//CK79xl9i5BfLMX//pZgx62msWzsTt6wcjQ4E2BwxDMvGBgNr2ckmkClPqm3zJHQFwz5KGJkwjWT1SpMvTEeHm14oeQ70IdwsH5/c5cOqhszouldCZhVMfzWz749VDje7wNwlE9ebm5yxrBBTwV9ICTAqrhr9weQ25YeP33hdP8eyIqOV6lKZGVWzlwmo2NWTQxvKLQ3tw7Gema9QBYM3531JDHEFPU79QMoN0AxZaAgDZRKOtcjM6dPSCDwW8roTrJuPLkfeARn99eU5GVXl2tNntNpR6xyRE4Leg8RjlbjvhsQdMLIcDvllWaBAbpoyyyWVBQUFBZsztpwxAyd85krcvfN/4PE1szEyvcKCnT+P0UNvwJL7X4F1L1uNpWtOxdEH3YTrzzxl0OpOKAp56YUWC3+8pCKxZTPIGafRBZU91rt3JSYWOcnJS6//kAZ+iNFydD65jCzoSSI+vagx1pOSOB8SjjVm0URxKamnhQNJMKBpkPcRybtdzLZLAsV+G5YXaoYzzLIXXjp5rf2avZ/F0CdqiNaK95aZIxJWYk/q9KVEOT39e5Z4iXcW6YH2u12AiBQm8YIdJys3Y1Zm1yFh156oOEIihZJ8dwU2hM8LE++SSMFd9DPef4wKOoGITiGiu4hoFREl+yqJaCsi+rqLX0xE80Tce134XUT0e71kEtFXXfhtRPRFIirXbRcUFCQ45JWvwk5nr8E1S38fW2w1hulbr8cL97sMt51zOl583hexePXpmL//0kGrOaEo5MVCB4KxITL9fXZdijfDWy6olHlzk+0yvmsVDZvQzBN8LumUeW6yPLYbvdHOKkwfQxxsQu0UiOttEaTY6+O34HvaoE+VCj4XgqcYEQHx0qlynpSQnQCA090+DfeU6UTeuASfyPd7Ko+ETM8NqImJGiTb2XI/vWKBcX5DbKvcJJ0adTnbv42o5NJlwhgGiZH6tbuyXELt5fDB7pCFEZ/EECSZqicmTVtKkiIq2ijt/3kWHVSf7oCGDHWqQMGGgIimAfgsgJcDOBjAa4noYJXszQAeZ+Z9AZwP4GMu78GoT808BMApAC4komk9ZH4VwIEADgMwE8CfT2D1CgoKhhwv+eQlADHuu21XTJuxHkfNX45r3/d6jJ71ccyY9fSg1ZtQFPJiYQJsgX6IDBO+KYnpauN187RwVl6wcVPvh89rkxi5Ykf6POJSQ7wmMRU8JZGXPKZ6hhT6E3ta1GHOlOoUyA1BH5+sTUZ2JIapitI18Qwwa5Li0lF6rLQnMdoTE8sLl1X6MHiC3PEkqmgYyWVVJnqQjlwWcyB1IDFdy9KD2hjwng/I7UDSKRLpqbljRg9m1zuS2FlCm3CrMTwpARJvjMwrCQ4DwAh6TWQUbDQWAFjFzPe4QwAuQX2HjMRpAC52z98EcBIRkQu/hJmfYeZ7Aaxy8rIymfm77ADgJtT3mhUUFBRksW7tTDyAF+HalW/Gc09viRMO/RaqSw7Cc09tgfXPPTdo9SYMhbzk0G+7wBlOvUzKnJcihy7eEy2vTX7OvOqCMOPvnxrfROMt0RJlnrTuMqf0e1j2qUGpCCJGftKp/RFYp89qX0s0F24QQUdy/L0dZNxZaOjMicUdp9MXVEY2rdDD/zUlZTud6lVH1gU6Or02lnMypWOgp0wjXqfJkIpxDswgzpMY2exteumBZKjXqJW7pLJhlah5hxQUKQSjQ4W7jqVMCjqNFCIzAZgD4AHxvsaFmWmYeT2AtaiP9M/l7SnTLRd7PYDNe8dtQUHBRuOWlaM4ds9LMfLcE/jFgu/hFz/bAVtv/xSmz1yPH53zjkGrN2Eo5KUN42ERPdCYM+OQ2SuptarHktEmz3ofj02Y5heGNmqPRKtRDXn/CWXKT2VauqR6hSdO0rgN814mSw9HSk0I5L4s+nLLlGwFme1aRpPqnVo9eG5y254afSx2k4qrLzxtS9OFTcv4mG+mPcUiQ5vnQJOLtLHT9G36ynfvwJCDwiJFXk2dX5MLITOGct9YujEQ72URCfQgavLLtqNusyIFw4QLAVzLzNdZkUT0FiJaSkRLH3300U2sWkFBwWTCwgsux7IVCzA6dxH2uOvFeP4OT2HFzfPw3FPTccL+/4aV7z0A17xLO4yHH+Wo5Db02SDwRue487lM1uS4njjuIl7bmRDvPkViX6ln/Z6uugmaxTrqdy2HojhbZlwXWx6Zz0GWzlNbqdTMbFv+GUryw3iWN92033Ej2pMY4PTI5EoJ1/E+nIBwuq5FhuRrslGe0jRd3W+680WHREa/vl2T1V+NtoFNyObT+5YSr43iApbeUblNHKVfXkku/JebDCE+TaOLKNRf1kMirmKjfqTInJWmoM94EMDu4n2uC7PSrCGiLQDMAvBYj7xZmUT0IQA7AXhrTilmvgjARQAwOjpaRkFBwRSHPBZ5W9Sb5lYvXQq+7LXY57A12JvX4Oq//kO8+BPfGpiO/UbxvLShx4xzl7ny8cqM4KbXzUndjA6peNt8jk/O6qhO9BzfWu+9E9YUc4jVS8OokaXJAjLyKZIpP96Tkp5VFpMtKxdB7y2RrR7vtEGkizygWcsMNQwaeBJUL//yy8yMlM4zkPSP8AaQEQbomjQVSrwiZgPJMAuaGFjM0YjOyrfIhjXYR3rEa1ktesmizCErZUSE0UU2pIXjtIRYQFR5En3gWbJQUq5ZbPRwQr2nxRNrlhuT2hqkYCOxBMB+RLQXEW2JegP+IpVmEYA3uOc/BnCl27OyCMAZ7jSyvQDsh3ofS1YmEf05gN8D8FrmZCFnQUFBQWfsOTqKeX9/N6696WRUz07Dwvnfx/K/PhJLvvL5QavWFxTy0oZ+2wXG7K9GZD8RtX9UHkuONNd1vFmmoXJOT1mlbB1UadqTkk7AWwclt+vnCUG4Aya10IO5pylSTKRCuCRNwu9Dcd0t3UL/udYXCRqaFtnBrqeEfWvZ0r0apN46YbGbjBBNGtDynquoFd/UVdDVLoTDkBHp0/W7aNn1XqY/haFNnOQlUob0tGgFE+Jj1VsmEAMJlSA+UN9zV26lym3qEv9bUNA/uD0sbwfwfQArAHyDmW8noo8Q0aku2RcA7EBEqwC8C8DZLu/tAL4B4A7Ue1fexsxjOZlO1j8D2AXADUR0CxF9cJNUtKCgYLPF715wGe6b93/xyD074ZCjVuLIae/CLe86etBqbTTKsrE2WAZUP+VlZPZzyo1gX6mhbcEuJEU+h5PDqAnzOVLiEV88GcJDjI6P/2qZgYawCCP3//pvFeXz7ZDa6F5/btIJqtLUnMRz5XViW8e4jmKxmzeaORAiP+leyQRSBkNpkpYh3wlVbTe3dXDS2Sxm9mNdG+ROImt5l/udBJuLMaZ1yejakV3L05hJx1uMGAhfDlX/pn+rCumlkKLzc2SJEdo1cqNR7T2pXKaos1noxEqeeGGj/IK+g5m/C+C7KuyD4nkdgFdn8p4L4NwuMl14+T0uKCjoO/b/3ZMw9qKf4YazXoZjRxfjkPl3YulZx+PAD/w3tt1+x0Grt0Eonpcu6JOBENk9GZn9JC5taneZmJdy/N9AWvzRxalFq+WmE+Bx6SxykWoBUn+1TqlNG1MPWbqaeI8okF/KZbcXo3IyK/Y0pb6g0tKt0Ylj0tUsJ3MJKoQJdX3QQZNHCM9cNxLKdB1Uy2QjgfHsC8kNFN/pOViVz6ELW9Yy2kiLlud1zXlvtLNE180YZI1DRLedXELWhmagNswVYH+BqiQj3mNGqgydTtfJVWJDNtMVFBQUFEwJTJs2DQs/fQXufP7F+PXPZ+PIY5Zjy8v2xl3vPWjQqm0QJg15IaLdiegqIrqDiG4none68O2J6IdEdLf7O9uFExF92t1SvJyIjuqrQi0EQybpisa43Fgbozk2NRUkTZ22YnJVy9l8lszYvrRJjEzZa9Jc+khyl1NCpGhbWcROXk1G5KKv+JLKyCbNVDzUKlivoRxGuKCSjfaPKVQTz5K0wJGgcCxz4ruKLGi1o0XaxO49afG2DvflywaR7jrJXC20sOOkOeXlNM3FjS0yLb2temTeGcheUCn1NN/1YFflem5BI9TwDVNH2eksAiRJAYd/HFqV5pAejPqMayezLB0rKCgoKOiBw07/I8x+97246YYjMTJ9DHsf/ABuPOt3h+5OmElDXgCsB/BuZj4YwHEA3uZuHj4bwBXMvB+AK9w7UN9QvJ/7vAXA5za9yuNHL1uqV15rz4uHdSm6Zfu1Qab3E9Pay+GN+dR7k7+g0pKf6pNqLGWG8uK6W76fsGHe2sJfl5EQGMQT6hzJimubeHvc3S4EVpdbinbLsEpt/HoSA1GLkEAsT/P2qzTWZWQH6NVi5hrDqJ7oNoB1c2sPh2fzbYzZipPvemBaadCBxPRg/c1RDQYfbNpkxCXQHS7vaPHpm2eK86gyQr+LyCivUGRjJ0UKCgoKCqYEtpg+Hcd/5nr8ZP0n8cQj2+KYY27Ck5+dgzvecyiue+dL8cSFO2L9V7fBExfuiOvPPGXQ6pqYNOSFmR9i5pvd829Rb2acg/gG44sBnO6eTwPwFXch8Y0AtiOiXfum0MawjJxIQueLKruizXZpswfbytETx9bktJ6MJpU6Pb0rLiGdLCeV1pJuU52Y1Iinxi5MaU/ww8TT6d4p4HMEIlLnGBGlBFmitgSwPy7X9XU4SComTXUa0lpIdQTxEinEazLjb6HnWKaUtOQGT2eZiB2EXb5POg0jHeBthrpFQgwS05zaLAdxm7enRbdmuWFE1sQgavLGnUZWYxJl05uVohExyAt7KSgoKCjojmPe+FbMeOvP8JPFh2KbHZ/E/kfci2MOX4yla07FupetxtI1p+Log26alARm0pAXCSKaB+BIAIsB7MLMD7moh1GfxgJ0u/04vtDrMWt3cAZ9ns30RmwvmZG9k4nXE8/6OZdHm0uAXUZXpKQm9XDkzHIy3u3lYKmvxpKq74dps5a1noza2IwPJw2UJacdiVSaYDBxfEeL0qmRyAA1O+xthFxsdrrVv62dLkX0IgOmJ6AljbK58+OLEC+dyuhOQaypny43V29VRsMl28q2CjJ0i9JGY0gwIZmn+VfXV84zKkOod6dF/eSJkZcbCS0oKCgoKOiEmdtug9FPLcaNv3wfeAyYPnMM+824Aree88dY+Hefx+LVp2P+/ksHrWaCSfeLR0TbAvgvAGcy829knDs/f1yUgpkvYuZRZh7daYdp41AEG2fZWyI3QGaThRksPmBO7LNcflOegV7eFuvdp40nrG2CoeXkCYuUXH/kFgxu3uOFaizCGMCYiwt5/Xu9uGsMJNKQm5EPpEVOxvdqi0Ao0yGar5/wAugUwnZtlsUp54ulSFiCZhjcElpN02g38nf59gmbPCU/KrDjN5rkQ5uOFqlo89wYHhotL/+9bdwv7lWRlEyfRiSkKUu4bxp3nU7jP+LFk5t+zrQUFBQUFEwpLDzz/aBpwB3L9sUue/8Sxx27BDf/9e9g9KyPY8aspwetXoJJRV6IaDpq4vJVZvZXgf7CLwdzfx9x4V1uP95w9NseyC1H6ZlPr0nJY0P4VhePjXwP+dIrKRuDXEkP76mGgfzIXR4k7Dzv/dBGOSUyAvEIy7ikTJ/akpkY/EI6GzJ1vXqtMvJlRPar87rUW5i4/vh4Pdnuw/UJZyYx2QCG3K58Pq0VL1c7AWi9i6QXk7bS5AYti2JyJKaLHKvchIlx9CebX9a9+TeAlShJVHTj+WfBoqJDOwppKSgoKCjYeKxbOxOPbXU0rlv153juqek46phb8dhnjsW6tVsNWrUEk4a8EBGhvvBrBTN/UkTJG4zfAOAyEf5n7tSx4wCsFcvL+qBQX5LEiTtmiG0mqi8ezFxSaYm1SIdhdkVxvdSTZlJMOPzlkHJxVexPCeFpWfo2ep9KelDSDfNxiFqwFdmsUpf4KIG01paNrOkXKK6jrSM1+QgEMgx3gutbJ55BaI5WZph7a4QCzZ+4Oj5CRyK1ca1B0jW9zfEy8UZinbbrd6OXrU4qXQ/PUrRSS3+EjHg/i/8QGgasy5cFyfTZyvpEIrxJpmW5dI0o6t5+BQUFBQUFGdyychTH7nkp6NnfYvXe/4nfPDwLcw98GDOe/wyWvPO4QasXYdKQFwAnAHg9gJe424VvIaJXAPgogJcS0d0ATnbvQH3J1z0AVgH4FwB/1VdtJmJCs+PymK6reXQ+K0zaYm1qtdmFNumQxCP2TgTviScl1OigP7m3YNv6vPF5YzptsuzK5Za7UTRNsWR6ub5sC7Ke6X4YQZmEzWl1JKH2tngSI0kqk27DoHlkI6dVRrJ5e0PGcs7WbhsoRrHRMjpL37AWMC1fCmojGmmhzqtlfNA0cexMYZVfBpPxkmv7SA9XUJJOkcvmXRYsGKo9cxAKlKcQFBQUFBQUbAAWXnA5lq1YgNG5i7DPQ6djy62fwQN31tvMD59/B655z58MWMOASXOjLzNfj7yNfpKRngG8bcIU6jUTvQFgbdwYyN2WssFltsjsWo458SxuA7QOIvao7SyrJIriglx2MrV+qVTfnPqQrJCy3u3CjqNL+1Q+NcvB3BS7lKEn88eYnUxqPCWpXF0fGR8MVeJ6a0NVsWgHioSxeA4Gbu5rwgD7gyG4N2ON8rUYv74y4xxICSWMDO6WvPZwyesli6ja41tlpEMMBKAaqzBNKmB1tJUfcIPTkxBu/vKYOOO6kpnUOdWy76P6iFHqB1JBQUFBQcFGYOEFlzfP27rPDZ/9OA7jf8DC+d/Gbz61M35y/0L8zj9+KytjU2AyeV4mF1IXgZmkK5oJ8baZa5nWCmcGtVxSqXXrpZ8uJ/ZpxNB3FsqSrAVZlj4hnpowraenQ96Mt01qmT8sDPN6+uMC/E3z+jQwLZPAzusRaoREx6BTUyOqAKp66inr3ZAhBsa8RiR9N5yR1ZRq2+CCXHSagxdKU4645Ds9K6sn5PjNGdxpB+UJg/Xug7VDQslNLo3NeJhoRKVpPi0V9/mbDq9CnRmx96WR5V6kJybyyHhG64RzFeQWx0tBQUFBwQTg+Le9B0+/8ibcf8eu2GanJ3HswVdgyRc+M1CdCnnJYSKMAepm52WJh9z/0jFv7r0jj2psV2mzaa+El2xfUEnN//UKHZ2KEU4pC9QhJQe6XG+3V01ISFXTFhZ1sGVGwokbOXEbZUhXQ2Li/Tb6RDgg3Pki29Tvb2mK10Sr6fNUa32Xikkhe3W2vizSN2hUkPuf5ZHMkQcrXaObMNItmW3veiBp0qHkta6q6vCFJN+wqp5+2Z+/bsUU1HS4rzPidrBmNdgpjZHAbnWbNX3hwsuysYKCgoKCCcJOe+2Fvc5ZhesWvwgjIxXmb/E+LDtrFDf962BITCEvbRjPjHJHbOzy9CarIDBdiUiUH+1V0xPHWgYZNMXnDAcUxwiT+NaBwrK544OWpdfDU6G4a7ghAd6HkZr6+vjm1LtDEJPaEQWKU1k0orYxGUyhlo2HqXE2xLtsQl+mC+skibGOGbCcb/6d5EuohIlmGGkG2IaO34vGaZAMFEbi9miTqRu6lYjl47LfPb3vpn1wNmmYnU+PVRpZ8SbMosEiEyF0hpSR5PffyhF0WodaUFBQUFDQJ7z4U9/D7TP/CU/+ahvMP2YF5m/xPty/bMkm16OQlzZ0ZQQdEN3V0SLTnl/Poyth0aSlF3HR+cdXhqQ3HJlcmnxQlF7Lsqbg67B0NVOQQSJIltMmk8UWhFiLWKbWMQ53tMkZm/quG30CW0NRWi6pDOU0rCq5TkTrFjk4tCADbC0NswZistE8L7M3ARBGezZNkGUu8epCdox6RCSG0/iUqGhSYcj0DxWr5XBCcZ9+RClpXlIpHhv260VJYuTacKTrvxgFBQUFBQUbjiPPeAO2fOMK3PPTuRiZXmHHJafg2o+ejUd/9rNNpkMhL20YD4voIGq8MvtBYnrZml3DcrpZeaWXQ3pvUntWkwNS+oZ9IJIEaUpgaSspQhwe77hpdCTpayGVx9mHKlZPuGuZbQcZ2AQuD01IGKnnJdIlY2RHAr33pleHW5W24mUHO3s8dboIYXnOFsv0f7oQlhHxbqUVepJ6z+mQbG2xBn0jI2I9aX1UverB5yspG4/TTm7yU/gwMg1dUFBQUFAwMdh69mzs93/uwvW3/wlGthjDC+d+Bs+/+ij89LL/2iTlF/LShj56XgB03rCf5qs36rP7+JnYrhPRiTyRVq+WCSlaJ5qjMBkeT+JzJDdQFf8eLwWr0/pU4d3euh/nlJv80wsle8usbUJ94HGgH9YllRKRLSryBVnpcrOmXQjRBZUyY7SSixEvDVM8IDaMVXu1EhCK0+imZiNMZtWuNaFj2KrjmYCS1YNgmDq1DPTM1qAgr4qDTM8LEJc7ApsgeHLhZbBzEWmSoXVoNthT+gVjrl1higgmLKrieGAUFBQUFBRsYrz4vC9i9V7fwJO/3AZbzFyPne94J1Zde9WElztpjkqelGibGe4dbWfAODJxuheil7g0jBI9E7tIvbcZ5yGNfS6WtRdGkpNYpiUjEIRKhcU5Y704iQmkQZKOUE+tJ5ntGShREEruiGSCJGsU5alDGMBI3vvCejdLsF99Wq95o4NQUvMUYqerIhFJwVanW2msQWE1fGZchyiDbVhkxOe39t2kDDsvM+dFseJyREgMluAQcQSmEgpqoiULSrwxrtMqQrwOjpxM0akjMi8FReKNTYEIFf5SUFBQUDAAHHDSy7D+RQ/iJ39zIuYffRtmrTwdv/jR83Hvw3vj0ANux4xZT2Pd2pm4ZeVodBTzxqB4XnLos9elq8xo4pjq29lJLhORH5XHkhN8GVZcHOZV1CrL+C5VSie/U8O+zhdyW3Z2F73TWHvKPtf0UiardBzJTOvRRc/I/iSVlri2h92eimZyn8KEf6vxr4LDXg5FdDIiorBcx1tl5saw6vhot1CvPJo4WQN0PN9H3eH+Wa/965U3eebou5fo3HS873CRVm62ifYPVTHx0V4qX24TJz03vSpTUFBQUFAwsdhi+nSMXnAjblhTX7+4wx6/wlFHLcNNq1+BdS9bjaVrTsXRB92E6888pS/lFfKSAyE1SDaBzEp8tDG9oUVa8qxPm8r6OeSrPRsV/EHJ4a/3FoQ9K/IwZOkPqVChEoQmlh9SkTvkGFHpOnX9qSK5yOQKMtMWia/frFOPVZVzDNSGKKuPDKvtTyXXLytqZFeomMURyqEtm8OXRQclxCjpL3fiWS3a7uSk0zkdj3qs+kE0BqupwidaliXrbSgLJy8nE+pZ62TIZCGLGP4U6/SZEW/a1yeOCdlV5U9z4JAeiJ+13pFuiowQAWNVWib8IHAffydMI08Q86TcjflXoqCgoKCgYONx4ns/hscWXIPqOcK06Ywjd/kh7rnm+3jxeV/E4tWnY/7+S/tSTiEvvdBi2Y/HXIgmjnswkpydF11Q2cFY6UpKusjxf4O9FVMVLVs+p/ZnXDo3YdJPYnk0vMEf59UuBAajQk0IulxQ2VxSyXGMTONN8XpfjGsJyi98swmGoEPk+AD7o53tnor6UDkxknKdWvXQMORpFiq9BLmB4klLdlAi7XATHD8qomPqacnXMqz3HLnR773yeMJo1VFurrHajtXfhvjU3132HpSGjAhPjSQ5kRCrrK7nWxcUFBQUFEw85hw+HyPTGYsXH4Ntd3gCz/3oUwCA0bM+jhmznu5LGYW85NCDYGwI/Ixvl6LN8B4XVGr/QZt8K00vO5FVWhYpH6QPbQAAIABJREFU7Asqfcq83JCKozDpscjZx5qOSHIVdKREZvYW+6agnMzw/4bOuCl9LbPmD2kp+nJ58jIQTlYj3dqRsazaggSfdUWaLd7KZDn1aGhykR2UmTgy+jwi36IsS2ab/LZ3kd63R+5eJdXVsaxocJKpR2YVp/FFYZGf4jjvUfF7YCylSeXxwrhC3GkFBQUFBQWDx7q1M/HsNntj+Rbn47DzrgYALD3/PVi3dmZf5A81eSGiU4joLiJaRURnD1qfiUawrVMSk5vIHi8Ha7MbpYkkT89C81eSmA6ehCSVRZNir4k0zL2xr+9TSVNqGZnLIkWZ8qjnWCZFbyHakRgKF2bKMsIllYZDQJ00FtJ4PdO+hpcpl2mxitQZDEQ3w/tBZN374hN0tZN1F8rBSUC0Yb1NZltZ2msin+OBGV+lkpOVGZiUPMgskvhRXL70kLIohKVAkUcyPvke6SUrLXXt80xLQUFBQUHBBuKWlaM4ds9L8dvbf4xnn3gKV7/vTTh2z0txy8rRvsgfWvJCRNMAfBbAywEcDOC1RHRw/wpA3yczu17HkOyTyH66kZPEWDbCIj2VzK72Xmrcc5RW5kwnz2NS4KmDPKzYqre3iet8/r94Vl3KZFNmtkKRTCAmJLotmp4jdoay23ljdFCzGZ/inTVx2Sn5yunZii4drgmLlV57ANoIh7fbLYKh07bJlJ6QDR2Yys6PSIzVjgwlm1p0o8BRmo8LaAaN96xIcRTJEC4z91eRu+ZdKjIS4ls8sgUFBQUFBZsSCy+4HMtWLMDo3EWY8YM9MTp3EZatWNC308aG+ajkBQBWMfM9AEBElwA4DcAdGy15HIZh16QVuHWbSrDRuHUFe+qT4CTcyiWvZvTI2W8EcTRvC3T+eOmXLy+8SS+Gf/e7PUaASMdQeixT1hkif+xpCenle3iOZ6/ZWdosrMdavyAzmI1Bs9SW5UYfBjtPS3ocMsR7sGsTiznJlbSlsG0te1soFieUUV4QAcn6qi72sC5H2Nj5JZIU/cnK9JXyzgpD/6hsn8Ya2Covt7SJDjPbVegWpY9kZYRIV448OYCNMdCQISnOEyORvmzYLygoKCiYRJBEZVsAC/soe2g9LwDmAHhAvK9xYRuPCfC6NHI7FGkmS2Z3Y6FdVSb10WTI0kfrRLD1jdWLF3OxSiufDZO+KcH/P/VOaA1TWqNlkpAZiJBIQ9LHEqeg5P9aZ9+eIY9V5ziHIEVpIwCkVnE50U0JoglIvUel2k2lDO2Md8EQZ8IiA4k8Siva0eaOqtXWASMiXg9M/az1tuQ1n0wDeGLhn6Mvh1KWRDqtSHMKHQCu0Bw/Jxmq1MW7jzy5KSgoKCgomCIYZs9LJxDRWwC8xb0+MWO3e+8apD4Z7Ajgl4NWYiMx7HUYdv2BUofJgEHqv+eAyi0YEJYtW/ZLIlqtgoftO1T0nVgUfScWw6YvMDw6Z3/Thpm8PAhgd/E+14VFYOaLAFy0qZTaEBDRUmbuzy6mAWHY6zDs+gOlDpMBw65/wXCBmXfSYcM2Bou+E4ui78Ri2PQFhlNnjWFeNrYEwH5EtBcRbQngDACLBqxTQUFBQUFBQUFBQcEEYWg9L8y8nojeDuD7AKYB+CIz3z5gtQoKCgoKCgoKCgoKJghDS14AgJm/C+C7g9ajD5jUy9o6YtjrMOz6A6UOkwHDrn/B8GPYxmDRd2JR9J1YDJu+wHDqHIG4nFRTUFBQUFBQUFBQUDAEGOY9LwUFBQUFBQUFBQUFUwiFvGxiENHuRHQVEd1BRLcT0Ttd+PZE9EMiutv9nT1oXdtARNOI6CdE9G33vhcRLSaiVUT0dXeIwqQFEW1HRN8kojuJaAURHT9MfUBEZ7nxcxsRfY2IZkz2PiCiLxLRI0R0mwgz25xqfNrVZTkRHTU4zQMydfgHN46WE9H/JaLtRNx7XR3uIqLfG4zWBVMBRHSKG2eriOjsQeujMay/fcP2Wzdsv22T/bds2H63pspvVCEvmx7rAbybmQ8GcByAtxHRwQDOBnAFM+8H4Ar3PpnxTgArxPvHAJzPzPsCeBzAmweiVXd8CsDlzHwggCNQ12Uo+oCI5gD4XwBGmflQ1AdWnIHJ3wdfBnCKCsu1+csB7Oc+bwHwuU2kYy98GWkdfgjgUGY+HMBKAO8FAPe9PgPAIS7PhUQ0bdOpWjBV4MbVZ1F/bw4G8Fo3/iYThvW3b9h+64bmt21Ifsu+jOH63foypsBvVCEvmxjM/BAz3+yef4v6H5Y5AE4DcLFLdjGA0wejYW8Q0VwArwTwr+6dALwEwDddksmu/ywALwLwBQBg5meZ+dcYoj5AfdjGTCLaAsDWAB7CJO8DZr4WwK9UcK7NTwPwFa5xI4DtiGjXTaNpHlYdmPkHzLzevd6I+s4poK7DJcz8DDPfC2AVgAWbTNmCqYQFAFYx8z3M/CyAS1CPv0mDYfztG7bfuiH9bZvUv2XD9rs1VX6jCnkZIIhoHoAjASwGsAszP+SiHgawy4DU6oILALwHQOXedwDwa/HlWIP6R2myYi8AjwL4klsO8K9EtA2GpA+Y+UEAnwBwP+p/6NcCWIbh6gOPXJvPAfCASDcs9XkTgO+552GtQ8HwYajG2hD99g3bb91Q/bYN8W/ZMP9ubRa/UYW8DAhEtC2A/wJwJjP/RsZxfQTcpDwGjoheBeARZl42aF02AlsAOArA55j5SABPQrnRJ3kfzEY9Y7IXgN0AbIPUTTx0mMxt3gVE9H7US2O+OmhdCgomK4blt29If+uG6rdtc/gtm0zt2Qub029UIS8DABFNR/2P91eZ+Vsu+Bfevej+PjIo/XrgBACnEtF9qJcmvAT1GtvtnNsXqF2SDw5GvU5YA2ANMy92799E/Q/+sPTByQDuZeZHmfk5AN9C3S/D1AceuTZ/EMDuIt2krg8RvRHAqwC8jsP580NVh4KhxlCMtSH77RvG37ph+20b1t+yofvd2tx+owp52cRwa2a/AGAFM39SRC0C8Ab3/AYAl21q3bqAmd/LzHOZeR7qjV5XMvPrAFwF4I9dskmrPwAw88MAHiCiA1zQSQDuwJD0AWoX+3FEtLUbT17/oekDgVybLwLwZ+70luMArBVu+kkFIjoF9dKSU5n5KRG1CMAZRLQVEe2FehPnTYPQsWCzxxIA+7lTmrZE/W/zogHrFGHYfvuG8bduCH/bhvW3bKh+tzbL3yhmLp9N+AGwELWLcTmAW9znFajX0l4B4G4A/wNg+0Hr2qEuLwbwbfe8N+pBvwrAfwLYatD69dB9PoClrh8uBTB7mPoAwN8BuBPAbQD+DcBWk70PAHwN9brm51DPEL451+YACPXpST8D8FPUp9FM1jqsQr1u2H+f/1mkf7+rw10AXj5o/ctn8/2435GVbry9f9D6GPoN7W/fMP3WDdtv22T/LRu2362p8htFTvmCgoKCgoKCgoKCgoJJjbJsrKCgoKCgoKCgoKBgKFDIS0FBQUFBQUFBQUHBUKCQl4KCgoKCgoKCgoKCoUAhLwUFBQUFBQUFBQUFQ4FCXgoKCgoKCgoKCgoKhgKFvBQUFBQUFBQUFBQUDAUKeSkoKCgoKCgoKCgoGAoU8lJQ0ANEdDARvZGIdiei5w1an4KCgoKCgg1F+U0rGHYU8lJQ0BvTAbwD/4+9Ow+Pqjz/P/6+kxBCSAIIYV9FBBFEEFDcrdoWRVFxQ62AFhcUtZZa616Lv9pWbVGsgIobrUtdga9VqYhQsSogsolVRNkX2RKWEJLcvz9mMk1CtklmMpnk87quuTLPOc855xmWuXOf8yxwPrC75E4z62xm+8xscaQvbGaNzGyxmeWaWYtIn19EROodxTSJa0peRCrWAXgG+AYo6y7VKnc/OtIXdvd9wfNuiPS5RUSkXlJMk7im5EUkyMxmB+8ILTazHDO7GMDdZwKvuvvb7p5VifN0NrOVZvasmf3XzP5mZmeY2Udm9rWZDQynnoiISLgU06SuUvIiEuTuPwreEZoMTAdeK7JvU5inOwx4GOgRfF0GnAiMA+6oQj0REZFKU0yTuiop1g0QqU3M7EpgMDDM3fOrcarV7r40eM7lwPvu7ma2FOhchXoiIiJhUUyTukjJi0iQmV0EXA4MdfcD1Tzd/iLvC4qUCyj+/66y9URERCpNMU3qKv1DEgHMbAgwBhji7jmxbo+IiEhVKaZJXaYxLyIBzwHtgY+CgxuvjnWDREREqkgxTeosc/dYt0EkrplZZ2Cmu/eK4jW+A/q7+w/RuoaIiIhimtR2evIiUn35QJNoLuhFYFGxgkifX0REpATFNKnV9ORFRERERETigp68iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMQFJS8iIiIiIhIXlLyIiIiIiEhcUPIiIiIiIiJxQcmLiIiIiIjEBSUvIiIiIiISF5S8iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMQFJS8iIiIiIhIXlLyIiIiIiEhcUPIiIiIiIiJxQcmLiIiIiIjEBSUvIiIiIiISF5S8iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMSFpFhd2MwaAe8AP3L3/FL2PwS87e6za7xxIhG2cOHClklJSU8BvdBNA4msAmBZXl7ez4855pgtsW5MfVVWTDOzZ4GZ7v6qmb0E3O3uX8eomSIRoZgmUVRhTItZ8gJcBbxeWuIS9BjwJKDkReJeUlLSU61btz4iMzNzR0JCgse6PVJ3FBQU2NatW3tu2rTpKeDcWLenHqsopgE8AdwGjK6ZJolEh2KaREtlYloss+XLgbcAzOzXZrbUzL4wswcB3P17oLmZtY5hG0UipVdmZmaWvuQl0hISEjwzM3MXgTugEjuXA29ZwEQz+8rM/gW0LFJnHnCGmcXyxqFIJCimSVRUJqbFJHkxs2TgUHf/zswGA0OBY929D/DHIlUXASfEoo0iEZagL3mJluC/LXXdiJGiMQ04H+gO9ASuBI4vrOfuBcA3QJ8YNFMkkhTTJGoqimmxCnYtgJ3B92cAz7j7XgB3316k3hagbQ23TUREJBxFY9rJwIvunu/uGzi467PimohINcQqedkHpFSiXkqwroiISG1V2ZgGimsiItUSk+TF3XcAiWaWAswCRplZKoCZHVKk6uHAshg0UaROuuiiizofcsghfbp163ZktM6TmJh4TI8ePXoedthhR3bv3r3nvffe2yo/v7wxzPGlvM83c+bM9PT09KN79OjRs0ePHj2PP/74wwFuvfXWto0aNeq7fv360FiH1NTUvoXv16xZkzRkyJBDO3To0OvII4884pRTTjlsyZIlDQGWLFnS8JRTTjmsU6dOvXr27HnEWWeddejatWs1ZqIWKRHT5gKXmFmimbUBTitRXXFNJEIU06ovHmNaLPtIvwec6O7vANOBBWa2GBgHYGYNgMOABbFrokjdctVVV/0wffr0CqdpnTlzZvqwYcM6V+U8DRs2LFi5cuWKb775Zvns2bP/O2vWrCbjxo2rM91kKvp8/fv3371y5coVK1euXDF//vz/Fm5v2rRp3vjx41uVPF9BQQHnnnvuYSeffHL22rVrly1fvvzLBx98cP2GDRsa7N27184555xu11577dbvv/9+2YoVK74cM2bM1k2bNil5qX3eA04E3gC+BlYAzwMfF1Yws1bAPnffFJMWitQximnVF48xLZbJy+PACAB3f9Dde7r70e5+R3D/EOBVd8+LWQtF6pjBgwfvzszMrPb/qcqep127dnlPPfXUd88880zLgoKC6l621gnn8w0fPnzb9OnTD9m8eXNi0e0zZ85MT0pK8ttuu21r4bZBgwbt++lPf7p7ypQph/Tr12/3ZZddtqtw35AhQ7IHDBiQE/EPI9X1ODDCA2509+7ufqa7n+XurwbrXAZMjmEbReoUxbTIipeYFrO7d+6+yMw+MLPEMubFTwIerul2iUTbVVdd1WHZsmWpkTxnr1699k6dOnVtJM8ZKT179szNz89n/fr1SR06dIjozYiBAwd2v+KKK3646aabtu3fv99OOumkw0eOHLl1zJgx27OzsxNOP/30bqNHj94yevToHdu2bUscPHjwYTfccMPmESNG7Ny4cWPS0KFDu95yyy2bLrvssl1r1qxJ6tixY9jtK/r5ABYsWJDWo0ePngBDhw7d/oc//GETQFpaWv7w4cN/ePDBB1v9+c9/3lB4/JIlSxr16dNnb2nnXrZsWaN+/fqVuk9ql0rENAgM6n+hJtslEm2KaZGjmFY5Me164O5Ty9n3j5psi4jAUUcd1SM3Nzdh7969Cbt27Uoq/MJ64IEH1g0bNiwr1u2LB/3799/9wQcffFPavttvv31Lnz59et5zzz3qNlQHlRfTgvufqam2iIhiWiTUxpimftMiNay23k0CWLJkyUoIPPZ95plnmr/22mvfVfecK1asSE5MTKRdu3YR7wL66aefflX4vmHDhl60nJ6eXlC03Lx58/yi5TZt2uQVLVflDhUU/3xffPFFuXVbtGiRf/7552//05/+FFq4sHfv3vvefPPNZqXVP/LII3Pmzp2bVpV2iYjUBMW0yFFMqxwtaiYiUbNhw4ak0aNHdxo1atSWhIS693VTlc935513bn7uuecy8/PzDeCcc87Jzs3NtYceeqhFYZ1PPvmk0TvvvJM2evTobQsXLkx76aWXmhTu++c//5n22WefVXZaXhERiRDFtIPFIqbVvT95ESnTOeec0+XEE0/ssXr16oatWrU66s9//nOLio8K7zz79+9PKJx28bTTTjv89NNPz3rooYc2lHe+eFLdz9emTZu8wYMH78jNzTWAhIQEpk+fvmr27NkZHTp06HXYYYcd+etf/7pdu3btDqSlpflbb731zeOPP96yU6dOvbp27Xrk448/3rJ169aayERE6j3FtOqLx5hm7h7u5xSRMH3xxRff9enT54dYt0Pqri+++KJFnz59Ose6HSJS9ymmSbSVF9P05EVEREREROKCkhcREREREYkLSl5ERERERCQuKHkRqRkFBQUFFutGSN0U/LdV95Z7FpHaSjFNoqaimKbkRaRmLNu6dWsTfdlLpBUUFNjWrVubAMti3RYRqTcU0yQqKhPTtEilSA3Iy8v7+aZNm57atGlTL3TTQCKrAFiWl5f381g3RETqB8U0iaIKY1q9myrZzKYCQ4At7t4rAufrCDwFdAAcOMvdv6vueUVERCqimCYi9U19zJafBX4awfM9D/zJ3Y8ABgJbInhuERGR8jyLYpqI1CP1Lnlx97nA9qLbzKyrmb1jZgvNbJ6Z9ajMucysJ5Dk7rOC597t7nsj32oREZGDKaaJSH1T75KXMkwBxrr7McA44K+VPO5wYKeZvW5mn5vZn8wsMWqtFBERqZhimojUWfV+wL6ZpQHHA/8wC02a0TC47wLg/lIOW+/uPyHw53cS0BdYA7wMjASejm6rRUREDqaYJiJ1Xb1PXgg8fdrp7keX3OHurwOvl3PsOmCxu38LYGZvAsehL3oREYkNxTQRqdPqfbcxd88CVpvZRQAW0KeSh38GNDWzzGD5R8CKKDRTRESkQoppIlLX1bvkxcxeBD4GupvZOjO7GrgcuNrMvgCWA0Mrcy53zyfQn/h9M1sKGPBkdFouIiJSnGKaiNQ39W6dFxERERERiU/17smLiIiIiIjEJyUvIiIiIiISF+rVbGMtWrTwzp07x7oZIiIRt3Dhwh/cPbPimlJXKKaJSF1VXkyrV8lL586dWbBgQaybISIScWb2fazbIDVLMU1E6qryYpq6jYmIiIiISFxQ8iIiIiIiInGhXnUbi2fuTlZWFtu3b2fbtm1s376dAwcOkJGRQXp6Ounp6aH3DRs2xMxi3WSRmMrPz2f37t1kZ2eTlZV10E8z45BDDuGQQw6hefPmofdJSfpalLrrwIEDvPPOO5x55pmkpKTEujkiImFTlK5h7s7evXvZtm1bKAmp7M/8/PxKXSMpKalYMlMyuSltX+ErLS2NtLS0Yu8bNGgQ5T+V2MnNzWXnzp3s2rWrzJ8lt2VlZZX6d1Hemkll7TMz0tPTadKkCU2bNqVJkyaVep+WllbnElR3JycnJ5RwlPWzrGSk5M89e/ZUqR0ZGRmhZKbkz9K2NW/enIyMjDr9/0TqBnfnhhtu4Mknn6R79+5cddVVDBo0iEMPPZQ2bdqQkKDOGCJS+yl5qcDq1av55ptv2Lt3L/v27Qu9ipbL21eynJ2dTW5ubpnXS01NLfZLUa9evYqVi75PSkoK/TJX9Be30t7v3LmTtWvXFtte2QVKk5OTiyUzJZObkvsaNmxIYmJiua+EhIQK6yQmJpKfn09ubi779+8nNze33PcV1cvKyjooEcnJySn3s5sZGRkZoaShadOmtGvXrsy78+UlFKXtKygoIDs7my1btvD111+H2nXgwIFy25WQkBBKaApfGRkZpKSkkJycXO1XUlIS+fn5xV55eXkVbiutfODAgVDyUV5isnv37kon6MnJyaEEvPBny5Yt6dq160Hbi74v+rOgoIAdO3aUebOg8P3q1avZtm0bO3bsKPf/TGJiIo0aNSr2Sk1NPWhbedsbNWpE9+7dOf744yv15yASDjOjd+/eHHPMMRQUFPDrX/86tC8pKYlmzZoV+3/ToEEDkpKSQj+Lvsr6zq7svoSEBBISEjCz0PvSXqXtN7PQ92nJ93VxW+GfQdE/S4D9+/eX+9q3bx9ZWVkHvbKzs8nJyWHfvn3s37+flJQUMjIyQrGuWbNmoVdaWhruTkFBQejl7qG/z5L/JpKSkor9XRX9u67Mq6wYmpycHPreTE1NJSUlpc7dwIs3Bw4cYN++fcX+jzZs2LBGboIoeanAM888w+9+97sy9yclJZX5C0nhL1RF9zdu3DiUhJR2V7emHuMXPgEqmswU/gJZ8pfMsrZt2bKl2LZ9+/bVSNvLk5iYSHJyMg0bNgz9Il74Pj09naZNm9KxY8diyUh5P9PT02v8bmThE4iST31KKxd9v379+mKJXGnJXaw0bty4WKKbnp5OZmYmXbp0Kbatsj8bNmxY45+hoKCAnTt3lprgZGdnl3rjoui27du3l3pDo2TCNmLECCUvEjVjx45l7NixAGzevJlFixbx/fffs2bNGnbs2BG64bV7925yc3PZu3dv6CZEXl5e6H3JGxnl3eSQ2Cq8CVf4SktLo1GjRrRo0YLk5GRycnLIyspiw4YN7Ny5kx07dtSKeF6Ror93paamlnoztei2lJQUGjRoEHolJycXK5e1raK69eGJ5YoVK5gxYwYLFy7k888/Z+PGjWX2bkhJSSn2d3P33Xdz5ZVXRrQ9Sl4qMGrUKH784x+Xebc0XruKmBmNGzemcePGtGnTJiLnLBxjkJubW2ZgC/eVlJR0UBJS8n1huUGDBqE7UvHMzEL/vlq3bh2x87o7eXl5ByU4pb0OHDhQ4d3UktvKqlN4Jy7eJSQkhG4yHHbYYRE7b+Hdq8KERuMQpKa0atWKwYMHR/06BQUFByU2pd3NL1quaB8EvtMKn4YW/VnXthV+5pIJYcOGDYu9UlJSipUbNWpERkYGjRs3DvspRU5ODjt27GDPnj2lPh0pmqyWfBX+feXn55f5d1raq6xE193Jzc0t9j1Z8ueePXvYs2cP2dnZbNq06aCbroX/ZqIhISEhKklR4atx48ah3hUZGRmlvo9G3HB33nzzTe6//34WL14MwKGHHkrfvn0555xzaNasGampqaF/q3l5eaEnekVv1LVs2TLibVPyUoEuXbrQpUuXWDcjLiQmJtKkSZNYN0PKYGbFvgyldij8O8nIyIh1U0SiovCX3ni92VcfpaSkROzGZqy5e6iL3IEDBzhw4EDoJl3RV1W3VeW4nJycStUrvBlckcKu1CWTm7Zt29KrVy+OOuooBg4cWOkkZ9WqVYwaNYp58+ZxxBFHMGHCBC666KJa829CyYuIiIiI1ElmRmpqKqmpqbFuSpUUjtktfO3atavYz7Ler1mzhnnz5jF58mQgkJCeeuqpXH755Zx//vll3sScNm0a119/PUlJSUyaNImrr7661s3CWbtaIyIiIiIiQKB7YGZmJpmZmWEf6+5s2LCBhQsXMnv2bN566y1+9rOfkZ6ezhVXXMG1115Lnz59AFi5ciW33XYbM2bM4KSTTmLatGl07Ngx0h8nIqyyM07VBf379/cFCxbEuhkiIhFnZgvdvX+s2yE1RzFNRMJRUFDAv//9b55++mleeeUVcnJy6N69O6mpqSxZsoTU1FTuuusubr311pg/bSkvpsX/KFoRERERESlXQkICJ598Ms899xzr169nwoQJdO/enVatWvHrX/+ab775httuuy3miUtFanfrREREREQkog455BBuuukmbrrpplg3JWx68iIiIiIiInFByYuIiEgUmVkHM/vAzFaY2XIzu7mUOmZmj5rZN2a2xMz6xaKtIiK1nbqNiYiIRFce8Et3X2Rm6cBCM5vl7iuK1BkMdAu+jgWeCP4UEZEiopa8VPKu0QF3XxqtNoiIiERCdWKau28ENgbfZ5vZl0A7oGjyMhR43gNTgP7HzJqaWZvgsSIiEhTNJy8fAp8BVk6dLkDnkhvNrAPwPNAKcGCKu08oUceACcBZwF5gpLsvikjLRUREiqtyTCvKzDoDfYFPSuxqB6wtUl4X3KbkRUSkiGgmL5+5+4/Kq2Bms8vYpUfsIiJSm1QnphXuTwNeA25x96yqNMLMrgGuAWrtAnIiItEUtQH7FX3Jl1fH3TcWPkVx92yg8BF7UaFH7O7+H6CpmbWpZrNFREQOUp2YBmARcjrMAAAgAElEQVRmDQgkLn9z99dLqbIe6FCk3D64reQ1prh7f3fvX5UVt0VE4l3UkpfgrCp3mVnXap6nM+E9YhcREYmo6sS0YDfnp4Ev3f2RMqpNB64Mzjp2HLBL411ERA4WzW5jw4FLgffMbBvwIvCyu2+o7An0iF1ERKKhogH4pYyhrE5MOwH4GbDUzBYHt90BdAxeaxLwNoExnN8QGMc5qpIfRUSkXola8uLuXwBfAL8J3kW6hMAMKquAv7v7k+UdH8lH7MAUgP79+3tVPouIiNQ5Dwd/pgD9CcQrA44CFgCDilauTkxz939T/kB/grOM3VC1jyIiUn9UKnkxswvK219GclF0/38IfMm/BfwZmAiU+UUfxiP2G83sJQID9fWIXUREKsXdTwMws9eBfoVTHJtZL+C+Co4NK6aJiEjkVPbJyznBny2B44HCGVVOA+YDZSYvZjaAwOP2YcBqYDLwjwqup0fsIiJSE7oXXZvF3ZeZ2RFlVa5iTBMRkQipVPLi7qMAzOw9oGfhE47g7F7PlnaMmf0/Ao/VtwMvASe4+7pKXk+P2EVEpCYsMbOngGnB8uXAkpKVqhPTREQkcsId89KhRNeszQSfhpQiB/ipu39dpZaJiIhE3yjgeuDmYHkugXXDSlJMExGpBcJNXt43s3cJzLICgbtQ/yqj7syKvuTNrF8pM7qIiIjUCHfPMbNJwNvu/lU5VRXTRERqgbCSF3e/0czOB04Obpri7m+UUf0ZMzuV8rt/PU1gDRcREZEaZ2bnAn8CkoEuZnY0cL+7n1uiqmKaiEgtUJWpkhcB2e7+LzNLNbN0d88upV4TYCHlf9FvrcL1RUREIuVeYCAwB8DdF5tZl1LqKaaJiNQCYSUvZjaawIKPhwBdCaxoPwk4vWRdd+8cgfaJiIhE0wF33xWYoT/koDXBFNNERGqHhDDr30BgGuMsgGD/35aRbpSIiEgNWW5mlwGJZtbNzB4jsASAiIjUQuEmL/vdPbewYGZJlHKHSkREJE6MBY4E9hOYjCYLuCWmLRIRkTKFO+blQzO7A2hkZmcCY4AZZVW2wHP49u6+thptFBERiQp33wvcGXyVSzFNRCT2wk1ebgeuBpYC1xJY5f6psiq7u5vZ20DvKrdQREQkSsxsBgf3INgFLAAmu3tO4UbFNBGR2At3quQC4Mngq7IWmdkAd/8srJaJiIhE37dAJsXXL8sGDicQ635Wor5imohIDIU729hSyr5DNd7dt5Vy2LHA5Wb2PbCHwDST7u5HVaG9IiIikXS8uw8oUp5hZp+5+wAzW15KfcU0EZEYCrfb2D+BfODvwfKlQCqwCXgWOKeUY35S1caJiIhEWZqZdXT3NQBm1hFIC+7LLaV+XMe022+/nfnz5zN37txYN0VEpErCTV7OcPd+RcpLzWyRu/czsytKO8DdvzezPsBJwU3z3P2LqjRWREQkwn4J/NvMVhF4itIFGGNmjYHnSlaO95h26KGHsnfv3lg3Q0SkysJNXhLNbKC7fwpgZgOAxOC+vNIOMLObgdHA68FN08xsirs/VpUGi4iIRIq7v21m3YAewU1fFRmk/5eS9eM9pl1zzTWxboKISLWEm7z8HJhqZmkE7lBlAT8P3qH6fRnHXA0c6+57AMzsD8DHQFx80YuISJ3XDegOpAB9zAx3f76MuoppIiIxFNYile7+mbv3Bo4G+rj7Ue7+qbvvcfdXyjjMCIyTKZQf3CYiIhJTZnYvgcTjMeA04I/AueUdQhzHtDVr1tC6dWueeqrMVQ5ERGq1cJ+8YGZnE1iNOCWwXhe4+/3lHPIM8ImZvREsnwc8He51RUREouBCoA/wubuPMrNWwLRy6sd1TOvQoQPnn38+Xbt2jXVTRESqJNypkicRmF3sNAKLU14IfFpO/QTgP8Ac4MTg5lHu/nlVGisiIhJh+9y9wMzyzCwD2AJ0KK1iVWOamU0FhgBb3L1XKftPBd4CVgc3vV7BTcEqMzOeeOKJaJxaRKRGhPvk5Xh3P8rMlrj7b83sYQLTJ5cqGBAed/e+wKJqtVRERCTyFphZUwILUi4EdhMYw3KQasS0Z4GJQFnjaCAwa9mQMM5ZLdu2bWPbtm0cfvjhNXVJEZGICGvMC1A4A8teM2sLHADaVHDM+2Y2zAr7mImIiNQCwbj0e3ff6e6TgDOBEe4+qpzDwo5p7j4X2F7N5kaMuzNo0CBuuOGGWDdFRCRs4T55mRG8Q/UnAnednMDdqvJcC9wK5JlZDv9bjTgj3MaKiIhEiru7mb0N9A6Wv6vEYdGKaYPM7AtgAzDO3ZdX83xlMjMmTJhA+/bto3UJEZGoqXTyEuzr+7677wReM7OZQIq776rgmJ+6+0fVb6qIiEjELTKzAe7+WUUVoxjTFgGd3H23mZ0FvElg+ubS2nANcA1Ax44dq3zBwYMHV/lYEZFYqnS3MXcvAB4vUt5fXuJS5JiJVW+eiIhIVB0LfGxmq8xsiZktNbMlpVWMVkxz9yx33x18/zbQwMxalFF3irv3d/f+mZmZ1brutm3bGDNmDPPmzavWeUREalK4Y16qMn5FY15ERKS2+gnQFfgRcA6BWcHOKad+xGOambUuPJ+ZDSQQm7dF6vxlSUlJYdasWSxapPl0RCR+hDvmpbCvb76Z7aNyfX2rcoyIiEjUufv3ZnYi0M3dnzGzTCCtnEPCjmlm9iJwKtDCzNYB9wINgtefRGDZgevNLA/YB1zq7l79T1e+xo0bs3TpUlJSUqJ9KRGRiAkreXH39HAvUJVjREREaoKZ3Qv0B7oTWICyAYFFKk8orX4V4+DwCvZPJEZdrAsTl0WLFvHVV18xfHi5TRURibmwuo1ZwBVmdnew3CH4iDuix4iIiNSQ84FzgT0A7r4BKDNBqasx7Xe/+x2//e1vOXDgQKybIiJSrnDHvPwVGARcFizvpsgg/ggeIyIiUhNyg120HMDMGldQv07GtOeff55Zs2bRoEED8vPzKSgoiHWTRERKFW7ycqy730BwsUp33wEkR+EYERGRmvCKmU0GmprZaOBflL9+WZ2Maenp6XTo0AGAO++8k7PPPltPYUSkVgp3wP4BM0vkf3eoMoGKbs+EfYyZTSUw48sWd+9Vyv5TgbeA1cFNr7v7/WF8DhEREdz9ITM7E8giMO7lHnefVc4hVYmDcaVjx47s3buXBg0aAJCVlUVGhubYEZHaIdzk5VHgDaClmT1AYIaUu6JwzLMEBi8+X06dee4+pDKNFhERKY2Z3Qq8XEHCUlRVYlpcGTNmTOj9999/T8+ePXnuuee48MILY9gqEakJ2dnZpKfX7rm2wuo25u5/A24Dfg9sBM5z939E4Zi5wPZw2iYiIlIF6cB7ZjbPzG40s1blVa5KTItnycnJXH311fTt2xeAuXPncvnll7Nhw4YYt0xEIu3jjz+mf//+7Nu3D6DWjn0L68mLmT0KvOTuYQ1OdPeVwMpwjqmEQWb2BbABGOfuy0urZGbXANdA4FG4iIhIIXf/LfBbMzsKuAT40MzWufsZ5RwTjZhWK7Vp04ZHH300VF67di3z5s2jSZMmALz66qt88cUX3HvvvSQlhduZQ0Rqkx9++IE2bdqQm5vLY489xjvvvMP7779PbVtnPtwB+wuBu8xslZk9ZGb9o9GoSlgEdHL3PsBjwJtlVXT3Ke7e3937Z2Zm1lgDRUQkrmwBNhFY2b5ljNtSa11++eV8//33NG4cmJTt008/5dVXXw0lLk899RTPPvtsDFsoIlV1zjnnMGfOHJo0aUJmZiYdOnRg7969sW7WQawqi/ia2SHAMOBSoKO7d4t4w8w6AzNLG7BfSt3vgP7u/kN59fr37+8LFiyISPtERGoTM1vo7rG6oRS3zGwMcDGQCfwDeMXdV8S2VZVTW2LagQMHQoP7Tz/9dBo1asTMmTMBmDp1Kn379g11OxOR2mndunW0bt261jxBLS+mhfvkpdBhQA+gE5V4dG5mnczsjOD7RmZWrZFAZtbags+wgouDJRC4WyYiIhKODsAt7n6ku99XmcQl0jEt3hUmLgD/+te/ePHFFwHIycnhpptuYtq0aQC4O++9916oP72I1B7nnXceQ4YcPA/Wd999x/r162PQorKFlbyY2R/N7GvgfmAZgacd51RwzGjgVWBycFN7yunmFTzmReBjoLuZrTOzq83sOjO7LljlQmBZcMzLo8ClXpVHSCIiUq+5+2/cfbGZtTSzjoWvsupXJabVJ2YWmqkoJSWFtWvXcttttwGwYsUKfvKTn/Dcc88BsHv3br7++msUvmvWokWLWLJkSag8efJk/vnPf4bKK1asICsrKxZNkxi6/fbbGTt2bLFt2dnZdO/enT//+c8xalXpwn3ysgoY5O4/dfdn3H1nJY65ATiBwBz6uPvXVNCf2N2Hu3sbd2/g7u3d/Wl3n+Tuk4L7JwbvkvVx9+PcfX6Yn0NERAQzOyd4U2418CHwHfDPcg4JO6bVZ82aNaNVq8AEbt26dePdd99l2LBhQOApzeGHH87HH38MBKZl/uCDD9i/f3/M2lsXbd26lU8++SRUHjZsGA8++GCoPH78eN5883/598knn8yvfvWrUPnBBx/k008/rZnGSsxceOGFnH322cW2paen88ILL3DjjTfGqFWlC6tjm7tPNrNmwa5aKUW2zy3nsP3unls4U4GZJRFc3EtERCTGxgPHAf9y975mdhpwRTn1FdOqKDk5mR//+Meh8sCBA5k0aRLHHHMMAK+88gq33XYbP/zwAw0bNuTdd99l3rx53HvvvTRo0IC8vLxa0x8/nlx88cVs2LCBlStXYmb8/e9/p+gERl9++SWJiYmh8lNPPUXbtm0B2LlzJ/fccw+JiYkMHDiQnJwcxowZw7XXXsuxxx5b459FomPx4sU0bdqUzp07H7Tv4osvrvkGVSDcbmM/B+YC7wK/Df68r4LDPjSzO4BGwVWM/wHMCL+pIiIiEXfA3bcBCWaW4O4fAOVNfKCYFiFt27bl2muvpWHDhgBcddVVvP/++zRv3hyAefPmMXny5FDC8stf/pKuXbuGjn/99df561//Gipv3769Vs6MVNNWr17N2LFj2bNnDwAPP/wwr776ami620GDBnHYYYeF6qelpdGoUaNQ+bzzzmPgwIEANG3alF27dnHttdeGzj1jxgw2bdoEwNdff82QIUP44osvauSzSXTccMMNXHFF2fds5s6dGxq7VhuE223sZmAA8L27nwb0BSrqOnY7sBVYClwLvO3ud4bbUBERkSjYaWZpBG7M/c3MJgB7yqmvmBYlzZs350c/+lGoPH78eDZt2hT6pfvUU09lxIgRof2vvPIKTzzxRKg8atQoBg0aFCrfeuutxfrwP//887z00kuh8ieffMLSpUtD5aysLHJyciL7oWpQ4dihDRs28NRTT4W6evXr14/evXtX+byNGjUiIyMDgCOOOIItW7aEBnZv3ryZb7/9luTkZABmzpxJnz59+Pbbb4HATHQa01T7Pf744/zhD38oc//EiRO57777as3fZbjJS4675wCYWcPgQl3dKzhmrLs/6e4XufuF7v6kmd1cpdaKiIhE1lBgL/AL4B0CYzvLm4hGMa0GFe3OdP7553PPPfeEyi+++GKxsRyjR4/m9ttvD5VLLqz3+OOPhyYLALj++uu5887/5Z3HH398sbvPRx11FD//+c9D5VNPPbVY/fPOO49HHnkkVB45cmSxNW5uvfVW3nrrrVD5gQce4MMPPwyVN2/eHJFfBvPy8hg6dCj33nsvACeccALr1q3jtNNOq/a5S2Nmob+XE088kRUrVnDEEUcAgUka2rVrF+p2NmHCBDp37kx2djYAubm5UWmTVM/RRx/NCSecUOb+v/zlLyxdurTWLFYZbvKyzsyaEphZZZaZvQV8X8ExI0rZNjLM64qIiEScu+9x9wJ3zwO2ufujwW5kZVFMqyXMjNTU1FB5yJAhDB8+PFR++OGHeeyxx0Ll+fPn8/rrr4fKU6dO5YEHHgiVx40bV+zJzvDhw4s9CerZsycdOnQodv2iv8x9+eWXbNy4MVR++eWXWbx4MRB4KnLXXXeFkpecnBxat24dun5BQQGvvvoqP/xQ7nJ1IXl5eSxcuBCApKQkWrZsSbNmzUL7C7ve1bQzzjiDt99+m5SUwLDonj17ct5554VmoLvhhhtCXdIATc5QCyxfvpx33nmHvLy8Muu0bdu2WNfCWKvSIpUAZnYK0AR4x90PSqXNbDhwGXAiMK/IrnSgwN1Pr9KFq6G2LOglIhJpWqSy+sxskbv3K2OfYppUS15eHnl5eaSkpJCTk8OUKVMYNGgQAwYMYNmyZfTu3Ztnn32WESNGsGXLFl544QUuueQS2rdvz+7du1m1ahVHHnkkSUlJ3HnnnTz88MOsWbOGli3jZ7K7F154gXXr1vGb3/wGCMxs1rJlS1599dUYt6z++tWvfsVjjz3Gnj17ij3pLOnNN9/knXfeYdKkSTXSrvJiWnWm7eju7lPK2T8f2Ai0AB4usj0bWFLqEbXURx99RHJyMgMGDADQjCciInVTeX0i6kxMk9hISkoK/e6QkpLCTTfdFNrXvXt3Pvnkk9CEBJ999hnjxo3jhBNOoH379rz77rtceOGFLF68mD59+vCzn/2MY489NmZPWKrqZz/7WbHyBRdcQIsWLYDA06ef/vSnXHvttaHptCX67rjjDi655JJyExeAb775hg8//JDdu3eTlpZWQ60rXXWevJR5h6q2qupdqhNPPJHk5GRmz54NBGbqyMzMZPr06QCMHTuWjh07huZFf/nll2nbti0nnXQSEOjX2qRJk9BjVBGRSNOTl+ozs4HuHjcLWujJS922ZcsWmjVrRoMGDdiwYQPz58/n1FNPDf2yX9ds2bKF8847j1tuuYWLL76Y7OxsFixYwKmnnlprxlrUZ/n5+RUmOJFUXkwLd8xLsfNW8uLZZpYVfOWYWb6ZxdXSrVOnTi3Wb3bEiBFcdNFFofK6devYvHlzqPyrX/2Kp59+OlTu169fsQV+RowYUWzKuY0bN9aaGRxEROoTM0s1s7vN7El3/9TMupnZkHLqhx3TzGyqmW0xs2Vl7Dcze9TMvjGzJWYWVzcGJTpatmxJgwYNgMCYgwsvvLDOJi4Q+Lzz588P/X718ssv86Mf/Yj//Oc/MW5Z3bV7924ef/xxvvvuuwrr1mTiUpHq9H0qbzaWEHdPL3xvgdR5KIEFweLG4YcfXqx83XXXFSu/8cYbxcoLFiwoloyMHz8+tPBPfn4+y5cvp1evXkBg5o0OHTpw1113cd9995GXl8fvfvc7zjvvPPr27RuFTyMiIkU8AywECufYXU9g7ZaZpVWuYkx7FpgIPF/G/sFAt+DrWOCJ4E+ReqfwKcvll19Oy5YtOe64wH+vxx57jAMHDvCLX/xCT2IiZMWKFdx444106NCh1AUqS3r99de54447WLBgQUy7joW7SGUrM3vazP7p7uvMrKeZXV3Z4z3gTeAnYbc0jrRs2ZJWrVqFyqNGjQpNWZiYmMiCBQtCXczy8/N57LHHQnOmr1+/nvHjx/P5558DsGbNGtq0aROabnHXrl3MmDGD7du31+RHEhGpq7q6+x+BAwDuvpdK9iyobExz97lAeV/aQ4Hng+f7D9DUzNpUqvUidVSjRo0499xzQ4nKv//9bz788EMlLhE0YMAA1q1bx+mnV26+kczMTLp37862beVNyBh94T55eZbAXarCic7/C7wMPF3WAWZ2QZFiAoGVi+N3FagIa9SoEddff32o3KlTJ/bu3UtBQQEQmF5x8ODBoekZP//8c84991zee+89zjzzTD799FN+8YtfMGnSJHr37s369etZtGgRp5xySmhRKRERKVOumTUCHMDMugJlzt8apZjWDlhbpLwuuG1j6dVF6p+XX345tIjo5s2bGTp0KI8++mixqZclPGZGu3btKl3/pJNOCo3njqVwx7y0cPdXgAKA4Lz4+RUcc06R108IzMwyNMzr1isNGzYMzafdqVMnpk6dSr9+gS7QAwcO5OOPP+bYYwM9CgqnXWzcuDEAc+bM4dxzzw3NNf/aa69x5JFHsm7dOgCWLVvGCy+8wN69e2v6Y4mI1Eb3ElicsoOZ/Q14H7itnPoxjWlmdo2ZLTCzBVu3bq2py4rUCoUTH61fv57du3fTtGnTGLcovk2aNCk0+VQ4srOzQzfZYyHc5GWPmTXnf3eojgN2lXeAu48q8hrt7g+4+5YqtrfeS01N5bjjjgs9VTn++ON5//33OfTQQwE455xz+OSTT+jSpQsATZo0oXv37qHFq2bMmMGVV14Z+kf30EMP0b59e/bs2QPA4sWLmTVrVkz/UYqI1BR3nwVcQGChyReB/u4+p5z60Yhp64EORcrtg9tKu/4Ud+/v7v0zMzOreVmR+NSvXz+WLl0aGpM8btw4HnnkkRi3Kv48/PDDYa+x8+6779K8efPQAqyxEG63sVuB6UBXM/sIyAQuLK2imT1GMMkpjbvfVNY+qbqMjIxij1DPOOMMzjjjjFD5lltuYdiwYaGBVj169OD8888PPbmZNGkSr7zySqg/41/+8he++eYbJk6cCMCOHTvIyMioVbNOiIhUlZmdD8x29/8Llpua2XnBsSxF60Uzpk0HbjSzlwgM1N/l7uoyJlKOwrEv+fn5rFq1Sjddq2DlypWhm9eV1a9fP26++eaYPvUKe50XM0sCuhMY0PiVux8oo96I8s7j7s+FdeEI0Jz4Fdu6dStr1qzhmGOOAeDXv/41y5cvZ+bMwMQ7Q4YMYdOmTRT+Ob7yyis0adKEn/ykTs/BIFLraZ2XqjGzxe5+dIltn7t73xLbqhzTzOxF4FQCC1xuJtBVrUHwuEnBWcsmAj8F9gKj3L3CYKWYJvI/hQuIL1u2jClTpvDAAw+Qnp5e8YFSK5UX08J68mJmicBZQOfgsT82M9z9oGd1Jb/IzSwtuH13ONeUmpWZmUnRrgh/+MMfiu2/6qqrio2X+e1vf0u3bt1Cycv5559Pv379uPvuu4H/fZmIiNRSpXWfPuhLqzoxzd2HV7DfgRsqOo+IlK3wd40PPviAl19+mXvuuUfJSznee+895syZw9133x0aZ11Z7s6yZcto3759aFhCTQp3zMsMAv2CmwPpRV5lMrNeZvY5sBxYYWYLzezIKrRVaoELLriAK664IlT+7LPPmDRpUqiclpZGamoqAAUFBbRr147/9//+X2j/mjVrtCCniNQmC8zsETPrGnw9QmDdl1IpponUbmPHjuW///0vLVq0wN15+OGH0eQWB1uwYAGTJk2iYcOGYR+7dOlSjjrqqIPWOawp4SYv7d39Ane/191/W/iq4JgpwK3u3sndOwK/BJ6sUmul1klNTaV169ah8gsvvMAvf/lLAHJychg5cmRosc1NmzbRqVOn0PiZffv2MWfOHM18JiKxNBbIJTDt/8sEpkku7ymIYppILdekSRMgsAjjb37zG15++eUYt6j2ueOOO9i6dSsJCeGmAtC7d2+ee+45zj777Ci0rGLh9uf5p5n92N3fC+OYxu7+QWHB3eeYWeMwrytxKDU1tVi3s5SUFJ544onQgp0LFizgtNNOY8aMGQwZMoS1a9cye/Zszj333Jg8hhSR+sfd9wC3h3GIYppInDjyyCNZunQphx12GACffvopmZmZoRlZ67uqTr5kZlx55ZURbk3lhZtu/Qd4w8z2mVmWmWWbWVYFx3xrZnebWefg6y7g26o1V+JZ06ZNue666+jevTsARx99NG+//XZowaNZs2YxcuTI0OPdjz76iN///vdkZVX0T0xEpGrMLNPM/mRmb5vZ7MJXOYcoponEke7du5OYmIi7c8011zBs2LB6331948aNXHzxxSxcWGYP2Qrt37+f1157jaVLl0awZZUTbvLyCDAISHX3DHdPd/eKlnG/isCUyq8HXy2C26SeS09PZ/DgwaHHuyNHjmT58uV069YNgPnz5zN+/HiSk5MBmDlzJlOmTKn3XzoiElF/A1YCXYDfAt8Bn5VTXzFNJA6ZGTNmzGDq1KmYGQcOHGDJkiWxblZMbNiwgUWLFpGTk1Plc+Tn53PFFVfw/PPPR7BllRPWVMlmNhc41d2rNJl2cLayxu4ek1vpmlYy/uzatSuU3Fx++eUsWrSIL7/8EoC//e1vNG3aNGZ9LkVqE02VXDXBP7djzGyJux8V3PaZuw+oxLGKaSJx6s9//jPjxo1j2bJlHHHEEbFuTlxatmwZPXr0iMqsshGbKpnAo/E5ZvZPAoMaAUqdKrnIxf8OXAfkE7iblWFmE9z9T2FeW+qhwsQFYNq0aaHFMwH++Mc/0qVLl1Dy8uSTT9K3b1/699fvbyJSaYVrlW00s7OBDcAhZVVWTBOpG0aNGkXDhg1DicuSJUvo2bOnlncIQ69evWJy3XC7ja0G3geSqeRUyUDP4F2p84B/Eng0/7MwryuCmdGiRYtQecGCBUyePBkIzGx28803849//AMIzEE+ceJEVq9eHZO2ikjcGG9mTQjMGjYOeAr4RTn1FdNE6oCmTZsyZswYALZv387JJ5/MzTffHONW1YzzzjsvNPNrdbg7f/zjH3n22Wer36gwhJVeVmJa5NI0MLMGBL7oJ7r7ATPToAWptgYNGtCqVSsgMJPZxo0byc3NBeCrr75i7NixpKam0qVLF7Kysvi///s/zj77bDIyKhqmJSL1hbvPDL7dBZxWiUMU00TqmGbNmjF16tTQU5itW7eydetWevbsGeOWRV5+fj65ubnk5+dX+1yF44i6du3KyJEjq9+4SqpU8mJmE939RjObARz0Je3u55Zz+GQCAyC/AOaaWSdA00dJxBXtYtajRw/WrFkTSlTee+89LrvsMubOnctJJ53Eli1b2L9/Px06dIhVc0WkFjCzQ4EJBCajKQA+Bn7h7mXNIKaYJlLHmG3WGb8AABgFSURBVBkXXHBBqPzggw8yceJE1q5dS8uWLWPYsshLTEzk7bffjtj5Zs2aRUpKSsTOVxmVGrBvZlnunmFmp5S2390/DOuiZknunhfOMZGgwY31V35+Pp988gnHHnssiYmJjB8/nnvuuYctW7bQokULdu/eTePGjTGzWDdVpEo0YL9qzOw/wOPAi8FNlwJj3f3YMM6hmCZSh/zwww/Mnj2biy++GIA33niD0047jaZNm8a4ZbWXu0f0d6jyYlplx7ysCjbsw9JeFVy8uZk9amaLzGyhmU0AmlRwzFQz22Jmy8rYb8FzfmNmS8ysXyU/h9RTiYmJHH/88aEFmYYPH84zzzwTGkMzZswYBgwYoGmYReqfVHd/wd3zgq9pQJm3EasS00QkvrRo0SKUuGzevJlLLrmE8ePHx7hVkXHppZdGvIvXhAkTGDhwYI39DlXZMS+ZZnZrWTvLm20MeAmYCwwLli8HXgbOKOeYZ4GJQFmTRw8GugVfxwJPBH+KVErXrl3p2rVrqHzWWWdxzDHHhO4aDB48mOOOO4577703Vk0UkZrxTzO7nUCscuAS4G0zOwTA3beXqF+VmCYicapVq1Z89tlntGnTBoAVK1awcOFCLr/8chISwp33KvZ69OgRWj8vUlq2bEmPHj3YvXs36ekVzeNVfZXtNraRQIJQ6vOg8gbym9kyd+9VYttSd+9dwTU7AzNLHhvcNxmY4+4vBstfEVh/ZmN559QjdqmM/Px8rrnmGvr27cuNN95IXl4ew4cP57rrruP000+PdfNESqVuY1VjZoVTEhYGw6Jxzt390BL1qxTTokExTaTm/fKXv+Tpp59m1apVNG/ePNbNqbMisc7LRne/v4rXf8/MLgVeCZYvBN6t4rkKtQPWFimvC24rN3kRqYzExESefvrpUHndunUsXryY7dsDN2A3btzIE088wc9//nM6duwYq2aKSDWY2QBgrbt3CZZHEHia8h1wXylPXApFI6aJSJz405/+xOjRo0OJy913382wYcM4+uijY9yyiu3bt4+UlJSoje9du3YtrVq1iviTnZIq+7wr7E9pZtlmlgWMBv4O5AZfLwHXhHu+qjKza8xsgZkt2Lp1a01dVuqQzp0789///pdhwwK9RBYuXMgDDzzAjh07AFi8eDGPPPIIu3btimUzRSQ8kwnEJMzsZOD3wHMEpkyeUrJybYlpIhJbCQkJ9OjRA4ANGzbw17/+ldmzZ8e4VZVz/fXX07t376iMTfn000/p1KkT06dPj/i5S6rsk5ew+8q4ezQ7va0His5x2z64rbR2TCEYiPr376/R2FIlZha6UzFkyBC2bdsWmoZ51qxZ3HHHHYwePRqAf/3rX6xdu5Yrr7wyNEGAiNQ6iUWerlwCTHH314DXzGxxycpRjmkiEofatm3LqlWraNSoERD4feD999/n3nvvDW2rTc4++2yOPvroqDx5OeaYY3jggQc49tjoD0Gv1JiXal/ErBmBwfWhGVzcfW4Fx3Sm7DEvZwM3AmcRGKj/qLsPrKgd6h8s0bJly5bQXPAjR45kzpw5rF69GjPjtddeIyUlhbPPPjvGrZS6TGNewhOczfJod88zs5XANYVxqbRxLSWODTumRYNimkjtcv/99zNt2jSWLFlS42uf1DWRmCq5Ohf/OYGZWd4Ffhv8eV8Fx7xIYKGw7ma2zsyuNrPrzOy6YJW3gW+Bb4AngTFRar5IpRRdxOqZZ55h/vz5oTsbDz74IBMmTAjtf+655/jss89qvI0iUsyLwIdm9hawD5gHYGaHEeg6VqqqxDQRqR/uueceFi1aREpKCnl5edx6662sXbu24gNrwNKlS2uke/vHH3/M66+/HtVrVLbbWHXcDAwA/uPup5lZD+D/lXeAuw+vYL8DN0SuiSKRY2a0bds2VP7oo48oHG+Vl5fHTTfdxIgRI0Lryjz44IMMHjw4Lgb7idQV7v6Amb0PtAHe8/91Q0gAxpZzaNgxTUTqj7S0NAC++OILJk+ezHHHHUeHDh0qOCq63J3hw4eTmZnJBx98ENVr/fGPf2TJkiUMHTo0al3nayJ5yXH3nOCYgYbuvtLMutfAdUVqheTkZNq1awdAUlISa9asYd++fQBs2rSJO++8k4yMDI4++mh27tzJyJEj+dWvfsUJJ5wQy2aL1Hnu/p9Stv23gsOqFNPM7KfABCAReMrdHyyxfyTwJ/43fnOiuz9Vmc8hIrXPMcccw7fffkurVq0AmD9/Pr17966RdVBK8/TTT7N///6oX+exxx4jIyMjqmN+ayJ5WWdmTYE3gVlmtgP4vgauK1IrNWnShCZNAgtyt2nThqysrNDMH+vXr2flypXs3bsXgAULFnDhhRfy4osvMmjQIPbs2UNubi7NmjWLWftF6rmwY5qZJQKPA2cSmNr/MzOb7u4rSlR92d1vjEajRaTmFSYue/bsYejQoZx55pn8/e9/r/F2mFmNDKQHaN++feh9QUFBVBbyjPqYF3c/3913uvt9wN3A08B50b6uSLxIS0sL3Yk58sgjWblyJWeeeSYADRo04Ljjjgs9uXnrrbc45JBDWLEi8DvPqlWrmDNnDrm5ubFpvEg9U8WYNhD4xt2/dffC6ZWHRrelIlJbNG7cmJdeeonf//73NX7tHTt2cPvtt7Nhw4Yau+aePXs45ZRTePjhh6Ny/qgnL0W5+4fuPj345S0iFejTpw8vvfRSaDHMfv368fvf/57DDz8cgGnTpnH66aeHkpf/+7//4w9/+AMFBQUxa7NIfRFGTCtrYeWShpnZEjN71cxi20leRCLq9NNPp1OnTrg748aN4+23366R63700Uc89NBDbNmypUauB4FkrUuXLsUmM4qkGk1eRKR6evTowe23305SUqDH54033sjs2bNDAwTfe+89Jk6cGHpMe+edd3LZZZeFjt++fbsSG5HaaQbQ2d2PAmYRWDDzIFp4WSS+7dmzhzlz5jB3bs3Mrj5kyBDWrFlT45MCPfvss4wYMSIq51byIhLHmjdvzimnnBIqT5gwga+++ipUbtSoUSixAbjooos49dRTQ+X33nuPZcuW1UhbReqxChdWdvdt7l44mvYp4JjSTuTuU9y9v7v3z8zMjEpjRSR60tLS+PDDD0NdyKJ5Q3HHjh0AxWZArQuUvIjUMampqaH3d911F1OmTAmVr7nmGsaM+d+ySKNHjy7WB/e2227jrbfeCpVrYhFbkXrgM6CbmXUxs2TgUmB60Qpm1qZI8Vzgyxpsn4jUoMaNG2NmrF27lv79+zNv3ryIX+Ojjz6iTZs2/O1vf4v4uWOtJmYbE5Fa4pJLLilWnj17Nvn5+UBgDZpXXnmFRo0aMXToUPLy8mjRogX33Xcft9xyCwUFBUybNo2TTz6Zzp07x6D1IvHJ3fPM7EYCC1omAlPdfbmZ3Q8scPfpwE1mdi6QB2wHRsaswSJSI1JSUkhOTo7KuY866ihuuukmzj333KicP5asPt1Z7d+/vy9YsCDWzRCp1fLz80lMTGT37t3cc889nHXWWZxxxhl8//33dO7cmcmTJ3PNNdewceNGLrzwQu6//35OP/109u3bx6pVq+jWrRsNGzaM9ceod8xsobv3j3U7pOYoponEP3fHzIDATcTCMa1V9fXXX9O2bVsaN24ciebFTHkxTd3GRKSYwoWl0tLSeOSRRzjjjDMAaNeuHStXruSCCy4AIDs7m+Tk5FCismjRInr37s3s2bMBWLlyJWPHjmX16tVAoO/t8uXLNa2ziIhIUGHiMm3aNPr37x8ap1IVWVlZnHDCCdxwww2Ral6tpORFRColKSmJ7t2706JFCwAOP/xwPvjgA0488cRQ+cUXX2TAgAFAYA2a559/PrSi7zvvvEOvXr1YtWoVAG+88QZ9+/Zl3bp1ACxcuJCHH36Y3bt3A7Bz5042b96scTciIlLntWvXjvbt21dpZfq1awMzsWdkZPCXv/yFe+65J9LNq1WUvIhIRGRmZnLppZeGkpuzzz6bnTt30r17dwBOPPFEXnrpJTp16gQEBiy2b9+ejIwMAObMmcO4ceNCM69MnjyZ1q1bs2fPHgCmTp3KmWeeSV5eHhAYjPj000+Hkptdu3aF6sZCdnZ2KPEC+Pbbb4stCvbJJ5/w9ddfh8rTp09n8eLFofKUKVP+f3v3H2RXXZ9x/P0Mq8RQ2CWlE5DsEDIyZijFJONYpMEhweaHMiEOGCjMJGnJGGhpFWSKuDsyZZxhQlttS8TSUQwqo5nEkIa0TUvQmYKMUaNIUBJYEotoEGzYCGKS3eTTP843t3eX3ezevffuOWfv85q5k/2eezj77Gfvng/fe35cnnjiifEJa2ZmhTJv3jy2bt3KaaedRn9//6jvQrZp0ybOOeccdu7cCcC1117LjBkzmhk1d568mFnTSKocEu/s7OTqq6+u3A1twYIFPPzww5XJyy233EJvby+nnnoqAAsXLuTee++t3Or52LFjHD16tHI+8Pr167n11lsr2+/q6qp8mCfA3XffzfLlyyvj7du3s3nz5sr4hRdeGDCZ2L59O9u2bauM165dy3333VcZ33jjjXR1dVXGc+fOZeXKlZXx7NmzueGGGyrjSy+9lO7u7sp4yZIlAz5teMWKFdx///2V8c0338xDDz00XCnNzKwF9PX1sXTp0gGnfu3Zs4f9+/cD8PrrrzN//nzWr18PZB9+2d3dPaD/TXS+25iZFYIk2tvbK+NZs2YN+FCtVatWsWrVqsp4zZo13HbbbZXxlVdeyYUXXlgZHzp0iDfeeKMyXrt2LXv37mXp0qUArF69mgMHDrBjxw4A7rrrLg4fPsyiRYsA2Lx5M5MnT2b16tUAHDlyhL6+vsr2Fi9ezNSpUyvj7u7uAeN77rmHM888szLesGHDgE8bfvzxx5kyZUplvG/fvtJfYGlmZvVpa2vj4osvZtKkSZVlc+bM4aabbmLNmjVMnjx5wFkG7e3t3HnnnXlEzY3vNmZmLaG3t5fXXnuNzs7sswIfe+wx+vv7mTdvHpCdM9zW1sZZZ511os0Ulu821nrc08wmvohgw4YNzJw5c8AbdBPdiXqaj7yYWUvo6Oigo6OjMr7kkksGPH98UmNmZlYUkli2bFneMQrF17yYmZmZmVkpePJiZmZmZmal4MmLmZmZmZmVQktdsC/pFeB/Bi0+A/hVDnHGynmby3mbr2yZy5L3nIj4vbxD2PgZpqeNRlle00Mpc3Yod35nz0eZs8PY8w/b01pq8jIUSd8v0x16nLe5nLf5ypa5bHnNRlLm13SZs0O58zt7PsqcHZqT36eNmZmZmZlZKXjyYmZmZmZmpeDJC/xL3gFq5LzN5bzNV7bMZctrNpIyv6bLnB3Knd/Z81Hm7NCE/C1/zYuZmZmZmZWDj7yYmZmZmVkptOzkRdIiSXsk9Uj6RN55BpPUKelbkn4i6ceSPpqWT5H0iKTn0r+n5521mqSTJP1Q0tY0PlfSjlTn9ZLemnfGapI6JG2UtFvSM5LeW+QaS7o5vR6elvQ1SZOKVGNJ90t6WdLTVcuGrKcy/5RyPyVpTkHy/m16PTwl6SFJHVXP3Z7y7pG0cLzzmtVrovW+IuxHBhttH5R0chr3pOen55x71P2waHWvpTcWoe6N6pWSVqT1n5O0IsfsNffNevZFLTl5kXQS8DlgMXA+8CeSzs831Zv0Ax+PiPOBi4C/SBk/ATwaEecBj6ZxkXwUeKZqvAb4bES8A3gVuD6XVMP7R2BbRMwE3kWWvZA1lnQ28FfAuyPiAuAk4BqKVeN1wKJBy4ar52LgvPT4CPD5ccpYbR1vzvsIcEFEXAg8C9wOkP7+rgF+P/0396Z9iVkpTNDeV4T9yGCj7YPXA6+m5Z9N6+Wpln5YmLqPoTcWoe7rqLNXSpoC3AH8IfAe4A6Nz5ut66izb9a7L2rJyQvZL7knIvZGxBHg68AVOWcaICL2R8QP0tevke1EzibL+UBa7QFgaT4J30zSNOCDwBfSWMB8YGNapWh524H3AV8EiIgjEdFLgWsMtAFvk9QGTAb2U6AaR8R/AwcGLR6unlcAX47Md4AOSWeNT9LMUHkj4r8ioj8NvwNMS19fAXw9Ig5HxD6gh2xfYlYWE7H35b4fqVZjH6z+mTYCl6X1x90Y+mGh6k5tvTH3ujeoVy4EHomIAxHxKtkEYvCkYlyyj6Fv1rUvatXJy9nAz6rGL6ZlhZQOac4GdgBTI2J/euolYGpOsYbyD8BfA8fS+HeB3qoXdNHqfC7wCvCldIj/C5JOoaA1joifA38HvEC2Yz4I7KTYNYbh61mGv8M/A/4jfV2GvGYnUqrX8Ch7X9F+plr6YCV7ev5gWj8PtfbDwtR9DL2xSHWvVmutC/M7GGQ0fbOu7K06eSkNSb8DfAP4WET8uvq5yG4VV4jbxUm6HHg5InbmnaUGbcAc4PMRMRv4DYNOEStYjU8ne2fiXODtwCmMw7ssjVSkeo5EUhfZKSwP5p3FrNWUpfdVK2kfPK5U/bDaROiNgxW11iMZr77ZqpOXnwOdVeNpaVmhSHoL2c77wYjYlBb/8vih2fTvy3nlG+SPgCWSfkp2+G8+2fmzHekwLhSvzi8CL0bEjjTeSLbzLmqN3w/si4hXIqIP2ERW9yLXGIavZ2H/DiWtBC4Hrov/v598YfOajVIpXsM19r4i/Uy19sFK9vR8O/C/4xm4Sq39sEh1r7U3Fqnu1WqtdZF+B7X2zbqyt+rk5XvAeelOFG8lu5hoS86ZBkjnX34ReCYiPlP11Bbg+B0lVgD/Ot7ZhhIRt0fEtIiYTlbPb0bEdcC3gKvSaoXJCxARLwE/k/TOtOgy4CcUtMZkh8QvkjQ5vT6O5y1sjZPh6rkFWJ7upHIRcLDqkHluJC0iO+1jSUS8UfXUFuAaZXeqOZfs4snv5pHRbIwmYu8rzH5kDH2w+me6Kq2fy7vtY+iHhak7tffGwtR9kFpr/Z/AAkmnp6NPC9KycTeGvlnfvigiWvIBfIDsjgjPA1155xki31yyQ4ZPAU+mxwfIzst8FHgO2A5MyTvrENkvBbamr2ekF2oPsAE4Oe98g7LOAr6f6rwZOL3INQb+BtgNPA18BTi5SDUGvkZ2znEf2Tt51w9XT0Bkdxt5HthFdqeYIuTtITsX9/jf3T9Xrd+V8u4BFuf9evDDj1ofE633FWE/MszPMWIfBCalcU96fkbOmUfdD4tW91p6YxHq3qheSXZ9SU96/GmO2Wvum/Xsi5Q2YGZmZmZmVmitetqYmZmZmZmVjCcvZmZmZmZWCp68mJmZmZlZKXjyYmZmZmZmpeDJi5mZmZmZlYInL2ZmZmZmVgqevJiZmZmZWSl48mI2AknnS1opqVPSqXnnMTMzawb3OysDT17MRvYW4C+BDwGvD35S0nRJv5X0ZKO/saS3SXpS0hFJZzR6+2Zm1pokTZN09aDFdfc79y1rNk9ezEbWCXwJ6AGGeyfq+YiY1ehvHBG/Tdv9RaO3bWZmLe0yYM6gZXX3O/ctazZPXswSSd9M7xY9KemQpGUAEbEV2BgR/x4Rvx7FdqZL2i1pnaRnJT0o6f2Svi3pOUnvqWU9MzOzRpI0F/gMcFXqeTNgTP3uFEn/JulHkp4e4kiOWcN58mKWRMT89G7RfcAW4BtVz71U4+beAfw9MDM9rgXmArcCnxzDemZmZg0REY8D3wOuiIhZEbG36rla+t0i4BcR8a6IuADY1uCoZm/iyYtZFUnLgcXAdRFxtI5N7YuIXRFxDPgx8GhEBLALmD6G9czMzBrpncDuOrexC/hjSWskXRIRBxuQy+yEPHkxSyR9GLgOWBYRfXVu7nDV18eqxseAtjGsZ2Zm1hDpQvqDEdFfz3Yi4lmy62Z2AZ+W9KlG5DM7Ef/PkRkg6XLgz4HLI+JQ3nnMzMyaaDoNuKBe0tuBAxHxVUm9wKp6t2k2Eh95Mcs8AEwDvp0uXrw+70BmZmZNshs4I11kf3Ed2/kD4Lvp1sl3AJ9uSDqzE1B2er2ZjZWk6cDWdLFis77HT4F3R8SvmvU9zMzMTqSWfue+Zc3iIy9m9TsKtDfzQyrJPjjsWKO3b2ZmVoMR+537ljWbj7yYmZmZmVkp+MiLmZmZmZmVgicvZmZmZmZWCp68mJmZmZlZKXjyYmZmZmZmpeDJi5mZmZmZlYInL2ZmZmZmVgqevJiZmZmZWSl48mJmZmZmZqXgyYuZmZmZmZXC/wG4Tc/tqcs+/gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXxVxfn/P8+9CSFACIRAgEASlrAkSBDiRt21Fgu4W1z6rUqLVsVq/Vqq9Wet1fp1V7RKtYp+269VWxdErLjUrRQBAQXDKkLY9yUQst57nt8fZ7lz5pxz7w0kZOF587rknDkzzzxzztxkPjNzZoiZIQiCIAiCIAiC0NIJNbcDgiAIgiAIgiAIySDiRRAEQRAEQRCEVoGIF0EQBEEQBEEQWgUiXgRBEARBEARBaBWIeBEEQRAEQRAEoVUg4kUQBEEQBEEQhFZBSnM7IAiCIAhCw1m0aFGPlJSU5wEMg3RGCoLQNjAAlEUikZ+NGjVqh1+EZhMvRJQOYDaAM5k56nO9HYCPrOuRI+2fIAiCICSL8jft9wB+yczjfOJ8BOBSZt7bGHmmpKQ837Nnz6Hdu3ffGwqFZNM2QRBaPYZh0M6dO4u2bdv2PIDz/OI0Z0/NRABv+gkXAGDmOgD/AjDhiHoltEmIqCsRFRDR1UTUtbn9CaK1+CkIgoeJAN4E4Ps3zeKvAG5oxDyHde/efb8IF0EQ2gqhUIi7d+9eAXNE2T/OEfRH50oAbxNRJyL6FxEtJqJviOh8Jc4MK54gHC6jANwEYDyAS5rZl3i0Fj8FQXBzJYC3rePORPQuEa0ioj8Rkf23diaAyxsxz5AIF0EQ2hrW77VAjdIs4sWaEtafmcsB1AC4kJlHAjgDwKNERFbUMgDHNYePgtDSISImooNE9IcGpPmYiGqIaE5T+iYIRxPa3zQAOB5mJ0QRgAEALgIAa7pYGhF1aw4/BUEQ2gLNNfKSDWCfdUwA7ieipTDfcckFkAMA1pSyOiLKaBYvhVYHET1DRL/1ubQIwFMA3gHw+hH2KUxE1UR0jM+1vxHRS0pQQ/0sYeY7LVuziej3PnmcT0TbiCiFmc8E8PNDKoggCEGof9MAYAEzr7X+hr0C4GTl2g4AvY+kc4IgCG2J5hIv1QDaW8dXAugOYBQzjwCwXbkGAGkwR2cEIRlOBuAZVWDmvcxczswvNdbLssliNWBWwuyFdSCiUpjTw37TSH7+L4AfKyOXNv8F4GVZ+EIQmgz1bxoA6FO51PP2Vvw2wYYNG1LGjRvXv2/fvsOKi4uHnnbaaQOXLl2atnDhwvYnnnjioIKCgmH5+fnDfvWrX/UyDAMA8OSTT3YjolEzZsxwOib/+te/diGiUS+++GJXAHjllVcyhw4dWjR48OCiAQMGFD/88MPZdtxHHnkku1+/fsX9+vUrPuaYY4a+//77nexrxx9//ODPP/+8wxG8BUcll156aUFWVlZJYWFhcVPZCYfDo4YMGVI0cODA4sGDBxfdfffdOdFovFfKhEMh3n2eNWtWRkZGxoghQ4YUDRkypGj06NGDAODWW2/tnZ6efuzmzZudhb86dOhwrH0c9HsBAJYuXZp22mmnDczPzx9WVFQ09Ic//GH/jRs3NmgBsWYRL1ajLExE7QFkAtjBzPVEdAaAfDueNbS+i5nrm8NPoXVARCEimkJE5QCOAfAqEd3azG7plEETLwAeAfAoM29ppDxmAOgG4BQ7wHrpfxyAvzRSHoIgaGh/0wDgeCLqZ73rMgFWh4rVsdATQHmzONrIGIaB8847b+Cpp556YOPGjWXLli1b8cADD2zesmVL6oUXXjhwypQp28rLy8vKysqWz58/v9ODDz7Y3U5bWFhY/corr2TZ56+++mrW4MGDqwGgtraWbr755vxZs2Z9u2rVquVlZWXLzznnnAOAKWpefPHF7nPnzl21bt26ZdOmTVt/9dVX99uwYYNs/XAEmThx4q6ZM2d+myjerFmzMi6++OKCQ7GTlpZmrFy5cvmaNWuWffzxx6s//PDDzNtuu01GLRuZRPe5tLS0cuXKlctXrly5fO7cuavt8C5dukTuu+++HN1evN8LVVVVNH78+MLrrrtu5/r168uWL1++4oYbbti5bdu2li9eLD6A2Uv+MoBSIvoGwE9g9lDbnAHg3WbwTWhd3AFgLIBfAFgNs7H+MBH1bVav3CwD4PQsEdF4AIUAHmqsDJi5GsDfYX6PbH4EYCUzL2msfARB8MX+mwYAXwL4I4AVANYBeMsKHwVgXnONgj777LNZhYWFxeFweFRhYWHxs88+m5U4VTCzZs3KSElJ4SlTpuy0w0466aTqFStWtC8tLa286KKL9gNARkaGMW3atA1Tp07tZcc74YQTKr/66quOtbW1VFFRESovL08rLi6uAoB9+/aFIpEI5eTkRAAgPT2dS0pKagHgkUce6fk///M/m3r16hUBgJNPPrnqRz/60e5HH320x+GURWgY5557bmX37t0Pux4nayc3Nzfy/PPPl7/44os97BE8ofFpyH2+/PLLd8+cOTNr+/btYTU86PfCmDFjKp977rmskSNHVl5xxRUV9rVx48YdOO644xo0w6o5xcvTAK5i5l3MfBIzH8PM1zDzUOWlxysAPNt8LgotHet9qDsBXAWgL4CvmHkBgI0AhjSnbxrOyAsRhQE8AOBOZq5q5Hz+F8AlSg/wT6wwQRCaFvtv2qfMfCozj2Xmwcz8c2a2WwH/BeCZ5nDu2Wefzbr33ntzH3vssQ1VVVWLH3vssQ333ntv7uEImKVLl6aXlJR4foctW7as/ciRI13hxcXFtVVVVaE9e/aEAICIcOqpp+5/8803O//tb3/rMmbMGOedoZycnOj3v//9fXl5ecPHjx/fb9q0aVn2NJY1a9akf+9733PZPu6446pWrFiRfqjlEFoHRUVFddFoFOpUJaHx0e/zwoULO9nTxn7961/3tON16tQpevnll+964IEHXKMvQb8XAKCsrCxd/91wKDRbBWDmxUT0CRGF42xSOYOZV/skFwSbMwGsYuZyIioB8JU1VaMrzBdjmwQi+hTAaQGX/8PMJ2thywAUElEqgGsA1KIJpnIx8xwi2gXgAiL6EuaqRxc1dj6CILhJ9DfNooyZ/3VEHbN45JFHek2bNq18/PjxBwDA+ll+66235l133XV7msOnK6+8cs8TTzyRc+DAgfATTzyx8Z577nFGZl577bX1CxYs2PHee+9lPPnkkz0/+uijzm+88UZ5c/jZUpk4cWLfsrKyRn2/Z9iwYVXTp0/feLh2hg8fPqSuri5UVVUVqqioSBkyZEgRAPzhD3/YdPHFF+8/fE/bJscff/zgH//4x7t+8Ytf7K6traVTTjll0NVXX73zhhtu2HPgwIHQWWedVThp0qQdkyZN2rt79+7wueeeO/DGG2/cftVVV+3bunVryvnnnz/glltu2XbFFVdUbNiwISUvL++wR8dKS0srP/nkkzV+126//fYdJSUlRb/97W+3HW4+DaE5R17AzNPjbVLJzDJPX0hETwD2H94RAL4CcCqACgBLmypTZj6dmSngowsXwJzjXgvgWAD3ALhV6Y1tbP4Cc8TlxwDeZ+btTZSPIAgK8f6mWdf/fCT9UVm7dm37c845p1INO+eccyrXrl3bPihNIo455pjqJUuWeBrPRUVFNYsXL3aFL1++vF2HDh2MrKws5/feGWecUbVy5cr0PXv2pAwfPrxWt3P88cdX33333Ts+/vjj1bNnz+4KAAMHDqz+z3/+47K9cOHCDkOHDm0ziyC0BZYuXbpy5cqVy5955pn1Z5999j77nYnDES7Lly9vFw6HkZubK4vPNCENuc/Z2dnRCy+8cM/DDz/sTNsM+r0AAMXFxZ7fDYeCDL0JrZ2VAEYRUX+Yu7HuAfASgCnM3GI2b2NmJqLlAP4EYD4zf9qE2f0FwP8DMBzAL5swH0EQWgn9+/ev+eCDDzrZIy8A8MEHH3Tq37//Ia/mOX78+AN33XUXPfLII9m33XbbLgCYP39+elFRUc1jjz3Wa8aMGRkXXHDBgcrKSrrxxhvzbrrpJk/v7L333rspPT3d9bu6oqIi9O9//7vjuHHjDtg2e/fuXQcAt95667bf/OY3fY4//vjVPXv2jM6dOzf9tdde6zZv3ryVuu22TmOMkLQWtmzZkjJp0qT8a665Zkco1Kz97k3KggULVtnHaWlprJ5nZGQY6nm3bt2i6nmvXr0i6vmhjLocyn2+8847t5eWlg6NRqMEBP9e2Lt3b3jSpEm7H3/88Z6vvvpq5mWXXVYBAO+9916n7OzsSEPeexHxIrR2PgfwAsz9UdrDXADiPmZ+lYhOBDAVQBWAz5j5d3pia/WfP8Js6EdgvuBeDHP54lqYIzsTmfmbRvC1DOZoyIRGsBWINYVuLoASmDt6C4JwlHPbbbdtvf766wsAlJ9zzjmVH3zwQafrr7++4K677tp8qDZDoRBmzpz53Q033NB36tSpPdPS0rhPnz61Tz311MY333xzzeTJk/NuueWWVMMwcOmll+6+4447PFN5f/SjH3l64g3DwMMPP5wzefLk/Pbt2xsdOnQwXnjhhXUAcOWVV1Zs2rSp3YknnjiUiLhjx47G9OnT1+Xn5zurkl544YWFKSkpDAAjR46sfO+999YeahkFf8aPH99v3rx5GXv37k3JyckZfvvtt2/55S9/uasx7dTW1oaGDBlSFIlEKBwO84QJE3bffffdMpOgkTnc+9yrV6/Iueeeu/eFF17IAeL/XujUqRO//fbba37xi1/0/fWvf903JSWFhw4dWj1t2rQNDfGZWlDntCAcMkQ0AcA1zDxGCbsXwBfM/E8iCvlN0yKi8wB8n5lvss5DMKed3QdzyeEhAB5k5vOORDkaAhHVwBRYTzLzXUmm+RDAiTA30TurKf0TBKFpWbJkSXlJSUnSDcZnn30265FHHum1du3a9v3796+57bbbtjbX+y6CIAjxWLJkSXZJSUmB3zUZeRHaCoMBrNLCngbw/4joSpgjMv/0STcUwGf2CTMb1h6PX1nTzlYQUS+fdM0OMzd4rjozf78pfBEEoeVz3XXX7RGxIghCa6ftThwUjjYGw9zjRaWCmSfDXN3rQTuQiPoocVbAHGmxr9nfiRFkMhjA1qZxWRAEQRAEQWgIMvIitAmY+Uqf4OuI6CKY9fwlACCiFACvILYL/TsAxhDRHAD1MN95AczVyt4BkAPgp03nuSAIgiAIgpAsIl6ENgszPwHgCS14JJT9VaypYTeoEaxpYyuZ+bam9lEQBOEwMAzDoFAoJC+vCoLQZjAMgwAEbich08aEowpmXtCcey0IgiA0ImU7d+7MtP7QC4IgtHoMw6CdO3dmwlyh1RdZbUwQBEEQWiGLFi3qkZKS8jzMPa6kM1IQhLaAAaAsEon8bNSoUZ7l1QERL4IgCIIgCIIgtBKkp0YQBEEQBEEQhFaBiBdBEARBEARBEFoFIl4EQRAEQRAEQWgViHgRBEEQBEEQBKFVIOJFEARBEARBEIRWgYgXH4hoOhHtIKLANabjpB1FRN8Q0RoiepKsHQ+V6/9NRExE2Y3ob18i+oSIlhPRMiK6uSX7TETtiWgBES2x/L2ngenHENEqy9/bfa4/SUSVjeGrYjNMRF8R0awGpmsOX8ut5/k1ES1sYNrmqL9diOh1IlpJRCuI6KSW6i8RDbbuq/3ZT0S3tFR/BUEQBKGtIeLFn5cAjDnEtNMATAJQaH0cO0TUF8A5ADYcpn86EQD/zcxFAE4EcCMRFTUg/ZH2uRbAmcxcAmAEgDFEdGIyCYkoDOBpAOcCKAJwuVpWIioF0LURfbW5GcCKhiRoRl8B4AxmHsHMpQ1M1xz1dyqA2cw8BEAJGnafj6i/zLzKuq8jAIwCUAXgrZbqryAIgiC0NUS8+MDMnwPYo4YR0QAimk1Ei4jo30Q0RE9HRL0AdGbmeWxuoPMXABcoUR4HMAVAo26uw8xbmXmxdXwAZuMvt6X6zCb2aEOq9WGrV/ozy9/3Ld90jgewhpnXMnMdgFcBnG+VJQzgYcvfRoOI+gAYC+B5JaxF+hpES60LRJQJ4FQALwAAM9cx876W6q/GWQC+Y+b1rcRfQRAEQWj1iHhJnucA3MTMowDcBuAZnzi5ADYp55usMBDR+QA2M/OSpnSSiAoAHAtgPlqwz9Y0rK8B7ADwIYDFAJ4CcInl73QAfwjwd6OfvwAmA5jJzFsb2d0nYDYqDcv31BbsK2A2fj+wGtLXWmEttS70A7ATwIvWtLzniahjC/ZX5TIAr1jHrcFfQRAEQWj1pDS3A60BIuoEYDSAfyhT1NMakL4DgN/AnBLSZFh+vgHgFpgN7RbrMzNHAYwgoi4wp90MBjAMwIeWv2EASTfsiag3gEsBnN6YfhLROAA7mHkREdm2W6SvCicz82Yi6gHTx5VouXUhBcBImA3/+UQ0FcB9aLn+2nm0A3AegDtay+8HQRAEQWgLiHhJjhCAfdY8dwdr6s8i63QmzPnsfZQofQBsBjAAZg/zEqtx0wfAYiI6npm3NYaD1mjAGwBeZuY3iahzS/cZAKwpQp8AuBDAMmZ2vaxtvQfwjnX6JwBLAPT18fdYAAMBrLH87UBEa5h54GG6+D0A5xHRDwG0B9AZwD0t1FcAADNvtn7uIKK3YIqklloXNgHYxMzzrfPXAfy+Bftrcy6Axcy8vbV81wRBEAShTcDM8vH5ACgAUKaczwVwqXVMAEoC0i2A+dI8AXgPwA994pQDyG5EXwnm/PkntPAW6TOA7gC6WMfpAP4Nsxd7DYCTrPBUAMU+aVMArIXZ2GsHUyD4xatsgjpxOoBZVr4t0lcAHQFkKMdzYb4U3iLrgmXv3wAGW8e/g/kuUIv117L5KoBrlPMW7a985CMf+chHPm3lI++8+EBErwD4AsBgItpERD8FcCWAnxLREgDLYL147cMNMF/sXgPgO5gNlKbmewD+C8CZFFvC9Yct2OdeAD4hoqUAvgTwITPPBHAJgActf7+GORXHBTNHYL4v8j7MhQn+zszLmthf3Ye6FuxrDoA5ll8LALzLzLPRcusCANwE4GWrPowAcD9asL/WOznfB/CmEtxi/RUEQRCEtgQxy8I2giAIgiAIgiC0fOSdF0EQBEFohSxatKhHSkrK8zAXEJGZFIIgtAUMAGWRSORno0aN2uEXQcSLIAiCILRCUlJSnu/Zs+fQ7t277w2FQjKNQhCEVo9hGLRz586ibdu2PQ/zfWgP0lMjCIIgCK2TYd27d98vwkUQhLZCKBTi7t27V8AcUfaPcwT9EQRBEASh8QiJcBEEoa1h/V4L1CgiXgRBEARBaDBr1qxJPeGEEwYNGDCgeODAgcX33ntvD/va9u3bw6NHjy7Mz88fNnr06MKdO3eGAcAwDFx99dV98/Lyhg0aNKhozpw5HZqvBEIy7Nq1KzxmzJj+/fr1K+7fv3/xRx991BGQZ9yWuPTSSwuysrJKCgsLi9XwQ3nGTz31VLf8/Pxh+fn5w5566qluTeGviJdGgoiubW4fGoL427SIv01La/K3NfkqCA0hNTUVjz766Kbvvvtu2ZdffrnihRde6LFo0aL2AHD33Xf3Ov300w+sX7++7PTTTz/w29/+ticA/OMf/8hcu3Zt+/Ly8rJp06atv+GGG/KatxRCIq699tq+55xzzv5169YtW758+fIRI0bUAPKM2xITJ07cNXPmzG/18IY+4+3bt4cffPDB3gsWLFixcOHCFQ8++GBvW/A0JiJeGo/W1kARf5sW8bdpaU3+tiZfBSFp8vPz608++eQqAOjatasxYMCA6g0bNrQDgNmzZ3e57rrrdgPAddddt/u9997rCgBvv/12lyuvvHJ3KBTCWWeddXD//v0p69evT1Xt7t+/P3T66acPHDx4cFFhYWHxn//8565HumyCye7du8Pz58/PuOWWW3YBQPv27Tk7OzsKyDNuS5x77rmV3bt3j+jhDX3GM2bMyDz11FP35+TkRLt37x499dRT97/55puZut0bbrghd8CAAcWDBg0quvbaa/s01F9ZbUwQBEEQhMNi1apV7ZYvX97htNNOqwSA3bt3p+Tn59cDQN++fet3796dAgBbt25NLSgoqLPT9erVq279+vWpdlwAePPNNzv37Nmz/tNPP11j2Wr0nlshOVatWtUuKysrcumllxYsX768w/Dhww/++c9/3ti5c2dDnnHbp6HPePPmzal9+vRxwnNzc+s2b97sEq7btm0L//Of/+y6du3aslAohF27djX42R9V4iWbenIdrHtKBFIvkvOfEqafa3EodtA+nIHMdjnsMaqZ8A8Lyj926Bj2S+sbTlp6d7y09l2QkdmHoYW7TRA8b4IG+q7l0wBfdd/84qdmdEWHnL4u88mkixeeVNkSXOOA8HDXrkjL6xv8Iq1vOj7ksjjptWu+yZyqFIuf2j0T6QN7s17llZoHbxVUqo/ra6FVK5/8SPsJYi3cz3YsTqeeHZBTlMVBeas+OjZJz9/9dXWnZVfelEzcgHxycsMYOjyN/fxz21R8cvKlOPFJC4v9Tlu0tPZ9Zh4D4ahh4sRJfcvKyhr13YJhw4ZVTZ/+542J4lVUVIQuuuiiAQ888MDGrKwsQ78eCoVA3l8ugYwcObL6zjvv7Hv99dfnnn/++RVjxoypbKDrbZJ//eYvfXev3tyoz7jboNyqs+7/SeAzjkQitGLFig5Tp07dcOaZZx685ppr+t511109p06dukWNJ8+4cTDm/bwv71veqM+YuhRVhU78U8LvcSIa+oyD6NatWzQtLc2YMGFCwbhx4/ZNmDChoqE2jirxUoc6nBD6PihEAIXMnwBAISBEpqAJWTPpiIBQyPppNRKUeM51O64TRkqYEl+NZ4U5LcWQZgMwrynhelwmpWVKBHbCoeQVs8OxVpgZxxUXQMg6txv2ahyCy64TFoK/TZcNBISRJyw4LqC23pxwxMJc4eQf7kkfEG7j8UuPR5wwL08cxy47adS47rzMc1LjO3bsa+yEkRrfSk/EVhWKpScyG8hkXTfDgJATnx0bdlgIPmFK+pATxwwPqeHWNU+YFR4LM3ziGgg7YYYTN4xY/LAdF9a59RMAwmQgBDZ/WunttLGfql3DSRNLb/oQi2dY8di6ZtuN5RVGzKewk1fMRuycY3HJCgcQtu51GGSdE0IghK2HGAJZYSGErLAwmWcAEO71bTYE4QhQW1tLY8eOHXDppZfuueqqq/bZ4d26dYvYve3r169PzcrKigBAr1696svLy9vZ8bZu3dpO7ZEHgOHDh9cuXrx4+RtvvJF511135X700Uf7H3nkka1HrlSCTUFBQV1OTk7dmWeeeRAAJkyYsPeBBx7oCcgzPhpo6DPOzc2t/+yzzzLs8M2bN7c77bTTDqg2U1NT8fXXX6+YOXNm59dff73rtGnTesybN291Q/w6qsSLIAiCILRFkhkhaWwMw8Bll12WP2jQoJrf/e5329VrP/jBD/Y9++yz3e6///5tzz77bLcxY8bsA4Dzzjtv3zPPPNNj0qRJez755JOOGRkZUb1hW15entqjR4/IDTfcsKdr167RF154QcQ4gHgjJE1FXl5epGfPnnVLlixJKykpqf3ggw86Dx48uAaQZ9wUNMYISWPS0Gd8wQUXVPz+97/PtV/S/+yzzzo//vjjm1SbFRUVocrKytCECRMqzj777MoBAwYc01C/RLwIgiAIgtBgPvzww04zZszoVlhYWD1kyJAiALjnnns2T5gwoeKee+7ZeuGFFw7Iz8/Pzs3NrXvrrbe+A4Af/ehHFe+++25mfn7+sPT0dOP5558v1+0uWrQo/Y477ugTCoWQkpLCzzzzzPojXDRB4amnntpw5ZVX9q+rq6O8vLzaV155pRwA5Bm3HcaPH99v3rx5GXv37k3JyckZfvvtt2/55S9/uauhzzgnJyf6q1/9asuoUaOGAsCUKVO25OTkRNW89u3bFx43btzA2tpaAoB77723wYKNmI+e/a06UxbLtDGZNibTxmTa2FEwbWwRM5dCaNMsWbKkvKSkZFdz+yEIgtDYLFmyJLukpKTA75oslSwIgiAIgiAIQqtAxIsgCIIgCIIgCK0CES+CIAiCIAiCILQKRLwIgiAIgiAIgtAqEPEiCIIgCIIgCEKrQMSLIAiCIAiCIAitAhEvgiAIgiAcMpFIBEOHDi0644wzBtphK1eubDd8+PAheXl5w8aOHdu/pqaGAKC6uprGjh3bPy8vb9jw4cOHrFq1ql2wZaElcM899/QYOHBgcWFhYfH48eP7VVVVESDPWGg+RLwIgiAIgnDI3HfffTkDBw6sVsNuvfXWPpMnT96+YcOGsszMzMjUqVOzAWDq1KnZmZmZkQ0bNpRNnjx5+6233tqnebwWkmHdunWpzz33XM7XX3+9/Ntvv10WjUbp+eefzwLkGQvNh4gXQRAEQRAOie+++y71/fffz5w0aZKzWaZhGPjiiy8yrrnmmr0AMHHixN3vvPNOFwCYNWtWl4kTJ+4GgGuuuWbv3LlzMwzDcNlcv359amlp6eAhQ4YUFRYWFs+ePbvTESySoBGNRungwYOh+vp6VFdXh/r06VMvz1hoTkS8CIIgCIJwSNx44419H3rooU2hUKw5sX379pSMjIxoamoqAKCgoKBu+/bt7axr7fr161cHAKmpqejUqVN0+/btKarN6dOnZ5111lkVK1euXL5ixYplJ5xwQtWRK5Gg0q9fv/obb7xxW79+/Yb36NGjJCMjI3rRRRftl2csNCcpiaMIgiAIgtCSefjnf+m7bvmWDo1ps19R76pf/eknG4Ouv/LKK5nZ2dmRU045pWrWrFkZjZXviSeeePC6664rqK+vD11yySV7R48eXZ04Vdtn5x/v71u3YW2jPuN2ef2ruk/+TeAz3rlzZ/jdd9/tsmbNmm+6desWHTt2bP9nnnkm68ILL9x/OPnKMxYOh6NKvBzA3vc/Mv6eDSNxXEEQhFbMrsRRBOHwmDNnTqcPP/ywS25ubmZtbW3o4MGDofPPP7/fW2+9te7AgQPh+vp6pKamory8vF1OTk4dAOTk5NStW7eu3YABA+rr6+tRWVkZzsfkBq0AACAASURBVMnJiah2zz333MrPP/981RtvvJE5ceLEfpMnT94+efLk3c1TyqObd955p3NeXl5t7969IwBwwQUX7Js7d26nn//853vkGQvNxVElXph5THP7IAiCIAiNTbwRkqbi6aef3vz0009vBoBZs2ZlPProozlvv/32OgA48cQTD7z44otdr7322r3Tp0/vNm7cuH0AMHbs2H3Tp0/vdvbZZx988cUXu5500kkH1ClnALB69ep2/fv3r/vv//7vXbW1tbR48eIOAI76hm28EZKmoqCgoG7x4sWdDhw4EOrYsaPx8ccfZ4waNaoqFArJMxaajaNKvAiCIAiC0PQ8+uijmyZMmDDgvvvuyy0uLq66+eabdwHAzTffvOviiy/ul5eXNywzMzP62muvfaenff/99zOefPLJnikpKdyhQ4foyy+/vO7Il0AAgDPPPPPg+PHj9w4fPnxoSkoKiouLq2699dadgDxjofkgZm5uHwRBEARBaCBLliwpLykpkSmCgiC0OZYsWZJdUlJS4HdNVhsTBEEQBEEQBKFVIOJFEARBEARBEIRWgYgXQRAEQRAEQRBaBSJeBEEQBKF1YhiGQc3thCAIQmNi/V4L3NhExIsgCIIgtE7Kdu7cmSkCRhCEtoJhGLRz585MAGVBcWSpZEEQBEFohUQikZ9t27bt+W3btg2DdEYKgtA2MACURSKRnwVFkKWSBUEQBEEQBEFoFUhPjSAIgiAIgiAIrQIRL4IgCIIgCIIgtApEvAiCIAiCIAiC0CoQ8SIIgiAIgiAIQqtAxIsgCIIgCIIgCK0CES+CIAiCIAiCILQKRLwIgiAIgiAIgtAqOOLihYimE9EOIipTwh4mopVEtJSI3iKiLsq1O4hoDRGtIqIfKOFjrLA1RHT7kS6HIAiCIAiCIAhHluYYeXkJwBgt7EMAw5h5OIDVAO4AACIqAnAZgGIrzTNEFCaiMICnAZwLoAjA5VZcQRAEQRAEQRDaKEdcvDDz5wD2aGEfMHPEOp0HoI91fD6AV5m5lpnXAVgD4Hjrs4aZ1zJzHYBXrbiCIAiCIAiCILRRUprbAR8mAnjNOs6FKWZsNllhALBRCz/BzxgRXQvgWgDo2IFGDRnYzrnGCV1JHCP5FJyURWYAlJxRjn856TzV2OzJPCAek8tPDvSR4tpUkxmalg7y2+D4Nm2iTPDeTH/bBkIAJ7pX5GszKI0ZF4E+2ESYXDE89jh21eDkno9hJNkvwQF5epwhwEjOpFlBEvtJQfZ8nKGEX5wENv3yjyaKYRoNJYwXi05GHEfVL0mUA5659kCYASNOoRSTB6K7djFz9yS9FdoA2dnZXFBQ0NxuCIIgNDqLFi0K/JvWosQLEd0JIALg5cayyczPAXgOAEaVtOcvZvdJkAIwkmylRTiadHsugmhgA1ENj7CSO9uCIsgmx71u264zvEKHtTiA2U6qRxgAeWzq5weNFLAiNgwtrh0/aoRQh1RfvwCCYTXhGMCBSBoYYcUGueLbNuujIUQsm2q4GT/knNdGCNWcDih5qPmptmsjqYgqAiZ2ncCKzepIGLVGmnNuKGXR/amuTzX9UdqjLrts3ueq+hREOCXWbmW/cgFsALXRduoNdD8XtsQiAzW1qQCHXNf8jg0DMKIpPsbc52wAVBMCrOfjugE6ESAUJbMxb5XV1349EK4j73Ufm6E6IMQ+IkY7pzoDKbUB19ltO6VGk8t6XMv/8ME6hCNKuC4m7LgGI6VGiah/Oe2KYAC0/yDCUeUhGrGa5FQAAFwfAWpr7R6DmA22jCuV66Pql9dDOKooKCjAwoULm9sNQRCERoeIAv+mtRjxQkRXAxgH4Cxmp4tyM4C+SrQ+VhjihB9Rgvq39TZWyKfR7J8u1guvdl77iRTioN5bNYwRAjmNbL/4pJ0Hhfn76yVen7veILe98m9buz0OHpCy0xNcpSI4NzF2//S74E7FrlAfm5543nvlucdKALEabj5ttn20syIznr9fAZla6dkxpMUhxH+YidSqas/wCfNJT3FrQgNtEpIf+QnwB4D5hU2mUnPQMQNE8Aw1kvJhuJ+BIzCUgpH1kBkw1QxiFYDUeEq+gJW3Et95rokKJQiCIAhtgxYhXohoDIApAE5j5irl0kwAfyOixwD0BlAIYAHMP9mFRNQPpmi5DMAVR9Zrk8ZuMhhoWBstEXabT7fpJ4aC0uvYQsh3dMATm33bzbpcUW36+cdKHt6RoVjuqigikGU55PKNfVJ6UWOTVQaGYZB1L8npXNd94lgQiNntK9lpOWaTWXk+3lEvNUBt1/vrC4ZhN4r91axPuN0g1/2E+zYogwN+vunp2XV3yd8fvylZcWzGjQuAo3DKSPFsQRGLvj0DsTDDMBDWexL0Y92Oq9LbQka5GDViX0onnnskRR2BcYkgEDzDeUHzNgVBYc4tYzBi0EK0z6xGTUU6vl5dipOfmN3cbgmCIDSI5lgq+RUAXwAYTESbiOinAP4IIAPAh0T0NRH9CQCYeRmAvwNYDmA2gBuZOWq93D8ZwPsAVgD4uxX3iNKQ5kKijm89bmCGQY2tONGD8kiiX9yxY/+MtbcM620Wd/Nft6uXW79u+2j30pPite6fk19cx830DHV2T0z6qPmz6oFPZ7pq07BkEIgsHw1r5MQrf7x56CWA8wqJwQSCbTOoNIph5dyTr+UWx+uJ128CgNiQTSIH4tgLsu3YYO08jt14FSrIL104+KXz9StOGmWww+uTEhgkEl3XbLFhChQmVTmRpaTIGpHR/VVFi55RY3d3CG2VObeMwaihC7Bw03moOWc9Fm46D6OGLsCcW/TFP5O3V/lMNiIvd0TlM9mHbEcQBKGhNMdqY5czcy9mTmXmPsz8AjMPZOa+zDzC+vxcif8HZh7AzIOZ+T0l/J/MPMi69ocjXY5DIVnBENhWTGAgXkeyrnuS1D9OWrXTnZW87BCyxIzXWa/Dev6mPfcIjSqMGnLf3HKClHDzyB4H8QoZ8mRkl9uwLuijHgy25ncZ0EWMqR98ym51rtvvdZNtw7IfkzfKvdQay652NMVsspWlN5bumOv2wJmjpn5UpRoP/UFqbrsrmU/NSzSaElSZk4hv34+gtQPI+c/HFivX7FEpLV8igIisnwH+2CMmTnpyX7NvElkRbKfVykhaGtsYG3A/NEEIZsSghZi//gL0PXYg6v9vGHqlfIlV20fh2KELsOLOYZh3z5Xg2j3gaB0+u+1SfPnSnwAAkfp6lL3zBvZsWO/YamwhJAiC0BBaxLSxo42GjMLo6dQD9f2JRGJEVanxOtmDzr2d2OQTz254hyyR4G5G+7WH3e1OvSvcHokxLcdyJNc9jP10ixb7tQIoNtQUpPhHSg6sjMLExkTcd8AzskK2dDJby7ZNO6bBZvmcPFRbxLHXH1y2bY9D2n2yfmoP3T1ylFwNI7UFrwsRDxw0pOR2XA/TK6fdoLdPEtnUw3WbanryOWe4XwPyyydO5Xd971iPoowEqqMmQEyhOpFZTRiz7HyRrQrr+E3e8rvSqvYO5TeKcDTRPrMapZc+hJoXS9C5zwF0zjkAYC0AYFDxOgDrYLwxAwBw8kggGnkPB5/9DSKREIZ2rUb1P9tj474uiEZDOPG4LTiwsyNyumzG+r9MwjHd5qF8Q28cO3gB9pR/i6XPP4Q+378cA087MynfZDqbIAgNQcTLYdBQEZJs3Hh9qHob0FCO/f0hhOD/PrQ+5T6k2QjyI7h96xrHsGLE3jdheNupsXaoLST00RI9V/PYX1jZ8oBjFzgmGEhJx67/CSEy3z2xCVHMJikpwyCEYfgIp5BzxLYgIICtXndVeJl2rPtPMcmno4oYV0hDKlIycf2Ur69oIH/BAO3YFgxKtEBf/Cqcr1JL0kc9vRbPHvygoLh2mMu2o4J9fCPY64vYgyeK8rVsaWlJkd+2Q3Y8J29NPbmUqZWWQnBe3peRFyEBNRXpWPj4FOyu/AmMRevQDlUo6LYBg0eU46svBqN9aj3apUbRrl0dOnc1Xz0NEZCSWo+6kIGQAWRn7kMoxVxRL6PbQXQOz3Hsd+m1HwDQfu4InFIE1K76B7Z92RmR+jB69NyN8vV5SC+5BNXVdYh88w5qh/0cx155I+b84kyMKl6MeevOw3H//RgWPj4FJwydgTm3jBEBIwiCLyJejhCN3d7UbSZKE9SB7WdPj6uPcrjHN9S4XtkTm6gV5Jc9tmBOwbGb6u5xnViOsd5ub2ls2RMTY4QwsWMx1iaNiRYnDzYc2aOPKqkjKKRO4WHdT1vqAAZYGwnxGXGxfzpDKP4NUJeIYeV56G3k+Indke1g25Dd06+nTaZiqTBMVaa09z3oq6HF81lr4wf6o5bPTwT5lJt8wv3ikn5N8839BQn4VqpGVEVHHLsffps82WLIJd7s58Vwhn2S/aUhHLV8vboUJwydgfnrL0DpXX/EwsenYFD+HCxcfiJOfjG+SDCiUezduQ/b123GnvVbceyeK/Hv+cdhT/tRCB3Yio7R7RjYsxz9jtmILat6omt2JShkIKN9NVK61iHULooBg9YB1Q+bBo8BgCmoe+kOnHhcFBQGirp9jI1/vgDZaYSDB9Jw7JAFYGbs37EN6Z0z0S69Q5PfI0EQWgciXg6Tho6+HDIcP594M2+SDVdFiN/0JjUfvQ2nxjV8UgRLDa9Ntz9q+obcaTud26pq0y+JPc0sNhLkk6smSlg59rigCQLXVDIrxPeVfStj171UOvD1xrwrK+eiZs/juxYhqNHvY86DV7fG3r9RRzB0W0k+UtIP4lVMXVQE6Al1UCSuuqeA6/qX0hET9oPyUUGOP5pjrjmgykpk6gNWDTnDpqwJJkHw5+QnZmPOLWNQOmgm2n/wGkr7pGPRiuOTGt0IhcPo1rMbuvXsBpw0HHNuKcVpo+dj/vpeKL3vISx8fAoK8udiYdlJLnvb1m/Dqn8vxrYly2Fs+w7ta7ehc8o+ZHWqQMf0GnTsVIecoVtRV9kOmZmV6NbhK5Ayx7nufzORUhtGqGMdVnw3GGmFZ2Pv5m2IbluLgTe/jKy8fI+vMgVNENo+xEfRH75RJe15XiNvUqkS707a21kmutv1rExJUtozvnHj2FTDag3/NpyejhmoczaJ9Gv0x46rjBRXHPcL/bGGuLpJpTu/mCgxX/cHKpVNKnUfVdv10RDqlY0vY3ZDjj3A2qQS6S7Hg2zWRFMQRdjTuDXlBjl2a+rCqEU71zPSl4m20x2MWBtFcuweOfdHETUH61MR5bDyvMm1Sq5nk0q/esGKv+yzSaXXQdMnAzCiYY/I0uNxFKBaa5NKPzGghtmbVFrhjgzUK5y6SWWCytmgTSrrfGypH4twjYFwgLBx7LHPJpVQBINik6L2JpVaJXJUvZ2GQRXVCNvL4TnhhpLGfKAciQC1NVrFNWJxFAH1UfXLi5i51FsKoa1SWlrKzbVJZWOJhMpnsjG/fCw6nfJTrP90LkJblqKoxxIMOGYjdq/vjs499iOtcw0oxXCtXVFXnYLKio5ICUeQ3qEO2zInY8/iT1A0sAxLvynGoF+/ga//eCdOyJ+RtEgTBKHlQESBf9Nk5KUROdTRj4QGA9LrutO/XcdK49sdT4/vt1t8kG0zTBUgXreDOrJVv3TszmnDk8o/np8vbifVUQ5VkPjFI00wkhPXuYdEYCPk2PQIDI+XpI2IWFfIWsXMaX+awxR2e9R/FEoxC7he8nffXGWEI+hh6356b6gniu80qSDbdoM+0ZBNskOXhORXBPYrc9BoT5B7aoVxldWuIPEcV6aBufJSRJprNEcNVB6+80zV0RzrAcQdMhKEpkcVA50AnHyIdr5eXYrRQ9/B/C/C+OHt5ihOv/yt+LJsNE5+YjZqa2qx8N05KP/kc6TtWobuaZuRm7MHHTvUoUOXKqRlViPczkDfyOPoO9y0OfK4Jdjx15PQo2Me9uzshNJjvgAzu6f9CoLQahHx0gQknKGTIK3eRjtUe2obKFG7z8920K95n05sK1yfIuUODRYk7Dryax+7LakbQrqnd5k/7ZYzOY093R5p/saagvr2md7cta0XwT7ptMSxyEo4WQ1VJls0xaZuOUk5lpR1E65CqVOyXArMN28PCXwNjBcU17lFqtc+6YMqpp/wilch1WPlnvk+TPtW6RXTp2yqFnQ5RvAKGI9Aij1PZW3sWLjjj3Xi2gtHc1K/B/ZqD2AErgUtCK2ARNPZ0tqn4aSLz8JJF5/lSXtwfyXmvvUxtn46B50OrMS54/6FLct6ISPrILpmHECPzEXOV6j2xS7YtzsTHdOrcGB/R+Rc/wFCXQZh6/Iy9C4+xte3b/94LXqG3kJ6ZhWqKzpgm3EhCic/12T3QhCE5BDxcpg0RFAk00dqbhDeeD2p9ihGnM7xgCvehj0Qa+cZ9lvZyrQqv/iuNppznV3X3GKIERvt0G1qLXkrZsx+zDI75/4tX33CXawM+tiJ26bB5s4vZoe5u+ye+0mAOi3TKbXdqrbaq4bBWilixjwd84GYyy0bbJVN7/X3T2L91ASGXzyGWTnj2YlnwHmgWmM8GTFlj1IE+aVmY8S5rtll7dxTWS2NYkQNhO1RMj2xnp9uSxcohvXco85uoooQsU5U5aoOxQWWxwi+j4LQCjjUUZyOnTvh9KvOA646D4A5BW0tTsXpt03Hd1+txKKXXsPAurdRNGoN9m3KQufuB9CuSzU6ZFUD741EXV0Y3cMG9n+Sjm0dr0D/sRMx54nH0ON7FyJ13T+Rm/o6/vXuCGxY3Q95g9bhrLGv49s/QgSMIDQzIl4OA7+2RBD2myyJRASD446S6BuVB/nltZsc+oiEjd5Gi7XzWJEK7nR+dnQ/bVvuznt1PMXff/+RGfczMYyYENIVQEiLG6QsdZuuUR97bxd7ypmWTm9x21OonFcclLyJ7XEq9j4Dp5dfS4fYTCS70e7sbROklH0a2EQ+UYMUb5A9n7iekQ+Ce+8TI6B+xKvAfhUh4AvjDF4E3AffcNWeLZBDALRXWZz9cRQh6uujIzpsMancdGdpZLtCMFwrsXn80zJwlBoFFEYQji7sFdU+/Q1Q+suH0KPjegwtKsdCawra5m83Yt4LryB1w1z0ydiInjl7kNV3LzpkVmFA+Hngo+dxcjFQv+VthDoa+G5pLoqGb0Tn0SfgQJdz8K93n8MZY94EIOJFEJoTES9HCL0tEq+pEXeEJs70n3hiJih/PSzqO0IBT5i9kz27wu2zkNP49msD26tsef1Q5YwqO9y726tTtNSfbrFEzrQxtxiIiRhbNLkElC0GHIERZzUxJ5gBGC4RY7dpXbOfAoSnKqS8o1OWKLRnCGlZG8oDYuc/INmpRB7h4lVryi3TVZdqSImrDK44i2+p2lG1F2+pX78vgj7VS4/nvonmDz8Ro1WVQB8RE50qTs102fERHh6lqj5E8t5Tly+2OFIEDwDv7qR6gQTh6CTRFLTcwr64+IEprjS7t+7CnOdeAa/+DL07lKNfwXakd65GalY1Bh+3AQCQF3kKO7d2w44hXdE+sxrzpz2EE66f4slfEIQjg4iXwyCZaWA2cTqoA+Mmm7kenz0R9aPAdlpSPgTNYFEb3uSMIVBA/KAX9r1TxtSz2F4s3nuqj1jERnTcQsnO3eW5dep6NUE7cokcLW+z/ahIEFbKze7Y+j4yIH1PGO+Ykz4WpfqpmfcprWbY75Lfi1ZBlSSOgHYNGDWk0gfZ1KtIosrq56suYvQ0flO/giu38tOe4scxjeHkp1ckt/L0CCLHPvvbcO31YmdkD7f5fRsF4eikoVPQuvXKxvl33wTgJiessuIAal8uwDffDEGovg59cneha68K5PTdBQAY2fH32P7wU6iozECntErsGfoghl14eeMXRhAEX0KJozQuRDSdiHYQUZkSlkVEHxLRt9bPrlY4EdGTRLSGiJYS0UglzVVW/G+J6KojXY5DQW38+n1s9PN49vQO8qD2JGlx1LCgBnlQ2tgVf2JpzBSshcc++lhJTH64G+9aKZm1jnK3l3771ev5urEEAntTqONLMSmml1MVSbFufu/z0OWU5U3clatUn2N++j0/T/s/yYrE8V6ad52TO8yv8jK8j8zXD4rZS1T5E9n0+OlzroQx4F4BLt7NhBI5zpfW0RoGtIpkOa6msX/rOqMutnhW6w9iIsazZrqPzaR+YwiCkAydMjOw8D+DMHzECmSdfgG6T/kGK2smou5gKjaX9cL21T2Q0bEaAwavR07Bbgyu/Bl2PpqLjff1w/YH+2Bb2WKPzTm3jEHlM9mIvNwRlc9kY84tY5qhZILQNjji4gXASwD0b+3tAP7FzIUA/mWdA8C5AAqtz7UApgGm2AFwN4ATABwP4G5b8LRkEjUv/EWCEqY24lhr3ySwHU/Y6NeD2rzx2ot6c03d0yRY/MSa8CEnxC0DVGHi337V47vbh0El0Rv79spfukCJpQiWbaqH9qv3Cdvutg+k3oWYP/ap0x62T5R2rGcaGvnbiydinHf14z10VwJ/O343hROJFtteIsUdL0zPP6TF1YWP9v2J+6W0bFAoKJ7PA1Efqv4eiv7lcXoSbBuKmImtvODxx7RvncigiyA0CevyL8Oiz4eg5/7HQTNyUNjuJSz8tAgf4yb0uW8t9py9CG/+50b8e/YIbF3eGx3S6tCr3w5k992Lbl+dgt2P98KuR3pj+4N98MWtZ2HU0AVYuOk81JyzHgs3nYdRQxeIgBGEQ+SITxtj5s+JqEALPh/A6dbx/wL4FMCvrfC/sLlk0zwi6kJEvay4HzLzHgAgog9hCqJXmtj9wyJeG0Nv7DphCRomDREtBHf8xA3s+OjvpPh1kKv5EOxxFX9r8Lkez3+vdVMSxN6pibUWg3xSU6pX7TB2fmriAvHupSWHXA6TlkOsrWq2de1RlQT30rpI9jGUczsnW5Doif1voDeOXiA13C++/v6Jy+GAC/EeaiKbcSD1sbN2rOWj6gavIe1Y36zH9pF94quBTjJWfFCUk/PSvhJPd9TO36kYbM0bFNUiCE3F1fffjJd+A3wydRG6cHvsoxrkXTwKV99/MwCgz6B8XPr0Q078XZt34L3HnkbXHZ+if+9t6J67F+17HAQR0K3PPNRUtMeo3JnY+6dPcNq9K/HZXUDpoJnNVTxBaNW0lHdecph5q3W8DUCOdZwLYKMSb5MVFhSeAHVJ2mCMJBsFRlLW7JyVn3ESEdztm3hNlPiN+lgsfapTomZPvBGa2PVYK5GUMG88rx0/MRNbs0wduXHbj9nzvn5vPlu9a9udr73QgE5MgsXO7TBGrNvdGd3gmK/6xp6qTTNWyOwg10dJVJscOycoosbjo7t4ziaVjuOk/vArpD9+gsX7oPzjBk0583M4KCgZm7qg8SNIeOn5KYMlgcJIXQjBla/1MNWH5BEw1oG6XLW6aoDh46hqE4it4qCKcD1fOywZUSoIQoO5+v6bgfuTi5ud2wOXPHqPc75/z37MengaOm7+CGf8YC64LgXp2ZXo0LUa9f+XjcKMbmifWY15U76PEx/6sIlKIAhtk5YiXhyYmYkab91PIroW5pQz5OUmV9xk2wINbjM0JDIlIU7YFd03C7U5H++d7IaIsKBGdWCnexxbOsrir5Y0dAsv//S6aFGGNJg0HxnqSJFPKldozA+3NPPrcPe7F56BB1ZskmkzJuBicUkz6Hsv9YphD7n4Lbcbt7KS91oi5amG2fF9xE9MxAWohEOwmRQ+8cj5L078ePfBHvUAENsAVcvApbTt0RJdLbE7rt8N0J+bSyzZlYgadk8EQThidM7qjAv+59cAfo3KZ7Lx5dYxqNxXgox1MzE4fyO6F+wAEXDciLnY92QONu3OQ5eUndjQeSJG3/zb5nZfEFo0zfHOix/brelgsH7usMI3A+irxOtjhQWFe2Dm55i5lJlLs7s1c3FJ+/hg9+QfantEN2/biirHifLwc1ONb27TaMCA/To7wVA+dpg6thKzw441Uo4NbbyLAz6GZc3tu23P9EC1r+6ao9sC3J54x05id8vaohIGK54ywWDzhXv7A9cxXGU0A9hRJgQGswGDGQaz1VFvlYKVe6k4rD8TD2zeS3NqUUCBoYX5oddRuxIZ8Nr1U3KA69WM2IpYWqYNtJnoO8R2RbeyJCP20fMh/UYGqE/DsDeUVESIfh+D/HZEDLkHUaKG4ot+o62POnKj27PTONETDUsJgtBcfL26FCf1fwed68pw3COvY3XkNETrw1g+bwC+XVCAMANDBi1HrwE7UZr5MNbdOxiL7zsPX946Guvmf+GyZZT/HdF3SxF9JQPRd0thlP+9mUolCM1HSxl5mQngKgAPWD/fVsInE9GrMF/Or2DmrUT0PoD7lZf0zwFwxxH2uUECwzXyESdhUEeq3ROfbEe0X3iitmq8Tmf93B4rYOssaBRHbx8m6igO2tvFdT2OETs1g6xNKmOh6sv97v1nGEwUp/3HrilnsZET/w0qHfeIPCuY+bV5yfqnltzvXoLcYZ7b4PeeiH6f7EQuVeqVbi4n4+H3gBU/3SNIWgGCbHtGlHz88vNVS88E794uyrnn9RJdqVsFID1/J14cGel5SLoYcf1GgKuQnjWmtS++60REiyC0dPz3nzkRJz9pLuu8f+9+zLz3IfTe/wEGFGxFbt+tyGu3CegPVHxxAZZ+MBx1nQYj3ViDPhmLsW1uX6TsPwaRzrXoueUmZHwfCBX8qJlLKQhHjiMuXojoFZgv3GcT0SaYq4Y9AODvRPRTAOsB2N/CfwL4IYA1AKoAXAMAzLyHiO4F8KUV7/f2y/uJSOYtFXb+SyJektgzPRqazoWPgaB2nd5G1ft2/dKo6eLZ9Lpk31U7xzhDS9CEnJYqNm1MtUjOMZRzPx/9NpV0iRTFgmuGD1Nsw0YrgbpiWsyatg+NNaJACDmNWeeaj87SV70ly4bayHYvLo1Y69lx9MZM4gAAIABJREFULlZ+grJpveU/2b35ySpYvXXOCH7vpAEK1yVcnAa862pim/G+LH4iSBMkgXu72GHxRl+ciOR7zSNqdL8cf+xyW6Mvfu+tqAldSydH4ez0aT96VQzF+Z4JgtByiLf/TOeunXHRY/cBuA8AMOf/ZqLivWkY0W8luvbcj+IBcwHMBTNQuakztmbkot2I47Bl6Q6Ev/gPopFfIut6ES/C0UNzrDYWtJPTWT5xGcCNAXamA5jeiK41KX5T5APjIoHA8RExidqUajL1egPaoh4b/uGqVAgWGfpohXmNfeLFzoIWHlCFi6thr/W8+4kY+38itvZbicULaTY1SeGEOTKLrEUD2C2OALv96l48wU5P2iaV3nvpv1CzZ6N1V5s4ucpG/oUJgP0rkctgogzttMrdjKfqk2mbqzfab5RE0w5gLapebu08SOR4stT3wQkSKX4CzlYmfu+2ePK3ahcZ8AgfQRBaPSf/+Dzgx+cBALat3Yy5D92PAeE5KB69Bh17HcApff8FNv4F49Qw5i86CQUZq1BXXYV26R2a2XNBODK0lGljLY+ECqLhJNiL8NBsJjhXG+ishar9tkFNoODrwTImNhrDAEIBbVK/hrlfO9bPS/9yqo12VTipqd33QZNIrIeoZTHP1W1E3DaV+2wrJmIYASMgMT/s94P8e9H1/P0EsJra1e5Oqr6RNXRDnmCngE4YeSuRGkdtzbNWoiBf/ISHLiT8jv3SBpVVuea0/a1jCkrvOrdOAiqSy33DzwlVkMBagE5VVYB3CpquSll7uJYTTl2TERhBaIv07J+Li/70NACgelo3fHXwv1D9zTcoGbIKnXtXYPRJc8xfEa/1xNp1Oeh393JQKLV5nRaEJqalvLDf8mhkkdHQbRncYwj+xOks9tgKajf6dVQn29md2Ct7tMHvituKuSCxW3C4xzw4dsTqRpD2GyOxlKSIDNVCrBObnY/jl6vRqd8F1ab7XZyYn7ZHMSlieNYs9tok2O3PZO66sgxCwAP3PD/SArVs2NlYMYnsg9DzMMzj4PY0xY9A8NpkJOennk4NV4knmNR7ZQ+mUMB11Z7neSiBfmXyRLcFiRIpaEUzUpwImiIoHDZENIaIVhHRGiK63ed6GhG9Zl2fr+5hRkR3WOGriOgHiWySyR+IaDURrSCiXzR1+YTWxdaluRiW9Xec+dBv0e3X67C63f9DzcFU1OzqgFA4ivzBW1D3v9n47p5B2PFgH8yd+vvmdlkQmgQZeQmikUdJKKAtEgT7nAR1PMczqV6P0ycMQvLve+v567hfl/BOD9Nbb+6Rg+RkESmh7ndSGKzlGW/jSyedFcUUEqz57bapp/cex9txxm3DaZMr09bUhIZmnNWbpYQT4NpKxDfnQBVJ7utqnEQF0Suhn2jw8ydY0XrDA216w12bVNp2gh6cmo9u01PRyf/L65nmpRpSCunyQ7GjP097A0q/Z6Sa9g4TCo0MEYUBPA3g+zD3EvuSiGYy83Il2k8B7GXmgUR0GYAHAUwgoiIAlwEoBtAbwEdENMhKE2TzapiraA5hZoOIejR9KYXWxLyd38PohXMQNX6CjA57kFuVhZ1f9cXcHSejz9gzEP14GooHrEVevy0IpTAyax/BqrtfR2XGCTiwpx4n/OYppHfKaO5iCMJhI+IlHgkaWIekbxI12tRo+kwRjUR5+7U/7bCg97GDbKvXgkWOe6NJf/vk07QjTzlJCff6w5qv9tUQ/F7YV330EzJmHH3FNLdN1Q5Amk33VccmmWqDPdfs6V8U60RnbYNPRvC9JDizhVRdYG5aSbGwoIa6jz3P9XgPUQ2Ps9iV32abCfNORo03xF6c71vcAS/FDyepPW1O3yxS3ZzIOVDEhbOsMcfO9WXQgjagdBQZYkqW9eUuhCbieABrmHktAFirXp4PQBUv5wP4nXX8OoA/EhFZ4a8ycy2AdUS0xrKHODavB3AFs/mAmXkHBEHhiten4W+XXI8hb6xCZvs+qKhJw8qOg3HF69PMCNeYL+1/9NSLaP/VcxhSuBEDBq4Fhb8D9wLWPTwf6WfchWjHgeg1bBgW3HERRgxaiPaZ1aipSMfXq0tdCwsIQktFxEs8mqJd0ACbfnsN+tmKN0pib/QY1LEcbzQmKEtSnEsocjhYMJjHZld5bDcVv5EaXYDo79GoIseWHSGXN+7dXlQZEksXVBKCPU2NHOGgj5wEDxSQy3nnrhF52sF2G9ZrI3iwRL3A9hBS0GhCIAzoU9wSPQQ1LE4l8lsZzmMzmYqpioRE+CnehDdUuxYkptjn5voWURMsQEz82LWG2FsBrLrhnDrZaIVx9s05pC4UITlyAWxUzjfBXLLfNw4zR4ioAkA3K3yeljbXOg6yOQDmqM2FAHYC+AUzf9sI5RDaEI5QsRjpE+fsm64BcA2i0Sg+fHQauq75C4qKy9GvcCNoyyRE60PAMqC0mDBv3SUovfQhLHx8Ck4YOgNzbhkjAkZo8Yh4iUdDGjyNZNOvjRavwzxR+8xu/0Ti2IsnQGz8fIoqb5aoox2sxVNnFvmLjpg4MGLNe+Wn36aU3tEaO5wcj2Mix76v3rJ7pIbjU8wzdTGAkHUvYi/P6z7qPjk2tfasvWcNUwiGoURQbbD7XgS17WPnRiySX2Pfd2SDgiuT/jDjVU7fyqiPMGjpowE+xrUZcB2IvQtkC8UgW6o9I+A6lOfmWSlMezBBqKM1Tp7WzfY8H0XIxJS/twAEwFAqU1OsBCI0B2kAapi5lIgugrma5il6JCK6FsC1AJCXl3dkPRRaFeFwGGOmTAYwGdFoFLPvexTdN7+O4pK1SOtSjXA7YFTuTPDfZ6Jz3QDMX38BSgfNbG63BSEh8sJ+Mvg2+JrGZlCHd4L+67hZGNp5Q+x7Op5hb1RuwL2jvT+qcLHP1RxjzS57ypn+xkywX/6+m7kZLu/ZiauOx7ASx2/qWix/hmHJGINtT42AMSLFJ3bbtEeW7CV1Dbvj3XA/Kdf9VgpHnta4licDbNiLQwQ8E4L3piWq3/7KM2ZPtx1og93nQSRj069iqpXdL40WRroNPV9LABmGIggdfwie1df8cCqqLRDNh86uFTzIetCxumF+dAVJSrltIWMVOtmX6YSGsBnmOyg2faww3zhElAIgE8DuOGnj2dwE4E3r+C0Aw/2cYubnmLmUmUu7d+/ewCIJRyvhcBhj756C459bgNSfmVVu6ZxB4LoQ0rtUY/ixZRja5QO0z6zG57ddiMqdu5rZY0EIRsRLEPEabEqUZCHV3iG2M5y2q2KDfD5q/Hjnfi6Rdg1afGjxzGN2iRjvWIa/H+58Y0f6amB62dyri/mXh8DWeyO2gIj972czqNHtVyonH2KADBC5d5hJ1M6338l2RmKIQc4/n4lzTm+9T0te7YBHrO0bWCCfh0jE3kpkCwFdIMSzF7v5pl3f+m6PLuijCglsBp0H+QVTD7DPLYuXxlMxgdg7+FoYEUAh8mzv4v+FYktYkWLAPuXYzWLEd1oVsGxYh6QIHaER+RJAIRH1I6J2MF/A17ulZwK4yjq+BMDH1v5kMwFcZq1G1g9AIYAFCWzOAHCGdXwagNVNVC7hKKddWhpqKtJR0eVYpF67Hu/On4S1i/PQNfsAiIDvjfwA+/88ElsXvodIfX1zuysIHmTaWBCNPRND6clFAtNBWdvtlCADyXRm221L9aefDTt+vBXIvOdmi1ffLDJZHz2tX8cmOzbVhjnBfyqYaYmU9LFzNbZ3gWXEOrc5diVIksUsmSIGIJg6QM2VYiULKHyIYuIjllNswpr9ro3TZlXLqTwgdl1MrvJ6Bg/iTKFyrxLgd919je1GvS44nHgca3QnaTNhxWR4KqbTvlfz8RllcV1ThYojODSbdq2yq7uhxHP8Ya38qmhTVZ7iu3rdycC66LvimTdIOHysd1gmA3gfQBjAdGZeRkS/B7CQmWcCeAHAX60X8vfAFCOw4v0d5ov4EQA3MnMUAPxsWlk+AOBlIvolgEoAPztSZRWOPr5eXYoThs7A/D8AZ931EBY+vh9969/E+pV9kJO7Fz3ydoNWX4KahWmoNQg7R/wDBaPPbG63BQEAQHwUTTcYVZLGc2fnJoxnuFpgwfHqfSfs+xO1Wlv2VPYg6ty5e1CvRZg9YX7nNYY3zG+9ImagztKz8WwygIPRFBjawJ13N3pC1CDUISWWhytu7NwAoTKaBu+mlqbNWPuPEImGUY+wT6e8e8yiLkKo5nQtvTceQKiOpsKA/e6Jv00GUFOfghpOc845oNxgoDqaaso5w112lz9MqKxPQdRwbyrmnmFljccwUBdJda7b7X/W0jCA2ppUgMPwoD1YZsCIpLgXsPKJywZANQRPf4dfRTKAUCSmilyiQaUOCNe5F1Zw2VTShOqBEMO9SJefzWoDqXpHoZbG9ielxvCKK+0nAQgfrEXY/qr7iTu2anMUSKmtdytV9eEotqmiCmGnYrASx3LG/hGJADW1cEZZPA87luaj6r8tYuZSn7sitFFKS0t54cKFze2G0EqZc8sY39XGotEoZv/2PuQfeBOFJeVISY8gWhfC+nV5qKjOQnWPM3DKbbKHjNC0EFHg3zQZeQmikTVdvJ53FbUZlyh6ItGi29Q7l+0wfUwiyI4e7u0Ud/VHA/Cu4WXHdI/+kGtcxZ0Xu9KYNr12XTvcuzy0r8bEhe9oDOvPh/4/e28er1dV3Y1/1w2BBNAQRiEBwjxDgEsACdYKWhwKdNBi/Vj9aX/aVn0FbX1R61ALvGqtoFastA7YWtFaX0gdUMuMQkiCEIFAiEAgCIKIUYYAuWe9f5y9z1577bXPc27y3Dz3yd1fPg/3nD2svfbw5FnfvfYQPQUJZKQI8shrSEDFjLhHdV73f/PyFp2LE7ISkYN8xiht4h1J6q3yRx1seElaBlKkl5TFLoDSPGlGnc+QqfPmvDWaT0CQIasLGhlCoKWbc4gQoGYnhBL2MHDJMj3Y1I9VPV1hTaGUl1FQUFCQgTxVbFsAC93ztGnT8MpzPwTgQ3jg9lW4/R/fhfnzlmPevvdhZNp9GHv2Vtz84aU49Kwv4qknxrDdnDlZIlRQMBGYVHteiOgsIrqdiG4joq8R0Qy3Nnixu434626dcOvNxv1RBi1W4QaK7ChT22NAPCnrPxYpGY9MwLbVcmrKcFJhUrUcwdDleQPey9Ay5VMFdh9bnp0/V5t414zXOdjTFkGx6xCX4GsdU0S7PV2OZqWR0kfwhGZpHMfhLYqkkb3Gnu4EC10Hmn805RGiTSJdZPbSkVo+ugzx3POrSEFdO7HwkgCBTDQfow98tqQcwSIZ9aaoSikbyXWfZlakz7MtBQUFBQB2P2RfnPLFRXjBB+/D1Y98DLffuA/WP70Fjtj/GtBl+2DbKw/Az8/dA0cftBhL15yKdS9bjaVrTsXRB92E6888ZdDqF2ymmDTkhYjmAPhfAEaZ+VDU64H9jcXnM/O+AB5HfaMxIG42BnC+S9c/TIQ90FFmZCttpB4+u2X35Satu4Gi9N7oj2Wy+L9dQiA/6fZ8aetJgmAj5E7L8RdFkntOt0zEWsnFYqk1bDkCLHtUh2h7GgwQuw3fxJ02/se0yCyofRbeMOIj5mnF6/xtH5EmnOalRl/K7/J6yuxWnMrT8AWLaY/ne6TzaybWVabf2e/TerJBQoi8kVTPTMgCPWnx5GYKLfktKCgYPF767rfj8E8vx7pT78L3rjwVv7xvRwCMXfZ6DBgBdsYy3POxl2K/M/4XFq8+HfP3L0saCyYGk4a8OGwBYKY7cnJrAA8BeAnqm4sB4GIAp7vn09w7XPxJ7mbj/qCDJT/uwjpkIP1Mwm5Sn272X0wdeqmh7VCZN7Uhw7lgPmYE4dysQCXikNhAj2+gDzoEuTK3XLwV14dEXqvWMjzWRB4GoG3ShKCQ1MifsxaTI0+QyJ8iZgxLr7MnMew6uvGwsN3mjc1LisDIGfnk+KukUdIG7DU2rc6z4kPl8na9VXYvcpIbmFpuLq1RTqXD5UfkTy60b8iD0jvpEKlLG5vyHhzxjW6Sa/Lj0vitQm19MkVARNu4v9sOWpeCgqmA7efshFf969ew6wdXYzG+BGZg/VPTccChq3DwkStRLTodOx9xJGbMenrQqhZsppg05IWZHwTwCQD3oyYtawEsA/BrZvZ3LMpbiqObjV36HfqnECbG89ITwaCWxrsMsz5WvLRsxtynEn8r8e7D2NDBf3x6b3S3NVHOnkon9rWvJm+JWTE5oiWftA0bp0lt3lxJJDT2S7lytmMi00xUe1ua45yFsOi6D2SQIxEaPccd92esGzJqMjZO+RaZ6Wqc9/AcNUccWwPJyBc5N5qOhCHA0Jmtgij8aSOPzb0viNtPkispYGrveZntTvBa2DNlQUFBX3HC61+DdWtnYsnPX47v/vh1+MXKnfGCPR7DAWNnAwz88hO7gqvuhxsVFHTBpCEvRDQbtTdlLwC7AdgGwEYvmCSitxDRUiJa+uhj4/gCTcSsZgeZFYJh3GWyuRekoa1ldZnIzhv54ZBiSWzkRx0UDI7+BopUh/lT1qqk7louEHaWBP3iXO5KSehdMrodgpfHlkWuR8jJrLhq9AcTWH385SLMZJTIYSKd6lKZGRXXf+v7X1w9ObSh3tKQH4717H3lLy20OlxXMSdRj1M/kHID1CIKPrurb+zOcInGWmS26ZQhaSzOznbX8ESfqBzLASLLcjKqyl8C6T0kKo+lsyYZnsS4cB6rwtKvioQbSJbDIX9TQSBdLuY7Z8riJABvBLA3Ee08YF0KCqYcblk5iuP3/m887/nrMevtS3DtDQsx9swIuCLM3u03eOqinbDsb0/G9e9+BX51/+pBq1uwGWDSkBcAJwO4l5kfZebnUN80fAKA7dwyMiC+jTh3s3GE6DbiHYyjY3uhxcIfL6lgKa8lc842I79rv/WIqFBWL/1y5CQnz75TJb6gMicntutSmhDHWocZy3lmSvSOqYInBmkpOq1/Mm1CkW5MSGgIGVWOhLT5itJ3X5aXWXtZpH8tLltyjNZ+dTZ2J09N1BAtFc9dpKPlGIWa2Xzlm5s6e+hpvVukzBCVHBjQS046kGreMWKkIaBlJ39KkCDqHDpdyBQvjdvNYlXy1bG1svflJgBvArCamR8ZtDIFBVMNCy+4HMtWLMDo3EWY8YM9cexhS3DTrSdg9QHX4UdXjaJ6ZgvMP/gGHH/0NRj7+vF46OarBq1ywZBjMh2VfD+A44hoawBPo55NWwrgKtQ3F1+C+ibjy1x6f7PxDYhvNp6U0AZpG3Lx3Kx9z0uw5mRzadql1GXpje35SXEfM6LMbxL/TyetZSrv3Qh5JL1IjUQ1T61qEBMk/+SfPVlo3inI84GV0ELWIi6PnZFJIB5p4slHKd28vR7ZtaIuvoRAtQC550HLY92Ijf5Ceo8Bl5yAbBEW3zCJAu2yo3RRWm+g58rqID83uIVM2RSk0pOIa/9S6AbyoZx6WDQqpQiJMFDwSMmBxxDMayzkkwOrmcDo/W/C5g5mXuEelw9UkYKCKYzcscv7HnsNnnj8t7j8Pf8fTjjweszedS1wx6vwq6ufh/XPboEnT/wa9jrhxIHoXDC8mDTkhZkXE9E3AdyM+kbinwC4CMB3AFxCROe4sC+4LObNxn2HZVxtrDxsmMwmq0Fi2mbkc+FtVeNMGun90OHscnpzXxOOQITCPg9dJjdPobSwtCw+CMAmLoFm6Hnx2CaOy9B6ALVbUpIIK0dk85Jb+uYMT3I6A87WbN5iYkXEie2pS0zayug4H0Y6QUtHEynS0gW9xjCJP9k00oAX4Tp9zo1kD778gGWEY6nzA898z5Gcpjdlw2sGHNUtCCX95Ahw1Iny6GVPWKKCernFpg6I6CBBYgoKCiYRtp39PLzyX74JZsblH/4w9lv3dex5yBqMbMGYvvSPsOSqkzBtr5fg0D98HbacufWg1S0YAkwa8gIAzPwhAB9SwfcAWGCkXQfg1ROrUH9FSZsmB71ypYvcXtDy2uRbYV35W51OmmUWFQHCXpjwLuNDHkkjYoM+tV1JPMeKy/oGz4ZqBT+ZrWokPSEEatZZWm3aXFJJoQyGJhqUpld+lzR1oFoRQRGQDgddf1NhmdciLVb6iOm0y8wOpCZOMJxeMi2WuhGTACyKbiU9vQaScJQ08qJLKtWzzzOiCog22zOS4eD327BIAwSXGRjmAQJTC98homsAfIiZ7x+0MgUFBSmICC//u78D8HdY8p+Xgq76CA45/D4ctdMicLUIT3/hvXjmDxbj1n94W7nwsqAVk2nPy+SDnrrfxDJ7Jc2YSImMNnk6bDxVtuUFS9M/SZsv1VMfqpzzhbB4sqRYesVemjiN2xcTSZZ54tTykGZtw8alcNQCmgzpegPeE9Ct1aU9m1spFHkK2jrUy2hLYzVHLo2T6RuGyehvuRGljRWTEd9LT62vHhSyTM0FLGLkZETtqeOVzBiKuFh6MdC4gnRnaObb5CfEF31aDT3lcCBqr/01RPQpItpp0AoVFBTkccyrT8fohTfj8ZfcjKuuOB7P/GYmtt7+acy48ggsOPJ6PLl2Bm4Z+2S58LLARCEvbbCt7Q1GM9M7TpnEDGpOpGLTct1Q0iHVkYtatJ1lPes0jPgwJ5sWBC2tMkIquYXdy+5FBzRxsWLi45+j9BTHStTlS4oSx8k2lPmttjLs/OaCSq2yPyDLZ2AVL3kAIptWjYZcp8u0OaJiO4VCHilPEA5vZwfrn7oNVCkzR2JyWdvq4AeoFmOl1x1mEQRPLhpPDNdERJMMrYO+z0WWx1y7wipO+0hWjrmsGhNg5meZ+TMADkJ9hP5NRPT3RPT8AatWUFDQgt32n4eTv/A/mP7mB3H5jX8KHhvByDTGjns+jn0e+yC233//cuFlQYJCXtrQw9DqShY2OJMjKTm+02ZzyRCryKqJ7aiK0sG6TyZ3FWUuFkpGvDoovecm9n9ou88TJXlfjWyFoLdFZOKrNltoF0lNYhmpTEDXmBsdgOguD10vx0+T/rE4gBTjdckZ77rxrHcY8bm0LZ4b2ZdZ+ZY8axnbiIjv4q2Rdc2gcXhZH1FWIIyeOADNUi6ZVpK0pgAXJteqMSEcHe0CK9XhBDT7YDwJasiSZ4deh8JgPJh5HTN/AsChqA9+WUZEfz1gtQoKCnpgy622wis//S8YmT6GKx/4W9y7fC622e4pHLLl32PBHpdixqyn8cSjvxy0mgWTBJ3ICxFt3+Gz3UQru0kRW9L9ldmCyH6SN+pZH5XHkiPNdR3fll+qrNPLd6tK2gaUT9JDYS/aklSku47xFZLSoqYoVGtr2c5SD2kNW94Wy3YP/acM5ObRyXJGp78Txk/ua+3NehsR/pqZqDCZ3pKhK557l2X2Ig9N8eJQ6155MjJ66pSD/v56mf5m+jZx2pUWPWdyJcRHEB0fHzoIMaGrBPGB+p67cv0JZeQCSKRrY2hTDEQ0j4hOAfDnAPYA8FsA5w1Wq4KCgq5Yt3Ymtvzt3dj3o3fhttlfw2037ofpWz8LIuCZrxyOZZ/+G9z1P2X/y1RH1w37P3eftl/Jaah/LDYPbKzx1EVmRl4/r5sjqKVHougu1UkmlhEmx6UXgUWOlHhwYkvW4SEmxHMiw17EpfX32979JvhKlBzrqGWnsiRVYXgq45/9EcrRrLzQMa6jID2N0UzihCpGxeFYZksXGdBGGn15FbGdwFLQB+Q243vICx4zuul3eSxCY7xrWPfGapaY08koX94lSW2yGp1gt5UgaVxVse6WTIssMeJ2lSesVVXY3M9CmB8XnihF8sRLlA5THkS0HMAc1Efu3wlgBYArAPwTgJUDVK2goGAcuGXlKI496FJc/T5g9KyPY+lNR2H90/fhVw9thx3n/hrzt74Q/PCFuOcDu2Gvj6wElcNKpiS6kpcVzHxkWwIi+kkf9Jl8aDEMxmszcPKQoja5Lfty/BZKWw7qkEbLiSeha03DccCxn0XbcPLdNvTjGH3Msm4TbdOyiPGkqm4yWULsAZIUKKS3wA25qNgTktrgJ04JR1MKp1dtSiJTrxQKviaOcydytcdAtwmxtHeNyjQGtRJukQqPXkxay6I0KoFPm5OtB1CbDEtmzqOkGkyv3ErSy7hEJ09K2GzqvJ51+vq4c7F4M5LNgfhoRZJBWtnlTD2cjvqS49ISBQVDjIUXXI7rzzwFo/svwowffB2jc2di2YrjsPCCy7HyuhvwxNf/EoeO/gx7HvRz/ObTL8CdDx+NdVvNw+98+MJBq16wCdGVvBzfpzTDgz7/BMpZ4F6izfho468tQROFXvKtyebcqiAtN7blfGx6t0sgJba9Gexpm94ET4qUSFlbM9ZJE4tAELR9S3pjtZCnL92MiE9zQaXUOm9bA3pC3clgirSNyoyMZdWW7iXaA85NJlsZlbfZWyGhPSI5Gb1ky3TSW+DLyw2MNvm9yIIqJvHAtOlpfYma/SZxsvA/JdyUx6LeoiPh4kinEYJIkJbGA+M7vcw6AgAz3zNoHQoKCvqD3IWX+594PHDiLbhn6a145At/gSPm34nRw64B8zW48b33YMG538HIyLSB6FywadFpz4u7UwVE9Goiep57/gARfYuIjpJpCmyYM/PjRFiC49e6x/Jzq3p62YI6fU6mJDfxdZGBJtjb5bvqw0kKEjJDeXHddb3DBnopI6U5Xp43bptnijWIax+HNvKIAYr11PJZV97LIk2PAkWSJExqDzh5FZKVRiGyNyhY4TWsNYay5LgZ8sixSl8ceeKHdplWnMVc0wZsnhmIt5vk9M31j1FGSK4Gjux0eTIgi5wR86Q0vyzZIoFSmYzOBQUFBZsr9h49Asd97gb88oQbsPTaQ7H+qek45rDr8NQ/74I158zDVWe/ftAqFkwwxnva2AeY+bdEtBDASahvuf9c/9WaBOhqpI1DHJwB1cvWGE9k7aUuAAAgAElEQVSxXWwXy67rYsfldCEjXSw99cFokpKSLF1SqoW188Wb9j5FdKJZYxfGp5SFvOLoZWdIy0Of/GekKZub/d66DdlrSACL43IZYa91SCX2jRNl+zCUo1LkMrR5F3p1uCYtvQZhL8IBRda6fJ+sNJpUdBmcLV+KhsRYBAi5MMrrBopPLm+8LCwIlCdqLMRRJKM+gUzUQaU3K04j3b7QUxBE9PuD1qGgoGBisfuhB+LYf16Mtb97C358zTEgVNh170dxwgGXYfH7T8X6Z57Cde98KZ64cEes/+o2eOLCHct9MZsJxkte/GKSVwK4iJm/A2DL/qo0SdDnGc3GwOkh057nj+Mtu6sLgbEmsLvYPD1sVPGeejisCyWF6dZoEUiGRuqrsaSm5EdqGEiDJwNST3ZukdhZoVtH+5qSCf5ICwYL0qL1ETIZbt9MvgdDOWx2OqlPEpgrHj0cNEl+7Rkw0mibu01wYJd5mdLGb4MmSRZjl8k9t2gbNtaroZvBYsWL0UnNv7qu/kxIFRcV954bSYI9oSknjuVw7qAVKCgo2DTYZd95OPHzV2Pd79+O668exbNPTsfoIVdg7D9egOOP+TFuvesQrHvZ6nLh5WaE8ZKXB4no8wD+BMB3iWirDZAxHOi3PeBtjA1UQ15SydFUb0iXy2/Js9DL/kt0UunkUhqbYvSWk5ZdP1Xg1ksqtdlHZoymMUqSYUt3sG0jna1beez2dnSE/JttMXunCAflQz0yipAuNUcwpJpWp1v5x+Hm40Se8SXoOEmQkLKcjha5yHlugHjQt8kzO9EJa2Qrl12OBbHI25Ql3pnFJZUWQyVERzF3mRWZeihsrqBgimGH3XfF71x0DcZeczeuueZEjGwxBhoBjjr0Vqz4xzOw5ytejxvvfVW58HIzwHiJx2sAfB/A7zHzrwFsD+Bv+q7VoGEZd/2SOa483Hxyy4r0exdjuw2WzEQtBB+DRTSs9DkNg9FPQm58ISVHObtRr5Q+UCYOsDw+8hACbcFalMziArqEiAO4DMTkHBDxTp1om4SsZUN2VNWsRDn06uQ2httlMCUkyyAtveTlG7P1e9QUkyMx44EgkCkT4+hPNr/0jDTni/tx5UWxCHdxsoM9EWouyfSkqZCWFpSGKSiYopi18/Z4yecvB40AV13zIjz35FY46vAbMPee38eRL/g+Zsx6etAqFmwkxkVemPkpZv4WM9/t3h9i5h/0Sxki2o6IvklEdxLRCiI63l2A+UMiutv9ne3SEhF9mohWEdFyf3BAfxRBJyNtXFN7HWVGcp3hwy2XVFoTw1ZRhtmVpCcjzsoTE456Oz0gl37FproOkWXpzfVwYXLru8ydt02DhRqTpaB/MPX0tnpfqq6v1gvOlqz/Y4QFaOk2fV8KmR1ST55TM7nOJIgVI7u3RlaekjAfYZSZ63T5nlQ2k94ax0Z83GMtabt8N8KA6Q2fTu/hUeWwDk8Hp+2pYaDZvGa2oScZSgaJAiJdJFE2dPVkVBKfJo09vgr6AyI6hYjucr8zZxvxWxHR1138YiKaJ+Le68LvIqLfG4fMTxPRExNVp4KCqYJ1a2diix12xfQ/vxdXX3Mixp6dhuft/AR4jHDDx96GJV/67KBVLNhAdCIvRHRzP9J0wKcAXM7MBwI4AvVFY2cDuIKZ90N96Zj/x/7lAPZzn7eg3wcHTMS8XcflMb3szK7oQkq8Wj0nkJUeMfGQhnxMOtDE5uxBFtI0hUjL0bXRK4LaaBurv4h0tz1EsiR5fHNcR4uaUepsUB1JYBBxQ2IkSWWKW5xknrRqqowOXgGNNkYrm7xtsLD1qpZHaVSwZVrEK0c0dKHeqwU0e+WbD5omtjfuK10agqNfcm2vM1peJ084WL1HBSuGqttA6tLzKLWCDQERTQPwWdS/NQcDeC0RHaySvRnA48y8L4DzAXzM5T0YwBkADgFwCoALiWhaL5lENApg9oRWrKBgiuCWlaM4ds9Lsfi8t+PYc/4dP7rzVVi/bhp4bAQLdv8yjtzyPbjh3ScPWs2CDUBXz8tBzruR+/wUwI4bowgRzQLwItQnmIGZn3VL004DcLFLdjHqy8jgwr/CNW4EsB0R7boxOsQKwTaONgLcQaa05XKTv+Mq05Cp463nXBovqxJXruf09XPJbKYK1MH/56XJifPaC6PlUnQ4lrz83eevwxhjYKwHMIbam+P/1s9wH+fpYSnDe3A4kjnmzieuN/kjPg1XKCllxVJ9xV0YM6oq7GWq2NWFRRt42eQz2yAwuGJUHCnQoWN7jC7Z0Nag7DRAfSVUkW2DR8Kqtk7HAFdGfJt8/azKIwDVmPENyukv80vGLgkKM3isCh1bAahEhmYgVTFpifQV3hjSFS8A8Is+yFgAYBUz38PMzwK4BPXvjoT8ffomgJOovjTqNACXMPMzzHwvgFVOXlamIzb/AOA9fdC9oGDKY+EFl2PZigUYnbsIM36wJ47d+/tYsvyFWHP4NbhjyV7gMcKCo2/AAx/ZG9e977W498fXD1rlgo7oeknlgR3S6Gvtxou9ADwK4EtEdASAZQDeCWAXZn7IpXkYwC7ueQ6AB0T+NS7sIfQDHdjCeAhFY7d0TWvIr2XY+180uuoWTQA3742l3ECbRiFfuItE7oNpI0neI2OZW7G/I/WapKniCysr98QAKva+HFkr7VFxRj+5VAywKjeQEKWR83AQexrWDlm2t1m9UGJZi7ysbLhTdFx823UUcaa8rvZwZsCaeshLaaqMpnoA6fe2wSWDPQGRw0mklXvkI4UVGaERhH/dvAxPJNlQINFdkUnAkRkWsnycJDnaI6P+siNV6dd1yoOZX9oHMdZvzLG5NMy8nojWAtjBhd+o8s5xzzmZbwewiJkfosRtW1BQsCHIXXiJo2/DrYu+gxnXvQd7H3Yfdp22COvv+B4enPk9zDly87pzfXNEJ/LCzKsnWhHUuhwF4B3MvJiIPoWwRMzrwUSUMVVsENFbUC8rw+5zxnHzqmWBbyyo24qeVsPV/6gZZ9xa+YzJ6Z7ppSXk7Vf5UyrDggxJYqRDL172lNMn0AttzTFIyJOxkpLIiyplHVhYmz6ETZm1DG8sMguiEdWFVDlwnVpFJKYWQ1EbRZdJinqMJGEs2sUvIYPZYdEwIPkueqxtsDVeIFGG7qRGBvcmEiqK5EvCxlmM5xaZFovX+1lkpygdExKjZeX0a5JQJp7DNhZPPLQ+/rxsqUTMWtEQkIaUiPSRQEF45Den3/9OFWxyENFuAF4N4MUd0ja/aXvsscfEKlZQsBnjiFNfCZz6Slz/+c9h30fPw47zfoWdl78Mt12yN554Zjsc/qFLsfXssopzMmIyHXO8BsAaZl7s3r+Jmsz8wi8Hc38fcfEPAthd5J/rwiIw80XMPMrMozvtMA7yAoxzGrsbNmZ5eqSOmJlrsbtaZbSpoQ3sVEbeO+AXZmmtQkh6kLL3j0iCEeJCDaUvRcYT/CZ3sb2fkMiUUk2a0wTLuHggWO1X264MUKXyhon3QMZ0X6beNKm3bOnGVm5kCh04pIkiWzo6Iheyy3IdHyvXisZp0EYa5HtOpm7oXmRMEboma+67p5mvSbQsPdx+KVZpZMX1e5NUNaYfsNAy1HtDkpprTpV3pqCP6PIb06Qhoi0AzALwWEveXPiRAPYFsIqI7gOwNRGtspSKftN22mnDalZQUNBg4Vv/Ei/42wdw9b1n4ldrZuOgI1bhmAVL8cDHX4hnn1o7aPUKDHRdNjbhYOaHiegBIjqAme8CcBKAO9znDQA+6v5e5rIsAvB2IroEtdt9rVhe1iel+iuq9UJAB2kjdSm+SxpLXptjybLbepUTlyG9LZzYwyn5CNveY7+Lpk/BwkxXNMXkgtVzT5kJGQg9IeuWIy6eVIXI9MYXSfhkematpVUrbjhVjlR6XSLnS9r4aZ7c8rAkD3WW2UpYvAEeeS1aZFqEoq3sHjLZ6jz9LGX7/rHSCWdJ7YDTCrn3kfDYTBl5PRNGxSpeemdUfDLCC/qIJQD2I6K9UBOMMwD8qUqzCPXv0g0A/hjAlW6FwCIA/0FEnwSwG+qDZW5C3VGJTGa+HcALvFAiesIdAlBQULCJcPIHzsXY2Efww3e/GSfs823se9j9eObf9sLq+3fCGpyI6U+uwfz9l2LGrKexbu1M3LJyNFqWVrDpMJk8LwDwDgBfJaLlAOYDOA81aXkpEd0N4GT3DgDfBXAP6o2Q/wLgr/quTccZ5s7ixilPz9CPx8MiZWh5VhlxmH1ffU63xsZqYoOXo82s8tRA6hDrS0n9YzubRCo9s62lxTKDpj4XO3taHswcn3Mmjy8GQmkhjGGTFosAxt6hmKaE15wjQJPhhg94ecksviUA4SCAtrHZi1FnGsWfJhyXqwrKDeiug1XGATExkMPCIEMk8+XKp7bvrRDU1Ft0gl6nJge51KtZSyrYlT+5QSre6EThY5KfAgkiejcRfY2I/pOIOt9LxszrUe9D+T7qky+/wcy3E9FHiOhUl+wLAHZwXpJ3wS11dmTkG6gn3y4H8DZmHsvJ7E9NCwoKNhbTpk3DKRd8GVv9/2tw9Y9ORrWesPcha7DwgEswetgNWLrmVKx72WosXXMqjj7oJlx/5imDVnlKoqfnhYi2YeYniWhbZp7Qs+eZ+RYAo0bUSUZaBvC2iVNmEsns4rKBZSDn03l1tE0nU7RMNGfjY3JRx2ij3daFor/BviOzTEuO16PSRKCHzDiFDb2JP40Pf8ORynEJJmlib+sywMHzZJIWBpjqdARhsyr7uafXo22QWB3di4Fm9p/E5IDsgWQNWksm9cjjozSR0gNTEb7WHXSSEI0R4nV5SJfZNd9TESjDo05H3YF6035ldFCT1stglW4i/rHarDDCzK8FACL6xHgyMvN3UU+UybAPiud1qPeqWHnPBXBuF5lGmm3Ho2dBQUF/seWMGTjps5dh7SO/xOIPn4YFL7wF02eux+E7fhe/veh/sPOJn8Xi64DR/RcNWtUpiS6el9lE9HaIQxqmBNpmeUWSfsts4DY1cI/TxbTItIj0mkDpwbDym+pA247aL0Hwfgs9lR9iKInRl1RKn0fV0AAtk6H1DmZcTG9I+EtkWea9LEb9k0s0KaSkSE9KyiGqF8RRbn+S2zMR3CaufJHI6k8fIHlBCPaz8klF4g6MOt1InxsUVsNnxrUmw63y5bu1jI3Vx0IbQdNuM4RmNz9CTrOsrrnhHmF5mEWU/EOjhxAsiUjEpJwbTBImUnmlu63Rk83mLYhwCBH9KRH9GYBdiegVg1aooKBgODBr5x3xwgt/BBBw640HYtsdnsRO8x7DrGXvwJyT/wgzZj09aBWnJLqQl5MAvBHA3kS088SqM4nQa4Z6gmQ2popbFkLuA+uj8llyLEOfkHa8tMG0ypb8tip5+TGNiOXV+Th6AtLJ7HZipkslpRGpUvK5yEjHSavYJCSrJ6f2a5SW2K388T0leAyZ9rZRSEDYkK7ZTUaIxf5y7zJ9G3kQekV0sAvh0HJyunZB7w6PRcYD03ZqSPKgFUqIjy9EsSWmOH1UiI9TgyUiLS7A9/N416JOTVwFYDrqhvoBNvJOsoKCgqmHdWtn4jfbHoG7X/AtPHDHbthl3qOY98AZqNaP4Oq/ec2g1Zty6EJebgLwJgCrmfmRXok3G1gzsZtAZiU+vSaauxZpycvdN2jl1+ojyhe8D5XxXOfzBCW+/pFEXIXKhXIiX75XSgNStQg+kDp1pWpn5QoenjiWmmc0Kce4Co4BJrD6yLDa/lSt7K95b2RXqNzllP6OmQqEikMbsqiC7oOkv5jBVLV3cpeBpcdqbmDqT+Q1kfXOlDPWIlOKsXQyZPJYSO8Pf0s+rhtYN6QmUA5V5S6U9AkY6tnQO5KtyAgRMFaJeqtvVXN5JSt5vgAKeZpyN+Zfic0edzPzxcx8MYC7mPkrg1aooKBguHDLylEcu+elePSar2GnM2/AjTceDVCFadMrHH/w5bjhvP5vuy7Ioyd5YeYVzLycmb+zKRSadGgx8sZjLvgJ1F4yfVozPLnOPY8upGS8nCy2XSVViUvRhEfbdHIhWzDHSOSV5EbrzVEoi1whjFGhJgSBQlkpg8zKb342UgbyVevZEBKSFC2us6RtcUmBzlSoL9IMMkPpsn4csjd6mHXxdxZK41orJhVsbOaWseQ7PTsokXa40N18M4mOLcN8lzKsd2/X95KjZVjsHIZzg2QgmU2dhsXfXfYelGbQKZdQU4YUJsvyD76DClrwB+L51GyqgoKCggwWXnA5lq1YgNG5izDjB3ti/sF34MZlL8S1170Q1XMjWDDvYjz68d2w6v374+EVdwxa3c0e4zoqmYjmMfN9E6TL5MIETGR2uaCyLT5cVmin8BPkvWTZZnK8SkWmlTahmPsV6eQFlT6llJrK1eV7EhCoCTf/pygEGEG4BtOnkmTNx01z6fw9MMHwjy+oZJe2IlcLrlMGmTEViQmFTzHSWMtNPIfaNOWpMUBggNhdcBm0itoxusgxlkcQp/M625aMdK2DLmfU64FgYTwkPKo82QNOy+xCDHIDFohWael8JJXMfSkAhFO90mATiX6s+s6zIhFPEO2jCBERor0uzdHJ6fgqMLELEe2DulV3G7QyBQUFwwl5LPK2AE50zw8svw2//tLrcOBRP8PsOWtx95dfg63P/D6ev+ucgeg5FTDeo5K/pQOI6Lg+6VLQA42ZYux5aZvIHg8P62U3hvlh64jjsIgsV2qbTWztTokXokkqFE/gx3LkkjXp70i1IMRXcKS2tHZXWG9OpluT5GXKNqon3NP9RwBAlJYYt6cN7YCTK5vSc5RtkLTgZWOaeXj8LjvZSU2haEhfeM8p2BInO02nV94lBpJTmptHPexU/Sl5kMlEm8hbUSXJUDkE80VE4izlktkEq9JAaycX/C3qG+nfCuDDg1WloKBgc8Puhx+Kw86/FUue+jgeW7099j/iXkz/70Pw0Ll74Pp/eP+g1dss0Ym8ENFriOijAJ5HRAcRkcx30cSoNmBMwISmee+FUWwvWy6SiW4yrTJy0DLbbMe0bE9tgqcCSTqOUtsaSYvSywwlpvoFSqVX3YTQeO5b7sDxtmYVGa31WWUjTV042kQf+0oE5SBuDOV6aVjSSOIwqZRayXqFdlRkxDCus33aOqgIyf4KZNJLwtwm0xncbMmzBmNbmS2kIsmr8xh2viQxDDtN+k62/s6b0pDI5sPBmwKg2WTj30f8NyTIqE8gsyrhy4y/C3X4SHgdmYB/sDYTMPP9zPy/3ee+QetTUFCweeKFb/0r7PK+B3Dlkj/A2Ppp2Hmvx3Dk8z6HZV+6YNCqbXbo6nn5EerLtmYD+CSAVUR0MxF9G8DmeU5cnycyI0OpI9psQ1N+B1m9bMU6vJuitryYYNgHPadWZ6AeFmKr1ZJp55MLztLDjCN5pqUt/TPa1xSnlPUmJzMlLWlrebu22+DgxvkhlDP16cmCvTh9d0lWYAtkGmFjm9lYZMitu5LyvI3P6FmXKG8rGTEcGC1sPSnWYouWxyshIFo31Ui+knKTTbNPRuroB4EgM1PY8UJE27i/Pe9GIaI3EdGLJ1ypgoKCKYuXnv/vWH/67bj1xgMwfavncMT09+Ohc/fAsrNG8dTjjw9avc0CncgLMz/oTmg5jZlfzsx7A3gpgA8BeMlEKjgwTMBEZnaNfK98zPUpUuIDdf/LeIiOtO+0qZWTp+1Jw76MJrzlPfNtk+WE+FJ0TxJiH4pfeRROKuslL9AWAje7ZPTdNEpGM8HOqm6pZagdAj6t9+XkbqixJu8JxthwCaPt2By3sRQmCUugg6phgpJGlShVTqLXvxRxI8TlRg2sWUQPuUK1SKaRpufA1M9aby0vuN2QJQh6L0qkh6uvlp1cZin1ZqCqDE8YxR9/LjZLeVMW47mL7NsAtppgfQoKCqY4ttvtBTjq0zfjzu3/HWvu3A07zXsMRxy9Aj/9+9Ow/tlncP2Zp+CJC3fE+q9ugycu3BHXn3nKoFUeKoxrzwsz/0g8P8bMy5j5yf6rNUnQY9Z5g7hIl5lsD0FS2pYV9dIpsZ0Qtjb0UsWcXIb3Y0gdumhjUaLgE8mRnNgWzmnsiVK6DEuWapt51kWewYXAxo0rFv1JaBVpK16RD3ZULSJN3CgqVx6pouJw9ZLfJYPQ6Wk3xO/WoLHS5mRA8YQuXhaZKWePt8XJYiwyo/J1svlZ10ExoqQdKcpb/5VEw9JfkZARxdZM8mMQoKmL1rvIiGi6+7sPgGeZ+fubVr2CgoKpisNPOw3zzrkbV694E558bBuMji7Ds1/aBcceeT1uvmsU6162GkvXnIqjD7qpEJhxYLwb9qcWehhKEyWzMZFyl1OqDfuWLaonoK34XHrLErXIgLzjJYRLr4lPr/aiNPnZNMH0rfW2TD3BHozK1OehN/VL70uQEtda0jLhQSI0NZHb6WN5cXvIYqIU7nQzf7+L3/+i05kEJh4CIrGPtDIacnLQYzSrjJEmCnKBOTbZhTjldMrBf8esG0+tL0aO6GiyEToL7RvYhLCofBEelWVMJchbSuVJdGEQol5z2LGvN2/0uovsPCKaA+AcAP+0STUrKCgoAHDyOZ/Blm++Dz/+0fHYcpvnMDKdccget+Khny7Bi8/7IhavPh3z9186aDWHBpOOvBDRNCL6idtPAyLai4gWE9EqIvo6EW3pwrdy76tc/Ly+KjIA0gLUNoi+C3Bj4G0aKc+6EzB/PljetrMupowvqAzGP4GT/0hI8ouj/K0xHMVouUHT0EbhSZ54pglSbIvGBES2l0/JQhMvs/J5M5dThjBVqtvg4mUSKhBVYCJUXN/54uWGCyrDJZWW0ySFu4nRPZodnHgAKE8iAtOsP2Mqf9pZShbH8jRyl1RKPSuk+mTIFIs85iWVvhsguIRVttSehGDWz3a+QFpyJIZdvVVl5QWVculYk58FoXGV956dKYoOd5E9H8BpAP4PgJ9vOs0KCgoKAmZuuzVO/Oz/AATc99M5mLXzb7Dn/a/BPX+7HyqahhmzNs8t5BOBSUdeALwTwArx/jEA5zPzvgAeB/BmF/5mAI+78PNduv6hy0zzhsprkdnP6+ak7ZdTRYa1yfHwdmYl6EQbCJYOsXdC2n/UsQVCel2POqaKUgUq1Uxmq/gcWQwXVNaUw198CbRfUCk9K7HO1MyWV95OrXys01pOtKvJ+DYQ15P4VWNgG4rpZyB4EyzIzrPS6EFk6igMcxmUg9bT+leqjehovSxdgXj1lY53g4QAVFWldPLekxbvi2T5QPCQ+KWglSicCeCRILMZREKI9gg1eV2luVxU6UFEWxLRTBF0NYDZzLwcwN2D0aqgoKCgxrq1M/EALcQNj30AT/xyG+x58M9x4v6X4NnfTh+0akODSUVeiGgugFcC+Ff3TqgPBPimS3IxgNPd82nuHS7+JJe+P8jNqKokXUFS3ngyShkASNzSbcb3KKJNjTZupQmI9FCQ8ErEcelbTk/p+9Db6rVe+VPJ5F4ebpZjefrh/w+IfdheZmboWLVq2s9N7WsSo+1LWTNhv4oKMcKyOOPgZPL/M3T0E/uOf4T94ZIBId/hQLSaKeoc7a2x0GK82zyGBWvrIdPSu83LoYPbHBKc0c/4AlEmrP6QaHNDx6Y9fX1Fo4v+b/6BYCC5kCapqCcugqn18Z++YQYRvRPAQ6hPxFxBRG9n5q8x87kAwMz/MlgNCwoKpjpuWTmKY/e8FGOPrAT+ZAl+dutc0BYVttz2OdzxnkNw7btO7y1kimNSkRcAFwB4D4JZswOAXzPzeve+BoC/snQOgAcAwMWvden7g37bAn6ydiNFs3FBpUd0MhU2jCvp9Na2gZRw+Pf8BZWasNg6pZaqlknq/9LG1jmDTpb1Ky+T9IQH0SofFhJ0z0V19ySGYpkAR7kk55Qayf3ZoaSgo2QCST3FpLvlcOmFZCjJNYsJcha/nZTFs73/hNu/EFZcO/MVHSmCPImJ2Krx7GWqMhuqnPBBDnUYEQl0p1eqMZpnz4BE+nhgCeKaRGplpjSI6FNE9AbUnvuDmHkOgBcBOJiIPjJY7QoKCgoCFl5wOZatWIDRuYvw/GsPxG57Poali+fjkXt2xgHz78MLj/4hrnvXKwat5qTGFoNWwIOIXgXgEWZe1s9z+InoLahvV8buc6aNMzP6ZhQ0c6YdZHYqlqixVFsmv3OT7T3la7tQpq9tLUo8MWGDfZ1D+iPi8sKujxBCKlaX5sNTmaGeMbkgchPajUa6fkECca2vv5tFmot+90zQJpajL6j07MevKqrkWceQLVS/pQdASx28ppK2IdIzIgnNs3QTGPEa1trCtoFllamT6W5sS2/FW2lzA1N2mC5XEkbPByQPk8a//pvTzwljAGAxehtipdufI10pUlSQHnaEKKmD7HCf3g0wkhWYsrgKwFEAdgTwYyL6DYDlAH4K4C+I6HxmLhcsFBQUTAosvODy5nlbAMe55yvfcRpOmH81Xjh6De75wP54gBfi+Pf/E7acufVA9JysmEyelxMAnEpE9wG4BPVysU8B2I6IPMmaC+BB9/wggN0BwMXPAvCYFsrMFzHzKDOP7rTDOMjLBNgDyRp7A3oG3orvaDtm87TJ7yrTy4jfYy9Hm1ke3+Lin61rIKUPJMi0fTs6b7A4pe/E9sZor0XwfwTd4jPPLHkNcSOuN+AbMhHJBKgHow2aBD31ZL3Zn1anK9TeoMxISLwVZMvMDaScTP9gnZRFxgfo/X2UXpMeOrL4mOQnkUHxo05DQrVoE74oTebR/+o2RymLRM0eGScvUVqQGbKETi0w86XM/EEAN6JeUnwygC8DWA9gewBXEtHPBqdhQUFBQW+85DOX4eH5V+Ge5XtgjwMfxAkHfR2PfuLgcKF0AYBJ9IvHzO9l5rnMPA/AGQCuZObXoZ5R+2OX7BhGA7cAACAASURBVA0ALnPPi9w7XPyV3M/eHa9R1kXkBshssvS4pLItv5alwzxYpcvJke8+bWRbZQmGVTZZtmBk4nuJFdh0EGidY/3z1qy0i8kZmHGMlNmLXHgtZb1tb43PRbIAkUI4i2rPDVKb1bTlhc3brAfLMRstIMuAVPg4PCfm1g0d2EZKxkOUyPibDky73jkIHmGnc8KaMjxJMUhZrizvOZHeEyZ32hhCWESahFKNl6f8sDm8DcC/A/hH1J6YQwH8lJmPBHDQIBUrKCgo6II9jz4K+310Ba6+44147skt8YJ9HsUvPronfnzBR/DrBx/sLWAKYNKQlxb8bwDvIqJVqPe0fMGFfwHADi78XQDO7mupE2EPbIjMzOZ8YOMmwXvZopa8mOjEXhJv9MdVZPF/S4q0MdM76bWOFL1pSM9Hqrn0vWh7Nm2zoE24QFPuZIn10s/NBv5IcNxeweasN3yPEDd7ZqI0WjPBSTLKI7tLfbyDYzyQjSns7fpBGNttg0rLy3dQFubhA22DvY04ycGtSZc9OFOhco+ar1PFaAZI0haOribhirD4Qw8KIjDz3QCORX2IywzUS8f+wMU9O0DVCgoKCsaFk8/9LJ497U4sv+lA7DDnV1iw48ew1XcPxVNrfzVo1QaOSbPnRYKZr0Z9vCWY+R4AC4w06wC8esKU6GDdU3v0BsnUcrntFCGx1t6aTDbsyZ5ps0WZeVLdRoSPIpRv14EzMnS41FFPsLN6zvFDgn1yWKxnLCdIF6SF4JZ51WiT2RApSu3MiOixagdt/Os6eQLDsZcmYjZtna4rK/bpZKFJR5s8KbpNHmDLbOvANrQNZqMc1uESoqz4FGKKJxRkOyeMkkWdciPWP0oyQggbhkTDyzQjaO+vKQxHUr7jPgUFBQVDi1m77IIjL1iGG/75Ahz63DnYeoen8cSXDsKSmX+NeSf/IXbaZ59BqzgQTEryMikwEYZBB5na5uxKLiwi1WYfdlUrR4B6yWqbUPd/Y7+MJwh5smY6GURsqg9lwm2bk6PYtBTLI5Jr20SmCKjL5mbiPdqBIz0rigi0ViIqQ+nfZSz3Y7wbjVJzo1Yak0I33oboZuSh5n8t6VU+a/tKkJYwUiXPd7DuJFYEk1NxkojKe3gieT5TD+JZUFBQUDDUOP4vzsSz6/4CN/7NK3DMUUtx5PQPg6//CK79xl9i5BfLMX//pZgx62msWzsTt6wcjQ4E2BwxDMvGBgNr2ckmkClPqm3zJHQFwz5KGJkwjWT1SpMvTEeHm14oeQ70IdwsH5/c5cOqhszouldCZhVMfzWz749VDje7wNwlE9ebm5yxrBBTwV9ICTAqrhr9weQ25YeP33hdP8eyIqOV6lKZGVWzlwmo2NWTQxvKLQ3tw7Gema9QBYM3531JDHEFPU79QMoN0AxZaAgDZRKOtcjM6dPSCDwW8roTrJuPLkfeARn99eU5GVXl2tNntNpR6xyRE4Leg8RjlbjvhsQdMLIcDvllWaBAbpoyyyWVBQUFBZsztpwxAyd85krcvfN/4PE1szEyvcKCnT+P0UNvwJL7X4F1L1uNpWtOxdEH3YTrzzxl0OpOKAp56YUWC3+8pCKxZTPIGafRBZU91rt3JSYWOcnJS6//kAZ+iNFydD65jCzoSSI+vagx1pOSOB8SjjVm0URxKamnhQNJMKBpkPcRybtdzLZLAsV+G5YXaoYzzLIXXjp5rf2avZ/F0CdqiNaK95aZIxJWYk/q9KVEOT39e5Z4iXcW6YH2u12AiBQm8YIdJys3Y1Zm1yFh156oOEIihZJ8dwU2hM8LE++SSMFd9DPef4wKOoGITiGiu4hoFREl+yqJaCsi+rqLX0xE80Tce134XUT0e71kEtFXXfhtRPRFIirXbRcUFCQ45JWvwk5nr8E1S38fW2w1hulbr8cL97sMt51zOl583hexePXpmL//0kGrOaEo5MVCB4KxITL9fXZdijfDWy6olHlzk+0yvmsVDZvQzBN8LumUeW6yPLYbvdHOKkwfQxxsQu0UiOttEaTY6+O34HvaoE+VCj4XgqcYEQHx0qlynpSQnQCA090+DfeU6UTeuASfyPd7Ko+ETM8NqImJGiTb2XI/vWKBcX5DbKvcJJ0adTnbv42o5NJlwhgGiZH6tbuyXELt5fDB7pCFEZ/EECSZqicmTVtKkiIq2ijt/3kWHVSf7oCGDHWqQMGGgIimAfgsgJcDOBjAa4noYJXszQAeZ+Z9AZwP4GMu78GoT808BMApAC4komk9ZH4VwIEADgMwE8CfT2D1CgoKhhwv+eQlADHuu21XTJuxHkfNX45r3/d6jJ71ccyY9fSg1ZtQFPJiYQJsgX6IDBO+KYnpauN187RwVl6wcVPvh89rkxi5Ykf6POJSQ7wmMRU8JZGXPKZ6hhT6E3ta1GHOlOoUyA1BH5+sTUZ2JIapitI18Qwwa5Li0lF6rLQnMdoTE8sLl1X6MHiC3PEkqmgYyWVVJnqQjlwWcyB1IDFdy9KD2hjwng/I7UDSKRLpqbljRg9m1zuS2FlCm3CrMTwpARJvjMwrCQ4DwAh6TWQUbDQWAFjFzPe4QwAuQX2HjMRpAC52z98EcBIRkQu/hJmfYeZ7Aaxy8rIymfm77ADgJtT3mhUUFBRksW7tTDyAF+HalW/Gc09viRMO/RaqSw7Cc09tgfXPPTdo9SYMhbzk0G+7wBlOvUzKnJcihy7eEy2vTX7OvOqCMOPvnxrfROMt0RJlnrTuMqf0e1j2qUGpCCJGftKp/RFYp89qX0s0F24QQUdy/L0dZNxZaOjMicUdp9MXVEY2rdDD/zUlZTud6lVH1gU6Or02lnMypWOgp0wjXqfJkIpxDswgzpMY2exteumBZKjXqJW7pLJhlah5hxQUKQSjQ4W7jqVMCjqNFCIzAZgD4AHxvsaFmWmYeT2AtaiP9M/l7SnTLRd7PYDNe8dtQUHBRuOWlaM4ds9LMfLcE/jFgu/hFz/bAVtv/xSmz1yPH53zjkGrN2Eo5KUN42ERPdCYM+OQ2SuptarHktEmz3ofj02Y5heGNmqPRKtRDXn/CWXKT2VauqR6hSdO0rgN814mSw9HSk0I5L4s+nLLlGwFme1aRpPqnVo9eG5y254afSx2k4qrLzxtS9OFTcv4mG+mPcUiQ5vnQJOLtLHT9G36ynfvwJCDwiJFXk2dX5MLITOGct9YujEQ72URCfQgavLLtqNusyIFw4QLAVzLzNdZkUT0FiJaSkRLH3300U2sWkFBwWTCwgsux7IVCzA6dxH2uOvFeP4OT2HFzfPw3FPTccL+/4aV7z0A17xLO4yHH+Wo5Db02SDwRue487lM1uS4njjuIl7bmRDvPkViX6ln/Z6uugmaxTrqdy2HojhbZlwXWx6Zz0GWzlNbqdTMbFv+GUryw3iWN92033Ej2pMY4PTI5EoJ1/E+nIBwuq5FhuRrslGe0jRd3W+680WHREa/vl2T1V+NtoFNyObT+5YSr43iApbeUblNHKVfXkku/JebDCE+TaOLKNRf1kMirmKjfqTInJWmoM94EMDu4n2uC7PSrCGiLQDMAvBYj7xZmUT0IQA7AXhrTilmvgjARQAwOjpaRkFBwRSHPBZ5W9Sb5lYvXQq+7LXY57A12JvX4Oq//kO8+BPfGpiO/UbxvLShx4xzl7ny8cqM4KbXzUndjA6peNt8jk/O6qhO9BzfWu+9E9YUc4jVS8OokaXJAjLyKZIpP96Tkp5VFpMtKxdB7y2RrR7vtEGkizygWcsMNQwaeBJUL//yy8yMlM4zkPSP8AaQEQbomjQVSrwiZgPJMAuaGFjM0YjOyrfIhjXYR3rEa1ktesmizCErZUSE0UU2pIXjtIRYQFR5En3gWbJQUq5ZbPRwQr2nxRNrlhuT2hqkYCOxBMB+RLQXEW2JegP+IpVmEYA3uOc/BnCl27OyCMAZ7jSyvQDsh3ofS1YmEf05gN8D8FrmZCFnQUFBQWfsOTqKeX9/N6696WRUz07Dwvnfx/K/PhJLvvL5QavWFxTy0oZ+2wXG7K9GZD8RtX9UHkuONNd1vFmmoXJOT1mlbB1UadqTkk7AWwclt+vnCUG4Aya10IO5pylSTKRCuCRNwu9Dcd0t3UL/udYXCRqaFtnBrqeEfWvZ0r0apN46YbGbjBBNGtDynquoFd/UVdDVLoTDkBHp0/W7aNn1XqY/haFNnOQlUob0tGgFE+Jj1VsmEAMJlSA+UN9zV26lym3qEv9bUNA/uD0sbwfwfQArAHyDmW8noo8Q0aku2RcA7EBEqwC8C8DZLu/tAL4B4A7Ue1fexsxjOZlO1j8D2AXADUR0CxF9cJNUtKCgYLPF715wGe6b93/xyD074ZCjVuLIae/CLe86etBqbTTKsrE2WAZUP+VlZPZzyo1gX6mhbcEuJEU+h5PDqAnzOVLiEV88GcJDjI6P/2qZgYawCCP3//pvFeXz7ZDa6F5/btIJqtLUnMRz5XViW8e4jmKxmzeaORAiP+leyQRSBkNpkpYh3wlVbTe3dXDS2Sxm9mNdG+ROImt5l/udBJuLMaZ1yejakV3L05hJx1uMGAhfDlX/pn+rCumlkKLzc2SJEdo1cqNR7T2pXKaos1noxEqeeGGj/IK+g5m/C+C7KuyD4nkdgFdn8p4L4NwuMl14+T0uKCjoO/b/3ZMw9qKf4YazXoZjRxfjkPl3YulZx+PAD/w3tt1+x0Grt0Eonpcu6JOBENk9GZn9JC5taneZmJdy/N9AWvzRxalFq+WmE+Bx6SxykWoBUn+1TqlNG1MPWbqaeI8okF/KZbcXo3IyK/Y0pb6g0tKt0Ylj0tUsJ3MJKoQJdX3QQZNHCM9cNxLKdB1Uy2QjgfHsC8kNFN/pOViVz6ELW9Yy2kiLlud1zXlvtLNE180YZI1DRLedXELWhmagNswVYH+BqiQj3mNGqgydTtfJVWJDNtMVFBQUFEwJTJs2DQs/fQXufP7F+PXPZ+PIY5Zjy8v2xl3vPWjQqm0QJg15IaLdiegqIrqDiG4none68O2J6IdEdLf7O9uFExF92t1SvJyIjuqrQi0EQybpisa43Fgbozk2NRUkTZ22YnJVy9l8lszYvrRJjEzZa9Jc+khyl1NCpGhbWcROXk1G5KKv+JLKyCbNVDzUKlivoRxGuKCSjfaPKVQTz5K0wJGgcCxz4ruKLGi1o0XaxO49afG2DvflywaR7jrJXC20sOOkOeXlNM3FjS0yLb2temTeGcheUCn1NN/1YFflem5BI9TwDVNH2eksAiRJAYd/HFqV5pAejPqMayezLB0rKCgoKOiBw07/I8x+97246YYjMTJ9DHsf/ABuPOt3h+5OmElDXgCsB/BuZj4YwHEA3uZuHj4bwBXMvB+AK9w7UN9QvJ/7vAXA5za9yuNHL1uqV15rz4uHdSm6Zfu1Qab3E9Pay+GN+dR7k7+g0pKf6pNqLGWG8uK6W76fsGHe2sJfl5EQGMQT6hzJimubeHvc3S4EVpdbinbLsEpt/HoSA1GLkEAsT/P2qzTWZWQH6NVi5hrDqJ7oNoB1c2sPh2fzbYzZipPvemBaadCBxPRg/c1RDQYfbNpkxCXQHS7vaPHpm2eK86gyQr+LyCivUGRjJ0UKCgoKCqYEtpg+Hcd/5nr8ZP0n8cQj2+KYY27Ck5+dgzvecyiue+dL8cSFO2L9V7fBExfuiOvPPGXQ6pqYNOSFmR9i5pvd829Rb2acg/gG44sBnO6eTwPwFXch8Y0AtiOiXfum0MawjJxIQueLKruizXZpswfbytETx9bktJ6MJpU6Pb0rLiGdLCeV1pJuU52Y1Iinxi5MaU/ww8TT6d4p4HMEIlLnGBGlBFmitgSwPy7X9XU4SComTXUa0lpIdQTxEinEazLjb6HnWKaUtOQGT2eZiB2EXb5POg0jHeBthrpFQgwS05zaLAdxm7enRbdmuWFE1sQgavLGnUZWYxJl05uVohExyAt7KSgoKCjojmPe+FbMeOvP8JPFh2KbHZ/E/kfci2MOX4yla07FupetxtI1p+Log26alARm0pAXCSKaB+BIAIsB7MLMD7moh1GfxgJ0u/04vtDrMWt3cAZ9ns30RmwvmZG9k4nXE8/6OZdHm0uAXUZXpKQm9XDkzHIy3u3lYKmvxpKq74dps5a1noza2IwPJw2UJacdiVSaYDBxfEeL0qmRyAA1O+xthFxsdrrVv62dLkX0IgOmJ6AljbK58+OLEC+dyuhOQaypny43V29VRsMl28q2CjJ0i9JGY0gwIZmn+VfXV84zKkOod6dF/eSJkZcbCS0oKCgoKOiEmdtug9FPLcaNv3wfeAyYPnMM+824Aree88dY+Hefx+LVp2P+/ksHrWaCSfeLR0TbAvgvAGcy829knDs/f1yUgpkvYuZRZh7daYdp41AEG2fZWyI3QGaThRksPmBO7LNcflOegV7eFuvdp40nrG2CoeXkCYuUXH/kFgxu3uOFaizCGMCYiwt5/Xu9uGsMJNKQm5EPpEVOxvdqi0Ao0yGar5/wAugUwnZtlsUp54ulSFiCZhjcElpN02g38nf59gmbPCU/KrDjN5rkQ5uOFqlo89wYHhotL/+9bdwv7lWRlEyfRiSkKUu4bxp3nU7jP+LFk5t+zrQUFBQUFEwpLDzz/aBpwB3L9sUue/8Sxx27BDf/9e9g9KyPY8aspwetXoJJRV6IaDpq4vJVZvZXgf7CLwdzfx9x4V1uP95w9NseyC1H6ZlPr0nJY0P4VhePjXwP+dIrKRuDXEkP76mGgfzIXR4k7Dzv/dBGOSUyAvEIy7ikTJ/akpkY/EI6GzJ1vXqtMvJlRPar87rUW5i4/vh4Pdnuw/UJZyYx2QCG3K58Pq0VL1c7AWi9i6QXk7bS5AYti2JyJKaLHKvchIlx9CebX9a9+TeAlShJVHTj+WfBoqJDOwppKSgoKCjYeKxbOxOPbXU0rlv153juqek46phb8dhnjsW6tVsNWrUEk4a8EBGhvvBrBTN/UkTJG4zfAOAyEf5n7tSx4wCsFcvL+qBQX5LEiTtmiG0mqi8ezFxSaYm1SIdhdkVxvdSTZlJMOPzlkHJxVexPCeFpWfo2ep9KelDSDfNxiFqwFdmsUpf4KIG01paNrOkXKK6jrSM1+QgEMgx3gutbJ55BaI5WZph7a4QCzZ+4Oj5CRyK1ca1B0jW9zfEy8UZinbbrd6OXrU4qXQ/PUrRSS3+EjHg/i/8QGgasy5cFyfTZyvpEIrxJpmW5dI0o6t5+BQUFBQUFGdyychTH7nkp6NnfYvXe/4nfPDwLcw98GDOe/wyWvPO4QasXYdKQFwAnAHg9gJe424VvIaJXAPgogJcS0d0ATnbvQH3J1z0AVgH4FwB/1VdtJmJCs+PymK6reXQ+K0zaYm1qtdmFNumQxCP2TgTviScl1OigP7m3YNv6vPF5YzptsuzK5Za7UTRNsWR6ub5sC7Ke6X4YQZmEzWl1JKH2tngSI0kqk27DoHlkI6dVRrJ5e0PGcs7WbhsoRrHRMjpL37AWMC1fCmojGmmhzqtlfNA0cexMYZVfBpPxkmv7SA9XUJJOkcvmXRYsGKo9cxAKlKcQFBQUFBQUbAAWXnA5lq1YgNG5i7DPQ6djy62fwQN31tvMD59/B655z58MWMOASXOjLzNfj7yNfpKRngG8bcIU6jUTvQFgbdwYyN2WssFltsjsWo458SxuA7QOIvao7SyrJIriglx2MrV+qVTfnPqQrJCy3u3CjqNL+1Q+NcvB3BS7lKEn88eYnUxqPCWpXF0fGR8MVeJ6a0NVsWgHioSxeA4Gbu5rwgD7gyG4N2ON8rUYv74y4xxICSWMDO6WvPZwyesli6ja41tlpEMMBKAaqzBNKmB1tJUfcIPTkxBu/vKYOOO6kpnUOdWy76P6iFHqB1JBQUFBQcFGYOEFlzfP27rPDZ/9OA7jf8DC+d/Gbz61M35y/0L8zj9+KytjU2AyeV4mF1IXgZmkK5oJ8baZa5nWCmcGtVxSqXXrpZ8uJ/ZpxNB3FsqSrAVZlj4hnpowraenQ96Mt01qmT8sDPN6+uMC/E3z+jQwLZPAzusRaoREx6BTUyOqAKp66inr3ZAhBsa8RiR9N5yR1ZRq2+CCXHSagxdKU4645Ds9K6sn5PjNGdxpB+UJg/Xug7VDQslNLo3NeJhoRKVpPi0V9/mbDq9CnRmx96WR5V6kJybyyHhG64RzFeQWx0tBQUFBwQTg+Le9B0+/8ibcf8eu2GanJ3HswVdgyRc+M1CdCnnJYSKMAepm52WJh9z/0jFv7r0jj2psV2mzaa+El2xfUEnN//UKHZ2KEU4pC9QhJQe6XG+3V01ISFXTFhZ1sGVGwokbOXEbZUhXQ2Li/Tb6RDgg3Pki29Tvb2mK10Sr6fNUa32Xikkhe3W2vizSN2hUkPuf5ZHMkQcrXaObMNItmW3veiBp0qHkta6q6vCFJN+wqp5+2Z+/bsUU1HS4rzPidrBmNdgpjZHAbnWbNX3hwsuysYKCgoKCCcJOe+2Fvc5ZhesWvwgjIxXmb/E+LDtrFDf962BITCEvbRjPjHJHbOzy9CarIDBdiUiUH+1V0xPHWgYZNMXnDAcUxwiT+NaBwrK544OWpdfDU6G4a7ghAd6HkZr6+vjm1LtDEJPaEQWKU1k0orYxGUyhlo2HqXE2xLtsQl+mC+skibGOGbCcb/6d5EuohIlmGGkG2IaO34vGaZAMFEbi9miTqRu6lYjl47LfPb3vpn1wNmmYnU+PVRpZ8SbMosEiEyF0hpSR5PffyhF0WodaUFBQUFDQJ7z4U9/D7TP/CU/+ahvMP2YF5m/xPty/bMkm16OQlzZ0ZQQdEN3V0SLTnl/Poyth0aSlF3HR+cdXhqQ3HJlcmnxQlF7Lsqbg67B0NVOQQSJIltMmk8UWhFiLWKbWMQ53tMkZm/quG30CW0NRWi6pDOU0rCq5TkTrFjk4tCADbC0NswZistE8L7M3ARBGezZNkGUu8epCdox6RCSG0/iUqGhSYcj0DxWr5XBCcZ9+RClpXlIpHhv260VJYuTacKTrvxgFBQUFBQUbjiPPeAO2fOMK3PPTuRiZXmHHJafg2o+ejUd/9rNNpkMhL20YD4voIGq8MvtBYnrZml3DcrpZeaWXQ3pvUntWkwNS+oZ9IJIEaUpgaSspQhwe77hpdCTpayGVx9mHKlZPuGuZbQcZ2AQuD01IGKnnJdIlY2RHAr33pleHW5W24mUHO3s8dboIYXnOFsv0f7oQlhHxbqUVepJ6z+mQbG2xBn0jI2I9aX1UverB5yspG4/TTm7yU/gwMg1dUFBQUFAwMdh69mzs93/uwvW3/wlGthjDC+d+Bs+/+ij89LL/2iTlF/LShj56XgB03rCf5qs36rP7+JnYrhPRiTyRVq+WCSlaJ5qjMBkeT+JzJDdQFf8eLwWr0/pU4d3euh/nlJv80wsle8usbUJ94HGgH9YllRKRLSryBVnpcrOmXQjRBZUyY7SSixEvDVM8IDaMVXu1EhCK0+imZiNMZtWuNaFj2KrjmYCS1YNgmDq1DPTM1qAgr4qDTM8LEJc7ApsgeHLhZbBzEWmSoXVoNthT+gVjrl1higgmLKrieGAUFBQUFBRsYrz4vC9i9V7fwJO/3AZbzFyPne94J1Zde9WElztpjkqelGibGe4dbWfAODJxuheil7g0jBI9E7tIvbcZ5yGNfS6WtRdGkpNYpiUjEIRKhcU5Y704iQmkQZKOUE+tJ5ntGShREEruiGSCJGsU5alDGMBI3vvCejdLsF99Wq95o4NQUvMUYqerIhFJwVanW2msQWE1fGZchyiDbVhkxOe39t2kDDsvM+dFseJyREgMluAQcQSmEgpqoiULSrwxrtMqQrwOjpxM0akjMi8FReKNTYEIFf5SUFBQUDAAHHDSy7D+RQ/iJ39zIuYffRtmrTwdv/jR83Hvw3vj0ANux4xZT2Pd2pm4ZeVodBTzxqB4XnLos9elq8xo4pjq29lJLhORH5XHkhN8GVZcHOZV1CrL+C5VSie/U8O+zhdyW3Z2F73TWHvKPtf0UiardBzJTOvRRc/I/iSVlri2h92eimZyn8KEf6vxr4LDXg5FdDIiorBcx1tl5saw6vhot1CvPJo4WQN0PN9H3eH+Wa/965U3eebou5fo3HS873CRVm62ifYPVTHx0V4qX24TJz03vSpTUFBQUFAwsdhi+nSMXnAjblhTX7+4wx6/wlFHLcNNq1+BdS9bjaVrTsXRB92E6888pS/lFfKSAyE1SDaBzEp8tDG9oUVa8qxPm8r6OeSrPRsV/EHJ4a/3FoQ9K/IwZOkPqVChEoQmlh9SkTvkGFHpOnX9qSK5yOQKMtMWia/frFOPVZVzDNSGKKuPDKvtTyXXLytqZFeomMURyqEtm8OXRQclxCjpL3fiWS3a7uSk0zkdj3qs+kE0BqupwidaliXrbSgLJy8nE+pZ62TIZCGLGP4U6/SZEW/a1yeOCdlV5U9z4JAeiJ+13pFuiowQAWNVWib8IHAffydMI08Q86TcjflXoqCgoKCgYONx4ns/hscWXIPqOcK06Ywjd/kh7rnm+3jxeV/E4tWnY/7+S/tSTiEvvdBi2Y/HXIgmjnswkpydF11Q2cFY6UpKusjxf4O9FVMVLVs+p/ZnXDo3YdJPYnk0vMEf59UuBAajQk0IulxQ2VxSyXGMTONN8XpfjGsJyi98swmGoEPk+AD7o53tnor6UDkxknKdWvXQMORpFiq9BLmB4klLdlAi7XATHD8qomPqacnXMqz3HLnR773yeMJo1VFurrHajtXfhvjU3132HpSGjAhPjSQ5kRCrrK7nWxcUFBQUFEw85hw+HyPTGYsXH4Ntd3gCz/3oUwCA0bM+jhmznu5LGYW85NCDYGwI/Ixvl6LN8B4XVGr/QZt8K00vO5FVWhYpH6QPbQAAIABJREFU7Asqfcq83JCKozDpscjZx5qOSHIVdKREZvYW+6agnMzw/4bOuCl9LbPmD2kp+nJ58jIQTlYj3dqRsazaggSfdUWaLd7KZDn1aGhykR2UmTgy+jwi36IsS2ab/LZ3kd63R+5eJdXVsaxocJKpR2YVp/FFYZGf4jjvUfF7YCylSeXxwrhC3GkFBQUFBQWDx7q1M/HsNntj+Rbn47DzrgYALD3/PVi3dmZf5A81eSGiU4joLiJaRURnD1qfiUawrVMSk5vIHi8Ha7MbpYkkT89C81eSmA6ehCSVRZNir4k0zL2xr+9TSVNqGZnLIkWZ8qjnWCZFbyHakRgKF2bKMsIllYZDQJ00FtJ4PdO+hpcpl2mxitQZDEQ3w/tBZN374hN0tZN1F8rBSUC0Yb1NZltZ2msin+OBGV+lkpOVGZiUPMgskvhRXL70kLIohKVAkUcyPvke6SUrLXXt80xLQUFBQUHBBuKWlaM4ds9L8dvbf4xnn3gKV7/vTTh2z0txy8rRvsgfWvJCRNMAfBbAywEcDOC1RHRw/wpA3yczu17HkOyTyH66kZPEWDbCIj2VzK72Xmrcc5RW5kwnz2NS4KmDPKzYqre3iet8/r94Vl3KZFNmtkKRTCAmJLotmp4jdoay23ljdFCzGZ/inTVx2Sn5yunZii4drgmLlV57ANoIh7fbLYKh07bJlJ6QDR2Yys6PSIzVjgwlm1p0o8BRmo8LaAaN96xIcRTJEC4z91eRu+ZdKjIS4ls8sgUFBQUFBZsSCy+4HMtWLMDo3EWY8YM9MTp3EZatWNC308aG+ajkBQBWMfM9AEBElwA4DcAdGy15HIZh16QVuHWbSrDRuHUFe+qT4CTcyiWvZvTI2W8EcTRvC3T+eOmXLy+8SS+Gf/e7PUaASMdQeixT1hkif+xpCenle3iOZ6/ZWdosrMdavyAzmI1Bs9SW5UYfBjtPS3ocMsR7sGsTiznJlbSlsG0te1soFieUUV4QAcn6qi72sC5H2Nj5JZIU/cnK9JXyzgpD/6hsn8Ya2Covt7SJDjPbVegWpY9kZYRIV448OYCNMdCQISnOEyORvmzYLygoKCiYRJBEZVsAC/soe2g9LwDmAHhAvK9xYRuPCfC6NHI7FGkmS2Z3Y6FdVSb10WTI0kfrRLD1jdWLF3OxSiufDZO+KcH/P/VOaA1TWqNlkpAZiJBIQ9LHEqeg5P9aZ9+eIY9V5ziHIEVpIwCkVnE50U0JoglIvUel2k2lDO2Md8EQZ8IiA4k8Siva0eaOqtXWASMiXg9M/az1tuQ1n0wDeGLhn6Mvh1KWRDqtSHMKHQCu0Bw/Jxmq1MW7jzy5KSgoKCgomCIYZs9LJxDRWwC8xb0+MWO3e+8apD4Z7Ajgl4NWYiMx7HUYdv2BUofJgEHqv+eAyi0YEJYtW/ZLIlqtgoftO1T0nVgUfScWw6YvMDw6Z3/Thpm8PAhgd/E+14VFYOaLAFy0qZTaEBDRUmbuzy6mAWHY6zDs+gOlDpMBw65/wXCBmXfSYcM2Bou+E4ui78Ri2PQFhlNnjWFeNrYEwH5EtBcRbQngDACLBqxTQUFBQUFBQUFBQcEEYWg9L8y8nojeDuD7AKYB+CIz3z5gtQoKCgoKCgoKCgoKJghDS14AgJm/C+C7g9ajD5jUy9o6YtjrMOz6A6UOkwHDrn/B8GPYxmDRd2JR9J1YDJu+wHDqHIG4nFRTUFBQUFBQUFBQUDAEGOY9LwUFBQUFBQUFBQUFUwiFvGxiENHuRHQVEd1BRLcT0Ttd+PZE9EMiutv9nT1oXdtARNOI6CdE9G33vhcRLSaiVUT0dXeIwqQFEW1HRN8kojuJaAURHT9MfUBEZ7nxcxsRfY2IZkz2PiCiLxLRI0R0mwgz25xqfNrVZTkRHTU4zQMydfgHN46WE9H/JaLtRNx7XR3uIqLfG4zWBVMBRHSKG2eriOjsQeujMay/fcP2Wzdsv22T/bds2H63pspvVCEvmx7rAbybmQ8GcByAtxHRwQDOBnAFM+8H4Ar3PpnxTgArxPvHAJzPzPsCeBzAmweiVXd8CsDlzHwggCNQ12Uo+oCI5gD4XwBGmflQ1AdWnIHJ3wdfBnCKCsu1+csB7Oc+bwHwuU2kYy98GWkdfgjgUGY+HMBKAO8FAPe9PgPAIS7PhUQ0bdOpWjBV4MbVZ1F/bw4G8Fo3/iYThvW3b9h+64bmt21Ifsu+jOH63foypsBvVCEvmxjM/BAz3+yef4v6H5Y5AE4DcLFLdjGA0wejYW8Q0VwArwTwr+6dALwEwDddksmu/ywALwLwBQBg5meZ+dcYoj5AfdjGTCLaAsDWAB7CJO8DZr4WwK9UcK7NTwPwFa5xI4DtiGjXTaNpHlYdmPkHzLzevd6I+s4poK7DJcz8DDPfC2AVgAWbTNmCqYQFAFYx8z3M/CyAS1CPv0mDYfztG7bfuiH9bZvUv2XD9rs1VX6jCnkZIIhoHoAjASwGsAszP+SiHgawy4DU6oILALwHQOXedwDwa/HlWIP6R2myYi8AjwL4klsO8K9EtA2GpA+Y+UEAnwBwP+p/6NcCWIbh6gOPXJvPAfCASDcs9XkTgO+552GtQ8HwYajG2hD99g3bb91Q/bYN8W/ZMP9ubRa/UYW8DAhEtC2A/wJwJjP/RsZxfQTcpDwGjoheBeARZl42aF02AlsAOArA55j5SABPQrnRJ3kfzEY9Y7IXgN0AbIPUTTx0mMxt3gVE9H7US2O+OmhdCgomK4blt29If+uG6rdtc/gtm0zt2Qub029UIS8DABFNR/2P91eZ+Vsu+Bfevej+PjIo/XrgBACnEtF9qJcmvAT1GtvtnNsXqF2SDw5GvU5YA2ANMy92799E/Q/+sPTByQDuZeZHmfk5AN9C3S/D1AceuTZ/EMDuIt2krg8RvRHAqwC8jsP580NVh4KhxlCMtSH77RvG37ph+20b1t+yofvd2tx+owp52cRwa2a/AGAFM39SRC0C8Ab3/AYAl21q3bqAmd/LzHOZeR7qjV5XMvPrAFwF4I9dskmrPwAw88MAHiCiA1zQSQDuwJD0AWoX+3FEtLUbT17/oekDgVybLwLwZ+70luMArBVu+kkFIjoF9dKSU5n5KRG1CMAZRLQVEe2FehPnTYPQsWCzxxIA+7lTmrZE/W/zogHrFGHYfvuG8bduCH/bhvW3bKh+tzbL3yhmLp9N+AGwELWLcTmAW9znFajX0l4B4G4A/wNg+0Hr2qEuLwbwbfe8N+pBvwrAfwLYatD69dB9PoClrh8uBTB7mPoAwN8BuBPAbQD+DcBWk70PAHwN9brm51DPEL451+YACPXpST8D8FPUp9FM1jqsQr1u2H+f/1mkf7+rw10AXj5o/ctn8/2435GVbry9f9D6GPoN7W/fMP3WDdtv22T/LRu2362p8htFTvmCgoKCgoKCgoKCgoJJjbJsrKCgoKCgoKCgoKBgKFDIS0FBQUFBQUFBQUHBUKCQl4KCgoKCgoKCgoKCoUAhLwUFBQUFBQUFBQUFQ4FCXgoKCgoKCgoKCgoKhgKFvBQUFBQUFBQUFBQUDAUKeSkoKCgoKCgoKCgoGAoU8lJQ0ANEdDARvZGIdiei5w1an4KCgoKCgg1F+U0rGHYU8lJQ0BvTAbwD/4+9Ow+Pqjz/P/6+kxBCSAIIYV9FBBFEEFDcrdoWRVFxQ62AFhcUtZZa616Lv9pWbVGsgIobrUtdga9VqYhQsSogsolVRNkX2RKWEJLcvz9mMk1CtklmMpnk87quuTLPOc855xmWuXOf8yxwPrC75E4z62xm+8xscaQvbGaNzGyxmeWaWYtIn19EROodxTSJa0peRCrWAXgG+AYo6y7VKnc/OtIXdvd9wfNuiPS5RUSkXlJMk7im5EUkyMxmB+8ILTazHDO7GMDdZwKvuvvb7p5VifN0NrOVZvasmf3XzP5mZmeY2Udm9rWZDQynnoiISLgU06SuUvIiEuTuPwreEZoMTAdeK7JvU5inOwx4GOgRfF0GnAiMA+6oQj0REZFKU0yTuiop1g0QqU3M7EpgMDDM3fOrcarV7r40eM7lwPvu7ma2FOhchXoiIiJhUUyTukjJi0iQmV0EXA4MdfcD1Tzd/iLvC4qUCyj+/66y9URERCpNMU3qKv1DEgHMbAgwBhji7jmxbo+IiEhVKaZJXaYxLyIBzwHtgY+CgxuvjnWDREREqkgxTeosc/dYt0EkrplZZ2Cmu/eK4jW+A/q7+w/RuoaIiIhimtR2evIiUn35QJNoLuhFYFGxgkifX0REpATFNKnV9ORFRERERETigp68iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMQFJS8iIiIiIhIXlLyIiIiIiEhcUPIiIiIiIiJxQcmLiIiIiIjEBSUvIiIiIiISF5S8iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMQFJS8iIiIiIhIXlLyIiIiIiEhcUPIiIiIiIiJxQcmLiIiIiIjEBSUvIiIiIiISF5S8iIiIiIhIXFDyIiIiIiIicUHJi4iIiIiIxAUlLyIiIiIiEheUvIiIiIiISFxQ8iIiIiIiInFByYuIiIiIiMSFpFhd2MwaAe8AP3L3/FL2PwS87e6za7xxIhG2cOHClklJSU8BvdBNA4msAmBZXl7ez4855pgtsW5MfVVWTDOzZ4GZ7v6qmb0E3O3uX8eomSIRoZgmUVRhTItZ8gJcBbxeWuIS9BjwJKDkReJeUlLSU61btz4iMzNzR0JCgse6PVJ3FBQU2NatW3tu2rTpKeDcWLenHqsopgE8AdwGjK6ZJolEh2KaREtlYloss+XLgbcAzOzXZrbUzL4wswcB3P17oLmZtY5hG0UipVdmZmaWvuQl0hISEjwzM3MXgTugEjuXA29ZwEQz+8rM/gW0LFJnHnCGmcXyxqFIJCimSVRUJqbFJHkxs2TgUHf/zswGA0OBY929D/DHIlUXASfEoo0iEZagL3mJluC/LXXdiJGiMQ04H+gO9ASuBI4vrOfuBcA3QJ8YNFMkkhTTJGoqimmxCnYtgJ3B92cAz7j7XgB3316k3hagbQ23TUREJBxFY9rJwIvunu/uGzi467PimohINcQqedkHpFSiXkqwroiISG1V2ZgGimsiItUSk+TF3XcAiWaWAswCRplZKoCZHVKk6uHAshg0UaROuuiiizofcsghfbp163ZktM6TmJh4TI8ePXoedthhR3bv3r3nvffe2yo/v7wxzPGlvM83c+bM9PT09KN79OjRs0ePHj2PP/74wwFuvfXWto0aNeq7fv360FiH1NTUvoXv16xZkzRkyJBDO3To0OvII4884pRTTjlsyZIlDQGWLFnS8JRTTjmsU6dOvXr27HnEWWeddejatWs1ZqIWKRHT5gKXmFmimbUBTitRXXFNJEIU06ovHmNaLPtIvwec6O7vANOBBWa2GBgHYGYNgMOABbFrokjdctVVV/0wffr0CqdpnTlzZvqwYcM6V+U8DRs2LFi5cuWKb775Zvns2bP/O2vWrCbjxo2rM91kKvp8/fv3371y5coVK1euXDF//vz/Fm5v2rRp3vjx41uVPF9BQQHnnnvuYSeffHL22rVrly1fvvzLBx98cP2GDRsa7N27184555xu11577dbvv/9+2YoVK74cM2bM1k2bNil5qX3eA04E3gC+BlYAzwMfF1Yws1bAPnffFJMWitQximnVF48xLZbJy+PACAB3f9Dde7r70e5+R3D/EOBVd8+LWQtF6pjBgwfvzszMrPb/qcqep127dnlPPfXUd88880zLgoKC6l621gnn8w0fPnzb9OnTD9m8eXNi0e0zZ85MT0pK8ttuu21r4bZBgwbt++lPf7p7ypQph/Tr12/3ZZddtqtw35AhQ7IHDBiQE/EPI9X1ODDCA2509+7ufqa7n+XurwbrXAZMjmEbReoUxbTIipeYFrO7d+6+yMw+MLPEMubFTwIerul2iUTbVVdd1WHZsmWpkTxnr1699k6dOnVtJM8ZKT179szNz89n/fr1SR06dIjozYiBAwd2v+KKK3646aabtu3fv99OOumkw0eOHLl1zJgx27OzsxNOP/30bqNHj94yevToHdu2bUscPHjwYTfccMPmESNG7Ny4cWPS0KFDu95yyy2bLrvssl1r1qxJ6tixY9jtK/r5ABYsWJDWo0ePngBDhw7d/oc//GETQFpaWv7w4cN/ePDBB1v9+c9/3lB4/JIlSxr16dNnb2nnXrZsWaN+/fqVuk9ql0rENAgM6n+hJtslEm2KaZGjmFY5Me164O5Ty9n3j5psi4jAUUcd1SM3Nzdh7969Cbt27Uoq/MJ64IEH1g0bNiwr1u2LB/3799/9wQcffFPavttvv31Lnz59et5zzz3qNlQHlRfTgvufqam2iIhiWiTUxpimftMiNay23k0CWLJkyUoIPPZ95plnmr/22mvfVfecK1asSE5MTKRdu3YR7wL66aefflX4vmHDhl60nJ6eXlC03Lx58/yi5TZt2uQVLVflDhUU/3xffPFFuXVbtGiRf/7552//05/+FFq4sHfv3vvefPPNZqXVP/LII3Pmzp2bVpV2iYjUBMW0yFFMqxwtaiYiUbNhw4ak0aNHdxo1atSWhIS693VTlc935513bn7uuecy8/PzDeCcc87Jzs3NtYceeqhFYZ1PPvmk0TvvvJM2evTobQsXLkx76aWXmhTu++c//5n22WefVXZaXhERiRDFtIPFIqbVvT95ESnTOeec0+XEE0/ssXr16oatWrU66s9//nOLio8K7zz79+9PKJx28bTTTjv89NNPz3rooYc2lHe+eFLdz9emTZu8wYMH78jNzTWAhIQEpk+fvmr27NkZHTp06HXYYYcd+etf/7pdu3btDqSlpflbb731zeOPP96yU6dOvbp27Xrk448/3rJ169aayERE6j3FtOqLx5hm7h7u5xSRMH3xxRff9enT54dYt0Pqri+++KJFnz59Ose6HSJS9ymmSbSVF9P05EVEREREROKCkhcREREREYkLSl5ERERERCQuKHkRqRkFBQUFFutGSN0U/LdV95Z7FpHaSjFNoqaimKbkRaRmLNu6dWsTfdlLpBUUFNjWrVubAMti3RYRqTcU0yQqKhPTtEilSA3Iy8v7+aZNm57atGlTL3TTQCKrAFiWl5f381g3RETqB8U0iaIKY1q9myrZzKYCQ4At7t4rAufrCDwFdAAcOMvdv6vueUVERCqimCYi9U19zJafBX4awfM9D/zJ3Y8ABgJbInhuERGR8jyLYpqI1CP1Lnlx97nA9qLbzKyrmb1jZgvNbJ6Z9ajMucysJ5Dk7rOC597t7nsj32oREZGDKaaJSH1T75KXMkwBxrr7McA44K+VPO5wYKeZvW5mn5vZn8wsMWqtFBERqZhimojUWfV+wL6ZpQHHA/8wC02a0TC47wLg/lIOW+/uPyHw53cS0BdYA7wMjASejm6rRUREDqaYJiJ1Xb1PXgg8fdrp7keX3OHurwOvl3PsOmCxu38LYGZvAsehL3oREYkNxTQRqdPqfbcxd88CVpvZRQAW0KeSh38GNDWzzGD5R8CKKDRTRESkQoppIlLX1bvkxcxeBD4GupvZOjO7GrgcuNrMvgCWA0Mrcy53zyfQn/h9M1sKGPBkdFouIiJSnGKaiNQ39W6dFxERERERiU/17smLiIiIiIjEJyUvIiIiIiISF+rVbGMtWrTwzp07x7oZIiIRt3Dhwh/cPbPimlJXKKaJSF1VXkyrV8lL586dWbBgQaybISIScWb2fazbIDVLMU1E6qryYpq6jYmIiIiISFxQ8iIiIiIiInGhXnUbi2fuTlZWFtu3b2fbtm1s376dAwcOkJGRQXp6Ounp6aH3DRs2xMxi3WSRmMrPz2f37t1kZ2eTlZV10E8z45BDDuGQQw6hefPmofdJSfpalLrrwIEDvPPOO5x55pmkpKTEujkiImFTlK5h7s7evXvZtm1bKAmp7M/8/PxKXSMpKalYMlMyuSltX+ErLS2NtLS0Yu8bNGgQ5T+V2MnNzWXnzp3s2rWrzJ8lt2VlZZX6d1Hemkll7TMz0tPTadKkCU2bNqVJkyaVep+WllbnElR3JycnJ5RwlPWzrGSk5M89e/ZUqR0ZGRmhZKbkz9K2NW/enIyMjDr9/0TqBnfnhhtu4Mknn6R79+5cddVVDBo0iEMPPZQ2bdqQkKDOGCJS+yl5qcDq1av55ptv2Lt3L/v27Qu9ipbL21eynJ2dTW5ubpnXS01NLfZLUa9evYqVi75PSkoK/TJX9Be30t7v3LmTtWvXFtte2QVKk5OTiyUzJZObkvsaNmxIYmJiua+EhIQK6yQmJpKfn09ubi779+8nNze33PcV1cvKyjooEcnJySn3s5sZGRkZoaShadOmtGvXrsy78+UlFKXtKygoIDs7my1btvD111+H2nXgwIFy25WQkBBKaApfGRkZpKSkkJycXO1XUlIS+fn5xV55eXkVbiutfODAgVDyUV5isnv37kon6MnJyaEEvPBny5Yt6dq160Hbi74v+rOgoIAdO3aUebOg8P3q1avZtm0bO3bsKPf/TGJiIo0aNSr2Sk1NPWhbedsbNWpE9+7dOf744yv15yASDjOjd+/eHHPMMRQUFPDrX/86tC8pKYlmzZoV+3/ToEEDkpKSQj+Lvsr6zq7svoSEBBISEjCz0PvSXqXtN7PQ92nJ93VxW+GfQdE/S4D9+/eX+9q3bx9ZWVkHvbKzs8nJyWHfvn3s37+flJQUMjIyQrGuWbNmoVdaWhruTkFBQejl7qG/z5L/JpKSkor9XRX9u67Mq6wYmpycHPreTE1NJSUlpc7dwIs3Bw4cYN++fcX+jzZs2LBGboIoeanAM888w+9+97sy9yclJZX5C0nhL1RF9zdu3DiUhJR2V7emHuMXPgEqmswU/gJZ8pfMsrZt2bKl2LZ9+/bVSNvLk5iYSHJyMg0bNgz9Il74Pj09naZNm9KxY8diyUh5P9PT02v8bmThE4iST31KKxd9v379+mKJXGnJXaw0bty4WKKbnp5OZmYmXbp0Kbatsj8bNmxY45+hoKCAnTt3lprgZGdnl3rjoui27du3l3pDo2TCNmLECCUvEjVjx45l7NixAGzevJlFixbx/fffs2bNGnbs2BG64bV7925yc3PZu3dv6CZEXl5e6H3JGxnl3eSQ2Cq8CVf4SktLo1GjRrRo0YLk5GRycnLIyspiw4YN7Ny5kx07dtSKeF6Ror93paamlnoztei2lJQUGjRoEHolJycXK5e1raK69eGJ5YoVK5gxYwYLFy7k888/Z+PGjWX2bkhJSSn2d3P33Xdz5ZVXRrQ9Sl4qMGrUKH784x+Xebc0XruKmBmNGzemcePGtGnTJiLnLBxjkJubW2ZgC/eVlJR0UBJS8n1huUGDBqE7UvHMzEL/vlq3bh2x87o7eXl5ByU4pb0OHDhQ4d3UktvKqlN4Jy7eJSQkhG4yHHbYYRE7b+Hdq8KERuMQpKa0atWKwYMHR/06BQUFByU2pd3NL1quaB8EvtMKn4YW/VnXthV+5pIJYcOGDYu9UlJSipUbNWpERkYGjRs3DvspRU5ODjt27GDPnj2lPh0pmqyWfBX+feXn55f5d1raq6xE193Jzc0t9j1Z8ueePXvYs2cP2dnZbNq06aCbroX/ZqIhISEhKklR4atx48ah3hUZGRmlvo9G3HB33nzzTe6//34WL14MwKGHHkrfvn0555xzaNasGampqaF/q3l5eaEnekVv1LVs2TLibVPyUoEuXbrQpUuXWDcjLiQmJtKkSZNYN0PKYGbFvgyldij8O8nIyIh1U0SiovCX3ni92VcfpaSkROzGZqy5e6iL3IEDBzhw4EDoJl3RV1W3VeW4nJycStUrvBlckcKu1CWTm7Zt29KrVy+OOuooBg4cWOkkZ9WqVYwaNYp58+ZxxBFHMGHCBC666KJa829CyYuIiIiI1ElmRmpqKqmpqbFuSpUUjtktfO3atavYz7Ler1mzhnnz5jF58mQgkJCeeuqpXH755Zx//vll3sScNm0a119/PUlJSUyaNImrr7661s3CWbtaIyIiIiIiQKB7YGZmJpmZmWEf6+5s2LCBhQsXMnv2bN566y1+9rOfkZ6ezhVXXMG1115Lnz59AFi5ciW33XYbM2bM4KSTTmLatGl07Ngx0h8nIqyyM07VBf379/cFCxbEuhkiIhFnZgvdvX+s2yE1RzFNRMJRUFDAv//9b55++mleeeUVcnJy6N69O6mpqSxZsoTU1FTuuusubr311pg/bSkvpsX/KFoRERERESlXQkICJ598Ms899xzr169nwoQJdO/enVatWvHrX/+ab775httuuy3miUtFanfrREREREQkog455BBuuukmbrrpplg3JWx68iIiIiIiInFByYuIiEgUmVkHM/vAzFaY2XIzu7mUOmZmj5rZN2a2xMz6xaKtIiK1nbqNiYiIRFce8Et3X2Rm6cBCM5vl7iuK1BkMdAu+jgWeCP4UEZEiopa8VPKu0QF3XxqtNoiIiERCdWKau28ENgbfZ5vZl0A7oGjyMhR43gNTgP7HzJqaWZvgsSIiEhTNJy8fAp8BVk6dLkDnkhvNrAPwPNAKcGCKu08oUceACcBZwF5gpLsvikjLRUREiqtyTCvKzDoDfYFPSuxqB6wtUl4X3KbkRUSkiGgmL5+5+4/Kq2Bms8vYpUfsIiJSm1QnphXuTwNeA25x96yqNMLMrgGuAWrtAnIiItEUtQH7FX3Jl1fH3TcWPkVx92yg8BF7UaFH7O7+H6CpmbWpZrNFREQOUp2YBmARcjrMAAAgAElEQVRmDQgkLn9z99dLqbIe6FCk3D64reQ1prh7f3fvX5UVt0VE4l3UkpfgrCp3mVnXap6nM+E9YhcREYmo6sS0YDfnp4Ev3f2RMqpNB64Mzjp2HLBL411ERA4WzW5jw4FLgffMbBvwIvCyu2+o7An0iF1ERKKhogH4pYyhrE5MOwH4GbDUzBYHt90BdAxeaxLwNoExnN8QGMc5qpIfRUSkXola8uLuXwBfAL8J3kW6hMAMKquAv7v7k+UdH8lH7MAUgP79+3tVPouIiNQ5Dwd/pgD9CcQrA44CFgCDilauTkxz939T/kB/grOM3VC1jyIiUn9UKnkxswvK219GclF0/38IfMm/BfwZmAiU+UUfxiP2G83sJQID9fWIXUREKsXdTwMws9eBfoVTHJtZL+C+Co4NK6aJiEjkVPbJyznBny2B44HCGVVOA+YDZSYvZjaAwOP2YcBqYDLwjwqup0fsIiJSE7oXXZvF3ZeZ2RFlVa5iTBMRkQipVPLi7qMAzOw9oGfhE47g7F7PlnaMmf0/Ao/VtwMvASe4+7pKXk+P2EVEpCYsMbOngGnB8uXAkpKVqhPTREQkcsId89KhRNeszQSfhpQiB/ipu39dpZaJiIhE3yjgeuDmYHkugXXDSlJMExGpBcJNXt43s3cJzLICgbtQ/yqj7syKvuTNrF8pM7qIiIjUCHfPMbNJwNvu/lU5VRXTRERqgbCSF3e/0czOB04Obpri7m+UUf0ZMzuV8rt/PU1gDRcREZEaZ2bnAn8CkoEuZnY0cL+7n1uiqmKaiEgtUJWpkhcB2e7+LzNLNbN0d88upV4TYCHlf9FvrcL1RUREIuVeYCAwB8DdF5tZl1LqKaaJiNQCYSUvZjaawIKPhwBdCaxoPwk4vWRdd+8cgfaJiIhE0wF33xWYoT/koDXBFNNERGqHhDDr30BgGuMsgGD/35aRbpSIiEgNWW5mlwGJZtbNzB4jsASAiIjUQuEmL/vdPbewYGZJlHKHSkREJE6MBY4E9hOYjCYLuCWmLRIRkTKFO+blQzO7A2hkZmcCY4AZZVW2wHP49u6+thptFBERiQp33wvcGXyVSzFNRCT2wk1ebgeuBpYC1xJY5f6psiq7u5vZ20DvKrdQREQkSsxsBgf3INgFLAAmu3tO4UbFNBGR2At3quQC4Mngq7IWmdkAd/8srJaJiIhE37dAJsXXL8sGDicQ635Wor5imohIDIU729hSyr5DNd7dt5Vy2LHA5Wb2PbCHwDST7u5HVaG9IiIikXS8uw8oUp5hZp+5+wAzW15KfcU0EZEYCrfb2D+BfODvwfKlQCqwCXgWOKeUY35S1caJiIhEWZqZdXT3NQBm1hFIC+7LLaV+XMe022+/nfnz5zN37txYN0VEpErCTV7OcPd+RcpLzWyRu/czsytKO8DdvzezPsBJwU3z3P2LqjRWREQkwn4J/NvMVhF4itIFGGNmjYHnSlaO95h26KGHsnfv3lg3Q0SkysJNXhLNbKC7fwpgZgOAxOC+vNIOMLObgdHA68FN08xsirs/VpUGi4iIRIq7v21m3YAewU1fFRmk/5eS9eM9pl1zzTWxboKISLWEm7z8HJhqZmkE7lBlAT8P3qH6fRnHXA0c6+57AMzsD8DHQFx80YuISJ3XDegOpAB9zAx3f76MuoppIiIxFNYile7+mbv3Bo4G+rj7Ue7+qbvvcfdXyjjMCIyTKZQf3CYiIhJTZnYvgcTjMeA04I/AueUdQhzHtDVr1tC6dWueeqrMVQ5ERGq1cJ+8YGZnE1iNOCWwXhe4+/3lHPIM8ImZvREsnwc8He51RUREouBCoA/wubuPMrNWwLRy6sd1TOvQoQPnn38+Xbt2jXVTRESqJNypkicRmF3sNAKLU14IfFpO/QTgP8Ac4MTg5lHu/nlVGisiIhJh+9y9wMzyzCwD2AJ0KK1iVWOamU0FhgBb3L1XKftPBd4CVgc3vV7BTcEqMzOeeOKJaJxaRKRGhPvk5Xh3P8rMlrj7b83sYQLTJ5cqGBAed/e+wKJqtVRERCTyFphZUwILUi4EdhMYw3KQasS0Z4GJQFnjaCAwa9mQMM5ZLdu2bWPbtm0cfvjhNXVJEZGICGvMC1A4A8teM2sLHADaVHDM+2Y2zAr7mImIiNQCwbj0e3ff6e6TgDOBEe4+qpzDwo5p7j4X2F7N5kaMuzNo0CBuuOGGWDdFRCRs4T55mRG8Q/UnAnednMDdqvJcC9wK5JlZDv9bjTgj3MaKiIhEiru7mb0N9A6Wv6vEYdGKaYPM7AtgAzDO3ZdX83xlMjMmTJhA+/bto3UJEZGoqXTyEuzr+7677wReM7OZQIq776rgmJ+6+0fVb6qIiEjELTKzAe7+WUUVoxjTFgGd3H23mZ0FvElg+ubS2nANcA1Ax44dq3zBwYMHV/lYEZFYqnS3MXcvAB4vUt5fXuJS5JiJVW+eiIhIVB0LfGxmq8xsiZktNbMlpVWMVkxz9yx33x18/zbQwMxalFF3irv3d/f+mZmZ1brutm3bGDNmDPPmzavWeUREalK4Y16qMn5FY15ERKS2+gnQFfgRcA6BWcHOKad+xGOambUuPJ+ZDSQQm7dF6vxlSUlJYdasWSxapPl0RCR+hDvmpbCvb76Z7aNyfX2rcoyIiEjUufv3ZnYi0M3dnzGzTCCtnEPCjmlm9iJwKtDCzNYB9wINgtefRGDZgevNLA/YB1zq7l79T1e+xo0bs3TpUlJSUqJ9KRGRiAkreXH39HAvUJVjREREaoKZ3Qv0B7oTWICyAYFFKk8orX4V4+DwCvZPJEZdrAsTl0WLFvHVV18xfHi5TRURibmwuo1ZwBVmdnew3CH4iDuix4iIiNSQ84FzgT0A7r4BKDNBqasx7Xe/+x2//e1vOXDgQKybIiJSrnDHvPwVGARcFizvpsgg/ggeIyIiUhNyg120HMDMGldQv07GtOeff55Zs2bRoEED8vPzKSgoiHWTRERKFW7ycqy730BwsUp33wEkR+EYERGRmvCKmU0GmprZaOBflL9+WZ2Maenp6XTo0AGAO++8k7PPPltPYUSkVgp3wP4BM0vkf3eoMoGKbs+EfYyZTSUw48sWd+9Vyv5TgbeA1cFNr7v7/WF8DhEREdz9ITM7E8giMO7lHnefVc4hVYmDcaVjx47s3buXBg0aAJCVlUVGhubYEZHaIdzk5VHgDaClmT1AYIaUu6JwzLMEBi8+X06dee4+pDKNFhERKY2Z3Qq8XEHCUlRVYlpcGTNmTOj9999/T8+ePXnuuee48MILY9gqEakJ2dnZpKfX7rm2wuo25u5/A24Dfg9sBM5z939E4Zi5wPZw2iYiIlIF6cB7ZjbPzG40s1blVa5KTItnycnJXH311fTt2xeAuXPncvnll7Nhw4YYt0xEIu3jjz+mf//+7Nu3D6DWjn0L68mLmT0KvOTuYQ1OdPeVwMpwjqmEQWb2BbABGOfuy0urZGbXANdA4FG4iIhIIXf/LfBbMzsKuAT40MzWufsZ5RwTjZhWK7Vp04ZHH300VF67di3z5s2jSZMmALz66qt88cUX3HvvvSQlhduZQ0Rqkx9++IE2bdqQm5vLY489xjvvvMP7779PbVtnPtwB+wuBu8xslZk9ZGb9o9GoSlgEdHL3PsBjwJtlVXT3Ke7e3937Z2Zm1lgDRUQkrmwBNhFY2b5ljNtSa11++eV8//33NG4cmJTt008/5dVXXw0lLk899RTPPvtsDFsoIlV1zjnnMGfOHJo0aUJmZiYdOnRg7969sW7WQawqi/ia2SHAMOBSoKO7d4t4w8w6AzNLG7BfSt3vgP7u/kN59fr37+8LFiyISPtERGoTM1vo7rG6oRS3zGwMcDGQCfwDeMXdV8S2VZVTW2LagQMHQoP7Tz/9dBo1asTMmTMBmDp1Kn379g11OxOR2mndunW0bt261jxBLS+mhfvkpdBhQA+gE5V4dG5mnczsjOD7RmZWrZFAZtbags+wgouDJRC4WyYiIhKODsAt7n6ku99XmcQl0jEt3hUmLgD/+te/ePHFFwHIycnhpptuYtq0aQC4O++9916oP72I1B7nnXceQ4YcPA/Wd999x/r162PQorKFlbyY2R/N7GvgfmAZgacd51RwzGjgVWBycFN7yunmFTzmReBjoLuZrTOzq83sOjO7LljlQmBZcMzLo8ClXpVHSCIiUq+5+2/cfbGZtTSzjoWvsupXJabVJ2YWmqkoJSWFtWvXcttttwGwYsUKfvKTn/Dcc88BsHv3br7++msUvmvWokWLWLJkSag8efJk/vnPf4bKK1asICsrKxZNkxi6/fbbGTt2bLFt2dnZdO/enT//+c8xalXpwn3ysgoY5O4/dfdn3H1nJY65ATiBwBz6uPvXVNCf2N2Hu3sbd2/g7u3d/Wl3n+Tuk4L7JwbvkvVx9+PcfX6Yn0NERAQzOyd4U2418CHwHfDPcg4JO6bVZ82aNaNVq8AEbt26dePdd99l2LBhQOApzeGHH87HH38MBKZl/uCDD9i/f3/M2lsXbd26lU8++SRUHjZsGA8++GCoPH78eN5883/598knn8yvfvWrUPnBBx/k008/rZnGSsxceOGFnH322cW2paen88ILL3DjjTfGqFWlC6tjm7tPNrNmwa5aKUW2zy3nsP3unls4U4GZJRFc3EtERCTGxgPHAf9y975mdhpwRTn1FdOqKDk5mR//+Meh8sCBA5k0aRLHHHMMAK+88gq33XYbP/zwAw0bNuTdd99l3rx53HvvvTRo0IC8vLxa0x8/nlx88cVs2LCBlStXYmb8/e9/p+gERl9++SWJiYmh8lNPPUXbtm0B2LlzJ/fccw+JiYkMHDiQnJwcxowZw7XXXsuxxx5b459FomPx4sU0bdqUzp07H7Tv4osvrvkGVSDcbmM/B+YC7wK/Df68r4LDPjSzO4BGwVWM/wHMCL+pIiIiEXfA3bcBCWaW4O4fAOVNfKCYFiFt27bl2muvpWHDhgBcddVVvP/++zRv3hyAefPmMXny5FDC8stf/pKuXbuGjn/99df561//Gipv3769Vs6MVNNWr17N2LFj2bNnDwAPP/wwr776ami620GDBnHYYYeF6qelpdGoUaNQ+bzzzmPgwIEANG3alF27dnHttdeGzj1jxgw2bdoEwNdff82QIUP44osvauSzSXTccMMNXHFF2fds5s6dGxq7VhuE223sZmAA8L27nwb0BSrqOnY7sBVYClwLvO3ud4bbUBERkSjYaWZpBG7M/c3MJgB7yqmvmBYlzZs350c/+lGoPH78eDZt2hT6pfvUU09lxIgRof2vvPIKTzzxRKg8atQoBg0aFCrfeuutxfrwP//887z00kuh8ieffMLSpUtD5aysLHJyciL7oWpQ4dihDRs28NRTT4W6evXr14/evXtX+byNGjUiIyMDgCOOOIItW7aEBnZv3ryZb7/9luTkZABmzpxJnz59+Pbbb4HATHQa01T7Pf744/zhD38oc//EiRO57777as3fZbjJS4675wCYWcPgQl3dKzhmrLs/6e4XufuF7v6kmd1cpdaKiIhE1lBgL/AL4B0CYzvLm4hGMa0GFe3OdP7553PPPfeEyi+++GKxsRyjR4/m9ttvD5VLLqz3+OOPhyYLALj++uu5887/5Z3HH398sbvPRx11FD//+c9D5VNPPbVY/fPOO49HHnkkVB45cmSxNW5uvfVW3nrrrVD5gQce4MMPPwyVN2/eHJFfBvPy8hg6dCj33nsvACeccALr1q3jtNNOq/a5S2Nmob+XE088kRUrVnDEEUcAgUka2rVrF+p2NmHCBDp37kx2djYAubm5UWmTVM/RRx/NCSecUOb+v/zlLyxdurTWLFYZbvKyzsyaEphZZZaZvQV8X8ExI0rZNjLM64qIiEScu+9x9wJ3zwO2ufujwW5kZVFMqyXMjNTU1FB5yJAhDB8+PFR++OGHeeyxx0Ll+fPn8/rrr4fKU6dO5YEHHgiVx40bV+zJzvDhw4s9CerZsycdOnQodv2iv8x9+eWXbNy4MVR++eWXWbx4MRB4KnLXXXeFkpecnBxat24dun5BQQGvvvoqP/xQ7nJ1IXl5eSxcuBCApKQkWrZsSbNmzUL7C7ve1bQzzjiDt99+m5SUwLDonj17ct5554VmoLvhhhtCXdIATc5QCyxfvpx33nmHvLy8Muu0bdu2WNfCWKvSIpUAZnYK0AR4x90PSqXNbDhwGXAiMK/IrnSgwN1Pr9KFq6G2LOglIhJpWqSy+sxskbv3K2OfYppUS15eHnl5eaSkpJCTk8OUKVMYNGgQAwYMYNmyZfTu3Ztnn32WESNGsGXLFl544QUuueQS2rdvz+7du1m1ahVHHnkkSUlJ3HnnnTz88MOsWbOGli3jZ7K7F154gXXr1vGb3/wGCMxs1rJlS1599dUYt6z++tWvfsVjjz3Gnj17ij3pLOnNN9/knXfeYdKkSTXSrvJiWnWm7eju7lPK2T8f2Ai0AB4usj0bWFLqEbXURx99RHJyMgMGDADQjCciInVTeX0i6kxMk9hISkoK/e6QkpLCTTfdFNrXvXt3Pvnkk9CEBJ999hnjxo3jhBNOoH379rz77rtceOGFLF68mD59+vCzn/2MY489NmZPWKrqZz/7WbHyBRdcQIsWLYDA06ef/vSnXHvttaHptCX67rjjDi655JJyExeAb775hg8//JDdu3eTlpZWQ60rXXWevJR5h6q2qupdqhNPPJHk5GRmz54NBGbqyMzMZPr06QCMHTuWjh07huZFf/nll2nbti0nnXQSEOjX2qRJk9BjVBGRSNOTl+ozs4HuHjcLWujJS922ZcsWmjVrRoMGDdiwYQPz58/n1FNPDf2yX9ds2bKF8847j1tuuYWLL76Y7OxsFixYwKmnnlprxlrUZ/n5+RUmOJFUXkwLd8xLsfNW8uLZZpYVfOWYWb6ZxdXSrVOnTi3Wb3bEiBFcdNFFofK6devYvHlzqPyrX/2Kp59+OlTu169fsQV+RowYUWzKuY0bN9aaGRxEROoTM0s1s7vN7El3/9TMupnZkHLqhx3TzGyqmW0xs2Vl7Dcze9TMvjGzJWYWVzcGJTpatmxJgwYNgMCYgwsvvLDOJi4Q+Lzz588P/X718ssv86Mf/Yj//Oc/MW5Z3bV7924ef/xxvvvuuwrr1mTiUpHq9H0qbzaWEHdPL3xvgdR5KIEFweLG4YcfXqx83XXXFSu/8cYbxcoLFiwoloyMHz8+tPBPfn4+y5cvp1evXkBg5o0OHTpw1113cd9995GXl8fvfvc7zjvvPPr27RuFTyMiIkU8AywECufYXU9g7ZaZpVWuYkx7FpgIPF/G/sFAt+DrWOCJ4E+ReqfwKcvll19Oy5YtOe64wH+vxx57jAMHDvCLX/xCT2IiZMWKFdx444106NCh1AUqS3r99de54447WLBgQUy7joW7SGUrM3vazP7p7uvMrKeZXV3Z4z3gTeAnYbc0jrRs2ZJWrVqFyqNGjQpNWZiYmMiCBQtCXczy8/N57LHHQnOmr1+/nvHjx/P5558DsGbNGtq0aROabnHXrl3MmDGD7du31+RHEhGpq7q6+x+BAwDuvpdK9iyobExz97lAeV/aQ4Hng+f7D9DUzNpUqvUidVSjRo0499xzQ4nKv//9bz788EMlLhE0YMAA1q1bx+mnV26+kczMTLp37862beVNyBh94T55eZbAXarCic7/C7wMPF3WAWZ2QZFiAoGVi+N3FagIa9SoEddff32o3KlTJ/bu3UtBQQEQmF5x8ODBoekZP//8c84991zee+89zjzzTD799FN+8YtfMGnSJHr37s369etZtGgRp5xySmhRKRERKVOumTUCHMDMugJlzt8apZjWDlhbpLwuuG1j6dVF6p+XX345tIjo5s2bGTp0KI8++mixqZclPGZGu3btKl3/pJNOCo3njqVwx7y0cPdXgAKA4Lz4+RUcc06R108IzMwyNMzr1isNGzYMzafdqVMnpk6dSr9+gS7QAwcO5OOPP+bYYwM9CgqnXWzcuDEAc+bM4dxzzw3NNf/aa69x5JFHsm7dOgCWLVvGCy+8wN69e2v6Y4mI1Eb3ElicsoOZ/Q14H7itnPoxjWlmdo2ZLTCzBVu3bq2py4rUCoUTH61fv57du3fTtGnTGLcovk2aNCk0+VQ4srOzQzfZYyHc5GWPmTXnf3eojgN2lXeAu48q8hrt7g+4+5YqtrfeS01N5bjjjgs9VTn++ON5//33OfTQQwE455xz+OSTT+jSpQsATZo0oXv37qHFq2bMmMGVV14Z+kf30EMP0b59e/bs2QPA4sWLmTVrVkz/UYqI1BR3nwVcQGChyReB/u4+p5z60Yhp64EORcrtg9tKu/4Ud+/v7v0zMzOreVmR+NSvXz+WLl0aGpM8btw4HnnkkRi3Kv48/PDDYa+x8+6779K8efPQAqyxEG63sVuB6UBXM/sIyAQuLK2imT1GMMkpjbvfVNY+qbqMjIxij1DPOOMMzjjjjFD5lltuYdiwYaGBVj169OD8888PPbmZNGkSr7zySqg/41/+8he++eYbJk6cCMCOHTvIyMioVbNOiIhUlZmdD8x29/8Llpua2XnBsSxF60Uzpk0HbjSzlwgM1N/l7uoyJlKOwrEv+fn5rFq1Sjddq2DlypWhm9eV1a9fP26++eaYPvUKe50XM0sCuhMY0PiVux8oo96I8s7j7s+FdeEI0Jz4Fdu6dStr1qzhmGOOAeDXv/41y5cvZ+bMwMQ7Q4YMYdOmTRT+Ob7yyis0adKEn/ykTs/BIFLraZ2XqjGzxe5+dIltn7t73xLbqhzTzOxF4FQCC1xuJtBVrUHwuEnBWcsmAj8F9gKj3L3CYKWYJvI/hQuIL1u2jClTpvDAAw+Qnp5e8YFSK5UX08J68mJmicBZQOfgsT82M9z9oGd1Jb/IzSwtuH13ONeUmpWZmUnRrgh/+MMfiu2/6qqrio2X+e1vf0u3bt1Cycv5559Pv379uPvuu4H/fZmIiNRSpXWfPuhLqzoxzd2HV7DfgRsqOo+IlK3wd40PPviAl19+mXvuuUfJSznee+895syZw9133x0aZ11Z7s6yZcto3759aFhCTQp3zMsMAv2CmwPpRV5lMrNeZvY5sBxYYWYLzezIKrRVaoELLriAK664IlT+7LPPmDRpUqiclpZGamoqAAUFBbRr147/9//+X2j/mjVrtCCniNQmC8zsETPrGnw9QmDdl1IpponUbmPHjuW///0vLVq0wN15+OGH0eQWB1uwYAGTJk2iYcOGYR+7dOlSjjrqqIPWOawp4SYv7d39Ane/191/W/iq4JgpwK3u3sndOwK/BJ6sUmul1klNTaV169ah8gsvvMAvf/lLAHJychg5cmRosc1NmzbRqVOn0PiZffv2MWfOHM18JiKxNBbIJTDt/8sEpkku7ymIYppILdekSRMgsAjjb37zG15++eUYt6j2ueOOO9i6dSsJCeGmAtC7d2+ee+45zj777Ci0rGLh9uf5p5n92N3fC+OYxu7+QWHB3eeYWeMwrytxKDU1tVi3s5SUFJ544onQgp0LFizgtNNOY8aMGQwZMoS1a9cye/Zszj333Jg8hhSR+sfd9wC3h3GIYppInDjyyCNZunQphx12GACffvopmZmZoRlZ67uqTr5kZlx55ZURbk3lhZtu/Qd4w8z2mVmWmWWbWVYFx3xrZnebWefg6y7g26o1V+JZ06ZNue666+jevTsARx99NG+//XZowaNZs2YxcuTI0OPdjz76iN///vdkZVX0T0xEpGrMLNPM/mRmb5vZ7MJXOYcoponEke7du5OYmIi7c8011zBs2LB6331948aNXHzxxSxcWGYP2Qrt37+f1157jaVLl0awZZUTbvLyCDAISHX3DHdPd/eKlnG/isCUyq8HXy2C26SeS09PZ/DgwaHHuyNHjmT58uV069YNgPnz5zN+/HiSk5MBmDlzJlOmTKn3XzoiElF/A1YCXYDfAt8Bn5VTXzFNJA6ZGTNmzGDq1KmYGQcOHGDJkiWxblZMbNiwgUWLFpGTk1Plc+Tn53PFFVfw/PPPR7BllRPWVMlmNhc41d2rNJl2cLayxu4ek1vpmlYy/uzatSuU3Fx++eUsWrSIL7/8EoC//e1vNG3aNGZ9LkVqE02VXDXBP7djzGyJux8V3PaZuw+oxLGKaSJx6s9//jPjxo1j2bJlHHHEEbFuTlxatmwZPXr0iMqsshGbKpnAo/E5ZvZPAoMaAUqdKrnIxf8OXAfkE7iblWFmE9z9T2FeW+qhwsQFYNq0aaHFMwH++Mc/0qVLl1Dy8uSTT9K3b1/699fvbyJSaYVrlW00s7OBDcAhZVVWTBOpG0aNGkXDhg1DicuSJUvo2bOnlncIQ69evWJy3XC7ja0G3geSqeRUyUDP4F2p84B/Eng0/7MwryuCmdGiRYtQecGCBUyePBkIzGx28803849//AMIzEE+ceJEVq9eHZO2ikjcGG9mTQjMGjYOeAr4RTn1FdNE6oCmTZsyZswYALZv387JJ5/MzTffHONW1YzzzjsvNPNrdbg7f/zjH3n22Wer36gwhJVeVmJa5NI0MLMGBL7oJ7r7ATPToAWptgYNGtCqVSsgMJPZxo0byc3NBeCrr75i7NixpKam0qVLF7Kysvi///s/zj77bDIyKhqmJSL1hbvPDL7dBZxWiUMU00TqmGbNmjF16tTQU5itW7eydetWevbsGeOWRV5+fj65ubnk5+dX+1yF44i6du3KyJEjq9+4SqpU8mJmE939RjObARz0Je3u55Zz+GQCAyC/AOaaWSdA00dJxBXtYtajRw/WrFkTSlTee+89LrvsMubOnctJJ53Eli1b2L9/Px06dIhVc0WkFjCzQ4EJBCajKQA+Bn7h7mXNIKaYJlLHmG3WGb8AABgFSURBVBkXXHBBqPzggw8yceJE1q5dS8uWLWPYsshLTEzk7bffjtj5Zs2aRUpKSsTOVxmVGrBvZlnunmFmp5S2390/DOuiZknunhfOMZGgwY31V35+Pp988gnHHnssiYmJjB8/nnvuuYctW7bQokULdu/eTePGjTGzWDdVpEo0YL9qzOw/wOPAi8FNlwJj3f3YMM6hmCZSh/zwww/Mnj2biy++GIA33niD0047jaZNm8a4ZbWXu0f0d6jyYlplx7ysCjbsw9JeFVy8uZk9amaLzGyhmU0AmlRwzFQz22Jmy8rYb8FzfmNmS8ysXyU/h9RTiYmJHH/88aEFmYYPH84zzzwTGkMzZswYBgwYoGmYReqfVHd/wd3zgq9pQJm3EasS00QkvrRo0SKUuGzevJlLLrmE8ePHx7hVkXHppZdGvIvXhAkTGDhwYI39DlXZMS+ZZnZrWTvLm20MeAmYCwwLli8HXgbOKOeYZ4GJQFmTRw8GugVfxwJPBH+KVErXrl3p2rVrqHzWWWdxzDHHhO4aDB48mOOOO4577703Vk0UkZrxTzO7nUCscuAS4G0zOwTA3beXqF+VmCYicapVq1Z89tlntGnTBoAVK1awcOFCLr/8chISwp33KvZ69OgRWj8vUlq2bEmPHj3YvXs36ekVzeNVfZXtNraRQIJQ6vOg8gbym9kyd+9VYttSd+9dwTU7AzNLHhvcNxmY4+4vBstfEVh/ZmN559QjdqmM/Px8rrnmGvr27cuNN95IXl4ew4cP57rrruP000+PdfNESqVuY1VjZoVTEhYGw6Jxzt390BL1qxTTokExTaTm/fKXv+Tpp59m1apVNG/ePNbNqbMisc7LRne/v4rXf8/MLgVeCZYvBN6t4rkKtQPWFimvC24rN3kRqYzExESefvrpUHndunUsXryY7dsDN2A3btzIE088wc9//nM6duwYq2aKSDWY2QBgrbt3CZZHEHia8h1wXylPXApFI6aJSJz405/+xOjRo0OJy913382wYcM4+uijY9yyiu3bt4+UlJSoje9du3YtrVq1iviTnZIq+7wr7E9pZtlmlgWMBv4O5AZfLwHXhHu+qjKza8xsgZkt2Lp1a01dVuqQzp0789///pdhwwK9RBYuXMgDDzzAjh07AFi8eDGPPPIIu3btimUzRSQ8kwnEJMzsZOD3wHMEpkyeUrJybYlpIhJbCQkJ9OjRA4ANGzbw17/+ldmzZ8e4VZVz/fXX07t376iMTfn000/p1KkT06dPj/i5S6rsk5ew+8q4ezQ7va0His5x2z64rbR2TCEYiPr376/R2FIlZha6UzFkyBC2bdsWmoZ51qxZ3HHHHYwePRqAf/3rX6xdu5Yrr7wyNEGAiNQ6iUWerlwCTHH314DXzGxxycpRjmkiEofatm3LqlWraNSoERD4feD999/n3nvvDW2rTc4++2yOPvroqDx5OeaYY3jggQc49tjoD0Gv1JiXal/ErBmBwfWhGVzcfW4Fx3Sm7DEvZwM3AmcRGKj/qLsPrKgd6h8s0bJly5bQXPAjR45kzpw5rF69GjPjtddeIyUlhbPPPjvGrZS6TGNewhOczfJod88zs5XANYVxqbRxLSWODTumRYNimkjtcv/99zNt2jSWLFlS42uf1DWRmCq5Ohf/OYGZWd4Ffhv8eV8Fx7xIYKGw7ma2zsyuNrPrzOy6YJW3gW+Bb4AngTFRar5IpRRdxOqZZ55h/vz5oTsbDz74IBMmTAjtf+655/jss89qvI0iUsyLwIdm9hawD5gHYGaHEeg6VqqqxDQRqR/uueceFi1aREpKCnl5edx6662sXbu24gNrwNKlS2uke/vHH3/M66+/HtVrVLbbWHXcDAwA/uPup5lZD+D/lXeAuw+vYL8DN0SuiSKRY2a0bds2VP7oo48oHG+Vl5fHTTfdxIgRI0Lryjz44IMMHjw4Lgb7idQV7v6Amb0PtAHe8/91Q0gAxpZzaNgxTUTqj7S0NAC++OILJk+ezHHHHUeHDh0qOCq63J3hw4eTmZnJBx98ENVr/fGPf2TJkiUMHTo0al3nayJ5yXH3nOCYgYbuvtLMutfAdUVqheTkZNq1awdAUlISa9asYd++fQBs2rSJO++8k4yMDI4++mh27tzJyJEj+dWvfsUJJ5wQy2aL1Hnu/p9Stv23gsOqFNPM7KfABCAReMrdHyyxfyTwJ/43fnOiuz9Vmc8hIrXPMcccw7fffkurVq0AmD9/Pr17966RdVBK8/TTT7N///6oX+exxx4jIyMjqmN+ayJ5WWdmTYE3gVlmtgP4vgauK1IrNWnShCZNAgtyt2nThqysrNDMH+vXr2flypXs3bsXgAULFnDhhRfy4osvMmjQIPbs2UNubi7NmjWLWftF6rmwY5qZJQKPA2cSmNr/MzOb7u4rSlR92d1vjEajRaTmFSYue/bsYejQoZx55pn8/e9/r/F2mFmNDKQHaN++feh9QUFBVBbyjPqYF3c/3913uvt9wN3A08B50b6uSLxIS0sL3Yk58sgjWblyJWeeeSYADRo04Ljjjgs9uXnrrbc45JBDWLEi8DvPqlWrmDNnDrm5ubFpvEg9U8WYNhD4xt2/dffC6ZWHRrelIlJbNG7cmJdeeonf//73NX7tHTt2cPvtt7Nhw4Yau+aePXs45ZRTePjhh6Ny/qgnL0W5+4fuPj345S0iFejTpw8vvfRSaDHMfv368fvf/57DDz8cgGnTpnH66aeHkpf/+7//4w9/+AMFBQUxa7NIfRFGTCtrYeWShpnZEjN71cxi20leRCLq9NNPp1OnTrg748aN4+23366R63700Uc89NBDbNmypUauB4FkrUuXLsUmM4qkGk1eRKR6evTowe23305SUqDH54033sjs2bNDAwTfe+89Jk6cGHpMe+edd3LZZZeFjt++fbsSG5HaaQbQ2d2PAmYRWDDzIFp4WSS+7dmzhzlz5jB3bs3Mrj5kyBDWrFlT45MCPfvss4wYMSIq51byIhLHmjdvzimnnBIqT5gwga+++ipUbtSoUSixAbjooos49dRTQ+X33nuPZcuW1UhbReqxChdWdvdt7l44mvYp4JjSTuTuU9y9v7v3z8zMjEpjRSR60tLS+PDDD0NdyKJ5Q3HHjh0AxWZArQuUvIjUMampqaH3d911F1OmTAmVr7nmGsaM+d+ySKNHjy7WB/e2227jrbfeCpVrYhFbkXrgM6CbmXUxs2TgUmB60Qpm1qZI8Vzgyxpsn4jUoMaNG2NmrF27lv79+zNv3ryIX+Ojjz6iTZs2/O1vf4v4uWOtJmYbE5Fa4pJLLilWnj17Nvn5+UBgDZpXXnmFRo0aMXToUPLy8mjRogX33Xcft9xyCwUFBUybNo2TTz6Zzp07x6D1IvHJ3fPM7EYCC1omAlPdfbmZ3Q8scPfpwE1mdi6QB2wHRsaswSJSI1JSUkhOTo7KuY866ihuuukmzj333KicP5asPt1Z7d+/vy9YsCDWzRCp1fLz80lMTGT37t3cc889nHXWWZxxxhl8//33dO7cmcmTJ3PNNdewceNGLrzwQu6//35OP/109u3bx6pVq+jWrRsNGzaM9ceod8xsobv3j3U7pOYoponEP3fHzIDATcTCMa1V9fXXX9O2bVsaN24ciebFTHkxTd3GRKSYwoWl0tLSeOSRRzjjjDMAaNeuHStXruSCCy4AIDs7m+Tk5FCismjRInr37s3s2bMBWLlyJWPHjmX16tVAoO/t8uXLNa2ziIhIUGHiMm3aNPr37x8ap1IVWVlZnHDCCdxwww2Ral6tpORFRColKSmJ7t2706JFCwAOP/xwPvjgA0488cRQ+cUXX2TAgAFAYA2a559/PrSi7zvvvEOvXr1YtWoVAG+88QZ9+/Zl3bp1ACxcuJCHH36Y3bt3A7Bz5042b96scTciIlLntWvXjvbt21dpZfq1awMzsWdkZPCXv/yFe+65J9LNq1WUvIhIRGRmZnLppZeGkpuzzz6bnTt30r17dwBOPPFEXnrpJTp16gQEBiy2b9+ejIwMAObMmcO4ceNCM69MnjyZ1q1bs2fPHgCmTp3KmWeeSV5eHhAYjPj000+Hkptdu3aF6sZCdnZ2KPEC+Pbbb4stCvbJJ5/w9ddfh8rTp09n8eLFofKUKVP+f3v3H2RXXZ9x/P0Mq8RQ2CWlE5DsEDIyZijFJONYpMEhweaHMiEOGCjMJGnJGGhpFWSKuDsyZZxhQlttS8TSUQwqo5nEkIa0TUvQmYKMUaNIUBJYEotoEGzYCGKS3eTTP843t3eX3ezevffuOWfv85q5k/2eezj77Gfvng/fe35cnnjiifEJa2ZmhTJv3jy2bt3KaaedRn9//6jvQrZp0ybOOeccdu7cCcC1117LjBkzmhk1d568mFnTSKocEu/s7OTqq6+u3A1twYIFPPzww5XJyy233EJvby+nnnoqAAsXLuTee++t3Or52LFjHD16tHI+8Pr167n11lsr2+/q6qp8mCfA3XffzfLlyyvj7du3s3nz5sr4hRdeGDCZ2L59O9u2bauM165dy3333VcZ33jjjXR1dVXGc+fOZeXKlZXx7NmzueGGGyrjSy+9lO7u7sp4yZIlAz5teMWKFdx///2V8c0338xDDz00XCnNzKwF9PX1sXTp0gGnfu3Zs4f9+/cD8PrrrzN//nzWr18PZB9+2d3dPaD/TXS+25iZFYIk2tvbK+NZs2YN+FCtVatWsWrVqsp4zZo13HbbbZXxlVdeyYUXXlgZHzp0iDfeeKMyXrt2LXv37mXp0qUArF69mgMHDrBjxw4A7rrrLg4fPsyiRYsA2Lx5M5MnT2b16tUAHDlyhL6+vsr2Fi9ezNSpUyvj7u7uAeN77rmHM888szLesGHDgE8bfvzxx5kyZUplvG/fvtJfYGlmZvVpa2vj4osvZtKkSZVlc+bM4aabbmLNmjVMnjx5wFkG7e3t3HnnnXlEzY3vNmZmLaG3t5fXXnuNzs7sswIfe+wx+vv7mTdvHpCdM9zW1sZZZ511os0Ulu821nrc08wmvohgw4YNzJw5c8AbdBPdiXqaj7yYWUvo6Oigo6OjMr7kkksGPH98UmNmZlYUkli2bFneMQrF17yYmZmZmVkpePJiZmZmZmal4MmLmZmZmZmVQktdsC/pFeB/Bi0+A/hVDnHGynmby3mbr2yZy5L3nIj4vbxD2PgZpqeNRlle00Mpc3Yod35nz0eZs8PY8w/b01pq8jIUSd8v0x16nLe5nLf5ypa5bHnNRlLm13SZs0O58zt7PsqcHZqT36eNmZmZmZlZKXjyYmZmZmZmpeDJC/xL3gFq5LzN5bzNV7bMZctrNpIyv6bLnB3Knd/Z81Hm7NCE/C1/zYuZmZmZmZWDj7yYmZmZmVkptOzkRdIiSXsk9Uj6RN55BpPUKelbkn4i6ceSPpqWT5H0iKTn0r+n5521mqSTJP1Q0tY0PlfSjlTn9ZLemnfGapI6JG2UtFvSM5LeW+QaS7o5vR6elvQ1SZOKVGNJ90t6WdLTVcuGrKcy/5RyPyVpTkHy/m16PTwl6SFJHVXP3Z7y7pG0cLzzmtVrovW+IuxHBhttH5R0chr3pOen55x71P2waHWvpTcWoe6N6pWSVqT1n5O0IsfsNffNevZFLTl5kXQS8DlgMXA+8CeSzs831Zv0Ax+PiPOBi4C/SBk/ATwaEecBj6ZxkXwUeKZqvAb4bES8A3gVuD6XVMP7R2BbRMwE3kWWvZA1lnQ28FfAuyPiAuAk4BqKVeN1wKJBy4ar52LgvPT4CPD5ccpYbR1vzvsIcEFEXAg8C9wOkP7+rgF+P/0396Z9iVkpTNDeV4T9yGCj7YPXA6+m5Z9N6+Wpln5YmLqPoTcWoe7rqLNXSpoC3AH8IfAe4A6Nz5ut66izb9a7L2rJyQvZL7knIvZGxBHg68AVOWcaICL2R8QP0tevke1EzibL+UBa7QFgaT4J30zSNOCDwBfSWMB8YGNapWh524H3AV8EiIgjEdFLgWsMtAFvk9QGTAb2U6AaR8R/AwcGLR6unlcAX47Md4AOSWeNT9LMUHkj4r8ioj8NvwNMS19fAXw9Ig5HxD6gh2xfYlYWE7H35b4fqVZjH6z+mTYCl6X1x90Y+mGh6k5tvTH3ujeoVy4EHomIAxHxKtkEYvCkYlyyj6Fv1rUvatXJy9nAz6rGL6ZlhZQOac4GdgBTI2J/euolYGpOsYbyD8BfA8fS+HeB3qoXdNHqfC7wCvCldIj/C5JOoaA1joifA38HvEC2Yz4I7KTYNYbh61mGv8M/A/4jfV2GvGYnUqrX8Ch7X9F+plr6YCV7ev5gWj8PtfbDwtR9DL2xSHWvVmutC/M7GGQ0fbOu7K06eSkNSb8DfAP4WET8uvq5yG4VV4jbxUm6HHg5InbmnaUGbcAc4PMRMRv4DYNOEStYjU8ne2fiXODtwCmMw7ssjVSkeo5EUhfZKSwP5p3FrNWUpfdVK2kfPK5U/bDaROiNgxW11iMZr77ZqpOXnwOdVeNpaVmhSHoL2c77wYjYlBb/8vih2fTvy3nlG+SPgCWSfkp2+G8+2fmzHekwLhSvzi8CL0bEjjTeSLbzLmqN3w/si4hXIqIP2ERW9yLXGIavZ2H/DiWtBC4Hrov/v598YfOajVIpXsM19r4i/Uy19sFK9vR8O/C/4xm4Sq39sEh1r7U3Fqnu1WqtdZF+B7X2zbqyt+rk5XvAeelOFG8lu5hoS86ZBkjnX34ReCYiPlP11Bbg+B0lVgD/Ot7ZhhIRt0fEtIiYTlbPb0bEdcC3gKvSaoXJCxARLwE/k/TOtOgy4CcUtMZkh8QvkjQ5vT6O5y1sjZPh6rkFWJ7upHIRcLDqkHluJC0iO+1jSUS8UfXUFuAaZXeqOZfs4snv5pHRbIwmYu8rzH5kDH2w+me6Kq2fy7vtY+iHhak7tffGwtR9kFpr/Z/AAkmnp6NPC9KycTeGvlnfvigiWvIBfIDsjgjPA1155xki31yyQ4ZPAU+mxwfIzst8FHgO2A5MyTvrENkvBbamr2ekF2oPsAE4Oe98g7LOAr6f6rwZOL3INQb+BtgNPA18BTi5SDUGvkZ2znEf2Tt51w9XT0Bkdxt5HthFdqeYIuTtITsX9/jf3T9Xrd+V8u4BFuf9evDDj1ofE633FWE/MszPMWIfBCalcU96fkbOmUfdD4tW91p6YxHq3qheSXZ9SU96/GmO2Wvum/Xsi5Q2YGZmZmZmVmitetqYmZmZmZmVjCcvZmZmZmZWCp68mJmZmZlZKXjyYmZmZmZmpeDJi5mZmZmZlYInL2ZmZmZmVgqevJiZmZmZWSl48mI2AknnS1opqVPSqXnnMTMzawb3OysDT17MRvYW4C+BDwGvD35S0nRJv5X0ZKO/saS3SXpS0hFJZzR6+2Zm1pokTZN09aDFdfc79y1rNk9ezEbWCXwJ6AGGeyfq+YiY1ehvHBG/Tdv9RaO3bWZmLe0yYM6gZXX3O/ctazZPXswSSd9M7xY9KemQpGUAEbEV2BgR/x4Rvx7FdqZL2i1pnaRnJT0o6f2Svi3pOUnvqWU9MzOzRpI0F/gMcFXqeTNgTP3uFEn/JulHkp4e4kiOWcN58mKWRMT89G7RfcAW4BtVz71U4+beAfw9MDM9rgXmArcCnxzDemZmZg0REY8D3wOuiIhZEbG36rla+t0i4BcR8a6IuADY1uCoZm/iyYtZFUnLgcXAdRFxtI5N7YuIXRFxDPgx8GhEBLALmD6G9czMzBrpncDuOrexC/hjSWskXRIRBxuQy+yEPHkxSyR9GLgOWBYRfXVu7nDV18eqxseAtjGsZ2Zm1hDpQvqDEdFfz3Yi4lmy62Z2AZ+W9KlG5DM7Ef/PkRkg6XLgz4HLI+JQ3nnMzMyaaDoNuKBe0tuBAxHxVUm9wKp6t2k2Eh95Mcs8AEwDvp0uXrw+70BmZmZNshs4I11kf3Ed2/kD4Lvp1sl3AJ9uSDqzE1B2er2ZjZWk6cDWdLFis77HT4F3R8SvmvU9zMzMTqSWfue+Zc3iIy9m9TsKtDfzQyrJPjjsWKO3b2ZmVoMR+537ljWbj7yYmZmZmVkp+MiLmZmZmZmVgicvZmZmZmZWCp68mJmZmZlZKXjyYmZmZmZmpeDJi5mZmZmZlYInL2ZmZmZmVgqevJiZmZmZWSl48mJmZmZmZqXgyYuZmZmZmZXC/wG4Tc/tqcs+/gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -678,7 +678,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAHbCAYAAAADNu+6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOyde3wU5fX/P2d2kxBCCCSEEC5JuMklCBUQkVpRrAgKXot4qYooaJF6od79WWu9VCtoURRRLrX9WtQqCkWp4F2k3BUM4SJCuCdAgBAISXZ3zu+PmdmdnZ3dnQ2bC+G8X0Z2nzlznjPPzO4+nznP8wwxMwRBEARBEARBEBoTSn0HIAiCIAiCIAiCEG9E6AiCIAiCIAiC0OgQoSMIgiAIgiAIQqNDhI4gCIIgCIIgCI0OETqCIAiCIAiCIDQ6ROgIgiAIgiAIgtDocNd3AIIgCIIg1D5r1qxp7Xa7ZwLoBbnRKQhC40AFUOD1em/v16/ffuvGU0LoEFEygP8CGMLMPpvtiQA+07d76zo+QRAEQXCK6TftzwDuY+YRNjafARjFzIfjVa/b7Z7Zpk2bHpmZmYcVRZGH6AmCcMqjqiodOHCgZ3Fx8UwAl1u3nyp3dMYCmGcncgCAmasBfA5gdJ1GJZy2EFFLIsojojFE1LK+4zFDRAOI6H9E9A0RzSWihPqOSRCEIMYCmAfA9jdN558AJsS53l6ZmZlHReQIgtBYUBSFMzMzy6BlqkO313E8NeVGAPOJqBkRfU5Ea4noRyK6wmTzkW4nCHVBPwC/BzASwG/qORYru6BlN88HUATgisjmgiDUMTcCmK+/bk5EHxPRZiJ6nYiM3+UFAK6Pc72KiBxBEBob+vearaZp8EJHH5bWiZmLAFQCuIqZ+wK4EMAUIiLdtADA2fUTpSCEh4iYiI4T0TN1UR8z72PmE/rbamjjV41YviCiSiJaWhexCIIQjOU3DQAGQLtp0hNAZwBXA4A+ZC2JiDLqI05BEITGQIMXOgBaATiivyYAzxLRemhzctoByAIAfVhbNRGl1kuUwunGGgCvAPgPgPcd2Pdh5seshUT0FREdJqIkm21tiWh3TQMkolwAQ/UYAQDMPATAnTX1KQjCSWP+TQOAlcy8Tf8NmwvgPNO2/QDa1mVwgiAIjYlTQeicANBEf30jgEwA/Zj5FwBKTNsAIAla1kcQThoiSiWivxLRFiKqIqLd+tCSJGY+zMxFzPz3mk4WJqI8AL8CwLCZQAfgUmgTlmviuzm0Mf5jmNlTEx+CINQK5t80QPv8I8z7Jrp9o2Hnzp3uESNGdOrQoUOv/Pz8HoMHD+6yfv36pNWrVzcZOHDgGXl5eb1yc3N7PfDAA9mqqiWjX3755Qwi6vfRRx/5b2T+85//bEFE/ebMmdMSAObOnZvWo0ePnt26devZuXPn/BdeeKGVYTt58uRWHTt2zO/YsWP+mWee2ePTTz9tZmwbMGBAt2+++aZpHTbBacmoUaPy0tPT+3Tt2jW/tvy4XK5+3bt379mlS5f8bt269XziiSeyfL5I0+CEmhCpnRcuXJiampr6i+7du/fs3r17z0GDBp0BAJMmTWqbnJx81p49e/yLoDVt2vQs43W47wUAWL9+fdLgwYO75Obm9urZs2ePSy+9tNOuXbscL6bW4IWO3ol0EVETAGkA9jOzh4guBJBr2Onp/YPSqRPiyDUApgO4GUAigOHMfCczV8XJ/80AlgP4O4BbbLZfCuATACCiIiJ6gIjW68PgZhFRFhEtIqJyIvrMWBSBiNwA3gHwJDNvjlOsgiDEActvGgAMIKKO+tyc0QCWAoA+LLsNtHl2jQJVVXH55Zd3Of/888t37dpVsGHDho3PPffcnr179yZcddVVXR588MHioqKigoKCgsIVK1Y0e/755zONfbt27Xpi7ty56cb7d955J71bt24nAKCqqoruueee3IULF/60efPmwoKCgsKhQ4eWA5oAmjNnTuayZcs2b9++fcP06dN3jBkzpuPOnTtPiVVnGwtjx449uGDBgp+i2S1cuDD1mmuuyauJn6SkJHXTpk2FW7du3fDFF19sWbJkSdr9998vGdE4E62d+/fvf2zTpk2FmzZtKly2bNkWo7xFixbep59+OsvqL9L3QkVFBY0cObLrHXfccWDHjh0FhYWFGydMmHCguLi48QgdncXQ0vlvA+hPRD9C6yRuMtlcCODjeohNaKTo2ZrtAH4J4Edm/jHOVdwM7Zp+G8AlROT/AtBXSjsfwBKT/TUALgZwBrRFEBYBeBRallMBcLdudz2AcwA8rg+Nk9UIBaFhYfymAcAqANMAbASwHcCHenk/AMvr85EJM2bMSO/atWu+y+Xq17Vr1/wZM2akR98rPAsXLkx1u9384IMPHjDKzj333BMbN25s0r9//2NXX331UQBITU1Vp0+fvnPq1KnZht0555xz7Pvvv0+pqqqisrIypaioKCk/P78CAI4cOaJ4vV7KysryAkBycjL36dOnCgAmT57c5i9/+cvu7OxsLwCcd955Fddee23plClTWp/MsQixMXz48GOZmZknfS079dOuXTvvzJkzi+bMmdPayAwK8SeWdr7++utLFyxYkF5SUuIyl4f7Xhg2bNixN954I71v377HbrjhhjJj24gRI8rPPvtsx6O3ThWh8yqAW5j5IDOfy8xnMvOtzNzDNKHzBgAz6i9EoRFzJbRV/eIGEZ0HLSP5HjOvAfAztGvY4HwA65i53FT2CjOXMPMeAN8CWMHM3zNzJbTO0VkAwMz/ZOYMZr5A/3s3nrELgnDSGL9pXzHz+cx8GTN30zPGRm/hJgCv1VeAM2bMSH/qqafavfjiizsrKirWvvjiizufeuqpdicjdtavX5/cp0+fCmv5hg0bmvTt2zeoPD8/v6qiokI5dOiQAgBEhPPPP//ovHnzmv/rX/9qMWzYMP88p6ysLN/FF198JCcnp/fIkSM7Tp8+Pd0YSrN169bkX/7yl0G+zz777IqNGzcm1/Q4hFODnj17Vvt8PpiHSwnxx9rOq1evbmYMXXvooYfaGHbNmjXzXX/99Qefe+65oKxOuO8FACgoKEi2fjfEyilx8pl5LRF9SUSuCA8M/YiZt9jsLgg1hogyAQwCcE+cXd8CYDEzH9Tf/0sve0l/7x+2ZqLE9PqEzftmEAShwRPtN02ngJk/r9PATEyePDl7+vTpRSNHjiwHAP3fokmTJuXccccdh+ojphtvvPHQ3/72t6zy8nLX3/72t11PPvmkP+Pz7rvv7li5cuX+RYsWpb788sttPvvss+YffPBBUX3E2VAZO3Zsh4KCgrjOR+rVq1fF7Nmzd52sn969e3evrq5WKioqlLKyMnf37t17AsAzzzyz+5prrjl68pE2TgYMGNDtt7/97cG77767tKqqin71q1+dMWbMmAMTJkw4VF5erlx00UVdx40bt3/cuHGHS0tLXcOHD+9y1113ldxyyy1H9u3b577iiis633vvvcU33HBD2c6dO905OTknnXXr37//sS+//HKr3baHH354f58+fXr+8Y9/LD7ZepxySggdAGDm2RG2VQP4Rx2GI5w+jASwm5nXxsuh/lT0a6GN0zc+7EkAWhBRH2ZeB03oXB2vOgVBaFhE+k3Tt79ZV7HYsW3btiZDhw49Zi4bOnTosW3btjUJt080zjzzzBMfffRRyAOWe/bsWfntt98G3agpLCxMbNq0qZqenu4fD3PhhRdW3HnnncnJyclq7969Q+ZKDhgw4MSAAQNOjB8//lCXLl3OBFDUpUuXE999913Tyy+/3J8dX716ddMePXo0qkUeTnXWr1+/CdCGMc2ZMycjHiK1sLAw0eVyoV27dvU2/PN0wNzO69ati2jbqlUr31VXXXXohRde8A8dDfe9AAD5+fmV33zzzUndxD1lhI4g1BM3AvhaX/55BLSlYE/27tWV0J6Ifia059wYvAfgZiKaBiCJmTeeZD2CIAg1olOnTpWLFy9uZmR0AGDx4sXNOnXqVOOVTUeOHFn++OOP0+TJk1vdf//9BwFgxYoVyT179qx88cUXsz/66KPUK6+8svzYsWN011135fz+978Puev71FNP7U5OTg5aqa6srEz59ttvU0aMGFFu+Gzbtm01AEyaNKn40UcfbT9gwIAtbdq08S1btiz53XffzVi+fPkmq+/GTjwyL6cKe/fudY8bNy731ltv3a8op8osjdhZuXKlf8GhpKQkNr9PTU1Vze8zMjJ85vfZ2dle8/uaZHNq0s6PPfZYSf/+/Xv4fD4Cwn8vHD582DVu3LjSl156qc0777yTdt1115UBwKJFi5q1atXK63SejggdQbCBiIYDuAvAEADl0J7X9GwcRA6gDVGbw8w7LXVOA/AytAnJ1mFrgiAIdcb999+/73e/+10egKKhQ4ceW7x4cbPf/e53eY8//viemvpUFAULFiz4ecKECR2mTp3aJikpidu3b1/1yiuv7Jo3b97WiRMn5tx7770Jqqpi1KhRpY888sh+q49rr702ZBiTqqp44YUXsiZOnJjbpEkTtWnTpuqsWbO2A8CNN95Ytnv37sSBAwf2ICJOSUlRZ8+evT03N9e/QutVV13V1e12MwD07dv32KJFi7bV9BgFe0aOHNlx+fLlqYcPH3ZnZWX1fvjhh/fed999B6Pv6dxPVVWV0r17955er5dcLhePHj269IknniiJ5lOIjZNt5+zsbO/w4cMPz5o1KwuI/L3QrFkznj9//ta77767w0MPPdTB7XZzjx49TkyfPn1ntHoMiNm6hL8gCPGEiCoBVAF4mZkfd2D/CYBpzBx3sUNESwAMhJaZuije/gVBaLisW7euqE+fPo47lzNmzEifPHly9rZt25p06tSp8v77799XX/NzBEEQIrFu3bpWffr0ybOWS0ZHEGoZZo51TPtXAL6shVDAzBfXhl9BEBofd9xxxyERNoIgnMqI0BGEBgYz/7W+YxAEQRAEQTjVabwztARBEARBEARBOG0RoSMIgiAIpweqqqpU30EIgiDEE/17TbXbJkJHEARBEE4PCg4cOJAmYkcQhMaCqqp04MCBNAAFdttljo4gCIIgnAZ4vd7bi4uLZxYXF/eC3OgUBKFxoAIo8Hq9t9ttlOWlBUEQBEEQBEFodMgdHUEQBEEQBEEQGh0idARBEARBEARBaHSI0BEEQRAEQRAEodEhQkcQBEEQBEEQhEaHCB1BEARBEARBEBodInTiCBF1I6IfTH9HieheIhpFRBuISCWi/hH2H0ZEm4loKxE9bCrvSEQr9PJ3iSixPmMlog5E9CURFeq295i2/YmI9pj8XnqysZ5svPr+RUT0o77valN5OhEtIaKf9H9b1mes4fbVt8W9bSPE+gIRbSKi9UT0IRG1CLN/Q7hmo8bawK5Zp21bZ9esIAiCIDRGZHnpWoKIXAD2ADgHQFNo63zPAHA/M68OY78FwMUAdgNYBeB6Zi4kovcAzGPmd4jodQDrmHl6PcaaDSCbmdcSUSqANQCu1GP9E4BjzDw5XvGdbLz6PkUA+jPzQUv5XwEcYubn9I56S2Z+qD5jtduXmXfUdttaYu0G4Atm9hLR8wBgbZcGdM06ibUhXbNR49X3KUI9XLOCIAiC0FiQjE7tcRGAn5l5BzNvZObNUewHANjKzNuYuRrAOwCuICICMATA+7rdWwCurM9YmXkfM6/VX5cD2AigXZxjikSsbRuJK6C1KdAA2jbcvnGOKWp9zLyYmb16+XIA7W3sG8o1GzXWBnbNOmnbSNT2NSsIgiAIjQIROrXHdQDmxmDfDsAu0/vdelkGgCOmjpFRHk9ijdUPEeUBOAvAClPxRH1YzuxaGlZTk3gZwGIiWkNE403lWcy8T39dDCArHgGaqHHbhtm3Nts2XKxjASyyKW+I12y4WP00sGs2Urz1dc0KgiAIQqNAhE4toM9HuBzAv+s7lmicTKxE1AzABwDuZeajevF0AJ0B/ALAPgBT4hSqUWdN4z2PmfsCGA7gLiI632rA2jjOuI3lPMm2tdu31to2XKxE9BgAL4C341XXyXIysTaka9ZBvHV+zQqCIAhCY0KETu0wHMBaZi6JYZ89ADqY3rfXy0oBtCAit6U8XtQkVhBRArQO49vMPM8oZ+YSZvYxswrgTWjDm+JJjeJl5j36v/sBfGiKq0Sfv2HM49hf37GG27eW2zakPiIaA2AEgBvZfjJfg7lmHcTaoK5ZJ/HW0zUrCIIgCI0GETq1w/WIfbjSKgBd9dWqEqENdVmgd4K+BPAb3e4WAPPjFmkNYtXnYMwCsJGZX7Rsyza9vQpAwUlHGExN4k3RJ6CDiFIADDXFtQBamwINoG0j7VvLbRtUHxENA/AggMuZuSLMPg3imnUSa0O6Zh3GW1/XrCAIgiA0HphZ/uL4ByAF2h3tNFPZVdDmKVQBKAHwqV7eFsAnJrtLoa1i9TOAx0zlnQCsBLAV2vCXpPqMFcB50IbLrAfwg/53qb7tnwB+1LctgLbSVb22rd5+6/S/DZa2zQDwOYCfAHwGIL0BXAch+9Zm24aJdSu0+TfG+X29AV+zUWNtYNesk3jr/JqVP/mTP/mTP/lrbH+yvLQgCIIgCIIgCI0Od3QTQRAEQRBOddasWdPa7XbPBNALMnRdEITGgQqgwOv13t6vX7+QOasidARBEAThNMDtds9s06ZNj8zMzMOKoshwDkEQTnlUVaUDBw70LC4unglthdMg5I6OIAiCIJwe9MrMzDwqIkcQhMaCoiicmZlZBi1THbq9juMRBEEQBKF+UETkCILQ2NC/12w1jQgdQRAEQRBqna1btyacc845Z3Tu3Dm/S5cu+U899VRrY1tJSYlr0KBBXXNzc3sNGjSo64EDB1wAoKoqxowZ0yEnJ6fXGWec0XPp0qVN6+8IBCccPHjQNWzYsE4dO3bM79SpU/5nn32WAsg5bkyMGjUqLz09vU/Xrl3zzeU1OcevvPJKRm5ubq/c3Nxer7zySka8YxWh0wAgovH1HYNTJNba4VSKFTi14pVYBaFhkJCQgClTpuz++eefN6xatWrjrFmzWq9Zs6YJADzxxBPZF1xwQfmOHTsKLrjggvI//vGPbQDg3//+d9q2bduaFBUVFUyfPn3HhAkTcur3KIRojB8/vsPQoUOPbt++fUNhYWHhL37xi0pAznFjYuzYsQcXLFjwk7U81nNcUlLiev7559uuXLly4+rVqzc+//zzbQ1xFC9E6DQMTqXOjcRaO5xKsQKnVrwSqyA0AHJzcz3nnXdeBQC0bNlS7dy584mdO3cmAsB///vfFnfccUcpANxxxx2lixYtagkA8+fPb3HjjTeWKoqCiy666PjRo0fdO3bsSDD7PXr0qHLBBRd06datW8+uXbvmv/nmmy3r+tgEjdLSUteKFStS77333oMA0KRJE27VqpUPkHPcmBg+fPixzMxMr7U81nP80UcfpZ1//vlHs7KyfJmZmb7zzz//6Lx589KsfidMmNCuc+fO+WeccUbP8ePHt48lVll1TRAEQRCEOmXz5s2JhYWFTQcPHnwMAEpLS925ubkeAOjQoYOntLTUDQD79u1LyMvLqzb2y87Ort6xY0eCYQsA8+bNa96mTRvPV199tVX3Fdc7woJzNm/enJienu4dNWpUXmFhYdPevXsff/PNN3c1b95clXPc+In1HO/Zsyehffv2/vJ27dpV79mzJ0jkFhcXuz755JOW27ZtK1AUBQcPHozp3IvQiYDbdQaDKwAABIBAQdtJ/z+FlMFmi76Ng/cFgCSkI5XyOMgujJ/QbcGl4WKJ/t7qyd4+Fa3Qhjqz3fbQ/YMO1t7eppD8/+Pg/UL8BPyHxEpAK1c6OiXlBrer+SQElYWPO6g8pCzUZ8TyoP0D29o0aY6eadkctM1kS5HKybQtbF2h+0aKM9CmoeUA0C61KfpkZbBdmwTswrUzW+wsLih0u3k/u2smaB/LfjnpSeiX14yD2s3q18Ex2H84wsVqY+Pgw5mT7Ua//CbsxNb8PsKXRxQ7xg9rqz9l5mEQTivGjh3XoaCgIK5zIXr16lUxe/abu6LZlZWVKVdffXXn5557bld6erpq3a4oCsj2g25P3759Tzz22GMdfve737W74ooryoYNG3YsxtAbJZ8/+o8OpVv2xPUcZ5zRruKiZ28Oe469Xi9t3Lix6dSpU3cOGTLk+K233trh8ccfbzN16tS9Zjs5x/FBXX5nBz5SGNdzTC16VigDX4/6OY5GrOc4HBkZGb6kpCR19OjReSNGjDgyevToslj2F6ETAeYKNE/8PVwg7Y8VKHoPQdHLFP0PABSG/725nPzvAYUD+5NRBnOZ7oMD8sbYl8w+2VoesNW2BQSS2cawIzb2tbNFsK1RTjZlABST0DBea/+ypYxBFOhkGu8VAogCndhAuVHGIMUoZ8v+drY2ZfqfsQ8AkIKgcqut5sfehxFrJDsiS7liU+Zvk0AZlDD7++NCUBnC2SrwCwC7mAL1ILjcJlaYjtXqE3pdQfvb2gbqNJeb4zDHZcRh9gn93MJyDFZbGPFY7RSjvQJ1wVSuXRe68DFvM/m1qyvYTtuXbcsNv1oR++uC/8PFhk8FYDKV6x9CDrLV7RQK2AOAotlZ92f9mNiISfGhRdL2VhCEOqKqqoouu+yyzqNGjTp0yy23HDHKMzIyvMZd/B07diSkp6d7ASA7O9tTVFSUaNjt27cv0XynHwB69+5dtXbt2sIPPvgg7fHHH2/32WefHZ08efK+ujsqwSAvL686KyuresiQIccBYPTo0Yefe+65NoCc49OBWM9xu3btPF9//XWqUb5nz57EwYMHl5t9JiQk4Icffti4YMGC5u+//37L6dOnt16+fPkWpzGJ0BEEQRCE0wwnmZd4o6oqrrvuutwzzjij8k9/+lOJedsll1xyZMaMGRnPPvts8YwZMzKGDRt2BAAuv/zyI6+99lrrcePGHfryyy9TUlNTfdZOcFFRUULr1q29EyZMONSyZUvfrFmzRLwDiJR5qS1ycnK8bdq0qV63bl1Snz59qhYvXty8W7dulYCc49ogHpmXeBLrOb7yyivL/vznP7czFiD4+uuvm7/00ku7zT7LysqUY8eOKaNHjy779a9/faxz585nxhKTCB1BEARBEGqdJUuWNPvoo48yunbteqJ79+49AeDJJ5/cM3r06LInn3xy31VXXdU5Nze3Vbt27ao//PDDnwHg2muvLfv444/TcnNzeyUnJ6szZ84ssvpds2ZN8iOPPNJeURS43W5+7bXXdtTxoQkmXnnllZ033nhjp+rqasrJyamaO3duEQDIOW48jBw5suPy5ctTDx8+7M7Kyur98MMP773vvvsOxnqOs7KyfA888MDefv369QCABx98cG9WVpbPXNeRI0dcI0aM6FJVVUUA8NRTT8Uk7ohZnh0WDpfSnmXomgxds/NhxCpD12ToWiMYuraGmftDaPSsW7euqE+fPgfrOw5BEIR4s27dulZ9+vTJs5bL8tKCIAiCIAiCIDQ6ROgIgiAIgiAIgtDoEKEjCIIgCIIgCEKjQ4SOIAiCIAiCIAiNDhE6giAIgiAIgiA0OkToCIIgCIIgCILQ6BChIwiCIAhCneH1etGjR4+eF154YRejbNOmTYm9e/funpOT0+uyyy7rVFlZSQBw4sQJuuyyyzrl5OT06t27d/fNmzcnhvcsNASefPLJ1l26dMnv2rVr/siRIztWVFQQIOdYqB9E6AiCIAiCUGc8/fTTWV26dDlhLps0aVL7iRMnluzcubMgLS3NO3Xq1FYAMHXq1FZpaWnenTt3FkycOLFk0qRJ7esnasEJ27dvT3jjjTeyfvjhh8Kffvppg8/no5kzZ6YDco6F+kGEjiAIgiAIdcLPP/+c8Omnn6aNGzfO/+BSVVXxv//9L/XWW289DABjx44t/c9//tMCABYuXNhi7NixpQBw6623Hl62bFmqqqpBPnfs2JHQv3//bt27d+/ZtWvX/P/+97/N6vCQBAs+n4+OHz+ueDwenDhxQmnfvr1HzrFQX4jQEQRBEAShTrjrrrs6/PWvf92tKIHuR0lJiTs1NdWXkJAAAMjLy6suKSlJ1LclduzYsRoAEhIS0KxZM19JSYnb7HP27NnpF110UdmmTZsKN27cuOGcc86pqLsjEsx07NjRc9dddxV37Nixd+vWrfukpqb6rr766qNyjoX6wh3dRBAEQRCExsQLd/6jw/bCvU3j6bNjz7YVD7x+865w2+fOnZvWqlUr769+9auKhQsXpsar3oEDBx6/44478jwej/Kb3/zm8KBBg05E36vxc2Dasx2qd26L6zlOzOlUkTnx0bDn+MCBA66PP/64xdatW3/MyMjwXXbZZZ1ee+219KuuuuroydQr51ioKSJ0IqDynk+PVD3cqr7jaDBwjOWCIJwKHIxuIggnz9KlS5stWbKkRbt27dKqqqqU48ePK1dccUXHDz/8cHt5ebnL4/EgISEBRUVFiVlZWdUAkJWVVb19+/bEzp07ezweD44dO+bKysrymv0OHz782DfffLP5gw8+SBs7dmzHiRMnlkycOLG0fo7y9OY///lP85ycnKq2bdt6AeDKK688smzZsmZ33nnnITnHQn0gQicCzDysvmMQBEEQhHgTKfNSW7z66qt7Xn311T0AsHDhwtQpU6ZkzZ8/fzsADBw4sHzOnDktx48ff3j27NkZI0aMOAIAl1122ZHZs2dn/PrXvz4+Z86clueee265edgbAGzZsiWxU6dO1X/4wx8OVlVV0dq1a5sCOO07wZEyL7VFXl5e9dq1a5uVl5crKSkp6hdffJHar1+/CkVR5BwL9YIIHUEQBEEQ6pUpU6bsHj16dOenn366XX5+fsU999xzEADuueeeg9dcc03HnJycXmlpab533333Z+u+n376aerLL7/cxu12c9OmTX1vv/329ro/AgEAhgwZcnzkyJGHe/fu3cPtdiM/P79i0qRJBwA5x0L9QMwy7kgQBEEQGjvr1q0r6tOnjwxVFASh0bFu3bpWffr0ybOWy6prgiAIgiAIgiA0OkToCIIgCIIgCILQ6BChIwiCIAiCIAhCo0OEjiAIgiCcHudN/ZgAACAASURBVKiqqlJ9ByEIghBP9O811W6bCB1BEARBOD0oOHDgQJqIHUEQGguqqtKBAwfSABTYbZflpQVBEAThNMDr9d5eXFw8s7i4uBfkRqcgCI0DFUCB1+u93W6jLC8tCIIgCIIgCEKjQ+7oCIIgCIIgCILQ6BChIwiCIAiCIAhCo0OEjiAIgiAIgiAIjQ4ROoIgCIIgCIIgNDpE6AiCIAiCIAiC0OgQoSMIgiAIgiAIQqNDhI4gCIIgCIIgCI2OBi90iGg2Ee0nogJT2QtEtImI1hPRh0TUwrTtESLaSkSbiegSU/kwvWwrET1c18chCIIgCIIgCELd0eCFDoC/AxhmKVsCoBcz9wawBcAjAEBEPQFcByBf3+c1InIRkQvAqwCGA+gJ4HrdVhAEQRAEQRCERkiDFzrM/A2AQ5ayxczs1d8uB9Bef30FgHeYuYqZtwPYCmCA/reVmbcxczWAd3RbQRAEQRAEQRAaIe76DiAOjAXwrv66HTThY7BbLwOAXZbyc+ycEdF4AOMBICVJ6de9bZO4BcpaDTXZKZ4BOCCGGOMZn99f9Po55noj+KzJMTA52zUG38wO292hHTtsS7sYw4YdrW426qbQqsM4ZcMwSls5bp9otuzQrob1s2o5drZ9CYAcnSNbm7A+nce5vXrnQWbOdGQsNApatWrFeXl59R2GIAhC3FmzZo3tb9opLXSI6DEAXgBvx8snM78B4A0A6N8phVc829200VFU4X2rjKAkWiR//m1ROkFq+A5QqLHDjprPkuiL6FOJasM+w86BgFERsAvxGdhf9QFgl6MYg32Gj0H1AEB0nyoAWNvI7tgY8Hkp0EYRUBmAzxXWjxmfR3Hk02dtozA+vSoAb5i6LXh9BKjRfXp8AHwJUf0BgNejwP+5iHDOPdUKnJwfBuD1uCPYBESqp9rlb8tINyJUH8Hn0+oOFdnB+1RVJcD8ObcVHgz4fASfathZP8fkD93nA7zegE+jfrbYA4DHA6gc7JMtNsa224rH7wgNTGjM5OXlYfXq1fUdhiAIQtwhItvftFNW6BDRGAAjAFzE7O967AHQwWTWXi9DhPLwKAxq4okejMM756QCIIoumJzeiYcudNiBTyCo8xSpbvKRVn/UO+xw1OGGucMdcvvZ5r0Dn+SDpg6cHLf/eCK3KTlsRwV2nUf7tAgRaec8CqQCrFiOx3gdsjsD5DBQHwc7iCAOotkAALMSeh3Z2TNBVcOcR4u96tOEDkeJ0+tzhb+OgmIkeD1u0zkKb1tdlQAiJdjMLyTMwprgtYpBi1/DvrIyWOgEIE3Q6vi8AfFk65K169bnA6o8iaHuWKvTLLyqPaHtzkH2Whzs8PtFEARBEE5lTkmhQ0TDADwIYDAzV5g2LQDwLyJ6EUBbAF0BrITWO+lKRB2hCZzrANwQtSKFgeRIQifGzoIPjrMqTn2TN3oH3uwzav+YAfZGyb7oPsgQZBZhZq2CfAD7nPSwdZ9WoWN3fAq0XJ4DWDFlVSJkylgNjSc8occdcGSy8plsIvgmBVqMdicoRPwocBIokZ59Ciq0iREIL0osMbBKgBpFMLPWlmpI1stiowfj8xoiJ0I2FIC3mmD9ygrJrrDW8ddECew79KZroLo6AYEsEYX4NIaNqSrB61VCrh9r/SoTKisTwTZCh837MuDxEnymNgoVJNrx+FSg0mPK6Fj9mWKo8gI+XSCFHd7Juv4VBEEQhAbAloWrsPr1RTj88z607JyN/ncOxxkjzo6L7wYvdIhoLoALALQiot0AnoC2yloSgCWk3S1fzsx3MvMGInoPQCG0bvBdzOzT/UwE8Cm0Xs1sZt4QtXKFwc18eiAR7EJ6kxaMToUayY9pg6pnF6L4ZADwAeREFBnDtyJ0fvx4lRh8Wu6Gw9RXNx03eaM0ktGRZpuhXmZBYYgsLwBXtJSTOU6bIU9s8WmXTbHzx0aSJnx7atkugFykp/Js/JpeKwyoHOECMbepoiIkYxAmM8bhDobgv26ZA/EaG8NeJkzgcELH5MPrUcBeY+iUjYgJymy4EDbLYMqyeb0u07A5CsRpzawwUO0xf7UFzrN/vou+T1VVAlgNFjrBx6+VqSpQXW0d3hcQE4HhZITjFWZREj4D5PEo8PgCbWMVOoZPnw847jVndELnhxmvq3za/RSjzGpjo40EQRAEod7YsnAVlr80H0OeuQnZ/bpg35qt+OKxfwJAXMROgxc6zHy9TfGsCPbPAHjGpvwTAJ/EVLcL8KVaUw42huY+fKSeBEe7Z22ys/Nj51O1uatth6oLIrsOsfV90J1rO8jv07YDyxZbHwBvlEyFYa0CtnNvrKfBA/vb0mF9ctB2u3kTCkEf5maD5S4/G5maoPMT2Nd4pfoUPVUUIUZ/5zuk8QLXljkTQ0roSadAZx4g7T+yFBsvjDdk/EO6wLQKmOBOvZap0WyDOvAh16Amhrxeu68XCnntVV2wZu3YF2rv9bjhM8/7CcquBAs/T7U7aBI/I3AazOe+sjIRPtUUp74PW+o2hA4HiQzyZwHNh19+IiEoo+P3ZRU6PsDjU4IvIV2MmU+TTwXKg74eQi9yo6QaKjz+TF5A5pr//FtE7QiCIAj1zOrXF+HCp27E8ZIj+PCmKbh81t0Y8sxN+Obpd08PoVOfsAvwNndiaOoSReo8OEgOAdBFCSy9kjAVex3lXjSfalBvKaxL8voQdiUs83ureApnqwsd2zit+6oAG5kNm36/8V5xIfrQNUPU+CjIP2A+X5Yhd3ZCxyrcGIAncPc/bEaPAXIDsC4Y4fdpvtvPINXmuK27Gj3UkCFoRm/b1OEnDuqE2+koIyuhLWphnyEJmlivKmDV5bez9wn4VMUyHM401MsSp+p1m0SIEROFCAhPdQJUkyhhU0YukDXSyqqqEvziSzXOj83coooTCWB2G2+DfJob36cCVR5jMQLTamkmYWLEW17tAuAOysrYfUSqVcBjaj/ryEnV/68PR6D6BY7ZV8Bee1UJL6pN762nh7VmgGptXEEQBEGoY5gZh7buxcIH34TvQAV2V5XipQEX4K5H7sbhn/fFpQ4ROhFgBfCmOphsz8bckih2KkNx0rmw3n4Na0cgr41Pu/0Mf9GG2akMxUugoIkKYWx90FeSs7ExvSefPk8nXFxBPsmUqYkw1M4DkEu3ieQPADxK+KF75jhV6NmSKDEyaT1fo7MbZhEyqAApiubY70OPwVCypnLShUnISC9L/ea1Dfw6zT/qzWysBLW5MdrO2on3X2p2xxm0jQBV0VZzs9hbl0BmHwXP0fF35q1DubRJ/qpKQXahc0y0DJE/o8OGMAmuV4tFQXW12yRIjPLgeTXMhKrqRJMgo6C2MLeJCgWV1Yq+mEDokDWY3h/3KUFZGTuRwwA8YFTq4VuzNOZ9qqGiDD6wbhXwyUF2DOAEPPCQ6j9d5n3MdqqoHEEQBKGeYGbs/LYQy/82H2Dg8P5D6DluCC66bAAuKSnGn25/ENdlnxeXukToREJhsMNV1+wmH4fgAZiirxoFhj6J3VJowt9PVqLP5Qn4dCBemKAqpnk/4Tr9DMBlmn5i48+fdPAB8JgyOmHrhjZZRTEWDrAxNBeFjMsKE6+q+432bBWfoq9bjWBba0+VAbgNQRRBaCnQ1m425pnYqQmjHh/rAifSnXYyiSA2SrRmClYxWmZMVbWUktWfYWaYmuZaGcfAZmN/J56hqgxml8XGdFh61oTZpQ9xQ1C7BYZ+6f+q2opmQVkSU73mS0BVCaovsL/18jCEjKoCHm/gc8ZBgi1YvHl9pC3HzJYRqBYh42Wg0hu8vHOIrX48lRwsJOwEjwrAAx8q/ZIl2Na8bxW8KCOvKdkXsDCGqBn7HUc1qkkFk70oMoSPCg5M5hEEQRCEOmLPqp+w/KX52LdmK1LbZWADFaNnanu8+595eP/h8fjmnYW4oc2vsOjQD/hdHOoToRONSDrC7lZtNGxtLQLE9JbCmAUZRJqkY73jz6byMLGwNmvD3i5Me1BYf6Yd7bZby8y9zWg+rb1C89uQXjjZDPeyvieThjB3VCmkDQxdwSE9frOdaVibXZ3+eghMFBA51jY2t4MSXBbs1iTmzMIn6LhNzs3ZHUMtmU47EJoA9Os/ow38MVBQud+1qW2DKg45P0pwEku/pokMsURQCFBJEzjBCS8KyayYPRsT3ghaG2v7U+DQLUML/a44+DXpdflXiGdL8xntw8GnzOo7cIqjfmh0zNelsZ/xSTUPeWP9GAPizpCUbFniPMrtEUEQBEGIKyXri7B86gLsWlqIpplpGPzE9Shtwxhz0V/RL7UTLm3dDy92HYOf53yL8x/8DSZcPS0u9YrQiQD5CK6j4ZrIfKtZt4/m0AuQeRhTWOGCQP80Yj+IAQ8F55Kst4MNn6pTnwCqTff3I4kTFSHzT2zbwAvAR3A0n8djeAmTUTLMPQD7jNW6TD7s7KsI9quUWaL1uEwrcEWIEQT22GTw7Hyq+lLd5m0hcVJoW1oFQlC7kcVH+CuPTJ3wIGXi1zbakDlSzPf+A9kWAsPfsydAUbR8gF07s0kFuVw+uN2qSRmxSTgEZ1WYfUFzffw2HIgFDPhUgrbcXqA+ttlHwxu6QAIoaF0IZj2j4wtuXiMWNu3r9QFuouDskMmPIYaZAV+1tly22afdeiXVrCDJcl0GxWHYAXCZHmoa+AtkaYxtlfCi2pS5DV5YkE3/koMHiQmCIAjCyXFw8x6sfHkBtn22Dk1apOCXD12Dw+0V3P2Xp/DVV1/D7XZjwG8vxkMvPI+UlBQAwJdffoUePXrEpX4ROhEgL5C0365HZ3kfbd6LgQ/2z46065w78ckUfnnpcD6dPHPHAwTkU1BP0safadWoEBtjWBYAX5gHQlrvwOs+Q+wssIcAtly+tj4J7LH4DEEf8lSlwHbFN2vdDLAnmp3u0+OGdViYXcyqSmCvEqZKi0BkCtyhtwpb8/kly78c/N7IwpECkL5Ut5a50FRNIEsXHBX5KMw5N2IicALg1leLYJthgBy0l+pfEMCIIfQgAFJ88CWoARHi9xWcIWIG3C7VJJLs42UmuFxesOr21xk05cwUt6oSPJ6EgACxzPfxn28VSKpy+1emsy5UYMbjA6pVd+g5BAV9/D0+N1qEhh8injShkxi8vDQH25jfrIQgCIIg1A5Hikqw4pWF+Onj1UhMScKAu0fiSJ4b9/71L/jmm2/Rpk0bvPTSZLRo0QJTHpmJ2778M0p3lyOjfSo2HFmGx158OC5xiNCJAHkIrv0OmijcnXU7QUQ2nf2IPsOXM6CvEmbxSfb2YYePWavwEuyWX7b0TgPP0Ynm00fgSA+kDOm9RfepekgXJWGEm7mdfLpPa11Wn9UuOBEl2vLSwUIn7OnyuCOec+Ot6iMtmxStLRn+FdLstgUIZH0iSltifRlqPSfiF0UcKpBg+DOtyhcmRhBAFPzg2dCsje6PfPpKe6bYLcfEAEhR4DM/j8nalqZsS0KiGixWQkSwJn7cCW6opnPpN+PgOFSV4PO59XOttb/dcDmVgeTKBDBbRKuNKPP6CF6f6Rr2+w72We0FqjymleFgic1UjccHeI3PmmVFwZBLS+boCIIgCHGmfO8hrHr1Y2z88H9wJbrR9/ahONolCZMmP4/vvluGtm3b4uWXX8Ltt9+G5ORkfPHeKnRO7I/NVf/Dzyc2o3N1N3RO7I8sV+e4xCNCJxIqgY8mOep8OoGN5ZgR3AGpqT8AWmeFonfiAz240KE3tj4RpjMdYmfYRujs+2DKlDjwaV3y2c6nF2A49OmNYmPczfcC/iXUIgkiFdqDK8NlfEJ8Bnf4bfdRdQETbcEE/79RbBGsVSL6JEAhDryHJVyz7mAGSLXPIur7M2vTYhSXzx9HkBuLQNAEEYdkZgI+yf98GcW0xKD91DRteJrLHVgVL1w2BwBI8WiLK1j9mYUJtDUqmBOC9rW2rqo/T8jtrgLgDonPKp58PoBV47lAZCtGWNXsqj2JlroRNIfIwOs1FlcwfyaDhaN/v6MQBEEQhBqxZeEqrH59EQ7/vA8tO2fjzBsG4/C2YhS88y0A4MwbB+No1yb4w0svYPnyFWjfvj2mTZuK224biyZNmvj9/N/zn+CK2y7E6s/bIL0kH39f9AQO7ivDtD+8iyHXynN0ahX2Efh4YnRDP5EzOlpn7SSmAdt07DjkoZ1R/DvJ6JgzIJF8hhleZ3fnmEOGjkXyGb2NgkRJFJ8cTegYPj3OfDJDm09j6bja9tGtK5qFi5Ghzedxcn0wIfJQPEt10bJzMGVywmYD9c0Ka0uP212L/kyO1ulXlCgPSjV8Gg/dtD401GKvMkKPO0zWzacy7B6AGiJmWAlxYrUx3vp8xooeocLB7FJRXLCmS0KWoYZ2vGys8hcybymwr88HeDzmR4Da1a0dqya23KFziWziFKEjCIIg1IQtC1dh+UvzMeSZm9CySzaWPvsevv7zXBARelzzS5R3T8YDr0zBypWrkJOTg+nTp+HWW8cgKSnJ7+NY2Qkseus77NhUjB2bFqFd50zc/dJ1aNWuJbI7ZmLn5uK4xCpCJxJM4OrITRRTRsbSMXaGzVwMs0uHwiBoeF0UsaP6M09hYgmq20H9qp3QCbNv2LlJlrr9mZLosMMMlXY84R6KY7ELc1c/2FD/cxKnQ5/m0xgVf3ZGVyDm827dP/rp1l3pB0WhGRjzCD1SgnIpUQjOvoRkgHQUFSD2OfvMqRQsAsIIItX/pNIwoZnKXS4OzqiE6DhjuKCKcBeyddlqVVVN22zihC4aXeHbUjV9B2gPfw0sbq2Ge1jtSdxvEQRBEE5vVr++CHxeFv7frX9Avqc1mrgSkNCxJXDUg4c+nYbVz6xBXl4e3nhjOm655WYkJgaSBsU7SjHvtS+x6K3vUFFeiaSmibjh/ktwwwPDoOiPF/n+683I6dYmLrGK0IkEkzbHIpZdom08mYyOncuYhY5BhLktHBiyEx4bwRRVjEWPMyBKIscZmimJ4NNhG4Wd+2K182df4li3/9pwaOu0p+rAJ/nH2sVybepSOMwuREDIk2zDZXRIC4JZn/1iNzcIgEshhAgIu8wSoC1wgNCskPXzp9qdnzDZKiJANe/vsrfXnqkVZYidfg59PptMltVWBShkFRNLVkmvh9nI6kTPLguCIAhCrJw4dAyHftqLqi070Z/ao+OwPvghqRhPT5uC53NvQKn3EGbOnIGbb74JCQkJ/v0KV27D+698jm8/+h6kEC64uh9+c/dF2P3Tfsx+cj7yB3bGmYO64MdlWzFlwj8x9okr4hJvgxc6RDQbwAgA+5m5l16WDuBdAHkAigBcy8yHSesNTAVwKYAKAGOYea2+zy0A/p/u9mlmfstJ/REn0Zvtwr6xlten0HFWNxvzfqJ1hhx2lpxmVIBYRIkzOwCmZZudDOtzkIfwZ2rMhBFk+pZ66VfGUqnDpowkbszYPsc2nLbWxqTZdOYtPtUIB2QZluVjFcRks8phsKHLRaGpGTv3DPhAcDmZ6xXp2jRVr+qLk0QUHQxozzO1/x6y7uvzEVxBH90wQy+FeoeIukH7HTPoBOCPANoBGAltZfGfAdzKzEcs+3YA8A8AWdBO9xvMPLUu4hYE4fSkovQofpj9GX7819dgMFp0y0by0E54bNY0rFu3HgM79EKpehybN2/wCxyfT8XSBT/g/Vc+R+GKbUhJS8aoey7GlXcORuv26QCAM87KBQBM+8O72Lm5GDnd2mDsE1fEZX4OcAoIHQB/BzAN2pe6wcMAPmfm54joYf39QwCGA+iq/50DYDqAc3Rh9ASA/tB+FNYQ0QJmPhyxZiawz+FcCAeE3ImPR4dDdZJ9ia0uB/0+k8/oHb9I2Qq7u9fhfZKNndMMSDiCJ3fHln2J7M9v7+T8+NvcP97M4sP6wgFBO0UYDuf0fMNwY6T9IhyX3y5GnxHipEhPpbXspqgcGLIXAW0aUfg4zXNrFPOEnbA7GHOTHJxz0ofiRbnufF7A5fJGtAk3r8iRvVAvMPNmAL8AACJyAdgD4EMA3QA8wsxeInoewCPQft/MeAH8gZnXElEqtN+0JcxcWHdHIAjC6cDxA2X4fvYSFMz9Br4qDzoN64vJb03HED4Tb33+FlwdmmPWky/C9dU+TFszD08mJKCivBKL/rEMH772BfYVlSK7YytMnHwtht10LpKbNQmpY8i1Z8dN2Fhp8EKHmb8hojxL8RUALtBfvwXgK2g/BFcA+Adrj1VfTkQtiChbt13CzIcAgIiWABgGYG7EuhEmo1PDTkLEVbDCDMGJ7hRwcvc4QJRhMoBpdbgocTjNEvnFWBwFWchE82g+ow+Hc3w8sQxBNPd5IyUkYvFZo+GP9gIKACLphxBb86toOsdplshvF2WInemhptHiJSUWuzDzWEyxqax/JhxcIwqTs3NE2hyaKEet/d9urg2gD7c0WSvQluqOctwidBocFwH4mZl3ANhhKl8O4DdWY2beB2Cf/rqciDZCywSJ0BEEIS4cKzmC72ctRsE730L1eNFxeF9saHIAY+f8GcWHi9GieTvc1n4EmrKK0rmb0eScjqja2xwzHv0AH89ZiuNHK9Hr3M6449lrMGhEH7hc8UscxEKDFzphyNK/6AGgGFr6HtC+6HeZ7HbrZeHKI8MA++I41MzBnVa7IVER93HSOY+1U6NS9CxEyNyH8HEYU0BsHxga1X8Yn3bDzBwPGYwsdGpyjiLb1+QaiqYiHHqINHQryM7ZRRIQJeGFU8AuFp9OMjomn1HagIxhblGyOsb8oCBsdtF0k7FwQeTKXaZxe5EEhfb8orBbQ+O082n53SB9NcBoqzuK0GlwXAf7G29jETy8LQT9RuBZAFbEPSpBEE47jhUfxpo3P0Xhe0uh+lTkXtIHK9UdeGz2IygrK8Ovf30RLh90PTYuLkHrpwfjunFX4NUn/ol501eiNfrh/Wlf4PyrzsJvJl6EHmd3rO/DOWWFjh9mZiKHvTQHENF4AOMBoEOLJnEdugagBtmgKB2WWOaqOCSWeT/a4USxVR3a6bZwYBvLcdfKYgQOzyM7XGCgNuZv1Qq1MOEoWBSFFyaxiKeQpa3D+FQUgra+tQ3m6Tz+8CiqKGQXOQpT9S8yQCH1BVcOMIV5iK8FIraImFiyvUJ9QESJAC6HNkTNXP4YtCFqb0fYtxmADwDcy8y2C4abf9NycnLiFLUgCI2N8r2HsOaN/6Lw/WUAq2j361748mgh7n/9flRVVeHqq6/Cww8/gP79++O2/n/GyHvyMO1vMzDt4XfQQmmDxMRENG2WjNe/ewRZORn1fTh+TlWhU0JE2cy8Tx+atl8v3wOgg8muvV62B4Ghbkb5V3aOmfkNAG8AQN/2aRzXjA5Qw7v7+q5hC2MZEhY9YxHb0DUH+IWBA59+omeU4j0czuld7tiGmTkzi8k2ziv3xayvguzthYkmSpzNVaGQewk2Ptns0wGK1am9TyXc0DUEFzM0EREt68QMqBzZxsClAKq28kdwRVYU7YGlTlAY+lLukX1KRqdBMRzAWmYuMQqIaAy0RXgu0odih0BECdBEztvMPC+cc/NvWv/+/eXMC8JpjvVBn/nXnodDW/dh47xlAICsC7rj45LVuPvVSVAUBTff/Fs88MAf0K1bNwDA4f1HsWPTPhwrO4EW+7shKy8dV08YgotvOAe/yXuwQYkc4NQVOgsA3ALgOf3f+abyiUT0DrTFCMp0MfQpgGeJqKVuNxSWu2e2MEwZnVg66WYjq/VJdFLDdFjCjfKv8S+aqt1Bjs0hhTexEToRXTqYWxRpnkzk447W/g58xpx9qTufNdo3BleaKLEbt2gd61XjaII9m0bIkcuubrudoGVdQkxthu0xwal4irQonPnZPy6HQpQZUCzPl2L//4LrtV3FLoxPNjdamDiFBsX1MA1bI6JhAB4EMJiZK+x20FcYnQVgIzO/WCdRCoJwymN+0GfTzDQsfe7f+PaZ90AuBRnnd8H727/FB6++gZSUFNxzz+9x3333oH379gCATauL8OH0L/H1vLVgBtKzmuOev12Hc4adCZdLieuzb+JJgxc6RDQXWjamFRHthrZ62nMA3iOi26BN3LxWN/8E2tLSW6EtL30rADDzISJ6CsAq3e7PxsIEkWAmqF69I1LTfmVIpycOd+PZ+jLKMK9Y3Yd9YGgkbISI+WWUjnxs4lF/W6OsSuS78Y6yJVH8hZkFE7Y09r7nyV5D5hopTHms9QfvS/4JQg582k4mYpMfc1F0fyoDpD31NjouZ22pOqqbTP9Gj1O73ji0zOqVoS/RHh22ceJ/SKkzF0IdQkQpAC4GcIepeBqAJABL9CXXlzPznUTUFsBMZr4UwC8B3ATgRyL6Qd/vUWb+JJ7xqUXvgTf8FTi6GWjeDZT/IJS8a6PvKAhCg2T164vg65eB58c8ii5qBpiA6uxEeEuOY+KMh5CRkYEnn3wCEydOQHp6OqqrPFj89nJ8NOMrbF6zA8nNknDZ2POQlZOOBW98jeRmTcAq4/ulm+P67Jt40uCFDjNfH2bTRTa2DOCuMH5mA5gdc/2qK7pRTA7j7C6GTIDjkVHx9mkaNhcfh4htjo7D+h0fdyzt49DW8WUR/mZ9CKFDwuwdUiznx6HGCsyncerTwWBGh3YKEHiYZ7RdGKjRcLiIqUhnQypVG6FjB6mxjpTUslmSvWn4MPNxABmWsi5hbPdCu5EHZl6KWp7Upxa9B173JNC8C5B5LlBdBl51H3x7PwW1Pg9wp4ASUgF3CmD8624GJDQDXCkgxRXqT0STINQb+77fhkM/7QV+ArontEHCWVmYtuw9bPh6C17qeiumTn0Rt902FikpKdi/+xBmvTwfn8xZiiMHj6HDGVn4/ZTRuPiGc5DSPBkA0Cq7Ra09+yaeUJjhvwKAs9q24C9uu8CBpcM71zEPT3LgMu4+Oe5zQGKKMab57kdfnQAAIABJREFUNLH6jI/QcTAiKrDJ4QIHsQhgVinyOCqLz6iuY3kmkUNNoM0pcfiwXYeiVXsQZ3SfsVwbTuOMZV6W6nPYlg59qioh3HOoQmxjiDP/g1fXMHN/R8ZCo6B///68evVqR7a+j/uD+v0VvOL3gPeY9uerdF6ZqymQoIsf1QtU7gda9gKadQbYA+z7Csi9Gkq7S4EmrfW/ViBX6DM2rIhoEgRnMDN2fF2AtW9+ir2rt0IFozxbwb92foPC7VvQo0cPjDr3EriWluDxTW9h/dKf8OHrX+G7/6wDq4xzLz0TV955Afpe2D3qQ73rGyKy/U1r8Bmd+oSZ7J+jY4vDjqfT68Rphz8Gl86gGDMbDswanMALs59/WkcUv6fQvYF6CzVuGZ3A/rGsuhbZLuBTsZ1zZONNBSKvthb7tahGeVip4VNbPkSJYqsRsthcGJ+CEJWjm0GtfwXlig3+ItV7AvxeJpQrNwOecsB7XBNAnmNg7zHtvaUc3mPg3R8Dad21L+6DKzTR4zsBbJ0Fdeus4HoTmuuiJxNIygQ1yfS/pyaZUA9vALb9A3T2S0D2UNDB/0FdPgEqIGJHEHR8Hh9++ngV1s5ajENb9iK5dXOU9kzCoi8W4zLPAORXnIO2Kb9Cz8QMZBdU4YP9uzFuwNPYXrgXqekpGHX3r3H5uPPRJrdhLSxQE0ToRCPMg/pCiD5twekUg5hxPFfFbt+oBXEgDkLHPs6Tm0cUksyMZQiXEzie2bGaiS+HuUbnLmMauuaQiPcSajCDiaN9JgI+2enTUqPe7wj4IIfZMUW3juaT/K8dZIls46zJPCzhtKd5N+DAMiBrsL+ISleC07qDmoY+hi7S1embmwrlkq9BSoK/TK0+An6/PZShXwCVB8CVBzQBVLkfqDoArtwPlP8EPrAMqCoFwEFXL38zGnA3A6fkAMmtwasnQT1RDGqWC6TkAM3ygIQWDf4utCDEk+rjlSj893f44e+f4di+w2jSvgU2djiON778O5iADsndsVNNxbAeaagoPgQvH8f/tlVCre4Gl1vB/a/dhCHX9kdScmJ9H0rcEKETCdaHjcSVhv2ly4hy47omPuMtIJz4rMkx1FCQha+KLP/Gw2esRrEtehC3Ux9D39pxP8SUJYq+LICzIwlZhToMoSN8Iy2s4axuNo4nirmWpHGW0bFfKEPEjRA7lP8g1OUToAx8DcgcBBxYBnX5BFCfJ2J3ZieaDq/TRFOrAdr7CLuz6gOqDgJVB6B+MhA08A3tfcUu8PGdwLHtQPVh8PePBF/tCc39oodScoCUXFBKLtAsF0jJBe/9VIbACY2CE4eOYf3/fYn1b3+FqiPHkZCbhi+bFWHeF58jLS0Nk+6/DxMnTsC9F76E1UcLoKjn4eddBFKqcVw5jNatsvH6skcb5Y0BEToRoXC3SBsMzDHePY/W6UTwfeR4oC2BXQvdrTgPiavpMEBnuYModcfaOLHM6QHg9MiiWTmtNpCFcFx1dBTDWRRxEEt9DucchdpFCMDxWtDOzDR3zp5JFDyHSgSOUHOUvGuhAlBX/yEgBPo8USMhcLKiiRQXkJyl/aV1B6W0A3W6wb+dS76GumoSlKGfAceKgOM7wcd26P8WAeXbwMVfAt7jlk+FomV+2l0KuFPAax6A7/hOKN3uArmTYz5OQahrju4+iO/nfIaN738Hb6UHvtwUzC1ZgRVLCtClSxe88srfMGbMLTh+qAqf/H0Zjuw7gXR0xubvd2CXZwNSOvrw0GP34e8TljZKkQOI0InKyQwLqwtOdi2JulqLIu7zdGppiF283Pr9nPT1Y9rf9m59TB5s/MQWYjjTk2q3MDvbF2tyNNr3sePr2vZ5OzZmsdzvYGcBGEtwRzX11+0kUP//BOGkUfKuBeKQ4agr0USJLYH0lkD6WaEL1jMD1YeAYzuA4zugrp4EtBoAqB7g6E9A+c8Ae4F1T0Bd/ySQ0lETVWk99H+7a3G7m550ewhCrFgf8tnt8gEo3bwHPy1aAxBwJIswc+0nKNqyDxdcMBjzX56HS4ZeglVLCvHMTX/HqiWFAIDklCSMvu9iXH//MLgTtJURteffbK3Pw6tVROhEIe5CJ44ddGOYWTxDZGZtjkHIr0T86ogH4TJZJy/camOYWQ1OUK3NlWqALsM0T40vQcdZTj2HF++xms6SL4GEFwW9DYH8k/scruTW0D6sgoD6F01EBCRlaH8ZfYHvboZy3v/55w2xrxp8dBN40SBQ/sPA0U3gso3gvZ8C7A1kxpvlAWk9dOHTHdSiJ9D8DPDuj2UYnFArbFm4Cp899TY+OroWO3ftxCj1PByasheUoKAo7Rhmrl6A4z9V4/rrR2PevXejTcsOWPTWd7jpvj+itLgMrdq2wG8fHo7hNw/ChuXbMPvJ+eg1qAvOHNQFPy7b2mCffxMvROhEguF8aItDd/GUTcbN6Pj6pLj7rI1V1wJ+Hdg5doiIqdvYRVSMLXkKiJvY3cUvAMctGdOl5vwcOTv/HNOcIw5+GwjJYud0JRN/lshhCIJwKhIX0WSZN0SuRG2eT1p3KL0f85ux6gHKtwJlm8Blm4CyjZoA2rcEUD0BAUQuIP0soNvvQe6m4O//H3zMcHUcfXJxCqc9n/3lX1hWuhGjO5+HE+oh+JIIyw9uQW5iJuYUf4W7Hrobd4wfj6LvD+DdPy3F6s83gggYcEkv3Dv2PJwzNB8ut5a9ycrRVlE7FZ5/Ey9E6ERAG4ES52WR4+7NwdCXGH2ytQcWqwebfWMd+unkmJyMJ421bWKyj2qrx+f04J22USwxOpgcFctoJ6eHEms7xnaanFg7nZPkvGbnx+5cPBE4tK1O+isnjmMwBaGR4nTeECkJQFoPLYtjKtcE0DagbCPUVfcALfK1BRK2vKZtA4Dl4+Ar+hcovR8ooy+Q3g/UNLvuDlI4pTlxqBwb3v0WvoMVGOjqiGOHjmJxZQGW/LQa7XPaY0BiF6z8ZhW+eHcN7hv8Cg7vP4rMdi1x86OXYtjNg9C6fbqt3yHXnt2ohY0VEToRoQY+R6c2YguaRh43aizGIuxXI5dRl+uKw4SVhobjlSDifdajNxDpKzETHFwjMQlBDn4b1jD+y2TEKuqjfuJqKSMqCKczJztvSBNA3bS/726CcuF8kJIA9lUBZYXggyvBqycBJ4rBhZPB7NN2TM4G0vuCMvqB0s/SXjdpVXsHKpxyHNy0G+v+8QW2/GclfNVeVKle/O/Ibuze2QLNlF64suu5+OU5HVH27RqMO/tZKAph4PAzcdnY83D2xflwuRr2Ilp1jQidaDgVOg76SozYO0FRfca66poTnzhFulWnwFCvWiPWExSPpeFisNeyRLE5jtt1TBHfBsG1thqHsy8ER7VTbJmnU+USFoT6Jl7zhszD4MiVpA1h8xwFp/WA69IVYG8FcHg9uHQNcGgt+NBa8J6PA5/VlFxQRj9tEYWMflDLtwObp8l8n9MI1aei6Mv1WPfWF9izcgvgVrBB3YePipaiZ3IPDG3VA5fdfDaqEtKw/O2lqPxuPbYcVzDm8ZEYdvMgZLZtUd+H0GA5pYUOEd0H4HZov+0/ArgVQDaAdwBkAFgD4CZmriaiJAD/ANAPQCmA0cxcFLECBjjG5+hE7GTESUGE1HGyK69Z3tPJjVxrkDhduODUEI01GZrkIF0S0/NsnNQX7yOvhYGf9Xy+Hc4Oismrc5+CIMSDaMPgyN0UyBwIyhzo34ery4DDP4BL12rip3QNsHNe4JPZtD2QOwrUJEvm+zRiqspPoPD97/Dj/32Fo7sPwpMEfHZ0Hb7avx7df5GPP055Bh8/W4D15UeR/+FqpLr/P3vnHR9Hdf3t5+yuem+WZLkbXDDGBWNMLw4lhAB5IaaGFkIIkBBIQiA/QkggBAiBEAgtkBB6CwESCCWhF4Nt3Hu33CVZvWv3vH/MSlbZcmc1a0n2PB/PZ7Wzd849M7OS73fOuefCxEwfn1fvgMyRfOeGU/r6FPo9A1boiEgJ8CPgAFVtFJEXgXOAU4B7VfV5EXkY+C7wUPC1UlX3E5FzgDuBqH81zIWO2cBBYx789bTfsT6Nw6O1PVVyunfYmPSN2ZN7K+MptmsZybqt0sSGfZl72Zc30/EESEettV9DJ399pP2X0nHiZdfFxaW3xJIGJ4lZVgSo0yKq2lRO4K0jkaJj0eZdsP09tKnM+nD29whseRMGHYEMOtKaM7SXrnuyL1C5fgeLnnqP5a98TltjC2UJDby+9XNWte3grFln8cgh17Nh7i5e/9VCWppaSSzK5dXmFSze+Bmjx4/gxt9dzxNXftLXpzEgGLBCJ4gPSBGRViAV2AYcD7SvJPZ34BYsoXN68GeAl4EHREQ0ygjYfI6Os4sEmtp3/Lm5xuNJdxwm6GBXNBrOxYjpvMN4opZucjQqyO55LWa0N4xmtX+Lknabzv/Hbk8wR7XWnmbm+PjD5vV0xz8uLnsUJ9LgJDkfGrcg0+/H40mwHtDVrEJ3fIjOvRYt+ww2vWz9NUjKh4LDkUFHIoVHQvZExOmnai69ovvaNwd//2RSctJZ+OR7bPxwCeqBRY2lvLV9HslDczj/yu+S0zaMT19bxN9efoeMnFROvvAw5ryzlOv+fAFTjx3XYXtvX/vGSQas0FHVLSJyN7AJaATewUpVq1LVtmCzzUBJ8OcSoDR4bJuIVGOlt5WH7aPfFyMAQlVtihEJagHnh7wS47grxFEd4/ZYYmMGVdps2WtvHcGubSUae8wvvAN9g51qbuZGnbs+wZqFjvpoiSY74slu1bcBEW51cXGJlc7zfUSsYgdN29Gs8XhOmQN169Gdn8DOT9Cdn6CbX7f+KiRkw6DDkUFHIIOOgpxJiMdHYMOL7vo+fUDH2je1X/Hp6q84T2ey6/ptEFCavX7eq1jEpzUrOeaEE7jyjFvYNK+Sjx/YiMdbyqEnTeDEu2cw4+sTSUxK4L0X53DPVU/zkwe/s8+sfeMkA1boiEgOVpRmJFAFvASc7IDdy4HLAUrS01B/L0ZB3Q+Nx7QFJ59Gx20Mpb0enkm3wIRtAWo4r8R4/nyPUXyE2l4O27R35qG+hH1Fb/tWR8VTe7Uzxx+CSqCbtDep7x2JGKJOrihycRmQRJrvIyKQMQrJGAWjLwRA60s7CZ9P0S1vWr/5vnRrcdP6zchBN8GoC5FdcwnMvpIAuGInzvzvjuf4d/k8Lvn6mZyZMpXWuiZ2NleRID4eqf6Y0088hwkN57Dwg7X894OFjJ44hB/ccRbHzzqE3MLMLrbaS0HvS2vfOMmAFTrA14D1qloGICKvAEcA2SLiC0Z1hgBbgu23AEOBzSLiA7KwihJ0QVUfBR4FOKggX3sV0Qk1zrA16DWwb2MOuQkd7vWhIJMQb7qLBbvVsuysqmI0qOzRfc+D7EUMQoXSwh1oLhx3W+hN5CKWAbPVn+OZZmHtdfPRsF+JKCLCnLeRMDG8ZuFyHnvYM+k3nF1X8Li4DBTszveRtKHIyHNh5LkAaOM2dOenlvBZ+yQEmtF5P4WFv0ILj0WGfANd/Ftnqs259MDf0sa6/y6grayeU3wTKHtnOVsbYUltLbsyazknuYTpSd9mxWvVZBcEOP37x3LS+TMYfdCQiHb39rVv6j5+l8qX/07rlo0klAwn56yLSD/qBEdsD2ShswmYISKpWKlrM4G5wPvAWViV1y4CXgu2fz34/vPg5+9Fm58DoOrk414bAw7t8UOYdr1XOqF66P34tLNVe2XcumhLg2JhRjbVxJgTdO3D/PaYn7Q13z2aVe3ov8N+WLPRIgam83zsYnfeiYLH4e+mmAjAYPsw7XruDiCeCGmX3X2IinV/eieeXFxcBgq9me8jKcXI8LNg+Fn41zyOnLEGqfgS3f4BuvUddMsbAPj/PRUpPgEZfCIMOtIqi+0SM9Wbylj64icseeljWqoaCKiyob6Vd+oXMWnyDFK3DiWtvJpanzLpqDGceP4MDvnaAfgSvH3tep9T9/G77Hr2UQquvIHk8ZNoWr6QsgfvAHBE7AxYoaOqX4jIy8BXQBswHysS8wbwvIjcFtz3ePCQx4GnRGQNsAurQluUTpydoxPbmjfxGmRGJsZn+J2O7HqiYkePGYgSUx2424GePvVsYg16e5fC1+28Y7qSUQonGF1Iw+ILYKNdmLbhohKxRiDCCgo1jGCa+mi1Nfud1B4+hj9MEY+ToiQQ3Z6xCGvHjfK4uOz1ZI5FalchQ09Hhp6OqqLrn0UX/BJSh6Cr/4KufAC8qdacoMEnWlv6iL72fEDgb/Wz/n8LWPTsh2z9YhWKsrhuE19Ur2VC8pFMzk3koKZD2DmnjSkTUyhJamDuznqefvp7fe26IzgVhdn14t/IPusitLmZmndfI+P4Uym48gbKH7t33xY6AKr6K+BX3XavA6aHaNsEfNuWfUADMbsXghiGvVFzyayn3H1Lt+hNlBZmtsyGs47N+W4PeMQ6kHacSF708SDV9KLbuTmmYsOuvSh2xXiOTuSoTg+bJucjpjbNhZN5ipsrdFxc9nZCzffRxbcjU+/AM2IW2lYPOz62Ij3b3kG3/sf6y5A5plu0JxnALWwQpKa0nCUvfsyiFz6irbqRKn8Dn1euojwplWH5kyisG8WOxgALq5o5dFgGvqYWklIaeaVsAa31B/a1+45gJwoTaKinrWw7rTu30bZzG21lO2jbuY3Wsm207dxOoLaa8j//rqN9ysSDSR4/idYtGx3xdUALnT2B3dLAUXFwTk3HUMVUjMWhEpSZYWuSv1lwzPzqGMcsTFJ+2secAVObET7q9Jmt6JDxvJIBQhclGuPAutvJGkdEO93zyMd0F1nh/exiJ4pNMcpGCBhFsiwfzSNP5n66uLjszUSb7yO+NCg5GSk52Zr3Wrtmt+hZ/Ri68s/BaM/RVjnr7e/jOfwvXYok7CuFDfytfja8v4ivnvwv2+esRVGW1pWyorGW9PzxtAWmkV7tx5eRwplXH8XHr85n8pnFPPbKoyxftZzx3vFccsH3WfZGWV+fiiORmMqX/07BlTeQMvFgAvV1eNIzyTj+FMr/9iea1ywPiprttJVtI1BX2+VYSUzEV1CMb1AxSaPHUf/FR2SecBqpBx+Or6AIb3YuTUvnk1Ay3JHzdYVOJDSG6l5RiEdCkZP6pX0yvr1hqUMTaWKwKSaDVNN7aDQxPGzD3Ud0ngISsnkvn6b3CGXt+afzJlEvO9GFmAbxEdqFiuiEizUa2wwR+Ql5aNh5PyHuk5FNK+oU2s+ehQssm92/hC4uLvsipvN9RAQy90cy94dxV6FtDbDjI3Tbu+jWd6DuLQACX16DlJxspcMd+gA672d7VWGDJ35xH5v+MY9sTaZKmhhy8kTGDtuPhc99QKC2maq2ehbUbKcuqQBtGImvJUBKaybHfncqx501jfHTR+LxeNh/0lD++uvXeOrBF/pVSWi782FUFX/VLtrKtnfZWkvXU/74H2kr34E21Hc5puad1/ANKsJXUEzymAn4BhVb7wcVW0ImK6fLmngpE6aw69lHSZl4MN7MbJqWzqfswTvIPe9yR87ZFTpR6B/r6EQayJqmw9lIHrM9lyhamEotrWFrPB5tun2oymMR0vuMegyVDhfKZmwVvmzZjIJZ3bUQa86E81Xa77mBXdOIgdj4HhmlhEUj/OA+opuxzNGJaC+aeNLdr93EYOjDAmA8XzVgpeL1hz9bLi4uAxbxpXZEewD8z6YjU3+HbvsfuuoRdMX9kFxkrfGz/QMrxc0zsIeUT/ziPra+tJAtnnzWVDYwNieN+v+s4SvWsKqhjE0tQlPbINqa9yMjOY2jL5jCcWdN46Aj98fr7frUqr+WhO4ciQFIHj+JnHO/R8XTD6Ntbd0EzQ5LyLS2dLHhSU2HhEQ8KalkHHMyvgJLxPhrqqj+94sMvf9ZW4t7twus8sfu7Ygy5Z53ef+uuiYiuQbNAqpaFY/+ncXOiCF6tSznfXA87mMv7NRu1mSutM3QU2STsS5CGqFXjXW9kmh2zQxZpqI3VhHD9X5CDM7DHSc9fghv06SZaZtONqNfexvzaWzM0TGb42Zus706nIlNM1HSXnXNzCZhoz8uLi4uMZI1Dsk5CM+4H6KtNeiWt9DVj0HTDgLvfQOS8pEhpyJDT4fCYxFvYl97bJstLy2kSVOYkNSMJxdq25rZ2OwjN1FYVllIakYSx505mePOmsbBx4+PWjHNyZLQsaSbqSqBhroOweIv30lr6Xpq3n2dXc89RlvZdvyV5RCw5j+U3X8bAN7sXHwFRSSO3J/U6UdaQia4JRQU4UlL74gMpc04piMytOupB8k973JbIqed9KNOcEzYdCde8ntrcIt0tl5gWJz6dwi7Vdc6tw09ojQVO2ZpKlaf9hakjG5TtPdRolDja/PFOE2uuYkYiuBQyI9MpUanRuEKfMnuj00HqNpeDSEcwY9EbVY0iwfdz9sBf7p8j6NGOaJai/jpbl1nnkgqNoROb1Lsuphq79tYvHQSWUZRJRcXF5fodC9sICmFaMMWOPQhPAkZaOmr6MZ/oGufgIRspOTryLAzoGgm4kvpa/fD0lBew6KXP+arZ98jy5NIurayflcd25tTKGtIxJfo5Rupbfz6ue8z/cQJJCYn7HEfw6Wbqb+N5PGTaCvf0SFmOrb2aExjQw97TUvnk1A8lJQDp+IrKERbmqn7/AOKf3UvvvxCPInRS43HOwrjJPESOstVdUqkBiIyP059O0vMqWsRwiK2owCRK5EZi2dDm4qGUeQhRrfhpsX0bOn4XBXzqmuRJx1p559MNUSEFLDoNei69hpzX45h5z6ETg8LOa/Ehk2z+Tzm1dnsTMi3nV4XNS2ud/N+QrYzWu8HkECPdDh6vnVxcXGxRdTCBsPOQP1NsP19S/RsfgPd8Bz40pDBJ1uip/hEJCEd6NsKbm1NLax8ay6f/fU/NK3ciSDsaG4i05fMwkoPZYFcDjlhAt/79jQqS1ex4oGPOfK0ybb76c2kf/X78Vfvoq2ijIonHyTtkCNpmPc5NW+/Slv5DgIN9ZT96bYex3kys/HlF1pC5qBp+PIL8RUU4ssbhK+gkMbFX1H5/GPknH1pF9GUd8EVJA62F3uIZxTGSeIldA5zqE2fosSSbhblSbLtuSoQbphiDfTNZmuY2gTLx9DnHeIY4yfihDjvMGLKxKTElmHX+0ZRMFM5nT40rwhnZrdvCCdsbblqrlyjGzKNvtgVT0Ziw2Y6XFSb1rwbs++wad8uLi4u9ohW2EC8yVDydaTk62ig1SpmUPoquvlf6KZ/gDcZik+AlCLY8jaewx7eYxXcVJXNX67ig4dfpeKLdfj8Ql1bG5sbPGxuEFqTMin0tTEhp5mxVx/FKZefyX+ffI0VD/2XLd5M2/1FmvSfdvjxlogp30lbxU785TtpqyijrWInbeU78VfspK2yHPz+Dns1b71iVSvLL8SXX0jqtCOoe/9N8q+6sYuY8SQlR/Qr45iTEI9nQERinCIuQie4Zg0i8m3gLVWtFZFfAlOA21T1q/Y2/RolhohOpNQjtTnR33DEbwuDOSCKYY6l2rs+fTZA76M0HaOBuw3B09+IHGh03GY/1HchsBcdMxZPxguQmoonFxcXl/ghngQonokUz0Sn/dFaw6f0NbT0NWjcCuIjsOyPyPBNyNAz8Mx40IoWOSx0qjbu5H9//gcb31pIYjO0BgJsbRRKG6AhNZ3jvn0IF582hUlHj+HjV+ez6I4/MuKdx9jy4YMMbk5kTcZgzrrhAuP+tLWVtspyKp55hIxjT6Zlwxoa5n1OW/kOJDGJnX+6Fe67FQL+LsdJYiK+vEK8eQUkHzjFisDkDcKbP4iKx/9I3sU/JHX6UR1js8bF82hes5zMmafaviYDJRLjFPEukfFLVX1JRI4EZgK/Bx4CDo1zv44RewGBUMYiRUtCEX20omInRajdZrTKAfEZJcVjKG+aumYS9xLMCwdYxBCNiWTV8Em8Y4GP3hJlDoid1DWzCEwMc1+i2DRe3NM4zQzEY6OohWk0ycSU4AodFxeXfod4vFB4FFJ4FHrwXQSey4QxV8Dmf6Gzr0DnXAtDToXqFWigzXb1tjtn3UrbvFIyvUKNX/FNLmHy4WNY9PwnpNT4UVWqmoVNDdCQlc7xFx7Opd86mLEHD8fj2f2HfXpxFSUTanlh3UF8uriFIyYmcvaE9ZQUV1kT+2uradtVjn9XGW0VZfh3ldPW/nNlOW0VZQRqdtfYqnrxb9b5t4uY3HxaS9eTfeaFHSLGl1dgzYtJzwz7gFkbG6h44n48qWldokNOlV/e24m30GmXrN8AHlXVN0SkZ1LhPoP08SA1+iN4q2iA2hqmmvbriMV2IwGsgWes1cdC2VTTXCs7oYwBGKmJRvR6CY7aja9NG8UIYuozWlEE07k3Nnx2hc6AQETGAi902jUKuBkoAb4JtABrgUtCVSgVkZOB+7AK+zymqnfE3WkXl14i4oGscXiGnAJT74DyL9ENz6HrnwOUwKv7I8NnIaPOg+yDomaX3DnrVoasXcLEabWktdZQ3ZzI+k3VrF6yjbZWWNoAdbnpHH/R0Vx21qEMG1vU5fj2ymT+ygoqnn6YgpO/wY/SM7lqVxltu8ppKc1i559uQx64vUeZZQBvVg7e3AJ8uQUk7XcAvrx8vLkFVL74N3K+fTFpM47pEDGNi+dR/lgVued/39Y1G0gT//sj8RY6W0TkEeAE4E4RSWKAZZA7GtHB3rwSI+wop44/GJE9CF0prDdeh3MwdBW5iGi3n438NB1B74WiJB6E0XndL2dvRb3ZsQZCoved2GxvPu/HTJSoed9C2L+wXQ93v+t9jaquBCYDiIgX2AL8ExgL3KiqbSJyJ3Aj8PPOxwbb/xnr/9bNwBwReV1Vl+3BU3BxiYkeFdwCTeiWd2D0xVC/CV39CLryAcg6ABl5LjLiHCR1cA9wGCaNAAAgAElEQVQ7gTY/Q9Yu4cDiHXy1qoT6hqGkJ9czqWQzTQGl4KwzuWTmfmT6WmirrMC/+G3KPyrHX7nLel9Vgb+yHG3ZLWCq/vGk5WNSMr7cArw5ebT628j85nnW+9wCfLmWmPHl5CEJoauweZKS2fXsoyQUlZA8fhKNvYzC7GvpZk4Sb6EzCzgZuFtVq0SkGPhZnPt0mHhMQOgjOrqPVoaKEK6GKRxgSsiUvTA2JXKLXvlhbtQlGrbmm0XG6fssYigOelE4QCC0fY+N9X5CtQslwI0XAbUx78clJkQkTVXrRSRdVescMjsTWKuqG4GNnfbPBs4K0X46sEZV1wV9eh44HXCFjku/xzNiFo0rFiP/OhtfSi1tjRnokO+RcvCtAGhzBbrpFXT9c+iCX6ILboaiY5ER59GSdgTv3P8qm9+bR05LM1MGb6OsLp2C9GpKBlVSVJhCWiCZGUlbkDl/omEOdC6w7EnLwJudizcnj+QxE/Dm5OPNycOXk0fFM4+Qe/Z3STv0aCQ1rVMU5l7yLrzK1jm6UZj+Q1yjK6raoKqvqOrq4PttqvqOU/ZFJFtEXhaRFSKyXEQOE5FcEXlXRFYHX3OCbUVE/iQia0RkkYhMdcoPU1RtbkTfwFrrx2jDbAteXQc3m5ExGw+wresQ7Zy6XbcI1xzDe9PtJkQ7lb0IRUSteSgeDc4JCbUR0yYObabpW7b0QDcfHRMT3f2n52ZGp+tv+NfDJSZyRORq4EgHbZ4DPBdi/6XAf0LsLwFKO73fHNwXFyrvKeaza44HoK6snMp7ivn0x9aAbcfqVVTeU8zH154CwMa5c6i8p5iPrjsNgFXvvUvlPcV8+FNLry1741Xr/c/OBWDBi09ReU8xH9xwIQBznnjYen/T9wCY/dDdVvtbrIHmp3/8jWX/t9cB8Mnv/4/Ke4r55Pf/B8BHv73O8u+PvwHgw1uuovKeYmY/dDcAH9z0PSrvKWbOEw9b72+4kMp7ilnw4lNW+5+dS+U9xSx741Xr/U/PovKeYla9965l/7rTqLynmI1z5wDw8bWnUHlPMTtWr7L8+/EJVN5TTF1ZOQCfXXM8lfcUd1zL2T8+moq7d0cnvvzxEZTftfvWzf3xDHbeMbTj/fxrD2H7b3eX/V1w3cFsvXVEx/tFP5nM5t+M7Hi/9GcHsemW0R3vl19/IBtu3q/j/aobDmDdTWM63q++cRyrbxzX8X7dTWNYdcMBHe833Lwfy68/EAhWErttKBU3jaL0mguo+/hdNv9mJIt+srv08tZbR7DguoM73m//7TDmX7t70cyddwxl+XVTKHttBXroG1RtyWbN0iHsfHkxu55+mKo/FLPi5ydR+XkrFSuPp7EilZotWbSs/Qyd/T18/z2AmYNu44xJ85kxciPDv7aCiccuZeZ3vuS4Cz9k3NfeJmHkWgACx55E3lFrKR+exdCHXqLpomvJmrKQdcnK4N/cz9aS0Xh2/ZYFn/+H9KNPpGbkSGTRJcz59XfB72f+HT/D/79T2JlkRXzsfvfm/e9V0of/j50zT2fofU8z9+0X3e9elO9ePIiL0BGRr5xoY8B9WFXdxgGTgOXADcD/VHV/4H/B9wBfB/YPbpdjFUWIirGIMNhsj/o0+mZPQBiO4GNeOygcsZ175OsZQnD0cnwX89BvXxwzxuOc1UmzwZsdVohZgg1PULgZbMYCIkKf4TYNs3X4auQnu8Wnx2BziZWZwMXAKBEZ1FtjIpIInAa81G3//wFtwDO9tH+5iMwVkbllZWW9MeWyD9NeLrnJ72N7czr5l11rpWZJoGtDAa8EaF6/msZFc/F6lHRPM7ue+wvlj9xNosdPrreextpGVt/0U5K8fgZ5a/HvKqPqlafweQLkeeuoev15drz3Pvg9VG/IZc6zhzH3n1Npa0zAl9VE4VHrKDlzCwmZTaQMqeK/2y9kbcnrNNakkDesHM+wRgIHHkZAhUZvKgmFg8EXOYmpqWg//CoU1G5k/TnHkblhHn4V6lIL4nhlXeKNqNOTUAARaQRWR2oCZKmqvdWJuvaRBSwARmmnkxCRlcCxqrotmCr3gaqODc4V+kBVn+veLlwfB+YO0pe+dnasLobA/FrbKUHtfJG0GKtbRbNnp21UArufrBvYDNt3l/0BPIYpRxH7jdWm8WOHAB6vWTszm8F1Wkyve7vNiO0DiNc0GhHeZte3fuPzxhs+LNjDplECr3U+Rifk8Rvec7+hTT/iI3yqXJe+A4RbXLT7rqTvfzZPVaeZeOqyGxEZDyQAQ1X1DQfsnQ5cpaondtp3MfB9YKaq9ljaXEQOA25R1ZOC728EUNXfRepr2rRpOnfu3N667DKA6NWilW1tBOpq8ddVs+22n5I581R8eQX4a6rx11TRsnENTcsXkzhsJP6aKvw1VWhDfWhjInjSM/FmZtOyZSOrq7KQgEJbIlVtwramNL45agPPVhxM06YGcr1ekrxCa0CpSFSKjx7HubdcTG5hrrUw6Za3CKx/Ft3yBgJU7Mhkxfz9Wb+ikCOmbGD4zDoSZi137kK69HtEJOT/afGaozMuehP80ZtEZCRQBvxNRCYB84BrgMJO4mU7UBj8OVyoP6zQgfZIjHMYDVZoT/Xqm6eu5sLJtGE/fnrc2bWoJ97eOMoU904fCmJ4+mocnZNufUS0qhjdJtvfcsfFdWibGvnjCIbCXyBbtzzskebtzEWxA+2Coj5OFeJdAFVtHz0tcsjkuXRKWwtWU7seOCaUyAkyB9hfREZiFTE4BzjPIX9c+pjeiJPudnY9+yj5V1xP4rBRNC74koonHqB53SoSh48mUFuNv66GQG1N8LXr++6ipfK5v+x+4/PhzchGmxrwJKfgKxyMNyMLb2Y23qxsPBnWqzfT2jzpmYjXelL15SkzKd2VQcKpJ1DbnMTKf37Koem11DYlkbO9hVafh+oMD4NPn8a3fnIuyempXfwQbzIMOwPvsDPwP5tOS/alZNS9whEnz+PwEz3404/C07AcVTVcE9BlbyZeC4ZujIfdbviAqcAPVfULEbmP3Wlq7X6odMxKNkNELsdKbaM4NcOmS9G7MtUvYqqIjDG/DM5rLLHSbwzbdh3wR3Ak8ni2R9OoO6Paaj+gHwu3UBiKHWdt2rhGxmu/qHHhgC7/t0Wwax4VxNBHGzZtnLd4DG+hR20ULnDpDSJys6r+ptu+XFXdZcNGGlbltM71Zh8AkoB3g4O02ap6hYgMxiojfUqwItvVwNtY5aX/qqpLe3lKLr3AaXFScOUNHWum7Pzz7wg0N5Fy0CEE6msJNNQRqK8jUFdDoL4Of32dtb++1tof3Fo2r0d8Prb/+sdd+qh+7dndb0SsCfoZWXjSM/Bm5ZI4ZIQVfcnIxJORhTc9k4qnHyL7W98hdcqheDOykJRUmpZ8Rflj91J8y31RzysQCLBu0WbmvreM1u0FHDx4Ox/84wNoTePwjHomlmxh2fYi9vvRTGZeehoJKUlmFyxrHMkHn4mc8ie0chG65q/IuqcBJfDmdGT/y5AR5yCJWcb3wGXvIt5V1+LJZmCzqn4RfP8yltDZISLFnVLXdgY/3wIM7XT8kOC+Lqjqo8CjAAfmFKq9+SqGEQGDgY3zGYX2nofbC9YYOGt8HbvbCnOciK0BfEgPu+0UsRlVcbRhHNlD0Zd+h2lao7E9w1RNj6EgE4Jzfwz7NsFdMHRPcnwwBfoVVW0N7ssTkVNV9UkTA6paD+R127dfmLZbgVM6vX8TeDMmz12A+IqTsgfvQFVJO+RIAo31BBoagq/1aPA10Niw+7WxHm2op37OJyQUDqbiifutz4LipfzByMskeVLT8aS1bxn4Cotp2biGjJP+nyVY0tLxZGThSU1jxx03MPSB5/GkW/vFLNeWXc8+SmLJMHx5g2ha8lXEcsmqysbl21jw0So+e2sBa2avIS/QRlEKDErKYn0ZHD9yKxlJzbRl5tMw9Tx2/HkeZ1/1bVvXvkep6mHfQre8DcXHQ+VCdO516PybkOFnIftfBrlT3SjPPsaAFTqqul1ESkVkbHA9gplYpTWXARcBdwRfXwse8jpwdbAM56FAdaT5OTF45JwpW5GDfp4+Fs9BtpO24+BnPP6WOh3oi+ef+z6/PVGEcJ/rvzjMjzRNUxxgMcn+ShtwO/CwiLyDtQbOm1j/7xgJnX0Jp0SFU7a6i5PGJV9R9tCd+GurSZl0CNrUSKCpsdNrE4GmBrS5iUDnz5qbaJjzKQnFQ9j19MMEmhosUVNfS9kff41J+QdJTMSTkoakpqFNjXjSMyzhkpKKJy0DT0oaVf98ivwrb8AbFDLWFhQ2KWkdaWGdKb3mAtIOPYqUiburoDUunkfCkBEkFA+xdb3SjzqBpbPXsvXGX5CfUEd5azpyzLcYFrzuqsrm1TtY8NEq5r2/nHnvLyO5sZmiZChM9nN8luVfU5LS1Ojnw10FjLjjZoYfPZbFn63hgUsfYoSn54Kc0fCMmEUACMz9CdSshMyxyORf4xkxy/Jr13x09ePoxhfRdU9CziRkv+8iI2YhCXazdlwGIgNW6AT5IfBMsGrNOuASrGepL4rId7HWI5gVbPsm1tOwNVhl1S9x1pV4pDUNlFSpMH7GeyTpREqWwz7G60FRr8zunlrkrM0oBoxvT5TsxJgxmJAftYOOzyP/Dsb3+aCaX0wlYjQpHs8I9mEWYKWc1WKtYXMh8FcG/v+rHcQ74gH0sKeBANraira1oK2t0Gq9tu9rmPsp1e+8RtY3vk1CYQktG1ZR/ti9NMyfTeKQkQRamtGWJrS5GW1ptt4Hf9aWZkuotDTTurUUT0oqO+78BYGWJmhrA6DisXujn5DHgySn4ElKxpOcijY1IElJeFLS8OUNQlLT8CSnUPPmy+ReeBWe1DRrS0nFk5qGpHR6n5zaZdHJ0msuIGfWpT3ESf2cj8mceaqt655z1kWUPXhHj+sey6KV7704hz89sJKNvkYWb5jHxOHTGbpgOcdseJrmhhbmfbCcurJaCpOhILmNo1OFlAwvARQGZ7DfSVM5dNbXyBlVxBO/uI/Wlxby6FWPs35LAyNLUhntqWHwtydHdyQEnhGzYMSskJ9J7hTk0AfQqbejG15AVz+GzvkROv8XyIizkf0uRXJj69dlYOB41bU4LabWJxyYU6gvzjzHsLWdFBjThmY2uw6ue38/20vVmhNN4Ki9Cmk9HArVrpdV10IOgk2rlPW8PuH9MK26Fgg5QA09tygGm50M9bQZj6prfvOqaxK0GdFHy6ZZhTRFvAEDe1gV0kwr2HlNU9cMq66JjaprCab3x99jmB3usMRLZ7tV13qBiBQCJ6vq3zvtywXeUNXD+s6z8Nipulb38btUPPMI6TOOwTeomNYtm6j7+F1SJk8ncehI1N8GbW2ovw1tawO/v9PP1qv6rf2NS74ioXgonpSUoGhpwV9Xi7+yAm9Wdsc+bW0Bf2/rFIEkJCJJSUiitXmSkjt+bt/fMPtD0o//Bp6UVKtNcgqSkMiupx5k0DU3W0ImJRVJSrY+S07peJWExC7pT6XXXED+Zdf2ECflj93L0PuetuV7OFEY62KTTonVM/e7jkDzao4r2g+paaQ+ICyvVCpboTDFT35iC0XJSXjFQ1sCZB00hGlnHcuYEw4mKSOlh70nfnEfm/4xj2xNpkqaGHbmwVx8+zW2/bKLqkLFHHTN4+jGl8HfBLkHI/t/Fxl+Frr5DXTpXbujQxOu74gOufRv9mTVtRwRuQQrcvJWHOz3U/o6otOXUZ9gMkyf5wL1oU2H2UdPG3DIT9M5YQoEoraymnYSL8742O01EgHDTr1d7Q2Uez4QUdUdIvJUt327ROSuvvLJSSpf/jsFV97A9lu6Dj7rP/kvHbW4vF7E6wOfD/H6Ov3sRXw+CO7TpkYkMQk8HjxpGUhCAglFQ6if/QGpU2ZYwiEhIbglWRGOhATE174/+OpLYMedN1J0872W6GgXLh4fpVfNYsSz/7XaGjxpKL3mAjKOOSlkWlf60SdGOLInTkZO2kVI+WP3doiTWEVOu71Yjq2vaWTF3A0s+3I9S2evJa2qgQlZJXy2thG8AYqTG5mam4JXPIAXzc1m1PGTmPL/jqZo8ig83sj34OLbr7ESP/cwIgL505H86ejUO9D1z6Fr/op+cSU69ycgPuTgO5CR50PZZwRmX0kAXLEzgImH0GlfTO2vIjJIVXdGad/PcVhA2CsCZ4A9e86mVpkWV4iBPrAZSyac06lqcTntAXJ/BoKb/V44KF2+yP096XWgo6o9ZLKq/rMvfHGa1i0bSTlgMsMe+YclWIKLLW685FRGvvCBJXIM/7iUXnMBued9r4eoaNmykYKrbrTlV8KQEYjHQ/LYA7vYShgyAk9SsrGdvVGchOK9F+fwzF3/YdPK7QwbW8T513+d42cd0qWNqrJlbRlLZ69l2ZfrWfbFOtYv3WpFP1CyMto4LNtDVWsjh+QlkuRJQD1pSG46DdtruOLD28kcku+Iv3sSScxBxl6JjvmBJWo+PAvaGtAvrkLXPYtn3NXIofej864Pmxrn0v+Jh9D5ErgUazG1gS1yelW9KPQQw+nJ5BCf1DU7Pkb/vy7WSlA9z6Vr2WB765p0aR6hmJsdwnkQ6y122l68bMaD2NbMiWBJowd2JCBdIjURWiJqeC1VDKNEgkaI1EiXnwwrAqogRHDUxcWQhJLhNC1fGDLiIVFWmO+Ok6LCKVv9WZw4xXsvzuGvv36Nnzz4HSYevh+LP1vDH658ipbmVoqG57Psi3Us+3Idy75cT3W5NdPAlyQkpTWSmVpBgU8YkZJDhs8SkH5Jo/CwMRx67jFUexK54wdPcLRPBqTI6YyIwKAjoK0OOWM1bHgeXfUIgY/PhbQRUL8Rba11ixcMUBwXOnFYTK0PUWwuwxPVnl1MRITzT+wVCTn6Mp0/Y6dZFDET4TgxbhvGgRBziYzpMf8j3LG9+/6EPD27JruFqhxLu4poyEYvKiEjET0t2BAQIX5vw32jzfVypG9xJyMBbImncPdTO7UjEPo3Mqwv/U3Fugw4+mvEw2lb/U2cOMkzd/2HyWcO5uLLL2LnumpG5I2jKHUkv79id8Zlap4Pv7eKhJTtFPq8jErNIy8hA1IH48lIZMhh49j/+Cm8f9cLvF+6nJw5Wfz9n4+TNySD2pYlJAye0Idn6DCZY5Galcj4H6Njr4bNrxNYfDugBF4di+x3MTLmB0ja0KimXPoPca0OIyIjVHVDPPuIN30tdGKyGe0ptoHNyJPyYxhpx1KMIEL7sCInSnTLGVHYbfFT48pdBs1i9S/SceLkuFd2X9UIC7tKz10RCWUz1IpKhuU5QhZLCxdjNavHIlE679RnwHT5LTWce+MxL0XtF8uT3oh4Fxf6d8RjbxcosdLW6mfjim2sWVjK6gWlbFi+jZaNmzk7YzIZI6HWDwtqtuOVTJqSFlPo9bGfp5CSxFzIG40k+xh8yP6MPvYghhw2jpxRRR3pid4EH9z6DK/Wfs4HDV9ynEznjJKpzLzh3D4+a+foviYPSXnQ1ggTb0KqV6ArHkBXPIAMPQMZdzWSP72vXXYxIN5lMF8BpnbeISIzVHV2nPt1DOeFjvlzWVMiDt5DjfiMjDpdjS9OkafeRHS6Nwmm15lVCnOs29gam/Yfjyf7Idd07WVHRr8a0cTGbmMakI5DIls0jxJFS7/scM0jiJFNj2FKp4Lf9IYHRVaP5m6Ix8U+rqDoG0zm1TQ3trB+6VZWL9jE6oWlrFlQyrqlW2httspkJ6YkMDjFz8QcYZ5nF+t2rGZ8Ui6HZY/Cm6N4ZCL4PBROGsHIYw5i6GFjKThgGB5f6DKUY061+s9+OJfTdQI5o4qZdsXXO/bvDYRck2fSr3avyVN/G7rqIXTNE+imf0DedDzjfwhDTkPMSoK69AGOl5cGEJFZWALnTOA0YGX7pE0RWaSqBzneaRw4MHeQvnKSvVV6IxPDtTZ4NG57MBtVxKjhJFPzOTK9Ki8dCokWdQptM3K2VSAm4RQ5Lc/UTxvnY6O8tJlNO+WlO6VFRYy42Sgvje7+Tka0GbDKMRvYs87boFiGnWtpUApaADx+8+ve/XxC2g/g8Zn+rvmtymtRbULq1R+55aX3MeyUl3bpG0LNq/n9FX/nhHNnkJmbxuoFpaxZWMrGldsJ+K0nKunZKeQPz0BTm9lZt5n1GxeTUNfAeYVH0RLwkpHgwYugAo3qQf1NnP/U9RRNHY0vKSGKRy7d0dZadN3T6MoHoW4dpA1DxlyBjL4YSczqa/f2WcKVl46X0CnBqr52DzAHGAtUAVuBAlU91PFO48DEvEH6yslnGbTsm7QQ6yG48/n4IgGHhQ6WMInJmfB92ymaYJZqFhzwR7UWpd8uIshc6ESki017Asa0XUxrEnU7ZvfbnmvjhEMIRLTZuZ2Z0DFd68dqa7yOjqlNMV2bx2+tcxT2fDv1bWNNokg2O5N6zQeu0NnHcIVO/6a1pY1LD/41hRNS+fjjT2moaCM3qRhf2+5qcrlFmRSNyoH0Zioat7J8w0IqNm5kRFIBI1MGMSajhCyx1q1RVTQ/nbIa2LCjgZRhhUz8xnD0hdn8aOUjfXWaew0a8MPW/xBYcT/s/AR86cio7yDjrkLSRxLY8KK7Js8eZE+uo4OqbgGeFJG1qvpp0IE8YASwIh599i3towrTaIQd2+FtdjxYt60gYhFmvRFz4QoHhLFpY8DtZGpWr20ZH283jdCuI3YJ10EoPyV0E+n6tqO1wakqu9MGo7aLbg7zFDc7bcPP5enpk810uDB0jkOKQQU566DQN8JNXHNxiS8m6WbtNDe2ULpqBxtXbGPjim1sWrmdjSu2s2XtTvxtATzblNMzh5AxHJp8Xj6t2ERtbQn+yet4f9F8CranMSqlkDEZJUxPOgjfsMkAJOelUzJtf4qmjKZ4yiheuep+Xtj+Mbc8dhdHHnkEn3zyKbdcdj3nFB+5Jy/NXot4vDDkVLxDTkV3zbfm8Kz+C7rqYcidAg1bkcMfRwYd4a7J04fENamwXeQEf64AKuLZX98TbTgRi1iwKaKMbdorzewse+HEaCfT8mzZjAd95Gc30dSvbTpS4CGMOgzVpZ3AbTyq7Lm4uIQlXBnn5sZWRk4YzIbl7WLGEjbbN1TQnk3j8XooGV3AsLFFjD9iKAuf/4QD8xNYUlTJ+6vnUFiTxJkFh1Gb2EryrmLOHDwqmCIr5I8bQvGUUR3CJqMkr0s2xtduPA9uVX531c28v/JLjhs7nbPzD9+rCgj0FyR3CnL44+jk29DVj6DL7gH1owtugvE/RoZ+C8+MB635P67Q2aO4s6ccxekBfF+JDIM8ImNboVr33mZc5thrLPOdnGpsVm0uPti5j53uosl8FTvE47zjYNO5KOLuOURRs+Ecjl66uLg4Q0tTK0/c+i9KpmZw+Xd+RPWOBgZlDCHLV8DdV+4u45yQ6GPI/oWMnTqco751EP7EJioat7N+6yoWL32LF19bSro/kWuGfpPttW0UtSVybdaJJKRZv/ipXmXkkZM7RM2gg0aQmBZ5gdR9oYBAf0NSi5FJt+Bfejcy7R505UPopxehGbch46+B6r0wqamfM6CFjoh4gbnAFlU9VURGAs8DecA84Duq2iIiScCTwMFYUaWzTcpeK+ZVXYMeGfhsZzG/yPbaH9yqrYGqmY/GJXeNqrNZXpoVcjNIJZLd85NMzzzqWcc6iIxnFKI7/WmgG+E2Sacf+sxlg+IGFqahEjVKrwPAo9Y8GRPagzoR5+nYFKKmfrq47OOYpJupKpU7a9m2oZxt68t7vJZvrUJVkW07+VbmSDKGQ6PHy7zqMprI5rK7TqG6pYwN29eweMmXvPXeIrZv2UZRUjZDkvLYP3sIp2aN4zujJuOxCqaRmQCNksLWmjYkJ4uhxw2Dtxbxzb/80PY5jjn1EFfY9AVZ45Csccg35sHm1wgs/T365dUgPgKrHkFGXYj4Uvray32CAS10gGuA5UBm8P2dwL2q+ryIPAx8F3go+FqpqvuJyDnBdmdHta4YJsaboigShzk1sfgY3qaqqY/GEwcwH/VGONcex5uetx2bMRIPwdNOfxy0hjjfXrvp2DWMY2pkyIlCGvFtJGNm4kmNCwwg4dv2x6+Ri0tf0TndbMyUYXz82gIe/PlLzPnvMjKyU7sImqaGli7H5g/OpnhkPlOOHUvxyHzeufefTClKpmDWZLYnVVP62TImLUlmYUsdl/zwbEqSchmeNogJg0ZydMGJpGZ4OkrQ+1KTyB9bQsEBQykYP4wP7n6Jl8o/5+bH7nTn1QxguqzJM+SbSGIu+uklkJiJzr0OXXIHMu6HyP7fQxIy+trdvZq4VF3bE4jIEODvwG+B64BvAmVAkaq2ichhwC2qepKIvB38+XMR8QHbsaq/RTz5vi0vbV7YwFw42SjdHNGo3e9MtPLSsZTdtvGE3di+adW1SP127ctO1bUBVV46atqanfLSAaMISKiqa6F9NitX3d63cdU1g/LSlk+mVdcCPUtBh8SP+Ey/l+3V7qJ/51N+6JaX3tfYW6qumU789/sDVO2spXxbFRXbqqjYVk351irKt1XzwT/mkZAiVO+qxRPoWmI5OS2J4hH5FI/Mp3hEPoNH5lM4PBdPqp/qxgrWbVjLqlWrWb16DatWrebsliksqvQwv3E26b5WJuaOZ6xvCDkJ4Ov0RzglN4P8A4ZSMH4oBQcMJX/8ULKHFyCd/qCv+vcc/nvrM7xa+1XHvJozMqbytV+e70ZmBhihqq7J8G/Dzo8JLP09bH8PEnOQMT9Axl6BJOX1tcsDmj1adW0P8UfgeqBdCucBVaoaDP6yGSgJ/lwClAIERVB1sH15tE5MdaDJINE8UgKORCt6tHPqmW53O2Y+hL+Wne3ZK5dtXIWr3XakVsY3J5Kd2K6NLfrDs4ke5dUcsGkkIkwMma310/6xk2kZIUYAACAASURBVIvOxoTheZsJHTd1zaV/YqcqWTQ7j9/yKj+489sUDctj7nvLeeCnL/DJvxaQlZ9O+dZqKrZVUb61isodNQQCXf9YeTxCTmEmTfXNZHiqOXpkPoktLWhmCu/sWEpD+WhufOUs1qyxxMx7q95n9VuWqGlsbCRBvAxKyGJoegFji0YwK+tQCqoSOK5I+Joe39GPpiVBfROHXnNah6hJG5QV9f8Zd17N3oNnxKzQhQcKj8ZbeDRaPpfAst+jS25HV9yH7H8ZMu5HSErRnnd2L2ZACh0RORXYqarzRORYh21fDlwOMDg13fg4U0HkpNywh9lgX7HGSvbG0mbV5vp+MrWdanMuRkS4pzFnaMahQtoepc+/5y4uzuCkOAlVlQzg8FMnUbOrjpqKemp21VNbab3W7KqnuqLe+mxXPbWVDdTsqmPrujICAeVX53RdB+bDV74iMy+NvKJs8ouzGDmhhPziLPKKs8gfnE1ecTa5RZmQ4Gfr1i3cecK9HFyQRc30ZNbUV1K9cg3TfSUsSa7lqKOOI8ObwuCUXCYMHs2J2RM4f+phpDZ7obZl998qv5CZkUdN4y7WNm3jmAu+wbQTDmd15WZu/dFNnFN8JIdceYrt6+XOq9k3kPxpeI9+Aa1agi79A7rifnTlw8joi5ADrkXShvW1i3sFA1LoAEcAp4nIKUAy1hyd+4BsEfEFozpDgC3B9luAocDmYOpaFmFKXavqo8CjYKWuxfUs9jjOFi0wt2dTYJg0Vax0J9vVCCLM+rZVw7cP6Q8+Oilw+sDm7t3mEVExdcRORMXpynV2+3dxCUM4caKqHPHNyTTWNdHU0EJjXTNNDc001jXTWN9MU31L8NV631jXzH/+/iljpg7ntUc+4Kk73qR2Vz0Ntc3cfulfIz4kTE5LIjM3rWMbNHQom1fvpDJ1PbPO/xaHHD6ZzTs38du7bmNoxeE8tewWSktLKS3dTGlpKRtLF/DJbOv9pk2llJaW0tDQAMAvR5zN7M31rFj/KUUF6eyXMZJWTWFGrp+jh3wfbWrr8COhJYnskkJyRhaSM6qI7PbXEYPwJSey6t9z8Nz6DI+88CTn/OZqt4yziy0k+0DkiL+hB92ELrsHXfs3dM1fkRFnIxN+imSOcRcf7QUDUuio6o3AjQDBiM5PVfV8EXkJOAur8tpFwGvBQ14Pvv88+Pl70ebn7J10SxGzTW8uWaiRVyh7NkZoJhPDI+EOBmMnxLUPlbRn6xIb2LRNPGwadWrWzkw8mc43wl47F5cIPHPXf/jx/efz0M9f7hAy9TWN3H7p32zZSUjy0drcxor566iuraS+uZak9AQmTh5P9Wd1XPbrM8jMs4RMRk5Q1ATfJyYlEAgEqKqqoqysjLKyMt7+5wd8bcoYUj5fwrL/zKcusZXxUsyOQCUZGTkd/QpCdkIa+xUOY1R+CQcOOpi8IceSQRIJTdC2s45Bg4RjONw6oBk0MxEamznwzCPIGVXUsaUVZkdMOXPTzVycQDJGI4f+GT3wRnT5H9G1T6Drn4W8aVC/Gc8Rj0PB4e7iozYZkEInAj8HnheR24D5wOPB/Y8DT4nIGmAXcE4f+dfHxCpU9pb1gYK4A8He42S1tYFm08VlH2DTyu2s3DKfpWsXUl1bRUZ2OoccNoWl723lst+cQUpaEslpSaSkJVqv6UkkpwZf05JICX7m9Xk5a/+f0NKylAumTKJleyre/FT+tfwTUvLG4RlazYbytZRtLA+Kmd2v5eXW5vf7O/w6PmsGuWtTeXrHHOpS6zg0ZyJHJw5nfW45Z0+6hpQ2L576NlorG1F/sLRZg7Ul5ySTMTiXjHG5rP9kCfPr1vPNK8/lkJmHs2zrWm69+v84p/hIjrnZfiTGTTdzcQpJG4JMuxs98Hp0xZ+txUcJEFh+Hx5vGlJ4jLv4qA0GvNBR1Q+AD4I/rwOmh2jTBDhZPm2AYjZPJ/xx3YlVsDhZ0c2mzQjN+m7+1ACkPcjg8HyaeMzj2qfu6T51si7xJKsohRduepKLJxxEy45avPmp/HvBR6QVjGfwtBTq6uqoqt1BaUUtdRvrqK2to66ujtraWmpra6mrq+/4OWtXEjOzx/C3xR/xZcVXHJQ2nlmF03m3YiHnBOfaeBBK8ooYkldEcXY+YwsnkDMsg8yEVNIkkaSAF2+LUr+uHI/Xy0Ulh+521gNj0/PJbEwkvTiXjINyySjJJWNwniVsBueSUZxLQmpSxyGr/j0HufUZ/vzYo7z/s8vcdDOXfockD0Im/xr/sj8gE29CVz1E4J1joOQbyIE3WGlsLlEZ8ELHxS6mC3zupcRzvZt9DXF+bVONoDZjstleWCPcujJ74/fAVewuDiD+NRyVNJKH577LwvplncTJfI499qGQx6SkpJCTnkVeRjbZaRlkpWRQnDqY/bNSqMiGg/yTmZwwiYw0L0kFSZziGcP5047CX9NEc03j7qo+VcENEG8TKbk+UnLTSCnKoGn9Lua3buKk/3cKEw6dzPqKLfzyjtv4bsLhXPT+7cbn56abuQwYssYhgw5Hxl2NrnzISmt7+yhIyECrVyJZY/vaw36NK3T2OXo7T2cvwRU8vcfpRUPjschlNJsD5VfAzoVwv9MuDjAmkMx+F57AjL8K0xsOJS3DR0JhEifJflx40olIq0KLH232429soa2xhdaGZrS9nHNzcKsCEiCvDkhSSIKkrCQ0wUuzx0fR+OGk5maQkmdtnX9Oyc0gOSu1yzozz576G445fBK/efYRlv9hOePHj+f6y36A77My++foppu5DAA6Lz4qB1wL2Qegn18O/mYCb05DRpyDTPwFkj6yr13tl7hCZ58k2ugu3CPhPp5b46TNgTwY7C+Dc+nyEg/T/d5mSPr6/rgRHRcHKEzKJvPQLA54RtEE8CQo0tBKmzeRxAZISEsmMSfZek1PJjEt+HNaEonpKSSkJVn70pN5/UcP8Ub5PK75wy84+sRj+fyLL7jlsus5p/hITrn/+7b8mnbF15l972u89dgLFB+8H9vmreG9/3uKadeeHqcr4eLSt3hGzCIA1pyc9qprh/wRKToOXX4vuuoRdMOLyOgLkQk/R9KG9LXL/QpX6OxT9HYEFo9oUDxtRrDX+SN3UNgrelk7r6shGQA2+zt75Um57GkSCtL4zRU3ctMfb+Wo44/i8y+/7BAn5/7rl7Zsfe2X58OtcPcvfsc3zvxWr+bDtEdgPrrtBSrXbiNndDEzrj3djcy47NWEW3xUptyOjv0huuxudM3j6Lqnkf2+a5WldhceBVyh4xIz8Vh802mbhsUX4jGxfl/A6fS/gRDGMYmW2O3TjcC49ENm3nAuemuA3//8t5yy8ktHxIlT82HclDMXl91IajEy7Q/o+GvQJXeiqx9F1z6BjLnCWng0Ka+vXexTXKGzTxEPcdKHODk4HEgDzf7iazwWu9wDtuJpMz7EsODuwDk5l36KK05cXAYWkjbMWofngOvQxbdbRQtWP4aMuxoZ90MkMQtgn1t81BU6exAFRB2QGp0nf9u2Fz3KoTJAxklODOgGxIn2U6Isxql2y0WHiRD16hbFw+YeR82/63vRc4y9HREZC7zQadco4GZgC3ALMB6Yrqpzwxx/LXAZ1l1fDFwSXErBMVxx4uIy8JCM0cjhj6MH/ITA4tvRJb9DVz2MjL8GTS6EJXfimfHgPrP4qCd6k30dcXBzCN29qXZ9H3EzPa8ebY0Mxn4SfWHT4Vuyz9Ht+oW8nHavr4lNu3Qy4shvYn8PLYmG3CTE5tK3qOpKVZ2sqpOBg7GWtfwnsAT4f8BH4Y4VkRLgR8A0VT0Q8LLPLoTt4uISCsk+AO9RT+M5+VPIn4EuvAW+vBoZfALkTUc8CR2Lj+rSu/ra3bjhCh2XCDghPvqhTVfg9J5OOtKxy9k+V4pwNs0VfciBfajNg/nW2ak98DwjJuJRottlTzATWKuqG1V1uaqarAToA1JExAekAlvj6qGLi8uARHIn4z32ZTwnvg/qR1f/hcC/JhJY8wQaaLMiO3vx4qNu6loU1Okx+YAYdUi313DEcnH60GaUZu7UBnPiUbhhwBSDcDoCY9rORr8D5VK6dHAO8JxpY1XdIiJ3A5uARuAdVX0nXs65uLgMfCR/OmSNR0ZfhG76J/rlVejKB5ARZ0PGmL52L264ER2XPYaq2RY/B+j+4N8lRnrcN3p/Wbvb2SO3SWzkfoqCJ3pKmHjMNwSDaJLayo6VPZxJ69I7RCQROA14ycYxOcDpwEhgMJAmIheEaXu5iMwVkbllZfYX1XRxcdl7kAnXoysfRg66GTniSWiptlLaAN01v2+dixOu0NmXsDOXx6itdNsM7Mbopksn+tMFCQ6a4zH/JXZ7Ni5QIKYOIvfUl/fHFTADka8DX6nqDhvHfA1Yr6plqtoKvAIcHqqhqj6qqtNUdVpBQYED7rq4uAxUPCNmIZN+hc77KfrZxZCQCSMvgOZyAm8dSeDTS9C6jX3tpqMM2NQ1ERkKPAkUYg0tHlXV+0QkF6uSzQhgAzBLVStFRID7gFOwJn1erKpf9YXvzhKPkU20JK5wI7lwx2iv08K69xjdlsFos3MTd4AYE10vW4wjfImettaRTGl0n8Q4JcyJ275HvkbGhvuTCnYx5FxspK0F2QTMEJFUrNS1mUDI6mwuLi4unQm1+Ki21qDL7kFX3I+WvmqtwXPg9UhiTh956RwDOaLTBvxEVQ8AZgBXicgBwA3A/1R1f+B/wfdgPTXbP7hdDjy05102T9+yE3zZ8wyE3BebMYZOF9Uovc5w2/uGnV3Ts7pO7ie2rZ1IhQDj9ZVz2Ga/uN/9/VfTpQMRSQNOwIrItO/7lohsBg4D3hCRt4P7B4vImwCq+gXwMvAVVmlpD/DoHnbfxcVlL0ESMvFMugXPNxchI85GV9xP4PWJBJbfh/qb+9q9XjFghY6qbmuPyKhqLbAcKMHKW/57sNnfgTOCP58OPKkWs4FsESmO3lOso7eem6qN9iapYKaiKeSmYTfnR2t2Rl5m594hBnt1DbqJFxdzDK6X7fH23nIPTE9cMJwjROi5QCHnB3WzHWlz6XNUtV5V81S1utO+f6rqEFVNUtVCVT0puH+rqp7Sqd2vVHWcqh6oqt9R1YE9GnFxcelzJLUEz4yH8Xz9c8ibhs7/BYF/TyGw4QVUe5nr3UcMWKHTGREZAUwBvgAKVXVb8KPtWKltYImg0k6HbQ7u626rY+LmrubGPh5IOz2jOEosKK6BGgcf7zvtZDzOO57Xsj88sd+D0ZXYLmXwex5lXZmwBQXClKc2bWe0tf8eRviai2BvzRu1EWFzcXFxcXEJgeRMxHvcq3iO/xckZqGfXUrg7aPRHR92tAlseBH/G9PwP5eB/41pBDa82Iceh2fAztFpR0TSgX8AP1bVGumUxK+qKjZXxlPVRwmmAByYO2gve+zZfm009O5OO4yFmeGASTAXe8ZlhtW8/9Ad9eLYPWmzP2Jw7W3fnm4H9LfbE89bG9V2yIu5l/15cnFxcXHpV0jR8XhO/hTd8Dy68NcE/ncKDD4ZBh0Jqx/DM+NBax2ess8IzL6SAME5QP2IAR3REZEELJHzjKq25zjvaE9JC77uDO7fAgztdPiQ4L49ipMRotjTrUKlye3ezOeg9Dw29Eb/GpP1+om2hJ8rFeoDw+sZ6zwgoxS/7n72ljiqkIEWYIudYBTI5EaGjAoRYgsfveoReXJxcXFxcYmCiAfPyPPwfHMhMvlWKPscFtwEWWMhcwziSUAKj8Ez40F06V197W4PBqzQCVZRexxYrqr3dProdeCi4M8XAa912n+hWMwAqjuluIXrBVU7WzRhEhz4OzzvxxnfeiueBggRRrtqK71u93uJ1Nb4fhu7aR8N10v/Y49Hcex02Gk+jUTajNPhdvsgUbaQfoYSPx46xFP7FlY4ubi4uLi4GCLeZDwHXIfntMXWju3vEXj9IAKLbkNb66zITs3KvnUyBAM5de0I4DvAYhFZENz3C+AO4EUR+S6wEWiPob2JVVp6DVZ56UucdWfvGjiYnk08Bqa20uYM23YMKuNwm8KZ7M21cdqmaviDY7LZ7mDYg21c6E7RiQhuWjaNHs10FRGdXkL03em7YYJ0eBL+Y2N7Xc87fJdWkQEjszKAVK2Li4uLy4BDkvIgazxywE9hy3/QJb9D1/4dGXU+ZIzpa/d6MGCFjqp+Qvj/zmeGaK/AVfY6wcZ4zWRkodYDfgcH2yKmwkCMB3SqpuMkNTwVsf45qp6ijoq7EPYadTlezecRRfosDoPMeKRy9Q8jPel8C2LrQrv+KBFsBkzFU3fPutLFZi/EhoTtI8IXs3M/bqTGxcXFxSXOyITr0YW/tubojPke+sXV6NLfQ8ZotOIrJG9qX7vYwYAVOnsO09GKyQDD3uDcxKZqJAHT9XjHiwFgrLLsnbfhpXSE3o+qe5rsZNMp0dPFTbtj2RA+dDdh2809FDGI7fYEnyaEOaCLTVOj4bMMe9okfLvuR4lhhMr45KP46eLi4uLi0ls8I2YRAAJzf2Klq2WMgdGXwpZ/E3j7KGTUd5BJtyApRX3tqit0IqHYmbNiFtExbWli09IOkaIqoY53+IlvpJFix0fW7BdHhVb7k3pDUWQyT8PJsWE8ojoxE1Vk2hhI2/j+hDMZ7tpETFmzhYIn8jEdfXmwlw5n8nU3TYezI0rCnU/3Y9vn6RiYdHFxcXFxiRXPiFnw/9m77zipyuuP45+zLCwd6SoioDQBRYWIqFEJEsGOGkMxIjYixpgoKsYWE03QWIMaFWNX1J+KIiKCgi0qUqQ36dKR3svO+f0xs+Oybrm7O7NT9vt+vUb3ztz7zJmdYc+c+zz3efLMsOb77sNn3Y/PfwJf/i7W7las1UCsQlaColShE0BJvjIUPk6q+Bf8F3yAmwUeZpY7hqL3DbhfYa8l+pjhxbgWIthIPIu0HKTBPC3mPch/+l/MOooibSZFwZOAcW8WKZ6CXldSVBGR02axf58xL2IL+bcYfcoiPsG5rx8K2D0XnmAgQJsZxRmKJyIiEjtWsSZ23H34kf0JTR2MT7sDX/g8GR3uh0O7Ywn4UqRCpwjuAcsIhyDFhAX6wl+MgUVxuHK/iK9UB7aaiC/yxf7ymuerZz6/hmjZFHDhXw/wZTKnFyvgR+in77xBeg1iJB5D1izP/2Oh+PVN0b1U4SFmQYunonuJcrcZtJcm2DTPxZglTZMRiIhIglnN5lQ4/S181VhCUwcT+uxiOOQMMo6/H6vVukxjUaFThOL1vhRdTASdOCDPUQXvWWaraxbQalle+5wTvoc3QqGghVbBpVtSThyQ562KSXv5NGR59wk++jJf+X1qi9fbWFSbQT9sBRUa+QwdDXzBUzHWngnaq+LBiifIDl68mHp0REQkOdihvybj4C74gqfxmf8gNLoT1nIAdvRfsEoHlUkMKnQK4wQ/HR9V2On4ElxrUESbPy80Ak0vFvB5i1byQqE40w+X9DkKaTIZC5w8jcQsxMIKnNg3X7IGgsRYnJ6KPP/WCjzMPPJhKGq4WWQKxuJcexOozQD7FbPNwNcHiYiIxJllVMRa/wFv+lt8xt/w+U/iS9/A2t+NHdEPy6hAaOmb4cVGt86Hmq2wtreErwGKARU6RYhpj0XOKe7As4rl/jaS/0E/7ZaYaWVLPnKuoG9a+XxRK3XtFl4wNXe7+cdtAV+PH/g9Oui1KMGajrYZM5HPXTy+26ZKm4XLPU1eIbsFLhiDDv48sHAqtL2871/enaPX6BTaUJAnExERiTmrXB87YSje4ipCk2/Gv70e/34YHHoWLH09PFV1/ZNg/VeEvhlICGJS7KjQKVPF+Hbxsy/c+R/rVsSEACUQdHqDXAcUrRgj5/IWJQU+aeDXXZxZxYon1j1D8TgbH9MYLegkA8VY5JJ86vr8BBrmFW6nOMPMgk/xHLC3JCN4z48V43qeQIIMXVORIyIiCWK125Nxxkf48nfw7/4Cs4dAg19C9WZYRkVoeBoZJz4ZnrpahU78xfoalOBTAuTn52eef6pzivr2UoIZq4KKxWi5vE3m6TGJQZMxbPOnyQ0K+nxY7n2DXpflkQVLi4qtmAHnbTPfZorbZskPzSeQn19AX9AlNsE+w7lmlCiqzRDFuqYl0DQhVtQOOfcHnGTA+Gm/IotBgrcpIiKSAGaGNbkIb9SD0JsNYMNkQqOOw466EWvz53DPztb5MXkuFTqFcCzwrGtBL4ov1lCvwu70n34IGGHkkAABuJXuguacgHLFWJLDf4on3x/DMQZtOu/r8XzCtGKs9ROHQix6dFG9X6ESzOT282cptXh+V87/VxC8Rye/F55vm0F7XwDLp1elgH7WYL1EOcPMAgyJO2DoWqHxOoFnfRMREUkgy6wKtVpj7W6FH0bhsx/AmlwEu9dCzVYxeQ4VOkUIUuhYMb4gB3zWwN9Tiv+0AVouznC4/Jor4Mt1rH5Fxe+ZKujraJ69Ak88UfA1HaXu6SikvXi0mczfh3MX5oXW/YVVxgUdW9iD+d6X/2QE+X2m8x2Oll8vj+U/69rPR636z4usfAokIDLjW5HdjCIiIknB2t6CT/tr+BqdY+6EXSsJfTMQa393TNovV4WOmXUHHgMqAM+6+5BCD/BghY4HPYGa8C8apepOKsWekQVDAz59UbuFr+Ep3jU6QZ7bAxesuXYspGpwilkEB+h98fzuLIWcMqLIRS4LPDZoGVmIAGu/hHtjAlx/ktNk0KFeVkTvixVzPwjHWCFnI58CJbpfZMrqwj6cBhCCjFDBQ+JyF3wW+nmhE7SYExERKWMZTS8hBOFrcrbOx2u2wtrfrVnXisvMKgBPAN2AFcAkMxvp7nMKO85Dwb4RBBoWFrgrwiK7BvuyGHgtmaDPX8SXzgNaDdJBZFasTqJgitOmFfWtPPxQSQMs7HdQ3DaDXIdS3C+pRQyFs+hOAVik4CgyhmJcE5ZRQC/Iz5476NTJB/ZqFHpIhWDFk2UQLjaK2s+AjOyCi6I8hQ4VsvOP8YA7Qlhm6OevPb/tCqGCP8hBrh0SEREpYxlNLyEWEw/kp9wUOsAJwEJ3XwxgZq8D5wMFFjruRii7JBer5Bk6k3PphRNwhifwIr6dRtsM/IWy8P1yP+TFWC0+yH4e/U8QoUBnzoMWoJCn96ewOMzwor/LHhBHQW1Gr/+x4JMRWOQtL2p/86BtBvs+64SCf++NxwqxQWdyywhY1FvRPTrRuzOCfd4wxyoU8OHIKf5yVMzVZmHxWna40CqqALH9ULGgx/JsV8gu+K96rn09QdPRi4iIlKXyVOg0An7Itb0C6FTUQfv3Vyhql3zl94XMvbDCIP/hJpbPfXmPK01RYvm1a/mcPc5XAV+Q8zk9HfxrVUb4ZHwRz2944AvyPaeIOOD4fPazYk6sXeRQK/j5AigFN+YZHmgm7GJ9SbVCrnE58NmD95ZYkIKjgPYK+wwX1aVWIZRrSFghbZpjFbKDvGjIzMYK+yceLXRC0UIn+m8mv15XAyoV0uYBRc3+yF/gPEXZz15PNmQ5nrcgy6/nNSP7wN9RQb2zQaerFhERSWHlqdAJxMyuAa6JbG4/acI/YjO/XWzVA35MdBCllOqvIdXjh9R/DakePyT2NTRJ0PNKgkyZMuVHM1uW665U+zeUavFC6sWseONL8cZPvjmtPBU6K4HGubYPi9x3AHd/BnimrIIqCTOb7O4dEx1HaaT6a0j1+CH1X0Oqxw/p8Rokdbh7/dzbqfb5S7V4IfViVrzxpXjLXmlWS0k1k4AWZtbMzCoBvYCRCY5JRERERETioNz06Lj7fjP7A/AR4VHsz7n77ASHJSIiIiIicVBuCh0Adx8NjE50HDGQ1EPrAkr115Dq8UPqv4ZUjx/S4zVI6kq1z1+qxQupF7PijS/FW8bM4zFdrIiIiIiISAKVp2t0RERERESknFChk8TMrLGZTTCzOWY228xuiNxfx8zGmdn3kf/XTnSsRTGzCmb2nZmNimw3M7OJZrbQzN6ITBCRtMzsIDN7y8zmmdlcM+ucSu+Dmf058hmaZWbDzaxysr8HZvacma0zs1m57sv3d25h/468lhlmdnziIo/Gml/8/4p8hmaY2QgzOyjXY7dF4p9vZmcmJmopL8yse+SzttDMBic6nrxSNf+lUq5LtbyWCnks1fJWechTKnSS237gJndvA5wIXGdmbYDBwCfu3gL4JLKd7G4A5ubavh94xN2bA5uAKxMSVXCPAWPcvTXQnvBrSYn3wcwaAX8EOrp7O8KTcfQi+d+DF4Duee4r6HfeA2gRuV0D/KeMYizMC/w8/nFAO3c/BlgA3AYQ+XfdC2gbOeZJs0KXMhUpschn6wnC/27aAL0jn8Fkkqr5L5VyXcrktRTKYy+QWnnrBdI8T6nQSWLuvtrdp0Z+3kb4j1Aj4HzgxchuLwIXJCbCYMzsMOBs4NnItgG/At6K7JLUr8HMagGnAv8FcPe97r6Z1HofMoEqZpYJVAVWk+Tvgbt/DmzMc3dBv/PzgZc87BvgIDM7pGwizV9+8bv7WHffH9n8hvB6XhCO/3V33+PuS4CFwAllFqyUNycAC919sbvvBV4n/BlMGqmY/1Ip16VoXkv6PJZqeas85CkVOinCzJoCxwETgYbuvjry0BqgYYLCCupR4BYgFNmuC2zO9Q9pBeEElqyaAeuB5yNDEp41s2qkyPvg7iuBB4HlhBPDFmAKqfUe5Cjod94I+CHXfqnweq4APoz8nIrxS+pKqc9bCuW/VMp1KZXXUjyPpXLeSvk8pUInBZhZdeBt4E/uvjX3Yx6eNi9pp84zs3OAde4+JdGxlEImcDzwH3c/DthBnu78ZH4fIuOBzyec2A4FqvHzruqUk8y/86KY2e2Eh+a8muhYRJJZquS/FMx1KZXX0iWPJdPvtCjpkqdU6CQ5M6tI+I/8q+7+TuTutTndXXGOrAAAIABJREFUm5H/r0tUfAGcDJxnZksJD4/4FeFxwQdFup8h3C26MjHhBbICWOHuEyPbbxFOEKnyPpwBLHH39e6+D3iH8PuSSu9BjoJ+5yuBxrn2S9rXY2aXA+cAff2n+f1TJn5JCynxeUux/JdquS7V8loq57GUy1vplKdU6CSxyPje/wJz3f3hXA+NBPpFfu4HvFfWsQXl7re5+2Hu3pTwRWzj3b0vMAG4OLJbsr+GNcAPZtYqcldXYA6p8z4sB040s6qRz1RO/CnzHuRS0O98JHBZZBabE4EtuYYKJA0z6054aMt57r4z10MjgV5mlmVmzQhfnPptImKUcmES0CIyY1Ulwn+bRyY4pgOkWv5LtVyXgnktlfNYSuWttMtT7q5bkt6AUwh3cc4ApkVuZxEe9/sJ8D3wMVAn0bEGfD2nA6MiPx9B+B/IQuD/gKxEx1dE7McCkyPvxbtA7VR6H4B7gHnALOBlICvZ3wNgOOGx2PsIn328sqDfOWCEZ5FaBMwkPDNPMsa/kPAY55x/z0/l2v/2SPzzgR6Jjl+39L5FcsmCyGfu9kTHk098KZv/UiXXpVpeS4U8lmp5qzzkKYsELiIiIiIikjY0dE1ERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQEYkxM2tjZpebWWMzq5HoeEREREpKOU1SmQodkdirCFwP9AS2533QzJqa2S4zmxbrJzazKmY2zcz2mlm9WLcvIiLljnKapCwVOiKx1xh4HlgIFHT2a5G7HxvrJ3b3XZF2V8W6bRERKZeU0yRlqdARKSEzGx850zTNzHab2SUA7j4KeMvdR7v71gDtNDWzeWb2gpktMLNXzewMM/ufmX1vZicUZz8REZHiUk6TdKRCR6SE3P1XkTNNTwMjgbdzPbammM01Bx4CWkdufYBTgEHAX0qwn4iISGDKaZKOMhMdgEgqM7PLgB7ARe6eXYqmlrj7zEibs4FP3N3NbCbQtAT7iYiIFItymqQbFToiJWRmvwH6Aue7+75SNrcn18+hXNshDvx3GnQ/ERGRwJTTJB3pQyRSAmZ2DjAQOMfddyc6HhERkZJSTpN0pWt0RErmReAw4H+RCzevTHRAIiIiJaScJmnJ3D3RMYiUK2bWFBjl7u3i+BxLgY7u/mO8nkNEREQ5TZKZenREyl42UCuei6sRXuAtFOv2RURE8lBOk6SlHh0REREREUk76tEREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTuZiQ4gCDOrAowBfuXu2fk8/iAw2t3Hl3lwInEwZcqUBpmZmc8C7dAJCYmtEDBr//79V3Xo0GFdooMpjwrKaWb2AjDK3d8ys9eBO939+wSFKRIzymkSR4XmtJQodIArgHfyK3IihgLDABU6khYyMzOfPfjgg4+qX7/+poyMDE90PJI+QqGQrV+/vs2aNWueBc5LdDzlVFE5DeA/wC3A1WUTkkj8KKdJvBSV01Klqu4LvAdgZrea2Uwzm25mQwDcfRlQ18wOTmSQIjHUrn79+luVECTWMjIyvH79+lsIn1mVxOgLvGdhj5vZfDP7GGiQa58vgDPMLFVOSIoURjlN4qKonJb0hY6ZVQKOcPelZtYDOB/o5O7tgQdy7ToVODkRMYrEQYYSgsRL5LOV9H//01HunAb0BFoBbYDLgJNy9nP3ELAQaJ+AMEViTTlN4qawnJYKia4esDny8xnA8+6+E8DdN+babx1waBnHJiIiUhy5c9qpwHB3z3b3Vfx8+LXymohIKaRCobMLqBxgv8qRfUVERJJV0JwGymsiIqWS9IWOu28CKphZZWAc0N/MqgKYWZ1cu7YEZiUgRJG09Zvf/KZpnTp12rdo0aJtvNqpUKFCh9atW7dp3rx521atWrW5++67G2ZnF3aNdmop7PWNGjWqRo0aNY5t3bp1m9atW7c56aSTWgLceOONh1apUuW4lStXRq/PqFq16nE5Py9fvjzznHPOOaJx48bt2rZte9Rpp53WfMaMGVkAM2bMyDrttNOaN2nSpF2bNm2OOuuss4744YcfdJ1HksiT0z4HfmtmFczsEKBLnt2V10RiSDmt9FItpyV9oRMxFjjF3ccAI4HJZjYNGARgZhWB5sDkxIUokn6uuOKKH0eOHFnk9LajRo2qcdFFFzUtSTtZWVmhefPmzVm4cOHs8ePHLxg3blytQYMGpc1wnaJeX8eOHbfPmzdvzrx58+Z89dVXC3LuP+igg/bfe++9DfO2FwqFOO+885qfeuqp23744YdZs2fPnjtkyJCVq1atqrhz504799xzWwwYMGD9smXLZs2ZM2fuwIED169Zs0aFTnIZC5wCjAC+B+YALwFf5+xgZg2BXe6+JiERiqQh5bTSS7WcliqFzhNAPwB3H+Lubdz9WHf/S+Txc4C33H1/wiIUSUM9evTYXr9+/VL/uwraTqNGjfY/++yzS59//vkGoVCotE+bdIrz+nr37r1h5MiRddauXVsh9/2jRo2qkZmZ6bfccsv6nPs6d+68q3v37tufeeaZOscff/z2Pn36bMl57Jxzztn2i1/8YnfMX4yUxhNAPw/7g7u3cvdu7n6Wu78V2acP8HQCYxRJO8ppsZUKOS0lzvK5+1Qzm2BmFQpYdyATeKis4xIpC1dccUXjWbNmVY1lm+3atdv53HPP/RDLNmOlTZs2e7Ozs1m5cmVm48aNY3ry4oQTTmh16aWX/vjHP/5xw549e+yXv/xly8svv3z9wIEDN27bti2ja9euLa6++up1V1999aYNGzZU6NGjR/Prrrtubb9+/TavXr068/zzzz/yT3/605o+ffpsWb58eebhhx9e7Phyvz6AyZMnV2/dunUbgPPPP3/j/fffvwagevXq2b179/5xyJAhDR955JFVOcfPmDGjSvv27Xfm1/asWbOqHH/88fk+JskjQE6D8IQFL5dlXCJlQTktdpTTipYShQ6Auz9XyGP/V5axiEjYMccc03rv3r0ZO3fuzNiyZUtmzh+3++67b8VFF120NdHxpYKOHTtunzBhwsL8Hhs8ePC69u3bt7nrrrs0fCnNFJbTIo8/X1axiEiYclrpJVtOS5lCR6S8StazVAAzZsyYB+Gu5+eff77u22+/vbS0bc6ZM6dShQoVaNSoUcyHon777bfzc37Oysry3Ns1atQI5d6uW7dudu7tQw45ZH/u7ZKc+YIDX9/06dML3bdevXrZPXv23Pivf/0rupDk0Ucfvevdd9+tnd/+bdu23f35559XL0lcIiJlQTktdpTTipYq1+iISDmwatWqzKuvvrpJ//7912VkpN+fp5K8vttvv33tiy++WD87O9sAzj333G179+61Bx98sF7OPhMnTqwyZsyY6ldfffWGKVOmVH/99ddr5Tz24YcfVp80aVLQ6YxFRCRGlNN+rqxzWvr91kUkZs4999xmp5xySuslS5ZkNWzY8JhHHnmkXtFHFa+dPXv2ZORMVdmlS5eWXbt23frggw+uKqy9VFLa13fIIYfs79Gjx6a9e/caQEZGBiNHjlw0fvz4mo0bN27XvHnztrfeemujRo0a7atevbq/9957C5944okGTZo0aXfkkUe2feKJJxocfPDBmqhFRMo95bTSS7WcZu5ektcpInE0ffr0pe3bt/8x0XFI+po+fXq99u3bN010HCKS/pTTJN4Kymnq0RERERERkbSjQkdERERERNKOCh0REREREUk7KnREklMoFApZooOQ9BT5bKXfMt0ikqyU0yRuCstpKnREktOs9evX11JikFgLhUK2fv36WsCsRMciIuWGcprERVE5TQuGiiSh/fv3X7VmzZpn16xZ0w6dkJDYCgGz9u/ff1WiAxGR8kE5TeKo0Jym6aVFRERERCTtqKoWEREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNJOZqIDSGb16tXzpk2bJjoMEZGYmzJlyo/uXj/RcUjZUU4TkXRVUE5ToZMPMzsXOLd58+ZMnjw50eGIiMScmS1LdAxSNpTTRCTdFZTTNHQtH+7+vrtfU6tWrUSHIiIiUirKaSJSXqnQERERSWNmdq6ZPbNly5ZEhyIiUqZU6IiIpJg9e/bw9ddfs2rVqkSHIilAPToiEi8zZszg5ZdfZvv27YkOJV8qdEREktyOHTsYPHgwH3/8MQDr16/npJNO4t13301wZJIK1KMjIrE0fvx4duzYAcDkyZO57LLL2LZtGwATJ07knXfeYf/+/YkMMUqFTj6UFESkrC1YsIB58+YBEAqFOOaYY7j77rsBqFy5Mk899RRTp04FoFGjRrz//vtcdNFFCYtXUod6dEQkVmbPns0ZZ5zBCy+8AECvXr1YsGABDRo0AODpp59m4MCB7NmzJ4FR/kSzruXD3d8H3u/YsePViY5FRNLT008/jZlxzTXXANC9e3d+8Ytf8MYbb5CRkcFpp51Gq1atAKhQoQIbNmygQoUKAJgZ55xzTsJiFxGR8qlt27a88sorXHDBBQBUrVqVFi1aRB9/5plnWLZsGdWqVcPd+f3vf8/ll19O586dExKvenREROIkpysf4JZbbuHiiy+Obr/99tuMGDEiuj1s2DDuuuuu6PbQoUPp06dPdDunyBEpLo1SEJHSevTRR6OjDvr06UPVqlXz3S8zM5MjjzwSgBUrVvDhhx8yZ86cMovzZ/HEo1EzqxNgt5C7b47H84uIlLUtW7Ywc+ZMTjnlFABuuOEG3nzzTVatWoWZUbdu3eiYZoBRo0ZRqVKl6HbXrl3LPGYJJtVzmkYpiEhp/Pjjj/zzn/9k+fLlPPzww4GPa9y4MXPnzqVKlSoAfPjhh2zdupVLLrkEM4tXuAeI19C1VZFbYa+iAnB4nJ5fRCSuFi1axMiRI7nuuuuoVKkSQ4cO5c4772Tz5s3UqlWLs846i8MPP5zs7GwyMzO59dZbDzg+d5EjSU85TUTKrXr16jF58mQOPfTQYh9brVq16M9PPfUUS5cu5cILL6RixYqxDLFA8Rq6Ntfdj3D3ZgXdgA1xem4RkZibM2cO/fv3Z9my8OLLU6ZM4cYbb4x2yffu3ZuxY8dSuXJlAM4880xuuukmMjN1KWQaUE4TkXLn+eef57HHHgPCvTOlHUL99ttv8+GHH1KxYkV2797Ne++9h7vHItQCxavQCXLFUWKuSgpA45lFZPny5Zx77rl89tlnQHjtmg8++IClS5cCcNZZZ7F69WqOPfZYAI488ki6detGVlZWokKW+FFOE5Fyxd0ZPXo0o0ePJjs7OyZtZmZmRnuFhg0bxgUXXBCdTTRe4lLouPvuWOyTKKWZinPv3r3ceOONfPrppwDs3r2bhx56iGnTpkW333jjDRYvXgyEvzx99dVXrF+/HoB9+/axfPlydu3alRNLDF6RiBRl586d9OzZMzplZp06dVi0aBEbN24E4Nhjj2Xt2rWcdtppAFSvXp2DDz44UeFKGSrPOc3d2bRpUxyiEpFkFAqF2Lp1K2bGa6+9xrvvvhuXyXCuvfZaPvjgAzp06ACETy7GQ8wLHTPrZmbDzOzYyPY1sX6OZLZ7926effZZZsyYAYRnXRo0aBBffvklEL6gq1evXnzyyScArFq1ipNPPpkPPvgAgMWLF9OkSZPobEyzZ8+mUqVK0YUB586dS6dOnaLtLVy4kAEDBjB37lwgPMPFf/7zH1avXg3Axo0b+eabb6IXQatwEvlJ//79ozOdVa1alU2bNrFz504gXMjMmTOHnj17AuEpncvq4klJHuU9p/32t7+le/fuyh0i5cTvfvc7evTowb59+6hYsWJ0IoFYy8zM5KyzzgJg6dKltGnThoceeij2zxPzFuEK4FrgjshMNcfG4TmSVs2aNdm6dWt0u169emzZsiV64XHDhg2ZPXs2DRs2jG6PGTOGdu3aAdCgQQOeffZZOnXqBEDt2rW56aabaNmyZbTNOnXqRK8DWLduHe+99x6XXXYZALNmzWLgwIEce+yxHHLIIfzvf//jvPPOY/LkyXTo0IF3332XPn36MGnSJNq1a8enn37Kv//9b4YOHUqjRo2YM2cO//vf/+jVqxc1atRg8+bNbN++nUMPPZSMDM1GLqnt9ttvZ9myZbzyyiv5Pp7TEyuSS7nOaT179mTbtm0q8kXSWHZ2NhkZGdE12jZu3Fim15c2atSI2267jUsuuST2jbt7TG/AM7l+HgJMivVzlNWtQ4cOnmr27Nnjq1ev9t27d7u7+9q1a3306NG+ZcsWd3efNm2a33zzzb5+/Xp3d3/33Xe9Xbt2vnr1and3f/zxxx3wtWvXurv7o48+6oBv2LDB3d2feeYZP/roo33r1q3u7v7ll1/6448/7vv27XN39+3bt/vevXvL7gWLFGLo0KHeuXNnD4VC7u5+zz33+FVXXZXgqJIDMNmT4O9sst+U034yZswYv/nmm33Hjh2lakdEkse6deu8Xbt2/sYbbyQ6lFIpKKfF4xT9B7mKqMHAS3F4DilApUqVOPjgg6MXRDdo0IAePXpQs2ZNANq3b88DDzxAvXr1ADj//POZOXNm9FqDK6+8kuXLl0cfP+OMM3jmmWfIGdtdr149WrZsSfXq1QF49913GTRoUHT85t13303t2rVzvhTw3//+lxtuuCEa39y5c5k5c2a8fw1STn377bdceOGFbN++HYBatWrRuHHj6DVvd911F8OGDUtkiJJ6Uj6nxWoygvHjx/PBBx9E88vixYvZv39/LEIUkTL0zTffMHr0aADq1q3LYYcdRo0aNRIcVXxYzhfSuDRu1hG4HWhCeJicAe7ux8TtSWOoY8eOPnny5ESHkdSys7PZuHEj9evXB8KJcObMmdHiZvDgwXz22Wd8/fXXAPTq1YupU6eyYMECAP7whz+wadMmXn31VQCmTp1KjRo1aNGiRQJejaSaHTt2MGLECE455RSaNm3K559/zqWXXsrIkSOjs6FJ/sxsirt3THQcqUQ5LXwdauXKlQmFQjRr1oyTTz6Z1157DYBJkybRqlWr6Ik1EUkeO3bsiK5p86tf/YoNGzYwffr0BEcVOwXltHgXOvOBm4GZQCjnfndfFrcnLTiWIwgnqFrufnGQY1ToxN7s2bPZsGEDp556KgD33XcfGzZsiK6027lzZ6pUqcL48eMBuOmmm2jcuDF/+tOfgPDkDQ0aNNDaJOXYtm3b2Lp1K40aNWLlypUcdthh/Otf/2LQoEE/dVXrerIiqdApvmTKaSURy5yWnZ3Ne++9R+3atenSpQs7d+6kRo0a3HHHHdxzzz3s2bOHP/7xj/zud7/jlFNOITs7m3Xr1tGwYUP9+xQpY0OHDuWuu+5ixYoVVKtWjYULF9KwYcO06sUpKKfF+6/Nencf6e5L3H1Zzq24jZjZc2a2zsxm5bm/u5nNN7OFZja4sDbcfbG7X1nc55bYatu2bbTIgfDF4TlFDsCTTz7JkCFDottz586NrlsC0KlTJ6688qe38Z577uHjjz+Ob9CScDknZEKhEK1ateIvf/kLEL6Acdq0adx4441AeGY0fYmSOIpJTksHFSpU4MILL6RLly7R7ffff5/evXsDsHbtWt5+++3oUgpLly7l0EMP5eWXXwZg5cqV9O/fn++++w4IT+++YMEC9u7dm4BXI5Je1q1bx+DBg6NTNnfq1IkBAwawZ88eAJo3b55WRU6h8rtwJ1Y3oCvwLNAbuDDnVoJ2TgWOB2bluq8CsAg4AqgETAfaAEcDo/LcGuQ67q2gz5uKkxGks1Ao5C+88IKPHz/e3d337t3rNWrU8Lvvvju6ffjhh/uwYcOi+2/atClR4UqM3Hrrrd61a9fo9iuvvOJff/11AiNKD2gygoTltBjFcgTw32TPaTkTgaxfv94ff/xx//77793dffLkyd6oUaPo3/MJEyY44J988om7u3/33Xfet29fX7hwobu7b9682ZcuXer79+8v89dQ3u3YscPXrFkT3V67dq3/8MMP0e2c91gSL2diqKVLl3rFihX95ZdfTnBEZaegnBbvU5/9CU/F2R04N3I7p7iNuPvnwMY8d58ALPRwT81e4HXgfHef6e7n5LmtK93LkGRgZvTr1y96BrFixYps2bKF2267DQgPaeratSuNGzcGYMmSJdSuXTs6fnz79u1MnjxZZwyT3FdffcUVV1wRXYm5SZMmHHXUUdHtvn37cuKJJyYyRCm/YpLTytMohZxpqevVq8d1111H8+bNAejQoQMrVqyI/j1v3bo1L774IsccE77cac2aNdH14gDee+89mjZtyqJFiwD46KOP6N27d3RB3++//54PP/ww+vc9FIqOLJRievvtt7n22muj29dffz3t27ePbg8ePJjOnTtHt/v37x993wAeffTR6PpkAIsWLYqu7Sfx4e706tUrOuKlSZMmrF69mksvvTTBkSVevC90+IW7t4pT242AH3JtrwA6FbSzmdUF7gOOM7Pb3P2fBex3DXANwOGHHx67aCUuzCw6A1CdOnV47rnnoo9VrVqV++67jxNOOAGAL774grPOOovx48fTpUsXFi9ezMSJEznnnHPKTxduktqxYweZmZlkZWWxcuVKRo8ezZIlS2jevPkBCVekNMzs+MIed/epRTQRq5z2AvA4uWZwM7MKwBNAN8L5bJKZjSQ8eiFvvroi3U7gHXzwwdH14AC6d+9+wLDlk08+mWeeeYYmTZoA4aE5kyZNiv79/7//+z9uv/326AyL9957L//85z/Ztm0bmZmZPPvss4wYMYJRo0ZhZnz00UfMmTOHP//5z0B4Ipy1a9fSo0cPILz49p49ezjyyCMB2LdvH2aWlteHjhgxgiFDhvD555+TlZXF/PnzGT9+PHv27CErK4vLL7/8gCHnV155Jd27d49u//rXv+aoo46Kbs+bN48lS5ZEtwcMGMCOHTuikxINGjSImjVrRouhb7/9lnr16nHEEUfE+6Wmnf3795OZmYmZ0aZNGypVqoS7Y2bUrVs30eElh/y6eWJ1A54H2sSoraYcOHTtYuDZXNu/Ax6PZfwaupZefvzxR3/jjTd827Zt7u7+2GOPOeArVqxwd/dPPvnE77nnHq0RUcZWrFjhDRo08KFDh7p7uOtdw1Pij3I4dA2YELl9DewDJgNTIj9/HeD4eOa0zsBHubZvA24L0E5SD10rK+vWrTtgSOu4ceP8L3/5S3T78ccf9y5dukS3r732Wq9Xr150+6qrrvJDDjkkut2vXz9v0qRJdLtXr17esmXL6Hbfvn39pJNOOuD4Cy+8MLr9xz/+0QcMGBDdvvnmm33w4MHR7TvvvNOHDBkS3f7HP/7hTz31VHT7scce8+HDh0e333vvPZ84cWJ0uzTDxSZNmuSnn366L1q0yN3dR48e7V27do0OR4v1ULTPPvvMx44dG93u27ev/+EPf4hut2zZ0n/zm99Ety+//HJ/8skno9uLFi2Krg0oP5kzZ463aNHCJ02alOhQkkJBOa3AoWtmdmFht4B11InAtEhX/Awzm2lmMwIeW5SVQONc24dF7iu1WK05IMmlbt26XHLJJdE1gK699lqmTZtGo0aNAPjyyy95+OGHo2cI3377bZ577rmcLxMSQ7t37yZn9qdDDz2Uyy67LNrzlpmZGV2XSSSW3L2Lu3cBVgPHu3tHd+8AHEew/BHPnJbfKIVGBe1sZnXN7CkioxQK2e8aM5tsZpPXr18fo1CTT/369Q8Y0nrGGWdw3333Rbevu+666GyeAE888UT0Qm2Av/71r4wdOza6PXDgQIYOHRrdvuSSS6K9PwBdunThvPPOi263aNHigF6NypUrU6VKlej25s2b2bx5c3R79uzZzJ8/P7o9duzYA4bqDRs2jHfffTe6ff311/Pkk09Gt9u0acOtt94a3X7++eejEzu4Oz/88EN0WN/q1au56KKLmDBhAgA1atRg8+bNrFsX7hTs0aMHH3/8MYcddhjw03DDWDn11FPp1q1bdPuVV1454Hf70ksvRYeguzvLly+Pxh4KhTj66KMZPHhw9PEhQ4Ywbdq0mMaYig4++GAOPfTQ6LBuKUB+1Y//dObqecKLpW0C3o7cNgKjCjouTxtN8rsFOTaftppy4NmvTGAx0IyfJiNoW5K2C7ql89kvyd/OnTujP/fs2dN/8YtfRLcnTpwY7Q2S0unXr5/XqVNHv88Eohz26OTcgNlB7stnn3jmNI1SkAItXbrUly9f7u7hHpebb7452uOzb98+r1Chgt9xxx3RbcD/8Y9/uHs4r7Vs2dJfffXVxARfCvv27fNXXnnFv/32W3d3X716tZtZdATAtm3bfMCAAT59+vREhllmNmzY4Pfee69nZ2cnOpSkU1BOC/LHeCxwSK7tQ8jVvV7AMZ2JrNETixswnPAZuH2Ez3JdGbn/LGAB4dnXbo/h850LPNO8efMY/folFYVCIV+/fr27h2d0q1u3rl966aXRx3NmN5Gi7d2715955hlft26du7vPnDkzOttNN3xfAAAgAElEQVSSJEY5L3SGE5497fTIbRgwvJD9Y5rTIm3mLXRKNHQt4HMpp6WxUCjka9asif593b9/vw8bNsynTZuW4MjiY9u2bb5161Z3Dw/Dq1Gjho8bN87d3ZcsWeKPPvqob9y4MZEhxs3zzz/vFStWjBZ+8pOCclqRC4aa2Vx3PyrXdkbkzNdRhRzzH8ITAywAxgBj3H1NoU+UhLRgqOQIhUJ89dVX1KhRg/bt27NmzRratGnDsGHDuOiiixIdXtKbP38+bdq04eGHH+aGG25IdDhC+V4w1MwqA9cSXroA4HPgP+6+u4D9Y57TzKwp4dER7SLbmZH2uxIeRjcJ6OPus0vzPJG2zwXObd68+dXff/99aZsTSSq5J4p4+umn+f3vf8+yZcs4/PDD+fHHH6lZsyaVKlVKdJglFgqFWLZsGc2aNcPdWbhwIS1atEh0WEmnNAuGfmJmH5nZ5WZ2OeGhbIWu0Oju17r78cBfgdrAC2b2tZn9w8xOjcwuk7R0jY7klZGRwSmnnBKdYnPPnj307NmTNm3aADB58mQGDBigKTRzGT58eHSMfKtWrZg6dSp//OMfExyVCEQKmqeAwe7e090fKajIiewf05xmZsMJT4jQysxWmNmV7r4f+APwETAXeDMWRU4k/vfd/ZpatWrFojmRpFKxYsXobHgDBgxg6dKl0VlzBw0aRLt27VL6OpabbrqJE088kQ0bNmBmKnKKqcgeHQAz60muM1/uPqLYT2RWBegC9AA6p8KZRPXoSFAvvfQSN954I4sXL6ZmzZpMmjSJUCjECSecEPMLO5OZu0df77XXXsvUqVP53//+l5ZTsqa6ct6jcx7wL6CSuzczs2OBv7n7eUUcmruNlMlp6tGR8mrcuHEsXryYAQMGAOGptM8+++yU6uGZPXs2n376KQMHDixX3yeKq6CcFrTQaQK0cPePzawqUMHdt5UgiF8Cvdz9uuIeW5aUFKQk9u3bR8WKFQE4//zzmTZtGkuWLCEjI97r8iaHadOm0a9fP15//XWOOuoodu7cSeXKlcvN60815bzQmQL8CvjU3Y+L3DfT3Y8uZjspkdNy6OSdlGcLFiygVatWPPDAA9x8882JDqdA7s4DDzzA1q1bD5g5UApX4qFrZnY18BbwdOSuRsC7BR/xs+OPM7N/mdlS4G+Eu+STmrr5pSRyihwI9/C88847ZGRksG/fPvr168eMGbGahTY5NWrUiKysLDZt2gSEF2xVkSNJap+75x2bHGge+VTMaRqOLQItW7ZkzJgxDBw4EIBly5axbVuxz9nHnZmxdOlSFi9eTCgUSnQ4KS/It5DrgJOBrQDu/j3QoLADzKylmd1tZvOAocBywr1HXdz98VLGLJL0atWqRYcOHQBYvHgxY8eOPWDNhHQxbdo0+vfvz86dO6lfvz7ffvstJ510UqLDEinKbDPrA1QwsxZmNhT4qqCdUz2n6eSdSNiZZ55JtWrVcHcuvvhiunXrRpCRTWXhu+++Y+nSpQAMHTqU1157TScLYyDIwPk97r43Z1xgZGaYoj4V84AvgHPcfWHkuD8XfkjyyDV0LdGhSBpo1aoVCxYsoEaNGgB8+umntG3blvr16yc4stKbOHEi48ePZ+vWrVStWjXR4YgEdT1wO7CH8FTTHwF/L2R/5TSRNGJmPPLII+zYsSMprnvZvXs3Z599Nh07dmTkyJG6rjWGgkwv/QCwGbiMcHIYCMxx99sLOeYCoBfhnqAxwOuEF0JrFqO4y4TGM0us7dq1i6ZNm3LyySfzzjvvJDqcmNi+fTvVq1dPdBhSTOX5Gp3iUk4TSW8vvfQSs2bNYsiQIWXai5J7Ap8vvviCli1b0rBhwzJ7/nRSmumlBwPrgZnAAGA0cEdhB7j7u+7eC2gNTAD+BDQws/+Y2a+LG7xIuqhSpQrjxo3j4YcfBmDnzp3s3bs3wVEVj7szaNAgpk6dCqAiR1KOmb1vZiPz3F42sxsia+wcQDlNJL199913TJkypUzz8a5du7jooot49dVXAfjlL3+pIicOiuwbc/cQ4VWjhxW3cXffAbwGvGZmtYHfALcCY4vblki6OOaYY6I/33DDDcyYMYMvvvgiZaa7XLt2LW+++SZ16tTh+OOPT3Q4IiWxGKhPeNgawG+BbUBLwrnud/kdlKo5TUPXRAr38MMPs2/fPipVqkR2djYZGRlxH9KWkZHBli1b2Lx5c1yfp7wLMnRtJj+/JmcLMBm41903xCm2hNH00lJWRowYwbx587jtttsSHUqxbNq0iYMOOigpxjZLyZTnoWtmNsndf5HffWY2293bJiq2eNLQNZHC7d69m4svvpiTTjqJv/zlL3F5jg0bNlC9enWysrLIzs6mQoVirTcsBSjN0LUPgQ+AvpHb+4SLnDXACwU82dQAARW5T6JohhopKz179owWOTNmzKBfv34k6xSwM2bM4P7778fdqV27toocSWXVzezwnI3IzzljMH82diXVc5qIBJOVlUX9+vWpU6dOXNrfu3cvXbt2pW/fvgAqcspAkGkdznD33ONTZprZVHc/3swuLeCYo8yssEVDDFAVIZLLpEmTmDBhQtJes/Pyyy/z2muvcdVVV1G3bt1EhyNSGjcBX5rZIsL5qBkw0MyqAS/ms39K5zQNXRMJxsx47rnn4nYir1KlSlx33XU0adIkLu3LzwUZujYduNrdv41s/4LwbDPtzey7nFWl8xwT5B3MdvcVJQm6rKibX8razp07qVq1Ku7OG2+8wW9+85ukOePj7qxevZpDDz000aFIDJTnoWsAZpZFeHIBgPnuvruQfZXTRMqZTz/9lIceeoi33nqLrKysUrUVCoVYuXIljRs3jlF0kldBOS1Ij85VwHNmVp3wWautwFWRM1//zO8Ad19WmmATTWe/JFFy1qIZN24cvXv3xt3p3bt3wuJxdx544AEuv/xyGjZsqCJH0kkLoBVQGWhvZrj7S/ntmOo5TUSKb8uWLSxevJiVK1dyxBFHlKqte++9l0ceeYTp06dz+OGHF32AxEyQWdcmAUebWa3Idu4LCN6MV2CJ5O7vA+937Njx6kTHIuVTt27dGDNmDN26dQPCF//Xrl27zOP4/vvv+dvf/kZmZiY33XRTmT+/SDyY2d3A6UAbwksm9AC+BPItdESk/Dn//PM555xzYjKqom/fvmRlZalHJwECrYpkZmcTXkPnBjO7y8zuCnCMmZneUZESMDPOPPNMMjIy2LRpE+3bt+fvfy9s4fb4aNmyJdOnT+fPf06ZReBFgrgY6Aqscff+QHuKuMZGOU2k/KlQoQJ79uxhxIgRJTo+5/KQI488kltvvVWT+CRAkYWOmT1FeI2B6wkPXfsNUOR4ZQ+/u6NLG6BIeVetWjX69OlDjx49gPCsLUVdW1das2bNYuTIkQA0b968TFeKFikDuyJrxO03s5rAOqDQIiaVc5qZnWtmzyTrjI4iyeypp57iwgsvZPr06cU+9sYbb2TAgAFxz9lSsCDfXk5y98uATe5+D9CZ8KJqQUyNTF4gIiVUqVIlhgwZQseO4Wvs/v73v3PKKaewe3eB106X2t/+9jcGDhzIzp074/YcIgk02cwOIrw46BRgKvB1gONSMqdpyQSRkrvqqqv4+OOPD1jsOwh3Jysri8qVK6snJ4GCTEaQ821qp5kdCmwADgnYfiegr5ktA3YQ7hFydy/ep0VEolq1asX27dupXLkyAOvXr6d+/foxfY4XX3yRZcuWRSdHEEkXFv7G8U933ww8ZWZjgJruXtj00TmU00TKmWrVqtG1a9diH2dmDBkyRL05CRak0Hk/cubrX4TPejnhs2BBnFnSwEQkf5deeimXXhpewuqHH36gdevWPProo1x9denmznB3XnzxRXr37k2VKlVo3bp10QeJpBh3dzMbDRwd2V5ajMOV00TKqYcffpjFixfz+OOPF7nv/Pnz2b17N+3bt0+73hx3T6nXVOjQNTPLAD5x983u/jbha3Nau3uRkxFAdErOg4BzI7eDUmGaTo1nllRRo0YNrr/+en79618DsGbNGtavX1+itr755hv69+/Piy/mt16iSFop0RC0VM1pIlJ6P/74I8uWLSM7O7vIff/2t7/RpUsXdu3aVQaRlY1169ZxwQUXkJWVxV//+tdEhxNYkAVD810UNFDjZjcAVwPvRO7qCTzj7kNL0l5Z0+Jqkmouu+wyxo4dy9KlS6ND24rjiy++4OSTT9bkA+VAeV4w1MzmAc2BYg1BS6acZmYXAGcDNYH/uvvYoo5RThMpueL0ZGzatInp06dz+umnxzeoMrJt2zZOPfVU5s2bx3HHHcfXX3/NK6+8Qt++fRMdWlRBOS1IofMg4Ys03/FiDjQ0sxlAZ3ffEdmuBnydKuOZlRQk1cydO5epU6dG//iMGTOGrl27UrFixUKPCYVCtG3btqzClCRQzgudfGcOLap3JlY5zcyeA84B1rl7u1z3dwceAyoAz7r7kABt1QYedPcri9pXOU2k9LZt20aNGjUSHUaZuuKKK3jppZf44IMPOOOMMzj55JNZs2YNS5YsSZphbAXltCCnbQcA/wfsNbOtZrbNzLYGfV4gdx9fduQ+EYmDo446KlrkzJkzhx49evDYY48VuL+7c80113DhhRcG6o4XSQeRgqYx8KvIzzsJlg9jldNeALof0LBZBeAJwouXtgF6m1kbMzvazEbluTXIdegdkeNEJM5Gjx5NgwYNWLhwYb6Ph0Ih+vXrx9dfB5nEMTWMHz+e559/nltuuYUzzzyTChUqcM0117Bs2bISTbld1oqcjMDdS1O2Pg9MNLOclZYuAP5bivZEJKCjjjqKDz74gFNOOQWAqVOnsmHDBrp16xbdx8wYPnw469ati8nqzyKpwMzuBjoCrQjnqYrAK8DJRRwak5zm7p+bWdM8d58ALHT3xZEYXwfOd/d/Eu79yfsaDBgCfOjuU4sbg4gUX9u2bbnmmmvIzMz/6/Py5csZO3Ysv/71r+ncuXMZRxd7u3btYsCAATRv3pw777wzev/ZZ5+NmTFy5EiOPfbYQtvIzs4mFAoVOrIknoIsGGpmdqmZ3RnZbmxmJwQ5jnBPUH9gY+TW390fLWXMIhKAmXHWWWdRs2ZNAB544AEuu+wydu3ahbszbtw43J3DDjuM448/PsHRipSpnsB5hK/Pwd1XAYWe1CuDnNYI+CHX9orIfQW5HjgDuNjMfl/QTmZ2jZlNNrPJJZ2oRETCmjRpwmOPPUbTpk3zfbxp06asXLmSSy65pGwDi5N7772XhQsX8vTTT1OlSpXo/Q0bNuTEE09k9OiC11CeN28e559/PtWrV6dSpUq0a9eOv//975T1RF9BuuqfJLxIaJ/I9nYCdJPnrCLt7lPd/d+R23clD1VESuPFF1/ko48+okqVKqxatYoLL7yQESNGFH2gSPrZG8lRDtFrbQqVbDkt8vwd3P337v5UIfs9A9wDTK1UqVLZBSiSptydhQsXsnfv3nwfz8jISFjvRSzNmDGDBx54gMsvv5xf/epXP3v81FNPZerUqfkuXr5q1Sq6devG559/zoABA7j77rupX78+d999Ny1atOC///1vma0vFKTQ6eTu1xFZONTdNwFB/1omzSrSZnaBmQ0zszfM7NeJjkekrGVlZUVXdt6xYwcDBgzgggsuSHBUIgnxppk9DRxkZlcDHxNsfbh45rSVhK8bynFY5L5Sc/f33f2aWrVqxaI5kXJt1KhRtGjRgkmTJh1w/5o1a+jQoQMTJkxIUGSxs3//fq688kpq167Ngw8+mO8+nTp1Yt++fXz33YHne3bv3k23bt3YvHkz48eP59FHH+Wvf/0rEyZMYNKkSbRq1YqrrrqK3/3ud+zcuTPuryVIobMvcpFkzpmv+kAoYPudgK/NbJGZzTCzmZFZa4rFzJ4zs3VmNivP/d3NbL6ZLTSzwYW14e7vuvvVwO+B3xY3BpF00rJlSx588EFNIy3lkrs/CLwFvE34Op27Ak4RHZOcVoBJQAsza2ZmlYBewMhYNFyateHuuusuzIxQKGjaF0lvJ510Ek899RRHHnnkAfdv3LiRWrVqpcWMbI888giTJ0/m8ccfp27duvnu06lTJwAmTpx4wP2jRo1izpw5vPTSSxx33IGr03To0IHPPvuMe++9l9dee42TTjqJxYsXx+dFRASZXrov4cLgeOBF4GLgDnf/vyKOM+CXhNcpOEBxF1gzs1MJD5l7KWcqzkjxtQDoRngs8ySgN+FpOf+Zp4kr3H1d5LiHgFeDXLypqThFJF2V8+mlbwTecPfAPSYxzmnDgdOBesBa4G53/6+ZnQU8SjiPPefu9xWn3UKe71zg3ObNm1/9/fffF+vYjIwM3J0lS5YUeF2CiKSPOXPm0KFDB7p3784777xT6PTRTZo0oXPnzrz++uvR+y644AImTpzIihUrCp3kaMyYMfTpE74qZuTIkdGJk0qqxNNLu/urwC2Ei4fVwAVFFTmR4xx4wt2X5b0VN3h3/5zwhZ+5RWeocfe9QM4MNTPd/Zw8t3WRSRXuRzPUiIiUdzWAsWb2hZn9wcwaFnVAjHNab3c/xN0ruvth7v7fyP2j3b2lux8ZqyIn0m6Jh64dfPDBAMyePTtW4YikvB9//JHx48cnOoyY2759OxdddBE1a9bkySefLHKNnHbt2jFv3rzo9saNGxk9ejR9+vQpcibX7t27M3nyZBo0aMCZZ54Zt99nkFnX/g3Ucfcn3P1xd59bjPbjOZ5ZM9SIiEixufs97t4WuA44BPjMzD4OcGjSXHdaHKUZutawYbgGVKEj8pMXXniBrl27snFj+Bx8dnY2jRs35t///neCIyu57OxsLrvsMhYsWMDw4cM55JBDijymWbNmLFmyJDqxwFtvvcW+ffu49NJLAz3nEUccwaeffkqzZs04++yz+fDDD0v1GvITZID+FOCOyJjkB82sOEMdOgHfxGk8c7FohhoREcljHbAG2AA0KGJfSKKcVhyl6dHJWUhYhY7ITy6++GImTJhAtWrhCRt37drF2WefzRFHHJHgyErG3bnuuusYMWIEDz30UL6zrOWnWbNmbN26lU2bNgEwbtw4GjduXOTaOrkdfPDBfPrppxx11FGcd955TJkypUSvoSBBFgx9EXjRzOoAFwH3m9nh7t4iQPtnljbAQsR1hhrg/Y4dO14di/ZERCR5mNlA4BKgPuG1ca529zkBDo1nTktKGzZsAFToiOTWtGnTA65Zq169Ok89VeA59KS2b98+rrrqKl566SVuvfVW/vSnPwU+tlmzZgAsXbqUOnXq8NVXX3H66acXOeQtr3r16jFhwgSGDRsW83X9ijPlUnOgNdAEmFfEvjmWE754s19kHLMDRY6FDigpZ6gREZGk1xj4k7u3dfe/BixyIL45LW5KmtPcPVrozJo1K9/1MkTKqy+++IJvv/0W+KnnM9V8//33/PKXv+Sll17i73//O//8Z965vAqXM7xt7dq1bNy4kVWrVv1sprWgatWqxaBBg4pdJBUlyDU6D5jZ98DfgFlAR3c/N2D7OYuN9o5sbyPAYqP5xDAc+BpoZWYrzOxKd98P/AH4CJgLvOnuMTnlpDUHRETSl7vf5u7TzKyBmR2ecwtwaExyWlkraU7bv38/5513Hpdeeil79uzhq6++ilOEIqnnmmuu4f777wfguuuuo127dgmOKLhVq1YxaNAg2rVrx/z583njjTe44447il1k5FzDt3btWhYtWgRAixZBBnyVnSKHrgGLgM7u/mMJ2u/k7seb2XcQXmw00vtSLO7eu4D7RwOjSxBXoXJNxRnrpkVEJMEif+MfBg4lfJ1OE8InzNoWcWhMclpZK2lOq1ixIm+++SZbt25l+PDhfPLJJ4HH7ouku+HDh1OvXj0ATj/9dBo3blzEEYm1fv16PvroI0aMGMF7771HKBSiX79+3HvvvTRqVNhcXgXLXehUrlwZ4GfrCyVakGt0njaz2mZ2AlA51/2fB2i/NIuNJoyu0RERSWv3AicCH7v7cWbWBQgyTVC5zGk1a9bkhBNO4OOPP+a++2I267VISst9wX2vXr0SGEn+3J1p06bx/vvv88EHHzBp0iTcnQYNGvDnP/+Z3//+96UuSqpVq0a1atVYu3ZtdPheznU7yaLIQsfMrgJuIHyx/zTCyeFrIMhpnX8DI4AGZnYfkcVGSxytiIhI6e1z9w1mlmFmGe4+wcweDXBcuc1pZ511FnfeeScrVqzgsMMOS3Q4Igm3aNEivvzyS3r37o27k5WVleiQgHDPzQsvvMBzzz3HvHnzMDM6derEPffcQ48ePTj++OPJyCjOJfqFa9iwIWvXrmXv3r3UqlUrOhNdsgjySm8AfgEsc/cuwHHA5iCNl3Sx0UTTZAQiImlts5lVBz4HXjWzx4AdRR2UqjktFn77/+3dd3hUZfbA8e8hIUAoQboQNAGkRhRBVBBponRQFBssCMiKi7qWRVwWFFZRdBcbRRQUEPW3CIpSVRSMEkGkd4iuQIDQCYSEQJLz+2Mm2SSkTJKZzExyPs9zH+beueXMJZmTc9/3vve++wD47LMS8XGNydOqVasYPHgw27dvp2zZskyfPt2r8cTFxTFu3DjCw8MZNWoUVapU4f333yc2Npaff/6ZsWPH0qpVK7cWOQBVqlTh9OnTHDlyhNq1a7t13+4gaQ/5yXEFkfWqeqOIbMbRPzlJRHY4H7ZWrLVq1Up//fVXb4dhjDFuJyIbVDU/z0UrNkSkPJCI42LfQ0AI8LGqnvRqYB6S4R6dR/bt21fg/aRdCba8aAycOnWKU6dOUblyZd599126d+/u9qGRXaGqzJ49m1GjRnHixAnuu+8+xo0bR9OmTYvk+LfffjuJiYmoKuXKleO7774rkuNmlVNOc2UwghgRqQwsAr4VkdPAfncHaIwxJneqypEjR9i+fTs7duxg+/btjBw5ssDDeZZUqprWepMqIiedz4srttx13+mQIUN4/PHHWbduHTfddJObojP+Yvfu3Vy4cIHrrrvO7UMA+6MqVapQpUoVAP7xj8t7sF66dImjR48SHx9PYmIiSUlJqCoBAQHpU2BgIMHBwVSoUIHy5csTHBzs8rlNTk5m6dKlvPbaa0RFRdG2bVtWrFhBy5Yt3fo58xISEkJsbCznz5+nbdu2RXpsV7gyGMFdzpcvisgqHFe+Vng0Ki+zUdeMMd524sSJ9GImbdqxY0f6E6gBatSoQe/eva3QKZwJwBJvB+EPBg0axN///nfefvttPv74Y2+HY4rIhQsXGDFiBLNnzwagW7duLFy4kHLlynk3MC9LTEzk008/pXnz5lx99dVs3bqVn376iZ9++oktW7Zw/PjxfO9TRNJv8K9YsSIhISGEh4dTs2ZNQkJCqFChAomJicTExLB8+XJiY2OpW7cuM2fO5OGHH3Z7tzRXhISEEBcXx+nTp6lRo0aRHz8vrrToZNRIVd/zSCQ+xEZdM8YUlbNnz2YqaNJeHz16NH2dkJAQIiIi6N+/PxERETRr1oxmzZr5ZFLxQ3Zp2kUVK1bk4YcfZvr06bz++us+2R/fuJeqphc5o0ePpkqVKowaNYrRo0fz1ltveTs8rzl69Chff/01Q4cOJSgoiIsXLwKOQuW6666jb9++hIaGUqtWLSpVqkTZsmUpU6YMIkJKSkr6lJycTGJiIufPnyc+Pj7TdO7cOc6cOcPWrVs5ceIEZ86cITU1lVKlSlGjRg1uvvlm/vSnP9GrVy8CA/P757z7hISEcPLkSRITE6lcubLX4shJfs/Mo4DLhY442t8eAuqp6gTnA9lqqeov+TyuMcb4teTkZHbv3s3GjRsztdIcPHgwfZ3g4GCaNWtG9+7dadasGREREURERFC7dm3rKuI5f3Z1Rctp8OSTTzJt2jTGjx/PjBkzvB2O8bCFCxcye/Zsxo4dy4QJEwDHaGPTpk3jL3/5Cw0bNvRyhO4XHx/P5s2bOXz4MIGBgZQqVYqEhASOHj3Kxo0bWbt2LdHR0QAEBQXRtGlTrrjiCp555hluvfVWPPWweVUlKSmJwMBArxY2WYWEhJCYmJj+2tfk90zlN9NOw/GMgU44ugecAxbiGMXNZ1nXNWNMYaQVNRs2bEifNm3alJ4MgoKCaNKkCbfddlumgubqq6/2SteDkkZEgoFngKtU9RERuQZHj4W8urCV+JxWr149RowYwdSpU3nyySeL7IZnU/QSExN55plnaN68OePGjUtfPn78eD766CP+/e9/F6tiNz4+nr/97W98+OGHJCUlZbtO7dq1adWqFcOHD6ddu3bccMMNBAUVzTODRST9oZy+JGNxU6lSJS9Gkr38Fjq98rm+Xz5F2rquGWNclZyczK5duzIVNZs3b04vasqXL0+LFi0YPnw4LVu2pGXLljRs2NCnrsiVQB8CG4BbnPOHgM/I+14dy2nAuHHjmDNnDiNHjmTlypVWnBdTs2bN4sCBA3z44YeZvq9q1qxJv379+M9//sNbb73lk39859epU6fo1KkT27ZtY9iwYfTq1YuwsDBSUlJITU2lfPnyVK5c+bLuwvPnzycxMZF+/fpRoUIFL0XvXRkLHb9s0RGRmsBEoLaqdhORpsAtqjrLhf375VOkjTEmO/ktalq1akXDhg0JCAjwcuQmi/qqep+IPACgqgniWt9Ay2lAtWrVmDx5MsOGDeNf//oXo0aN8nZIxs0uXrzIa6+9Rtu2benYseNl7//pT3/io48+4quvvqJ///5eiNB9UlJS6Nu3L7t27WLp0qV07drV5W1ff/11fv31V9566y02btzowSh9V8YHhPploQPMxnH1a4xzfi/wH8CVQie7p0iPzX+YxhhT9I4fP05kZCSRkZH88ssvbNmyJVNRc8MNN/DnP/85U0uNFTV+4aKIlON/BUt9IPu+KplZTnMaMmQIy5cvZ8yYMURERNC9e5txAo8AACAASURBVHdvh2Tc6JNPPuHgwYO8++672d4f2LFjR6pWrcqSJUv8vtB54403+PHHH5k7d26+ihyA5cuXs3r1apKTkz0Une/L2KLni4VOfh4YuklVWziXbVbV6106gEhjoDOO+3u+U9VdhQ26qNgDQ40pWY4dO8YPP/zADz/8wOrVq9mxYwcA5cqVo1WrVukFTXEoakr4A0O7AP8AmgLfAG2Bwaq62oVtLac5xcXF0blzZ3bs2MHChQvzXexs3LiRf/3rX6xbt45atWoxfvx4br/9drfFZwpGVWnRogUpKSls3bo1x4FQ7r//fiIjIzl06JDfDpZy8uRJwsLC6NixI19++aXffg5v+vrrr9MLxD179nhtgIqccporHWvPi0hV/nfl62YgzsWDTlLV3ao6VVWnqOouEZmUr8i9QER6ich7cXEufUxjjJ+KjY3lP//5DyNGjKBp06bUrFmT/v37M3v2bEJDQ5k4cSJRUVGcOXOGyMhI3njjDQYMGECTJk38usgp6VT1W+BuYDDwKdDKxSLHZ3KaiDQRkXdFZIGIjPBGDCEhIaxYsYLGjRvTs2dPxo4dm97imZuYmBgGDhxIy5Yt0x9weOzYMbp27cpnn31WBJGb3ERFRbFlyxZGjhyZ6x/+d9xxB0eOHEm/IOSP3nzzTeLj43nllVcKVOT88ssvDB48mISEBA9E5x/KlCmT/tpfByN4GvgKqC8ia4DqOJrrXdEFeC7Lsm7ZLPMphblxc+jQoURHRxMUFESZMmUICgq6bMppeXbvpT0xN22qWLEiFSpUyNfTc40xDocPH05vrfnhhx/Ys2cP4Hg+yK233srgwYNp3749N9xwA6VLl/ZytMZTROQu4HtVXeqcrywifVV1UR6buiWnicgHQE/gmKpGZFjeFXgLCABmquqrOe3D2ZL0qIiUAuYC0/MTg7tUq1aNNWvWMGLECF566SXmzJnDX/7yF+69917Cw8PT85Sqsnv3bmbNmsX06dNJSUlh9OjRjB49mpCQEM6dO0fXrl0ZOnQoLVu2pF69et74OAaYOnUqlSpV4qGHHsp1vS5dugDw/fffExERkeu6vujixYtMnz6dvn370qxZswLt45tvvmHOnDnUrl2biRMnujlC/5Cx65ovDsiQZ6GjqhtFpD3QCEdT/R5VvZTbNs6rS4/hKI62pi0GKgBRhQvZtwUFBSEinD9/ntOnT3Px4sX0KSkp6bL5vLoO5iTt6blphU92xVDWZZUrV6ZKlSpcccUVVKlSJf21jf5kiquDBw9m6oqW9uyDSpUq0a5dO4YNG0b79u1p0aKF/R6ULC+o6hdpM6p6RkReALItdDyQ02YDU3AUKGnHCACm4iimYoD1IvIVjqLnlSzbD1HVYyLSGxgBfFSAGNwmODiYOXPm8PDDDzNu3Lj0AqZ69erUqVMHgEOHDnH8+HECAgK49957mThxIuHh4en7qFixIp988gkRERGMGjWKBQsWeOvjlGhHjx5lwYIFPPbYY3n+0Vq3bl3q1KnDunXriig691q6dCknT57kkUcKPhjhY489Rs2aNWnTpo0bI/MvGQudcuXKeTGS7Llyj04A0AMII0NhpKqTc9kmBLgCx5fzc/zv+TvnVPVU4UIuOkVxj05KSsplBVDGQighIeGyJ+XmNp912blz50hNzX1QoEqVKmUqfNJeZ50yvlejRg274m18jqqyYcMGFi5cyOeff87evXsBqFy5Mrfddhvt27enQ4cOXHfddSW+61kJv0dnq6o2z7Jsm6pem8P6bs9pIhIGLElr0RGRW4AXVfVO5/zzAKqatcjJbl9LVbVHXusV1X2n+/btY+XKlWzYsIGjR48iIlSvXp0bb7yRPn36cOWVV+a47Ysvvsj48eP55ZdfuPFGn348UbH00ksvMXbsWJfvtbj77rvZtm0b+/btK4Lo3KtPnz788ssvHDx40C50FcLu3btp0qQJQIEv3rtDTjnNlf/ZxcAFYBsuDqOpqnFAnIjsxtEHOmMgqOoEV/ZTEgQEBBAcHExwcLBH9q+qXLhwgXPnzhEXF8epU6cum06fPp1pPiYmJn15TiOJiAg1atSgdu3a6VOdOnUyzdeuXZvq1avbMxaMR6WmphIVFZVe3Bw4cIDAwEA6duzIiBEj6NChA9dee22JL2xMJr+KyGQcLSgAf8HxXJ1sFVFOqwMczDAfA9yU08oi0gHHfUZlgGW5rDccGA5w1VVXuSHMvF1zzTVcc801Bdr26aefZsqUKbzwwgssW5bjxyqRUlJSWL16NVFRUVy6dImIiAjuuusut110TE5OZsaMGXTp0sXlG8pvuukmvvjiC06ePEnVqlXdEkdROHbsGMuWLeOpp56yIqeQMt6j44tc+d8NzXrlKx/iM7wui6NPst+MUFMciAjlypWjXLlylz3oKi+qSnx8/GWF0cmTJ4mNjeXw4cPp0/r16zl27Nhl+wgMDOTKK6/MsRiqU6cO4eHhPtncaXxXcnIyP/zwAwsXLuSLL74gNjaWoKAg7rjjDsaPH0/v3r2pUqWKt8M0vutxHMNC/8c5/y2OYicvPpPTnIMnrHZhvfdE5AjQKygoqKWn4yqsSpUq8eyzz/L888+zdu1abr75Zm+H5FWqytatW5k3bx6ffPIJhw8fBtILbJo0acLnn39O48aNC32sr776ipiYGKZMmeLyNjfd5KjFf/nlF7p161boGIrK4sWLSU5O5sEHH/R2KH7P1x8Y60rXtUk4htD8ptAHEykDfK2qHQq7L08SkV5ArwYNGjzij82x3nLp0qX0AujQoUOZCqGMy86cOZNpOxHhqquuomHDhjRq1IiGDRumT1dddZVdiTcAJCUlsXLlShYuXMiXX37JqVOnCA4Opnv37vTr14/u3bv75Igvvqokd11zl8LkNHd2XXPhWH6V0+Lj4wkPD6d58+asXLmyRA68s3//fv7v//6PefPmsX37dgIDA+nWrRsDBgygR48elClThqVLlzJ8+HAqVqzIpk2bqFixYqGO2blzZ6Kjo/n9999dzrvnzp0jJCSEF154gRdeeKFQxy9Kd999N+vXr+fAgQMl8ufLnU6fPp1+YdFfu66tBb5wjuxyCUffZFXVgvxFEQyEFmC7IlWYUddKstKlS1O3bl3q1q2b63oJCQkcOXKEQ4cOERMTQ3R0NHv37mXPnj3MnTuXs2fPpq9bpkwZGjRocFkR1KhRI6pWrWpfUMVcQkICK1asYOHChSxZsoSzZ89SqVIlevXqRb9+/bjzzjs91u3TFF8iUh0YBTTD0TIDgKp2yueu3JnT1gPXiEg4cAi4H3DL5WZ/y2kVKlTgxRdfZOTIkcybN4+BAwd6O6QisWfPnvQuuBs2OHpStmnThmnTpnHvvfdSrVq1TOv36dOHKlWq0KFDB/7+97/zzjvvFPjYu3bt4vvvv2fixIn5urhYsWJFmjVrluOABMnJyaxYsQJVpVu3bj7RTSwpKYlvv/2Whx56yP6GcANfb9Fx5SduMnALsE3zWaqJyDacz9/BMXJMdcDuzynhgoODqV+/PvXr17/sPVXl2LFj7Nmzh71796ZPu3btYsmSJVy69L8B/6644opMBVCjRo1o3bo1devWtS8vP3b27FmWLl3KwoULWb58OQkJCVStWpV77rmHfv360blzZ5/vE2x83sc4uq31BB4FBgHH89rIXTlNRD4FOgDVRCQGxyhws0RkJPC1c98fqKpbHlCSoUXHHbsrEo8++iiffPIJjzzyCGXLluXee+/1dkhup6ps3ryZzz//nM8//5ydO3cCju5gkyZNol+/ftnmyYzatWvHkCFDeP/99/nHP/5BzZo1CxTLtGnTCAoKYtiwYfne9qabbmLRokWoaqbce+HCBbp168bq1asBR9G2aNEiqlevXqAY3WXdunXEx8enP+TSFI7P52NVzXUCIoFSea2Xw7ZXZ5jqAIEF2Y+3ppYtW6rxHZcuXdLo6GhdtmyZvvHGGzpixAjt3Lmz1q1bV3H88aGA1qlTR++55x6dPHmy/vzzz3rhwgVvh25csH79er3nnns0KChIAa1Vq5aOGDFCV65cqZcuXfJ2eMUO8Kv6wPesNyZgg/PfrRmWrXdhO8tpRejEiRPaunVrBfTOO+/UVatWaWpqqrfDKpSUlBRds2aNPv300xoWFqaAlipVSjt27KjvvPOOHjx4MN/73LNnj4qIjhs3rkAxnT17VitWrKgDBgwo0PYzZsxQQPft25dp+bhx4xTQGTNm6OzZs7VcuXJ6yy23aGJiYoGO4y4TJ05UQI8fP+7VOIqTtL+/vBxDtjnNlRad34HVIrIcSMpQIOU4vHSGdfa7sH9jXBIYGJjeEpT1psfz58+za9cu1q1bR1RUFFFRUenPYShTpgytWrXilltuoU2bNtxyyy3UqlXLGx/BZKGqREZGMnHiRL755htCQkIYMWIE99xzD23atLER+4ynpDUNHxGRHsBhIM/RK/w1p/ljiw5A1apV+emnn3jzzTd5/fXX6dixIzfeeCMvvfQSd9xxh7fDQ1WJi4sjOTmZwMBASpUqRWpqKomJiZw5c4aTJ09y4sQJTpw4wdGjR9m4cSNr1qzh6NGjBAUF0aVLF8aOHUuvXr0K1crRsGFDOnbsyPz58xk/fny+t583bx7nzp1j5MiRBTp+xgEJ0n7GEhMTmTp1Kn379mX48OEAlC9fnnvvvZeXX36Zf/7znwU6ljusWbOGRo0aXdYV0BRT2VU/GSfgheymPLY5B5zNMJ3L+G9ex/SVyd+ufpnMDh8+rAsXLtRnnnlG27Rpk95SAGh4eLg++OCDOmXKFN2wYYO1GBSx1NRUXbJkibZp00YBrVGjhr766qsaFxfn7dBKDEp2i05PIASIAFbhGFq6dy7rW07zsoSEBH333Xe1Xr16Cmjfvn117969BdpXXFycxsbGakpKSr62S05O1rVr1+pLL72kHTp00ODg4Ey9CfKa6tevrw899JB++umnbv+umzJligK6c+fOfG2XmpqqzZo105YtWxa4tezSpUsaHBysTzzxRPqymTNnKqCrVq3KtO7AgQM1MDBQd+3aVaBj5eTMmTP6ySef6O7du3NdLyUlRatUqaJDhgxx6/FLOny4RSfPUddKsqJ6uJopGklJSWzatCm9xScqKoojR44AjitNrVu3ztTqY8MTu19KSgoLFixg4sSJbN26lauuuopRo0YxZMgQG2K8iNmoayWHv426lpukpCQmT57MxIkTSUxMpGvXrnTp0oUHHngg10coJCQk8N577zFjxgx2794NOFr7w8PDCQ8PR1VJTEwkMTGR5ORkQkJCuOKKK6hQoQIBAQFER0ezZcuW9MFyrr/+etq1a0dYWBhBQUEkJyeTkpJCqVKlKFu2LJUrV6ZatWrpU9WqVT06cMqhQ4cIDQ3llVdeYfTo0S5v98MPP9ChQwc++OADHn744QIfv3379iQlJbF27VpUleuuuw4RYfPmzZnu2zl+/Dj169enU6dOLFq0qMDHyyguLo7WrVuzd+9egoKC+PLLL3O8/2bv3r00atSImTNnMnToULcc3zhGz73++uvZtGmTN2PINqflWOiIyBRVHSkii/nfzZfpVLW3iwe+DmjnnI1U1a2uh+0+ItIEeBKohmO47Ol5bWOFTvGmqhw4cICoqCh+/vlnoqKi2Lx5c3qyuvPOOxk0aBB9+vTx+VFFfN3Fixf56KOPePXVV4mOjqZx48aMHj2aBx980G0PuzP5U5ILHRGpB7yFY6CdVOBn4ClV/d2FbX0ipxVEccppsbGxTJ48malTp5KQkEBAQABlypShefPmtGzZkpYtW9KsWTNSUlJYunQp77//PseOHaNt27b06NGDSpUq8ccff/Dbb7/xxx9/EBAQQLly5QgODiYgIIC4uDhOnz5NQkICSUlJ6cNdd+jQgU6dOnn9hvrsNG3alPr167N48WKXt7nvvvtYuXIlMTExhbrY9Le//Y23336bs2fPEhUVRadOnZg1axZDhgy5bN2JEycyZswYIiMjadeuXTZ7y59nn32WN954g3nz5jFp0iQOHz7M3r17qVy58mXrfvbZZ/Tv358NGzZwww03FPrYxuHMmTOULVvWq38r5ZjTsmvmcRY/Z53/ts9uymm7LPt4EtiOY1SaCcA24HFXts2ynw+AY8D2LMu7AnuAaGC0i/sqBcxzZV1/buY3BRMfH6+rV6/Wv//97xoaGqqAVq5cWR999FH9+eef/f5G2KIWHx+vb775Zvq5bNmypS5cuDDfXUaM+1Gyu66tBQbiGHk0EBgArHNhO7fkNG9NxTGnxcfH6/r163X06NH6xBNP6G233aYVKlTI1GWsVKlS2rNnT42MjPR2uB41ePBgrV69ust56tSpU1qmTJlMXc4K6rPPPlNAo6KitE+fPlqtWrUcBx04f/681q5dW2+++eZC59SEhAStWLGiPvTQQ6qqumHDBgV00qRJ2a4/ZswYDQgI8PqACMb9csppuX2hb8rpPVcnYCtQPsN8eTKMcpOP/dwG3JCx0MEx/OZvQD0gCNgCNAWuBZZkmWo4t+kNLAcedOW4xTEpGNclJyfrt99+qwMGDNBy5copoI0aNdKJEycWaGSckuT06dP6z3/+U6tWraqAtm/fXr/++msrFH1ICS90LstDwBZXtnNHTvPC5+0FvNegQQMtCVJSUnTXrl26ePFiXbJkicbExHg7pCIxffp0BfS3335zaf200dJ+/fXXQh/75MmTGhgYqPfcc4+KiI4ZM8alYy9evLhQx120aJEC+s0336Qvu+2227R+/frZXlDr2bOnNmvWrFDHNL6pIIVODPB0TlNO22XZxzagbIb5sjiex1OQL+qwLIXOLTieSJ02/zzwvIv7WurKelbomDRxcXE6a9YsbdeunQIqItqlSxedN2+enj9/3tvh+YzY2FgdPXq0VqxYUQHt0aOH/vTTT94Oy2SjhBc6k4DRzrxyNY6Hh76CY+S1Krls57ac5o3JclrxtmnTJgX0448/dmn9tm3bapMmTdx2AapPnz4KaLly5fTQoUO5rnvx4kWtX7++Nm/e/LKC5OTJk7p8+XLdv39/nsccOHCgXnHFFXrx4sX0ZfPmzVNAV69efdn6devW1QcffNDFT2T8SU45LbexWwOACkDFHCZXfAisE5EXRWQ8ju4Cs1zcNi91gIMZ5mOcy7IlIh1E5G0RmQEsy2W94SLyq4j8evx4ns+PMyVEpUqVGDJkCJGRkURHRzN27Fj27dvHgAEDqFWrFsOGDeOnn35K++OnxNm/fz8jR44kLCyM1157je7du7Np0yaWLFlC27ZtvR2eMVn1B/4MfI9j1LURwP04Rl/L7SYWT+Y0YwolIiKC0qVLs23btjzX/eOPP1izZg0DBw502wO2p0yZwtChQ1mwYAG1a9fOdd3SpUszYcIEtm7dyty5cwHHhfd33nmHWrVq0a1bN+rXr89nn32W4z5UlWXLltGzZ89M93r27t2bwMBAVqxYkWn9M2fOcPDgQZo3b16IT2n8TnbVj/OPtY05vZefCUeXsyeAx4HrC7GfMDK36NwDzMwwPxCY4o6Y0ya7+mVyk5KSoqtWrdLBgwdr+fLl04cPnTBhgv7xxx/eDq9IpKam6nPPPaeBgYFaunRpHTZsWIGHfDVFixLYogPcCNTKMD8I+Ap4m1xacrLswy05zRuT5bTir3Hjxnr33Xfnud7UqVMVyHM4Zk9KSUnRtm3banBwsH7++ef62GOPKaC9evXSb7/9Vm+55RatUKGCxsbGZrv9nj17FNCZM2de9l67du0068/7unXrFNBFixZ55PMY78opp+XWolPoEl9E7gX2qerbQGVgnIi0KOx+nQ4BdTPMhzqXFZqI9BKR9+Li4tyxO1NMlSpVig4dOvDhhx8SGxvL7Nmzueqqqxg3bhxhYWF06tSJuXPnEh8f7+1QPSI1NZWRI0cyadIkBgwYwO+//87777/PNddc4+3QjMnJDOAigIjchqO72hwgDngvr409nNM8xnJaydGwYUP27t2b53rLly+nXr16NGzYsAiiyl6pUqXSW3/uvvtupk2bxtNPP82iRYu4/fbbmT17NgkJCbz11lvZbr927VoAbr755sve69KlCxs3buTkyZPpy9KGVrccVbLkVuh0dsP+x6rqORG5FeiEo4n/XTfsF2A9cI2IhItIEI5uB1+5Y8equlhVh4eEhLhjd6YEqFChAoMGDeL777/nv//9LxMmTGD//v0MGjSIq6++mm+++cbbIbpVamoqjz32GNOmTWPUqFF88MEHhIaGejssY/ISoKqnnK/vA95T1YWqOhZo4ML2nsxpHmM5reRo2LAh+/btIzU1Ncd1Lly4wPfff0+3bt3c1m2toGrVqsWWLVtYtmwZmzdv5t///jelSjn+NG3YsCHdu3dnzpw52X6etWvXUqlSJZo0aXLZex07dkRViYqKSl+2b98+RIR69ep57gMZn5NjoZMhGRRGivPfHsD7qroUxwhp+SIin+J4zkEjEYkRkaGqmgyMBL4GdgHzVXWHG2K2q1+mUMLCwhg7dizR0dFERkYSGhpKt27dmDx5clrXF7+WmprKn//8Z2bMmMHzzz/Pq6++6vVkaYyLAkQk0Pm6M457dNIEZrN+Vm7JacZ4yjXXXENSUhIHDx7McZ2NGzeSkJBA587uuJ5deMHBwXTr1o3rrrvusvf69+/P4cOH2bJly2XvrVu3jhtvvDG9MMoo4wNL0+zbt4+rrrrKnotXwuTWouMOh5w3/98PLBORMgU5pqo+oKpXqmppVQ1V1VnO5ctUtaGq1lfVl90VtF39Mu4gIrRr1441a9Zw11138cwzzzB48GAuXLjg7dAKLCUlhWHDhjFz5kz+8Y9/8PLLL1uRY/zJp8APIvIlkAj8CCAiDXB0X8uLW3KaMZ6S1hUtt+5ruXX58jVpxdh3332XaXlqaiq7d+/OcWCBihUr0qBBg8sKHeu2VvJ4+gu6P44Wly6qegbH0J1/8/AxC81adIw7VahQgfnz5zNhwgTmzp1L+/btOXz4sLfDyreUlBSGDBnChx9+yIsvvsg///lPK3KMX3FeEHsGmA3cqv9rYi2FY3CBvPhlTjMlR9of8tHR0Tmus3btWq6++mquvPLKogqrwGrXrk2TJk1YuXJlpuWHDx8mISEh18KlRYsWbNq0CXAMvGWFTsnk6UInFQgHXhORhTiugkV6+JiFZi06xt1KlSrF2LFj+eKLL9i5cyetWrVi3bp13g7LZSkpKQwePJi5c+cyYcIEXnjhBW+HZEyBqOpaVf1CVc9nWLZXVTe6sLlf5jS7eFdy1KpVi8DAQGJiYnJcZ926dX7RmpOmU6dO/PjjjyQnJ6cvc2Vggeuvv57//ve/nDlzhvj4eM6cOUNYWJinwzU+xtOFzlygCfAOMAVoCnzk4WMWmiUF4yl9+/bl559/pmzZstx2223MmTPH2yHlKTk5mYEDBzJv3jxefvllxo4d6+2QjPEWv8xpdvGu5AgICODKK6/MsdA5fvw4Bw4c4MYbbyziyAqudevWJCQkZOqOl/Y6t1Hj0rq17dixg9jYWAC/aMUy7uXKzZeFEaGqTTPMrxKRnR4+ZqGp6mJgcatWrR7xdiym+ImIiGD9+vX079+fwYMHs3XrViZNmkRgoKd/HfPv0qVLDBgwgPnz5/Pqq6/y3HPPeTskY7zJL3OaKVlCQ0NzLHR27nT8uEZERBRlSIXSooVjBPdNmzbRtKnj12/fvn2ULVs219E+GzVqBDiKorRR22rVquXhaI2v8XSLzkYRSW8fFZGbyP2p08aUCFWrVmXFihU8/vjjTJ48mR49enD69Glvh5XJpUuXeOCBB5g/fz6vv/66FTnGWE4zfiA0NJRDh7J/rGBaoZNWMPiDxo0bU6ZMmfT7bcBRvDRo0CDbEdfShIWFUbp0afbu3ZveomOFTsnjkUJHRLaJyFagJRAlIn+IyB84hohu5YljupN1XTNFoXTp0rz99tvMnDmTVatW0bp1a3bt2uXtsAC4ePEi9913HwsXLmTy5Mk8++yz3g7JGK/x1ZwmIuVF5FcR6emtGIzvqVOnDjExMdk+zmDnzp1UrFjRr557Vrp0aa699tpMhY4rAwsEBgYSHh5OdHS0FTolmKdadHoCvYCuOG7cbO+cwoFuHjqm21h/ZlOUhg4dyurVqzl37hw33XQTS5Ys8Wo8Fy9epH///nzxxRe89dZbPPXUU16Nxxgf4NacJiIfiMgxEdmeZXlXEdkjItEiMtqFXT0HzM/v8U3xFhoayvnz54mLiyM2NpY//vgj/b2dO3fStGlTvxsxM20ENVUlOTmZ3377Ldf7c9KktW7FxsYSEBBA1apViyBa40s8Uuio6v60CTgL1ASuzjAZYzJo06YN69evp2HDhvTu3ZuJEyd65eGiSUlJ9OvXjy+//JIpU6bwxBNPFHkMxvgaD+S02TiKpnQiEgBMxVE4NQUeEJGmInKtiCzJMtUQkS7ATuBYwT+ZKY7SWmt+//132rZtS3h4OBs2bCA1NZXt27f7Vbe1NNdffz2nT5/m4MGD7N+/n0uXLrk0VHSdOnXSC52aNWvm2tXNFE8evftZRIYBTwKhwGbgZhxN/Z08eVxj/FHdunWJjIxk2LBhjBkzhq1bt/LBBx8QHBxcJMe/cOEC/fr1Y9myZUyfPp1HH320SI5rjL9wV05T1UgRCcuyuDUQraq/O4/1f0AfVX0FR4tS1lg6AOVxFEWJIrJMVVPzE4cpnurUqQPAK6+8wu+//w5At27dCA0N5dixY3Tp0sWb4RVI2oAEGzZsSG+NShtsIDd16tTh8OHDHD582EZcK6E8Xdo+CdwI7FfVjkAL4IyHj1lodo+O8Zbg4GA+/vhjXn31VebPn8+tt97KgQMHPH7cCxcucNddd7Fs2TLee+89K3KMyZ4nP3DsEAAADM9JREFUc1od4GCG+Rjnsmyp6hhV/SvwCfB+TkWOiAx33sfz6/Hjx90UqvFljRo1IigoiAULFhAREcH7779PfHw8FSpU4I033uD+++/3doj51qJFC2rXrs2QIUN46qmnKF++vEtDZNepU4fk5GS2bdtm9+eUUJ4udC6o6gUAESmjqruBvEtwL7N7dIw3iQjPPfccixcv5rfffqNVq1b8+OOPHjteYmIivXv35uuvv2bWrFk88oiNqm5MDnwup6nqbFXN8cY+VX1PVVupaqvq1asXZWjGS6pXr87ixYt5+umnWbx4McOGDSMhIYHIyEj++te/+t39OQBly5blq6++onfv3pQtW5ahQ4dSpkyZPLdLa906dOiQFTollKcf3BEjIpWBRcC3InIa2O/hYxpTLPTo0YN169bRp08fOnfuzNSpU91ehCQkJNCrVy9WrVrFhx9+yKBBg9y6f2OKGU/mtENA3Qzzoc5lhSYivYBeDRo0cMfujB+44447uOOOO7wdhlu1bNky3w/ZTit0AGrXru3ukIwf8Giho6p3OV++KCKrgBBghSePaUxx0rhxY9atW8f999/P8OHD+eabb7j22mupVq0aVatWpVq1aulT1apVKVu2rMv7Pn/+PD179iQyMpK5c+cyYMAAD34SY/yfh3PaeuAaEQnHUeDcDzzopn0bUyJlLHTq16/vxUiMtxTZo9hV9YeiOlZh2dUv40sqV67M0qVLGTNmDDNmzGDBggU5rlu+fPlMxU92BVG1atWoXLkyf/3rX/npp5/46KOPePBB+3vKmPwoTE4TkU+BDkA1EYkBXlDVWSIyEvgaCAA+UNUdbop1MbC4VatW1i/VlCg1a9ZMf21/05VM4o0hbP1Fq1at9Ndf7aHXxrdcunSJU6dOceLECU6ePMmJEyfSp6zzacuyG1gjICCAjz/+mPvuu88Ln8J4m4hsUFWff4CzKbwMF+8e2bdvn7fDMaZIlStXjgsXLnD06FFq1Kjh7XCMh+SU04qsRccY4x6lS5emZs2ama5U5eXixYuXFUfh4eHccMMNHozUGOMLrEXHlGT79+/nt99+syKnhLJCx5gSICgoiFq1atmoM8aUQNYd25RkNWrUsCKnBLNHxBpjjDHFmD0ywRhTUlmhY4wxxhRj9hBsY0xJZYWOMcYYU4xZi44xpqSyUdeykdafGbgPyDhETTXghFeCKjh/i9ni9SyL1/P8JearVbW6t4MwRUdEjlOwB5z6y890dix27/Hn+C127yhM7NnmNCt08kFEfvW34Vj9LWaL17MsXs/zx5iNyY0//0xb7N7jz/Fb7N7hidit65oxxhhjjDGm2LFCxxhjjDHGGFPsWKGTP+95O4AC8LeYLV7Psng9zx9jNiY3/vwzbbF7jz/Hb7F7h9tjt3t0jDHGGGOMMcWOtegYY4wxxhhjih0rdFwkIl1FZI+IRIvIaG/Hk5WI1BWRVSKyU0R2iMiTzuVVRORbEdnn/PcKb8eakYgEiMgmEVninA8XkXXO8/wfEQnydoxpRKSyiCwQkd0isktEbvGD8/uU8+dhu4h8KiJlfekci8gHInJMRLZnWJbtORWHt51xbxWRG3wk3tedPxNbReQLEamc4b3nnfHuEZE7izpeYwqjuOU9X/gOycrVHCgiZZzz0c73w7wZtzMml3Oir537/ORGXzj37sqVIjLIuf4+ERnkxdjznTcL+n1khY4LRCQAmAp0A5oCD4hIU+9GdZlk4BlVbQrcDPzFGeNo4DtVvQb4zjnvS54EdmWYnwS8oaoNgNPAUK9Elb23gBWq2hi4DkfcPnt+RaQO8ATQSlUjgADgfnzrHM8GumZZltM57QZc45yGA9OLKMaMZnN5vN8CEaraHNgLPA/g/P27H2jm3Gaa87vEGJ9XTPOeL3yHZOVqDhwKnHYuf8O5nrflJyf6zLkvQG70hXM/m0LmShGpArwA3AS0Bl6Qork4O5tC5s3CfB9ZoeOa1kC0qv6uqheB/wP6eDmmTFT1iKpudL4+h+MLpw6OOOc4V5sD9PVOhJcTkVCgBzDTOS9AJ2CBcxWfiVdEQoDbgFkAqnpRVc/gw+fXKRAoJyKBQDBwBB86x6oaCZzKsjinc9oHmKsOa4HKInJl0UTqkF28qvqNqiY7Z9cCoc7XfYD/U9UkVf0vEI3ju8QYf1Ac857Xv0MyymcOzPiZFgCdnet7RQFyok+de/KXG71+7t2UK+8EvlXVU6p6GkexkbUAKZLYC5A3C/x9ZIWOa+oABzPMxziX+SRns2oLYB1QU1WPON+KBWp6KazsvAmMAlKd81WBMxl++H3pPIcDx4EPnd0MZopIeXz4/KrqIeBfwAEcX+JxwAZ89xynyemc+sPv4RBgufO1P8RrTE786ufXxbzna58pPzkwPXbn+3HO9b0lvznRZ859AXKjr537NPk91z7zf5CFK3mzwLFboVPMiEgFYCHwV1U9m/E9dQyx5xPD7IlIT+CYqm7wdiwuCgRuAKaragvgPFm6qfnS+QVwNkn3wZGQagPlKYKrN+7ka+c0NyIyBkdXmo+9HYsxJYm/5L2M/DAHZuV3OTFNcciNWfnquc5LUeRNK3Rccwiom2E+1LnMp4hIaRxf9h+r6ufOxUfTmoed/x7zVnxZtAV6i8gfOJogO+Ho71vZ2ZQMvnWeY4AYVV3nnF+A40veV88vwO3Af1X1uKpeAj7Hcd599Rynyemc+uzvoYgMBnoCD+n/xuz32XiNcYFf/PzmM+/50mfKbw5Mj935fghwsigDziK/OdGXzn1+c6Ovnfs0+T3XvvR/kN+8WeDYrdBxzXrgGueIHEE4bpT6yssxZeLsLzoL2KWqkzO89RWQNrLGIODLoo4tO6r6vKqGqmoYjvP5vao+BKwC7nGu5kvxxgIHRaSRc1FnYCc+en6dDgA3i0iw8+cjLWafPMcZ5HROvwL+5BxR5mYgLkOzvdeISFcc3U96q2pChre+Au4Xx4g94ThuDP3FGzEaUwDFMe/5zHdIAXJgxs90j3N9r13BL0BO9JlzT/5zo0+d+wzye66/Bu4QkSucrVp3OJcVuQLkzYJ/H6mqTS5MQHccI0P8BozxdjzZxHcrjmbLrcBm59QdRz/S74B9wEqgirdjzSb2DsAS5+t6zh/qaOAzoIy348sQ5/XAr85zvAi4wtfPLzAe2A1sBz4CyvjSOQY+xdFH+hKOK4RDczqngOAYdeU3YBuOEXN8Id5oHH2H037v3s2w/hhnvHuAbt7+ebDJpvxMxS3v+cJ3SA6fI88cCJR1zkc736/nA3G7nBN97dznJzf6wrl3V67EcT9MtHN62Iux5ztvFvT7SJwbG2OMMcYYY0yxYV3XjDHGGGOMMcWOFTrGGGOMMcaYYscKHWOMMcYYY0yxY4WOMcYYY4wxptixQscYY4wxxhhT7FihY4wxxhhjjCl2rNAxxhhjjDHGFDtW6BjjZiLSVEQGi0hdEano7XiMMcYYd7NcZ/yBFTrGuF9p4HHgLiA+65siEiYiiSKy2d0HFpFyIrJZRC6KSDV3798YY0zJIyKhInJflsWFznWWs4ynWaFjjPvVBT4EooGcrnL9pqrXu/vAqpro3O9hd+/bGGNMidUZuCHLskLnOstZxtOs0DGmgETke+eVqM0ickFE+gOo6hJggaouU9WzLuwnTER2i8hsEdkrIh+LyO0iskZE9olI6/ysZ4wxxriLiNwKTAbucea7elCgXFdeRJaKyBYR2Z5NC5ExbmeFjjEFpKqdnFeiZgBfAQszvBebz901AP4NNHZODwK3As8Cfy/AesYYY0yhqepPwHqgj6per6q/Z3gvP7muK3BYVa9T1QhghZtDNeYyVugYUwgi8iegG/CQqqYUYlf/VdVtqpoK7AC+U1UFtgFhBVjPGGOMcZdGwO5C7mMb0EVEJolIO1WNc0NcxuTKCh1jCkhE7gUeAvqr6qVC7i4pw+vUDPOpQGAB1jPGGGMKzTlIQJyqJhdmP6q6F8d9PtuAl0RknDviMyY39oeRMQUgIj2Bx4CeqnrB2/EYY4wxHhKGGwYLEJHawClVnSciZ4Bhhd2nMXmxFh1jCmYOEAqscd6cOdTbARljjDEesBuo5hxAoE0h9nMt8ItzuOkXgJfcEp0xuRBH935jTFERkTBgifNmTE8d4w+glaqe8NQxjDHGmJzkJ9dZzjKeYi06xhS9FCDEkw8MxfEgt1R3798YY4xxUZ65znKW8TRr0THGGGOMMcYUO9aiY4wxxhhjjCl2rNAxxhhjjDHGFDtW6BhjjDHGGGOKHSt0jDHGGGOMMcWOFTrGGGOMMcaYYscKHWOMMcYYY0yxY4WOMcYYY4wxptixQscYY4wxxhhT7FihY4wxxhhjjCl2/h/BJdp3tkIOAAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAHbCAYAAAADNu+6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde3wU5fX/P2d2kxBCCCSEEC5JuMklCBUQkVpRrAgKXot4qYooaJF6od79WWu9VCtoURRRLrX9WtQqCkWp4F2k3BUM4SJCuCdAgBAISXZ3zu+PmdmdnZ3dnQ2bC+G8X0Z2nzlznjPPzO4+nznP8wwxMwRBEARBEARBEBoTSn0HIAiCIAiCIAiCEG9E6AiCIAiCIAiC0OgQoSMIgiAIgiAIQqNDhI4gCIIgCIIgCI0OETqCIAiCIAiCIDQ6ROgIgiAIgiAIgtDocNd3AIIgCIIg1D5r1qxp7Xa7ZwLoBbnRKQhC40AFUOD1em/v16/ffuvGU0LoEFEygP8CGMLMPpvtiQA+07d76zo+QRAEQXCK6TftzwDuY+YRNjafARjFzIfjVa/b7Z7Zpk2bHpmZmYcVRZGH6AmCcMqjqiodOHCgZ3Fx8UwAl1u3nyp3dMYCmGcncgCAmasBfA5gdJ1GJZy2EFFLIsojojFE1LK+4zFDRAOI6H9E9A0RzSWihPqOSRCEIMYCmAfA9jdN558AJsS53l6ZmZlHReQIgtBYUBSFMzMzy6BlqkO313E8NeVGAPOJqBkRfU5Ea4noRyK6wmTzkW4nCHVBPwC/BzASwG/qORYru6BlN88HUATgisjmgiDUMTcCmK+/bk5EHxPRZiJ6nYiM3+UFAK6Pc72KiBxBEBob+vearaZp8EJHH5bWiZmLAFQCuIqZ+wK4EMAUIiLdtADA2fUTpSCEh4iYiI4T0TN1UR8z72PmE/rbamjjV41YviCiSiJaWhexCIIQjOU3DQAGQLtp0hNAZwBXA4A+ZC2JiDLqI05BEITGQIMXOgBaATiivyYAzxLRemhzctoByAIAfVhbNRGl1kuUwunGGgCvAPgPgPcd2Pdh5seshUT0FREdJqIkm21tiWh3TQMkolwAQ/UYAQDMPATAnTX1KQjCSWP+TQOAlcy8Tf8NmwvgPNO2/QDa1mVwgiAIjYlTQeicANBEf30jgEwA/Zj5FwBKTNsAIAla1kcQThoiSiWivxLRFiKqIqLd+tCSJGY+zMxFzPz3mk4WJqI8AL8CwLCZQAfgUmgTlmviuzm0Mf5jmNlTEx+CINQK5t80QPv8I8z7Jrp9o2Hnzp3uESNGdOrQoUOv/Pz8HoMHD+6yfv36pNWrVzcZOHDgGXl5eb1yc3N7PfDAA9mqqiWjX3755Qwi6vfRRx/5b2T+85//bEFE/ebMmdMSAObOnZvWo0ePnt26devZuXPn/BdeeKGVYTt58uRWHTt2zO/YsWP+mWee2ePTTz9tZmwbMGBAt2+++aZpHTbBacmoUaPy0tPT+3Tt2jW/tvy4XK5+3bt379mlS5f8bt269XziiSeyfL5I0+CEmhCpnRcuXJiampr6i+7du/fs3r17z0GDBp0BAJMmTWqbnJx81p49e/yLoDVt2vQs43W47wUAWL9+fdLgwYO75Obm9urZs2ePSy+9tNOuXbscL6bW4IWO3ol0EVETAGkA9jOzh4guBJBr2Onp/YPSqRPiyDUApgO4GUAigOHMfCczV8XJ/80AlgP4O4BbbLZfCuATACCiIiJ6gIjW68PgZhFRFhEtIqJyIvrMWBSBiNwA3gHwJDNvjlOsgiDEActvGgAMIKKO+tyc0QCWAoA+LLsNtHl2jQJVVXH55Zd3Of/888t37dpVsGHDho3PPffcnr179yZcddVVXR588MHioqKigoKCgsIVK1Y0e/755zONfbt27Xpi7ty56cb7d955J71bt24nAKCqqoruueee3IULF/60efPmwoKCgsKhQ4eWA5oAmjNnTuayZcs2b9++fcP06dN3jBkzpuPOnTtPiVVnGwtjx449uGDBgp+i2S1cuDD1mmuuyauJn6SkJHXTpk2FW7du3fDFF19sWbJkSdr9998vGdE4E62d+/fvf2zTpk2FmzZtKly2bNkWo7xFixbep59+OsvqL9L3QkVFBY0cObLrHXfccWDHjh0FhYWFGydMmHCguLi48QgdncXQ0vlvA+hPRD9C6yRuMtlcCODjeohNaKTo2ZrtAH4J4Edm/jHOVdwM7Zp+G8AlROT/AtBXSjsfwBKT/TUALgZwBrRFEBYBeBRallMBcLdudz2AcwA8rg+Nk9UIBaFhYfymAcAqANMAbASwHcCHenk/AMvr85EJM2bMSO/atWu+y+Xq17Vr1/wZM2akR98rPAsXLkx1u9384IMPHjDKzj333BMbN25s0r9//2NXX331UQBITU1Vp0+fvnPq1KnZht0555xz7Pvvv0+pqqqisrIypaioKCk/P78CAI4cOaJ4vV7KysryAkBycjL36dOnCgAmT57c5i9/+cvu7OxsLwCcd955Fddee23plClTWp/MsQixMXz48GOZmZknfS079dOuXTvvzJkzi+bMmdPayAwK8SeWdr7++utLFyxYkF5SUuIyl4f7Xhg2bNixN954I71v377HbrjhhjJj24gRI8rPPvtsx6O3ThWh8yqAW5j5IDOfy8xnMvOtzNzDNKHzBgAz6i9EoRFzJbRV/eIGEZ0HLSP5HjOvAfAztGvY4HwA65i53FT2CjOXMPMeAN8CWMHM3zNzJbTO0VkAwMz/ZOYMZr5A/3s3nrELgnDSGL9pXzHz+cx8GTN30zPGRm/hJgCv1VeAM2bMSH/qqafavfjiizsrKirWvvjiizufeuqpdicjdtavX5/cp0+fCmv5hg0bmvTt2zeoPD8/v6qiokI5dOiQAgBEhPPPP//ovHnzmv/rX/9qMWzYMP88p6ysLN/FF198JCcnp/fIkSM7Tp8+Pd0YSrN169bkX/7yl0G+zz777IqNGzcm1/Q4hFODnj17Vvt8PpiHSwnxx9rOq1evbmYMXXvooYfaGHbNmjXzXX/99Qefe+65oKxOuO8FACgoKEi2fjfEyilx8pl5LRF9SUSuCA8M/YiZt9jsLgg1hogyAQwCcE+cXd8CYDEzH9Tf/0sve0l/7x+2ZqLE9PqEzftmEAShwRPtN02ngJk/r9PATEyePDl7+vTpRSNHjiwHAP3fokmTJuXccccdh+ojphtvvPHQ3/72t6zy8nLX3/72t11PPvmkP+Pz7rvv7li5cuX+RYsWpb788sttPvvss+YffPBBUX3E2VAZO3Zsh4KCgrjOR+rVq1fF7Nmzd52sn969e3evrq5WKioqlLKyMnf37t17AsAzzzyz+5prrjl68pE2TgYMGNDtt7/97cG77767tKqqin71q1+dMWbMmAMTJkw4VF5erlx00UVdx40bt3/cuHGHS0tLXcOHD+9y1113ldxyyy1H9u3b577iiis633vvvcU33HBD2c6dO905OTknnXXr37//sS+//HKr3baHH354f58+fXr+8Y9/LD7ZepxySggdAGDm2RG2VQP4Rx2GI5w+jASwm5nXxsuh/lT0a6GN0zc+7EkAWhBRH2ZeB03oXB2vOgVBaFhE+k3Tt79ZV7HYsW3btiZDhw49Zi4bOnTosW3btjUJt080zjzzzBMfffRRyAOWe/bsWfntt98G3agpLCxMbNq0qZqenu4fD3PhhRdW3HnnncnJyclq7969Q+ZKDhgw4MSAAQNOjB8//lCXLl3OBFDUpUuXE999913Tyy+/3J8dX716ddMePXo0qkUeTnXWr1+/CdCGMc2ZMycjHiK1sLAw0eVyoV27dvU2/PN0wNzO69ati2jbqlUr31VXXXXohRde8A8dDfe9AAD5+fmV33zzzUndxD1lhI4g1BM3AvhaX/55BLSlYE/27tWV0J6Ifia059wYvAfgZiKaBiCJmTeeZD2CIAg1olOnTpWLFy9uZmR0AGDx4sXNOnXqVOOVTUeOHFn++OOP0+TJk1vdf//9BwFgxYoVyT179qx88cUXsz/66KPUK6+8svzYsWN011135fz+978Puev71FNP7U5OTg5aqa6srEz59ttvU0aMGFFu+Gzbtm01AEyaNKn40UcfbT9gwIAtbdq08S1btiz53XffzVi+fPkmq+/GTjwyL6cKe/fudY8bNy731ltv3a8op8osjdhZuXKlf8GhpKQkNr9PTU1Vze8zMjJ85vfZ2dle8/uaZHNq0s6PPfZYSf/+/Xv4fD4Cwn8vHD582DVu3LjSl156qc0777yTdt1115UBwKJFi5q1atXK63SejggdQbCBiIYDuAvAEADl0J7X9GwcRA6gDVGbw8w7LXVOA/AytAnJ1mFrgiAIdcb999+/73e/+10egKKhQ4ceW7x4cbPf/e53eY8//viemvpUFAULFiz4ecKECR2mTp3aJikpidu3b1/1yiuv7Jo3b97WiRMn5tx7770Jqqpi1KhRpY888sh+q49rr702ZBiTqqp44YUXsiZOnJjbpEkTtWnTpuqsWbO2A8CNN95Ytnv37sSBAwf2ICJOSUlRZ8+evT03N9e/QutVV13V1e12MwD07dv32KJFi7bV9BgFe0aOHNlx+fLlqYcPH3ZnZWX1fvjhh/fed999B6Pv6dxPVVWV0r17955er5dcLhePHj269IknniiJ5lOIjZNt5+zsbO/w4cMPz5o1KwuI/L3QrFkznj9//ta77767w0MPPdTB7XZzjx49TkyfPn1ntHoMiNm6hL8gCPGEiCoBVAF4mZkfd2D/CYBpzBx3sUNESwAMhJaZuije/gVBaLisW7euqE+fPo47lzNmzEifPHly9rZt25p06tSp8v77799XX/NzBEEQIrFu3bpWffr0ybOWS0ZHEGoZZo51TPtXAL6shVDAzBfXhl9BEBofd9xxxyERNoIgnMqI0BGEBgYz/7W+YxAEQRAEQTjVabwztARBEARBEARBOG0RoSMIgiAIpweqqqpU30EIgiDEE/17TbXbJkJHEARBEE4PCg4cOJAmYkcQhMaCqqp04MCBNAAFdttljo4gCIIgnAZ4vd7bi4uLZxYXF/eC3OgUBKFxoAIo8Hq9t9ttlOWlBUEQBEEQBEFodMgdHUEQBEEQBEEQGh0idARBEARBEARBaHSI0BEEQRAEQRAEodEhQkcQBEEQBEEQhEaHCB1BEARBEARBEBodInTiCBF1I6IfTH9HieheIhpFRBuISCWi/hH2H0ZEm4loKxE9bCrvSEQr9PJ3iSixPmMlog5E9CURFeq295i2/YmI9pj8XnqysZ5svPr+RUT0o77valN5OhEtIaKf9H9b1mes4fbVt8W9bSPE+gIRbSKi9UT0IRG1CLN/Q7hmo8bawK5Zp21bZ9esIAiCIDRGZHnpWoKIXAD2ADgHQFNo63zPAHA/M68OY78FwMUAdgNYBeB6Zi4kovcAzGPmd4jodQDrmHl6PcaaDSCbmdcSUSqANQCu1GP9E4BjzDw5XvGdbLz6PkUA+jPzQUv5XwEcYubn9I56S2Z+qD5jtduXmXfUdttaYu0G4Atm9hLR8wBgbZcGdM06ibUhXbNR49X3KUI9XLOCIAiC0FiQjE7tcRGAn5l5BzNvZObNUewHANjKzNuYuRrAOwCuICICMATA+7rdWwCurM9YmXkfM6/VX5cD2AigXZxjikSsbRuJK6C1KdAA2jbcvnGOKWp9zLyYmb16+XIA7W3sG8o1GzXWBnbNOmnbSNT2NSsIgiAIjQIROrXHdQDmxmDfDsAu0/vdelkGgCOmjpFRHk9ijdUPEeUBOAvAClPxRH1YzuxaGlZTk3gZwGIiWkNE403lWcy8T39dDCArHgGaqHHbhtm3Nts2XKxjASyyKW+I12y4WP00sGs2Urz1dc0KgiAIQqNAhE4toM9HuBzAv+s7lmicTKxE1AzABwDuZeajevF0AJ0B/ALAPgBT4hSqUWdN4z2PmfsCGA7gLiI632rA2jjOuI3lPMm2tdu31to2XKxE9BgAL4C341XXyXIysTaka9ZBvHV+zQqCIAhCY0KETu0wHMBaZi6JYZ89ADqY3rfXy0oBtCAit6U8XtQkVhBRArQO49vMPM8oZ+YSZvYxswrgTWjDm+JJjeJl5j36v/sBfGiKq0Sfv2HM49hf37GG27eW2zakPiIaA2AEgBvZfjJfg7lmHcTaoK5ZJ/HW0zUrCIIgCI0GETq1w/WIfbjSKgBd9dWqEqENdVmgd4K+BPAb3e4WAPPjFmkNYtXnYMwCsJGZX7Rsyza9vQpAwUlHGExN4k3RJ6CDiFIADDXFtQBamwINoG0j7VvLbRtUHxENA/AggMuZuSLMPg3imnUSa0O6Zh3GW1/XrCAIgiA0HphZ/uL4ByAF2h3tNFPZVdDmKVQBKAHwqV7eFsAnJrtLoa1i9TOAx0zlnQCsBLAV2vCXpPqMFcB50IbLrAfwg/53qb7tnwB+1LctgLbSVb22rd5+6/S/DZa2zQDwOYCfAHwGIL0BXAch+9Zm24aJdSu0+TfG+X29AV+zUWNtYNesk3jr/JqVP/mTP/mTP/lrbH+yvLQgCIIgCIIgCI0Od3QTQRAEQRBOddasWdPa7XbPBNALMnRdEITGgQqgwOv13t6vX7+QOasidARBEAThNMDtds9s06ZNj8zMzMOKoshwDkEQTnlUVaUDBw70LC4unglthdMg5I6OIAiCIJwe9MrMzDwqIkcQhMaCoiicmZlZBi1THbq9juMRBEEQBKF+UETkCILQ2NC/12w1jQgdQRAEQRBqna1btyacc845Z3Tu3Dm/S5cu+U899VRrY1tJSYlr0KBBXXNzc3sNGjSo64EDB1wAoKoqxowZ0yEnJ6fXGWec0XPp0qVN6+8IBCccPHjQNWzYsE4dO3bM79SpU/5nn32WAsg5bkyMGjUqLz09vU/Xrl3zzeU1OcevvPJKRm5ubq/c3Nxer7zySka8YxWh0wAgovH1HYNTJNba4VSKFTi14pVYBaFhkJCQgClTpuz++eefN6xatWrjrFmzWq9Zs6YJADzxxBPZF1xwQfmOHTsKLrjggvI//vGPbQDg3//+d9q2bduaFBUVFUyfPn3HhAkTcur3KIRojB8/vsPQoUOPbt++fUNhYWHhL37xi0pAznFjYuzYsQcXLFjwk7U81nNcUlLiev7559uuXLly4+rVqzc+//zzbQ1xFC9E6DQMTqXOjcRaO5xKsQKnVrwSqyA0AHJzcz3nnXdeBQC0bNlS7dy584mdO3cmAsB///vfFnfccUcpANxxxx2lixYtagkA8+fPb3HjjTeWKoqCiy666PjRo0fdO3bsSDD7PXr0qHLBBRd06datW8+uXbvmv/nmmy3r+tgEjdLSUteKFStS77333oMA0KRJE27VqpUPkHPcmBg+fPixzMxMr7U81nP80UcfpZ1//vlHs7KyfJmZmb7zzz//6Lx589KsfidMmNCuc+fO+WeccUbP8ePHt48lVll1TRAEQRCEOmXz5s2JhYWFTQcPHnwMAEpLS925ubkeAOjQoYOntLTUDQD79u1LyMvLqzb2y87Ort6xY0eCYQsA8+bNa96mTRvPV199tVX3Fdc7woJzNm/enJienu4dNWpUXmFhYdPevXsff/PNN3c1b95clXPc+In1HO/Zsyehffv2/vJ27dpV79mzJ0jkFhcXuz755JOW27ZtK1AUBQcPHozp3IvQiYDbdQaDKwAABIBAQdtJ/z+FlMFmi76Ng/cFgCSkI5XyOMgujJ/QbcGl4WKJ/t7qyd4+Fa3Qhjqz3fbQ/YMO1t7eppD8/+Pg/UL8BPyHxEpAK1c6OiXlBrer+SQElYWPO6g8pCzUZ8TyoP0D29o0aY6eadkctM1kS5HKybQtbF2h+0aKM9CmoeUA0C61KfpkZbBdmwTswrUzW+wsLih0u3k/u2smaB/LfjnpSeiX14yD2s3q18Ex2H84wsVqY+Pgw5mT7Ua//CbsxNb8PsKXRxQ7xg9rqz9l5mEQTivGjh3XoaCgIK5zIXr16lUxe/abu6LZlZWVKVdffXXn5557bld6erpq3a4oCsj2g25P3759Tzz22GMdfve737W74ooryoYNG3YsxtAbJZ8/+o8OpVv2xPUcZ5zRruKiZ28Oe469Xi9t3Lix6dSpU3cOGTLk+K233trh8ccfbzN16tS9Zjs5x/FBXX5nBz5SGNdzTC16VigDX4/6OY5GrOc4HBkZGb6kpCR19OjReSNGjDgyevToslj2F6ETAeYKNE/8PVwg7Y8VKHoPQdHLFP0PABSG/725nPzvAYUD+5NRBnOZ7oMD8sbYl8w+2VoesNW2BQSS2cawIzb2tbNFsK1RTjZlABST0DBea/+ypYxBFOhkGu8VAogCndhAuVHGIMUoZ8v+drY2ZfqfsQ8AkIKgcqut5sfehxFrJDsiS7liU+Zvk0AZlDD7++NCUBnC2SrwCwC7mAL1ILjcJlaYjtXqE3pdQfvb2gbqNJeb4zDHZcRh9gn93MJyDFZbGPFY7RSjvQJ1wVSuXRe68DFvM/m1qyvYTtuXbcsNv1oR++uC/8PFhk8FYDKV6x9CDrLV7RQK2AOAotlZ92f9mNiISfGhRdL2VhCEOqKqqoouu+yyzqNGjTp0yy23HDHKMzIyvMZd/B07diSkp6d7ASA7O9tTVFSUaNjt27cv0XynHwB69+5dtXbt2sIPPvgg7fHHH2/32WefHZ08efK+ujsqwSAvL686KyuresiQIccBYPTo0Yefe+65NoCc49OBWM9xu3btPF9//XWqUb5nz57EwYMHl5t9JiQk4Icffti4YMGC5u+//37L6dOnt16+fPkWpzGJ0BEEQRCE0wwnmZd4o6oqrrvuutwzzjij8k9/+lOJedsll1xyZMaMGRnPPvts8YwZMzKGDRt2BAAuv/zyI6+99lrrcePGHfryyy9TUlNTfdZOcFFRUULr1q29EyZMONSyZUvfrFmzRLwDiJR5qS1ycnK8bdq0qV63bl1Snz59qhYvXty8W7dulYCc49ogHpmXeBLrOb7yyivL/vznP7czFiD4+uuvm7/00ku7zT7LysqUY8eOKaNHjy779a9/faxz585nxhKTCB1BEARBEGqdJUuWNPvoo48yunbteqJ79+49AeDJJ5/cM3r06LInn3xy31VXXdU5Nze3Vbt27ao//PDDnwHg2muvLfv444/TcnNzeyUnJ6szZ84ssvpds2ZN8iOPPNJeURS43W5+7bXXdtTxoQkmXnnllZ033nhjp+rqasrJyamaO3duEQDIOW48jBw5suPy5ctTDx8+7M7Kyur98MMP773vvvsOxnqOs7KyfA888MDefv369QCABx98cG9WVpbPXNeRI0dcI0aM6FJVVUUA8NRTT8Uk7ohZnh0WDpfSnmXomgxds/NhxCpD12ToWiMYuraGmftDaPSsW7euqE+fPgfrOw5BEIR4s27dulZ9+vTJs5bL8tKCIAiCIAiCIDQ6ROgIgiAIgiAIgtDoEKEjCIIgCIIgCEKjQ4SOIAiCIAiCIAiNDhE6giAIgiAIgiA0OkToCIIgCIIgCILQ6BChIwiCIAhCneH1etGjR4+eF154YRejbNOmTYm9e/funpOT0+uyyy7rVFlZSQBw4sQJuuyyyzrl5OT06t27d/fNmzcnhvcsNASefPLJ1l26dMnv2rVr/siRIztWVFQQIOdYqB9E6AiCIAiCUGc8/fTTWV26dDlhLps0aVL7iRMnluzcubMgLS3NO3Xq1FYAMHXq1FZpaWnenTt3FkycOLFk0qRJ7esnasEJ27dvT3jjjTeyfvjhh8Kffvppg8/no5kzZ6YDco6F+kGEjiAIgiAIdcLPP/+c8Omnn6aNGzfO/+BSVVXxv//9L/XWW289DABjx44t/c9//tMCABYuXNhi7NixpQBw6623Hl62bFmqqqpBPnfs2JHQv3//bt27d+/ZtWvX/P/+97/N6vCQBAs+n4+OHz+ueDwenDhxQmnfvr1HzrFQX4jQEQRBEAShTrjrrrs6/PWvf92tKIHuR0lJiTs1NdWXkJAAAMjLy6suKSlJ1LclduzYsRoAEhIS0KxZM19JSYnb7HP27NnpF110UdmmTZsKN27cuOGcc86pqLsjEsx07NjRc9dddxV37Nixd+vWrfukpqb6rr766qNyjoX6wh3dRBAEQRCExsQLd/6jw/bCvU3j6bNjz7YVD7x+865w2+fOnZvWqlUr769+9auKhQsXpsar3oEDBx6/44478jwej/Kb3/zm8KBBg05E36vxc2Dasx2qd26L6zlOzOlUkTnx0bDn+MCBA66PP/64xdatW3/MyMjwXXbZZZ1ee+219KuuuuroydQr51ioKSJ0IqDynk+PVD3cqr7jaDBwjOWCIJwKHIxuIggnz9KlS5stWbKkRbt27dKqqqqU48ePK1dccUXHDz/8cHt5ebnL4/EgISEBRUVFiVlZWdUAkJWVVb19+/bEzp07ezweD44dO+bKysrymv0OHz782DfffLP5gw8+SBs7dmzHiRMnlkycOLG0fo7y9OY///lP85ycnKq2bdt6AeDKK688smzZsmZ33nnnITnHQn0gQicCzDysvmMQBEEQhHgTKfNSW7z66qt7Xn311T0AsHDhwtQpU6ZkzZ8/fzsADBw4sHzOnDktx48ff3j27NkZI0aMOAIAl1122ZHZs2dn/PrXvz4+Z86clueee265edgbAGzZsiWxU6dO1X/4wx8OVlVV0dq1a5sCOO07wZEyL7VFXl5e9dq1a5uVl5crKSkp6hdffJHar1+/CkVR5BwL9YIIHUEQBEEQ6pUpU6bsHj16dOenn366XX5+fsU999xzEADuueeeg9dcc03HnJycXmlpab533333Z+u+n376aerLL7/cxu12c9OmTX1vv/329ro/AgEAhgwZcnzkyJGHe/fu3cPtdiM/P79i0qRJBwA5x0L9QMwy7kgQBEEQGjvr1q0r6tOnjwxVFASh0bFu3bpWffr0ybOWy6prgiAIgiAIgiA0OkToCIIgCIIgCILQ6BChIwiCIAiCIAhCo0OEjiAIgiCcHudN/ZgAACAASURBVKiqqlJ9ByEIghBP9O811W6bCB1BEARBOD0oOHDgQJqIHUEQGguqqtKBAwfSABTYbZflpQVBEAThNMDr9d5eXFw8s7i4uBfkRqcgCI0DFUCB1+u93W6jLC8tCIIgCIIgCEKjQ+7oCIIgCIIgCILQ6BChIwiCIAiCIAhCo0OEjiAIgiAIgiAIjQ4ROoIgCIIgCIIgNDpE6AiCIAiCIAiC0OgQoSMIgiAIgiAIQqNDhI4gCIIgCIIgCI2OBi90iGg2Ee0nogJT2QtEtImI1hPRh0TUwrTtESLaSkSbiegSU/kwvWwrET1c18chCIIgCIIgCELd0eCFDoC/AxhmKVsCoBcz9wawBcAjAEBEPQFcByBf3+c1InIRkQvAqwCGA+gJ4HrdVhAEQRAEQRCERkiDFzrM/A2AQ5ayxczs1d8uB9Bef30FgHeYuYqZtwPYCmCA/reVmbcxczWAd3RbQRAEQRAEQRAaIe76DiAOjAXwrv66HTThY7BbLwOAXZbyc+ycEdF4AOMBICVJ6de9bZO4BcpaDTXZKZ4BOCCGGOMZn99f9Po55noj+KzJMTA52zUG38wO292hHTtsS7sYw4YdrW426qbQqsM4ZcMwSls5bp9otuzQrob1s2o5drZ9CYAcnSNbm7A+nce5vXrnQWbOdGQsNApatWrFeXl59R2GIAhC3FmzZo3tb9opLXSI6DEAXgBvx8snM78B4A0A6N8phVc829200VFU4X2rjKAkWiR//m1ROkFq+A5QqLHDjprPkuiL6FOJasM+w86BgFERsAvxGdhf9QFgl6MYg32Gj0H1AEB0nyoAWNvI7tgY8Hkp0EYRUBmAzxXWjxmfR3Hk02dtozA+vSoAb5i6LXh9BKjRfXp8AHwJUf0BgNejwP+5iHDOPdUKnJwfBuD1uCPYBESqp9rlb8tINyJUH8Hn0+oOFdnB+1RVJcD8ObcVHgz4fASfathZP8fkD93nA7zegE+jfrbYA4DHA6gc7JMtNsa224rH7wgNTGjM5OXlYfXq1fUdhiAIQtwhItvftFNW6BDRGAAjAFzE7O967AHQwWTWXi9DhPLwKAxq4okejMM756QCIIoumJzeiYcudNiBTyCo8xSpbvKRVn/UO+xw1OGGucMdcvvZ5r0Dn+SDpg6cHLf/eCK3KTlsRwV2nUf7tAgRaec8CqQCrFiOx3gdsjsD5DBQHwc7iCAOotkAALMSeh3Z2TNBVcOcR4u96tOEDkeJ0+tzhb+OgmIkeD1u0zkKb1tdlQAiJdjMLyTMwprgtYpBi1/DvrIyWOgEIE3Q6vi8AfFk65K169bnA6o8iaHuWKvTLLyqPaHtzkH2Whzs8PtFEARBEE5lTkmhQ0TDADwIYDAzV5g2LQDwLyJ6EUBbAF0BrITWO+lKRB2hCZzrANwQtSKFgeRIQifGzoIPjrMqTn2TN3oH3uwzav+YAfZGyb7oPsgQZBZhZq2CfAD7nPSwdZ9WoWN3fAq0XJ4DWDFlVSJkylgNjSc8occdcGSy8plsIvgmBVqMdicoRPwocBIokZ59Ciq0iREIL0osMbBKgBpFMLPWlmpI1stiowfj8xoiJ0I2FIC3mmD9ygrJrrDW8ddECew79KZroLo6AYEsEYX4NIaNqSrB61VCrh9r/SoTKisTwTZCh837MuDxEnymNgoVJNrx+FSg0mPK6Fj9mWKo8gI+XSCFHd7Juv4VBEEQhAbAloWrsPr1RTj88z607JyN/ncOxxkjzo6L7wYvdIhoLoALALQiot0AnoC2yloSgCWk3S1fzsx3MvMGInoPQCG0bvBdzOzT/UwE8Cm0Xs1sZt4QtXKFwc18eiAR7EJ6kxaMToUayY9pg6pnF6L4ZADwAeREFBnDtyJ0fvx4lRh8Wu6Gw9RXNx03eaM0ktGRZpuhXmZBYYgsLwBXtJSTOU6bIU9s8WmXTbHzx0aSJnx7atkugFykp/Js/JpeKwyoHOECMbepoiIkYxAmM8bhDobgv26ZA/EaG8NeJkzgcELH5MPrUcBeY+iUjYgJymy4EDbLYMqyeb0u07A5CsRpzawwUO0xf7UFzrN/vou+T1VVAlgNFjrBx6+VqSpQXW0d3hcQE4HhZITjFWZREj4D5PEo8PgCbWMVOoZPnw847jVndELnhxmvq3za/RSjzGpjo40EQRAEod7YsnAVlr80H0OeuQnZ/bpg35qt+OKxfwJAXMROgxc6zHy9TfGsCPbPAHjGpvwTAJ/EVLcL8KVaUw42huY+fKSeBEe7Z22ys/Nj51O1uatth6oLIrsOsfV90J1rO8jv07YDyxZbHwBvlEyFYa0CtnNvrKfBA/vb0mF9ctB2u3kTCkEf5maD5S4/G5maoPMT2Nd4pfoUPVUUIUZ/5zuk8QLXljkTQ0roSadAZx4g7T+yFBsvjDdk/EO6wLQKmOBOvZap0WyDOvAh16Amhrxeu68XCnntVV2wZu3YF2rv9bjhM8/7CcquBAs/T7U7aBI/I3AazOe+sjIRPtUUp74PW+o2hA4HiQzyZwHNh19+IiEoo+P3ZRU6PsDjU4IvIV2MmU+TTwXKg74eQi9yo6QaKjz+TF5A5pr//FtE7QiCIAj1zOrXF+HCp27E8ZIj+PCmKbh81t0Y8sxN+Obpd08PoVOfsAvwNndiaOoSReo8OEgOAdBFCSy9kjAVex3lXjSfalBvKaxL8voQdiUs83ureApnqwsd2zit+6oAG5kNm36/8V5xIfrQNUPU+CjIP2A+X5Yhd3ZCxyrcGIAncPc/bEaPAXIDsC4Y4fdpvtvPINXmuK27Gj3UkCFoRm/b1OEnDuqE2+koIyuhLWphnyEJmlivKmDV5bez9wn4VMUyHM401MsSp+p1m0SIEROFCAhPdQJUkyhhU0YukDXSyqqqEvziSzXOj83coooTCWB2G2+DfJob36cCVR5jMQLTamkmYWLEW17tAuAOysrYfUSqVcBjaj/ryEnV/68PR6D6BY7ZV8Bee1UJL6pN762nh7VmgGptXEEQBEGoY5gZh7buxcIH34TvQAV2V5XipQEX4K5H7sbhn/fFpQ4ROhFgBfCmOphsz8bckih2KkNx0rmw3n4Na0cgr41Pu/0Mf9GG2akMxUugoIkKYWx90FeSs7ExvSefPk8nXFxBPsmUqYkw1M4DkEu3ieQPADxK+KF75jhV6NmSKDEyaT1fo7MbZhEyqAApiubY70OPwVCypnLShUnISC9L/ea1Dfw6zT/qzWysBLW5MdrO2on3X2p2xxm0jQBV0VZzs9hbl0BmHwXP0fF35q1DubRJ/qpKQXahc0y0DJE/o8OGMAmuV4tFQXW12yRIjPLgeTXMhKrqRJMgo6C2MLeJCgWV1Yq+mEDokDWY3h/3KUFZGTuRwwA8YFTq4VuzNOZ9qqGiDD6wbhXwyUF2DOAEPPCQ6j9d5n3MdqqoHEEQBKGeYGbs/LYQy/82H2Dg8P5D6DluCC66bAAuKSnGn25/ENdlnxeXukToREJhsMNV1+wmH4fgAZiirxoFhj6J3VJowt9PVqLP5Qn4dCBemKAqpnk/4Tr9DMBlmn5i48+fdPAB8JgyOmHrhjZZRTEWDrAxNBeFjMsKE6+q+432bBWfoq9bjWBba0+VAbgNQRRBaCnQ1m425pnYqQmjHh/rAifSnXYyiSA2SrRmClYxWmZMVbWUktWfYWaYmuZaGcfAZmN/J56hqgxml8XGdFh61oTZpQ9xQ1C7BYZ+6f+q2opmQVkSU73mS0BVCaovsL/18jCEjKoCHm/gc8ZBgi1YvHl9pC3HzJYRqBYh42Wg0hu8vHOIrX48lRwsJOwEjwrAAx8q/ZIl2Na8bxW8KCOvKdkXsDCGqBn7HUc1qkkFk70oMoSPCg5M5hEEQRCEOmLPqp+w/KX52LdmK1LbZWADFaNnanu8+595eP/h8fjmnYW4oc2vsOjQD/hdHOoToRONSDrC7lZtNGxtLQLE9JbCmAUZRJqkY73jz6byMLGwNmvD3i5Me1BYf6Yd7bZby8y9zWg+rb1C89uQXjjZDPeyvieThjB3VCmkDQxdwSE9frOdaVibXZ3+eghMFBA51jY2t4MSXBbs1iTmzMIn6LhNzs3ZHUMtmU47EJoA9Os/ow38MVBQud+1qW2DKg45P0pwEku/pokMsURQCFBJEzjBCS8KyayYPRsT3ghaG2v7U+DQLUML/a44+DXpdflXiGdL8xntw8GnzOo7cIqjfmh0zNelsZ/xSTUPeWP9GAPizpCUbFniPMrtEUEQBEGIKyXri7B86gLsWlqIpplpGPzE9Shtwxhz0V/RL7UTLm3dDy92HYOf53yL8x/8DSZcPS0u9YrQiQD5CK6j4ZrIfKtZt4/m0AuQeRhTWOGCQP80Yj+IAQ8F55Kst4MNn6pTnwCqTff3I4kTFSHzT2zbwAvAR3A0n8djeAmTUTLMPQD7jNW6TD7s7KsI9quUWaL1uEwrcEWIEQT22GTw7Hyq+lLd5m0hcVJoW1oFQlC7kcVH+CuPTJ3wIGXi1zbakDlSzPf+A9kWAsPfsydAUbR8gF07s0kFuVw+uN2qSRmxSTgEZ1WYfUFzffw2HIgFDPhUgrbcXqA+ttlHwxu6QAIoaF0IZj2j4wtuXiMWNu3r9QFuouDskMmPIYaZAV+1tly22afdeiXVrCDJcl0GxWHYAXCZHmoa+AtkaYxtlfCi2pS5DV5YkE3/koMHiQmCIAjCyXFw8x6sfHkBtn22Dk1apOCXD12Dw+0V3P2Xp/DVV1/D7XZjwG8vxkMvPI+UlBQAwJdffoUePXrEpX4ROhEgL5C0365HZ3kfbd6LgQ/2z46065w78ckUfnnpcD6dPHPHAwTkU1BP0safadWoEBtjWBYAX5gHQlrvwOs+Q+wssIcAtly+tj4J7LH4DEEf8lSlwHbFN2vdDLAnmp3u0+OGdViYXcyqSmCvEqZKi0BkCtyhtwpb8/kly78c/N7IwpECkL5Ut5a50FRNIEsXHBX5KMw5N2IicALg1leLYJthgBy0l+pfEMCIIfQgAFJ88CWoARHi9xWcIWIG3C7VJJLs42UmuFxesOr21xk05cwUt6oSPJ6EgACxzPfxn28VSKpy+1emsy5UYMbjA6pVd+g5BAV9/D0+N1qEhh8injShkxi8vDQH25jfrIQgCIIg1A5Hikqw4pWF+Onj1UhMScKAu0fiSJ4b9/71L/jmm2/Rpk0bvPTSZLRo0QJTHpmJ2778M0p3lyOjfSo2HFmGx158OC5xiNCJAHkIrv0OmijcnXU7QUQ2nf2IPsOXM6CvEmbxSfb2YYePWavwEuyWX7b0TgPP0Ynm00fgSA+kDOm9RfepekgXJWGEm7mdfLpPa11Wn9UuOBEl2vLSwUIn7OnyuCOec+Ot6iMtmxStLRn+FdLstgUIZH0iSltifRlqPSfiF0UcKpBg+DOtyhcmRhBAFPzg2dCsje6PfPpKe6bYLcfEAEhR4DM/j8nalqZsS0KiGixWQkSwJn7cCW6opnPpN+PgOFSV4PO59XOttb/dcDmVgeTKBDBbRKuNKPP6CF6f6Rr2+w72We0FqjymleFgic1UjccHeI3PmmVFwZBLS+boCIIgCHGmfO8hrHr1Y2z88H9wJbrR9/ahONolCZMmP4/vvluGtm3b4uWXX8Ltt9+G5ORkfPHeKnRO7I/NVf/Dzyc2o3N1N3RO7I8sV+e4xCNCJxIqgY8mOep8OoGN5ZgR3AGpqT8AWmeFonfiAz240KE3tj4RpjMdYmfYRujs+2DKlDjwaV3y2c6nF2A49OmNYmPczfcC/iXUIgkiFdqDK8NlfEJ8Bnf4bfdRdQETbcEE/79RbBGsVSL6JEAhDryHJVyz7mAGSLXPIur7M2vTYhSXzx9HkBuLQNAEEYdkZgI+yf98GcW0xKD91DRteJrLHVgVL1w2BwBI8WiLK1j9mYUJtDUqmBOC9rW2rqo/T8jtrgLgDonPKp58PoBV47lAZCtGWNXsqj2JlroRNIfIwOs1FlcwfyaDhaN/v6MQBEEQhBqxZeEqrH59EQ7/vA8tO2fjzBsG4/C2YhS88y0A4MwbB+No1yb4w0svYPnyFWjfvj2mTZuK224biyZNmvj9/N/zn+CK2y7E6s/bIL0kH39f9AQO7ivDtD+8iyHXynN0ahX2Efh4YnRDP5EzOlpn7SSmAdt07DjkoZ1R/DvJ6JgzIJF8hhleZ3fnmEOGjkXyGb2NgkRJFJ8cTegYPj3OfDJDm09j6bja9tGtK5qFi5Ghzedxcn0wIfJQPEt10bJzMGVywmYD9c0Ka0uP212L/kyO1ulXlCgPSjV8Gg/dtD401GKvMkKPO0zWzacy7B6AGiJmWAlxYrUx3vp8xooeocLB7FJRXLCmS0KWoYZ2vGys8hcybymwr88HeDzmR4Da1a0dqya23KFziWziFKEjCIIg1IQtC1dh+UvzMeSZm9CySzaWPvsevv7zXBARelzzS5R3T8YDr0zBypWrkJOTg+nTp+HWW8cgKSnJ7+NY2Qkseus77NhUjB2bFqFd50zc/dJ1aNWuJbI7ZmLn5uK4xCpCJxJM4OrITRRTRsbSMXaGzVwMs0uHwiBoeF0UsaP6M09hYgmq20H9qp3QCbNv2LlJlrr9mZLosMMMlXY84R6KY7ELc1c/2FD/cxKnQ5/m0xgVf3ZGVyDm827dP/rp1l3pB0WhGRjzCD1SgnIpUQjOvoRkgHQUFSD2OfvMqRQsAsIIItX/pNIwoZnKXS4OzqiE6DhjuKCKcBeyddlqVVVN22zihC4aXeHbUjV9B2gPfw0sbq2Ge1jtSdxvEQRBEE5vVr++CHxeFv7frX9Avqc1mrgSkNCxJXDUg4c+nYbVz6xBXl4e3nhjOm655WYkJgaSBsU7SjHvtS+x6K3vUFFeiaSmibjh/ktwwwPDoOiPF/n+683I6dYmLrGK0IkEkzbHIpZdom08mYyOncuYhY5BhLktHBiyEx4bwRRVjEWPMyBKIscZmimJ4NNhG4Wd+2K182df4li3/9pwaOu0p+rAJ/nH2sVybepSOMwuREDIk2zDZXRIC4JZn/1iNzcIgEshhAgIu8wSoC1wgNCskPXzp9qdnzDZKiJANe/vsrfXnqkVZYidfg59PptMltVWBShkFRNLVkmvh9nI6kTPLguCIAhCrJw4dAyHftqLqi070Z/ao+OwPvghqRhPT5uC53NvQKn3EGbOnIGbb74JCQkJ/v0KV27D+698jm8/+h6kEC64uh9+c/dF2P3Tfsx+cj7yB3bGmYO64MdlWzFlwj8x9okr4hJvgxc6RDQbwAgA+5m5l16WDuBdAHkAigBcy8yHSesNTAVwKYAKAGOYea2+zy0A/p/u9mlmfstJ/REn0Zvtwr6xlten0HFWNxvzfqJ1hhx2lpxmVIBYRIkzOwCmZZudDOtzkIfwZ2rMhBFk+pZ66VfGUqnDpowkbszYPsc2nLbWxqTZdOYtPtUIB2QZluVjFcRks8phsKHLRaGpGTv3DPhAcDmZ6xXp2jRVr+qLk0QUHQxozzO1/x6y7uvzEVxBH90wQy+FeoeIukH7HTPoBOCPANoBGAltZfGfAdzKzEcs+3YA8A8AWdBO9xvMPLUu4hYE4fSkovQofpj9GX7819dgMFp0y0by0E54bNY0rFu3HgM79EKpehybN2/wCxyfT8XSBT/g/Vc+R+GKbUhJS8aoey7GlXcORuv26QCAM87KBQBM+8O72Lm5GDnd2mDsE1fEZX4OcAoIHQB/BzAN2pe6wcMAPmfm54joYf39QwCGA+iq/50DYDqAc3Rh9ASA/tB+FNYQ0QJmPhyxZiawz+FcCAeE3ImPR4dDdZJ9ia0uB/0+k8/oHb9I2Qq7u9fhfZKNndMMSDiCJ3fHln2J7M9v7+T8+NvcP97M4sP6wgFBO0UYDuf0fMNwY6T9IhyX3y5GnxHipEhPpbXspqgcGLIXAW0aUfg4zXNrFPOEnbA7GHOTHJxz0ofiRbnufF7A5fJGtAk3r8iRvVAvMPNmAL8AACJyAdgD4EMA3QA8wsxeInoewCPQft/MeAH8gZnXElEqtN+0JcxcWHdHIAjC6cDxA2X4fvYSFMz9Br4qDzoN64vJb03HED4Tb33+FlwdmmPWky/C9dU+TFszD08mJKCivBKL/rEMH772BfYVlSK7YytMnHwtht10LpKbNQmpY8i1Z8dN2Fhp8EKHmb8hojxL8RUALtBfvwXgK2g/BFcA+Adrj1VfTkQtiChbt13CzIcAgIiWABgGYG7EuhEmo1PDTkLEVbDCDMGJ7hRwcvc4QJRhMoBpdbgocTjNEvnFWBwFWchE82g+ow+Hc3w8sQxBNPd5IyUkYvFZo+GP9gIKACLphxBb86toOsdplshvF2WInemhptHiJSUWuzDzWEyxqax/JhxcIwqTs3NE2hyaKEet/d9urg2gD7c0WSvQluqOctwidBocFwH4mZl3ANhhKl8O4DdWY2beB2Cf/rqciDZCywSJ0BEEIS4cKzmC72ctRsE730L1eNFxeF9saHIAY+f8GcWHi9GieTvc1n4EmrKK0rmb0eScjqja2xwzHv0AH89ZiuNHK9Hr3M6449lrMGhEH7hc8UscxEKDFzphyNK/6AGgGFr6HtC+6HeZ7HbrZeHKI8MA++I41MzBnVa7IVER93HSOY+1U6NS9CxEyNyH8HEYU0BsHxga1X8Yn3bDzBwPGYwsdGpyjiLb1+QaiqYiHHqINHQryM7ZRRIQJeGFU8AuFp9OMjomn1HagIxhblGyOsb8oCBsdtF0k7FwQeTKXaZxe5EEhfb8orBbQ+O082n53SB9NcBoqzuK0GlwXAf7G29jETy8LQT9RuBZAFbEPSpBEE47jhUfxpo3P0Xhe0uh+lTkXtIHK9UdeGz2IygrK8Ovf30RLh90PTYuLkHrpwfjunFX4NUn/ol501eiNfrh/Wlf4PyrzsJvJl6EHmd3rO/DOWWFjh9mZiKHvTQHENF4AOMBoEOLJnEdugagBtmgKB2WWOaqOCSWeT/a4USxVR3a6bZwYBvLcdfKYgQOzyM7XGCgNuZv1Qq1MOEoWBSFFyaxiKeQpa3D+FQUgra+tQ3m6Tz+8CiqKGQXOQpT9S8yQCH1BVcOMIV5iK8FIraImFiyvUJ9QESJAC6HNkTNXP4YtCFqb0fYtxmADwDcy8y2C4abf9NycnLiFLUgCI2N8r2HsOaN/6Lw/WUAq2j361748mgh7n/9flRVVeHqq6/Cww8/gP79++O2/n/GyHvyMO1vMzDt4XfQQmmDxMRENG2WjNe/ewRZORn1fTh+TlWhU0JE2cy8Tx+atl8v3wOgg8muvV62B4Ghbkb5V3aOmfkNAG8AQN/2aRzXjA5Qw7v7+q5hC2MZEhY9YxHb0DUH+IWBA59+omeU4j0czuld7tiGmTkzi8k2ziv3xayvguzthYkmSpzNVaGQewk2Ptns0wGK1am9TyXc0DUEFzM0EREt68QMqBzZxsClAKq28kdwRVYU7YGlTlAY+lLukX1KRqdBMRzAWmYuMQqIaAy0RXgu0odih0BECdBEztvMPC+cc/NvWv/+/eXMC8JpjvVBn/nXnodDW/dh47xlAICsC7rj45LVuPvVSVAUBTff/Fs88MAf0K1bNwDA4f1HsWPTPhwrO4EW+7shKy8dV08YgotvOAe/yXuwQYkc4NQVOgsA3ALgOf3f+abyiUT0DrTFCMp0MfQpgGeJqKVuNxSWu2e2MEwZnVg66WYjq/VJdFLDdFjCjfKv8S+aqt1Bjs0hhTexEToRXTqYWxRpnkzk447W/g58xpx9qTufNdo3BleaKLEbt2gd61XjaII9m0bIkcuubrudoGVdQkxthu0xwal4irQonPnZPy6HQpQZUCzPl2L//4LrtV3FLoxPNjdamDiFBsX1MA1bI6JhAB4EMJiZK+x20FcYnQVgIzO/WCdRCoJwymN+0GfTzDQsfe7f+PaZ90AuBRnnd8H727/FB6++gZSUFNxzz+9x3333oH379gCATauL8OH0L/H1vLVgBtKzmuOev12Hc4adCZdLieuzb+JJgxc6RDQXWjamFRHthrZ62nMA3iOi26BN3LxWN/8E2tLSW6EtL30rADDzISJ6CsAq3e7PxsIEkWAmqF69I1LTfmVIpycOd+PZ+jLKMK9Y3Yd9YGgkbISI+WWUjnxs4lF/W6OsSuS78Y6yJVH8hZkFE7Y09r7nyV5D5hopTHms9QfvS/4JQg582k4mYpMfc1F0fyoDpD31NjouZ22pOqqbTP9Gj1O73ji0zOqVoS/RHh22ceJ/SKkzF0IdQkQpAC4GcIepeBqAJABL9CXXlzPznUTUFsBMZr4UwC8B3ATgRyL6Qd/vUWb+JJ7xqUXvgTf8FTi6GWjeDZT/IJS8a6PvKAhCg2T164vg65eB58c8ii5qBpiA6uxEeEuOY+KMh5CRkYEnn3wCEydOQHp6OqqrPFj89nJ8NOMrbF6zA8nNknDZ2POQlZOOBW98jeRmTcAq4/ulm+P67Jt40uCFDjNfH2bTRTa2DOCuMH5mA5gdc/2qK7pRTA7j7C6GTIDjkVHx9mkaNhcfh4htjo7D+h0fdyzt49DW8WUR/mZ9CKFDwuwdUiznx6HGCsyncerTwWBGh3YKEHiYZ7RdGKjRcLiIqUhnQypVG6FjB6mxjpTUslmSvWn4MPNxABmWsi5hbPdCu5EHZl6KWp7Upxa9B173JNC8C5B5LlBdBl51H3x7PwW1Pg9wp4ASUgF3CmD8624GJDQDXCkgxRXqT0STINQb+77fhkM/7QV+ArontEHCWVmYtuw9bPh6C17qeiumTn0Rt902FikpKdi/+xBmvTwfn8xZiiMHj6HDGVn4/ZTRuPiGc5DSPBkA0Cq7Ra09+yaeUJjhvwKAs9q24C9uu8CBpcM71zEPT3LgMu4+Oe5zQGKKMab57kdfnQAAIABJREFUNLH6jI/QcTAiKrDJ4QIHsQhgVinyOCqLz6iuY3kmkUNNoM0pcfiwXYeiVXsQZ3SfsVwbTuOMZV6W6nPYlg59qioh3HOoQmxjiDP/g1fXMHN/R8ZCo6B///68evVqR7a+j/uD+v0VvOL3gPeY9uerdF6ZqymQoIsf1QtU7gda9gKadQbYA+z7Csi9Gkq7S4EmrfW/ViBX6DM2rIhoEgRnMDN2fF2AtW9+ir2rt0IFozxbwb92foPC7VvQo0cPjDr3EriWluDxTW9h/dKf8OHrX+G7/6wDq4xzLz0TV955Afpe2D3qQ73rGyKy/U1r8Bmd+oSZ7J+jY4vDjqfT68Rphz8Gl86gGDMbDswanMALs59/WkcUv6fQvYF6CzVuGZ3A/rGsuhbZLuBTsZ1zZONNBSKvthb7tahGeVip4VNbPkSJYqsRsthcGJ+CEJWjm0GtfwXlig3+ItV7AvxeJpQrNwOecsB7XBNAnmNg7zHtvaUc3mPg3R8Dad21L+6DKzTR4zsBbJ0Fdeus4HoTmuuiJxNIygQ1yfS/pyaZUA9vALb9A3T2S0D2UNDB/0FdPgEqIGJHEHR8Hh9++ngV1s5ajENb9iK5dXOU9kzCoi8W4zLPAORXnIO2Kb9Cz8QMZBdU4YP9uzFuwNPYXrgXqekpGHX3r3H5uPPRJrdhLSxQE0ToRCPMg/pCiD5twekUg5hxPFfFbt+oBXEgDkLHPs6Tm0cUksyMZQiXEzie2bGaiS+HuUbnLmMauuaQiPcSajCDiaN9JgI+2enTUqPe7wj4IIfZMUW3juaT/K8dZIls46zJPCzhtKd5N+DAMiBrsL+ISleC07qDmoY+hi7S1embmwrlkq9BSoK/TK0+An6/PZShXwCVB8CVBzQBVLkfqDoArtwPlP8EPrAMqCoFwEFXL38zGnA3A6fkAMmtwasnQT1RDGqWC6TkAM3ygIQWDf4utCDEk+rjlSj893f44e+f4di+w2jSvgU2djiON778O5iADsndsVNNxbAeaagoPgQvH8f/tlVCre4Gl1vB/a/dhCHX9kdScmJ9H0rcEKETCdaHjcSVhv2ly4hy47omPuMtIJz4rMkx1FCQha+KLP/Gw2esRrEtehC3Ux9D39pxP8SUJYq+LICzIwlZhToMoSN8Iy2s4axuNo4nirmWpHGW0bFfKEPEjRA7lP8g1OUToAx8DcgcBBxYBnX5BFCfJ2J3ZieaDq/TRFOrAdr7CLuz6gOqDgJVB6B+MhA08A3tfcUu8PGdwLHtQPVh8PePBF/tCc39oodScoCUXFBKLtAsF0jJBe/9VIbACY2CE4eOYf3/fYn1b3+FqiPHkZCbhi+bFWHeF58jLS0Nk+6/DxMnTsC9F76E1UcLoKjn4eddBFKqcVw5jNatsvH6skcb5Y0BEToRoXC3SBsMzDHePY/W6UTwfeR4oC2BXQvdrTgPiavpMEBnuYModcfaOLHM6QHg9MiiWTmtNpCFcFx1dBTDWRRxEEt9DucchdpFCMDxWtDOzDR3zp5JFDyHSgSOUHOUvGuhAlBX/yEgBPo8USMhcLKiiRQXkJyl/aV1B6W0A3W6wb+dS76GumoSlKGfAceKgOM7wcd26P8WAeXbwMVfAt7jlk+FomV+2l0KuFPAax6A7/hOKN3uArmTYz5OQahrju4+iO/nfIaN738Hb6UHvtwUzC1ZgRVLCtClSxe88srfMGbMLTh+qAqf/H0Zjuw7gXR0xubvd2CXZwNSOvrw0GP34e8TljZKkQOI0InKyQwLqwtOdi2JulqLIu7zdGppiF283Pr9nPT1Y9rf9m59TB5s/MQWYjjTk2q3MDvbF2tyNNr3sePr2vZ5OzZmsdzvYGcBGEtwRzX11+0kUP//BOGkUfKuBeKQ4agr0USJLYH0lkD6WaEL1jMD1YeAYzuA4zugrp4EtBoAqB7g6E9A+c8Ae4F1T0Bd/ySQ0lETVWk99H+7a3G7m550ewhCrFgf8tnt8gEo3bwHPy1aAxBwJIswc+0nKNqyDxdcMBjzX56HS4ZeglVLCvHMTX/HqiWFAIDklCSMvu9iXH//MLgTtJURteffbK3Pw6tVROhEIe5CJ44ddGOYWTxDZGZtjkHIr0T86ogH4TJZJy/camOYWQ1OUK3NlWqALsM0T40vQcdZTj2HF++xms6SL4GEFwW9DYH8k/scruTW0D6sgoD6F01EBCRlaH8ZfYHvboZy3v/55w2xrxp8dBN40SBQ/sPA0U3gso3gvZ8C7A1kxpvlAWk9dOHTHdSiJ9D8DPDuj2UYnFArbFm4Cp899TY+OroWO3ftxCj1PByasheUoKAo7Rhmrl6A4z9V4/rrR2PevXejTcsOWPTWd7jpvj+itLgMrdq2wG8fHo7hNw/ChuXbMPvJ+eg1qAvOHNQFPy7b2mCffxMvROhEguF8aItDd/GUTcbN6Pj6pLj7rI1V1wJ+Hdg5doiIqdvYRVSMLXkKiJvY3cUvAMctGdOl5vwcOTv/HNOcIw5+GwjJYud0JRN/lshhCIJwKhIX0WSZN0SuRG2eT1p3KL0f85ux6gHKtwJlm8Blm4CyjZoA2rcEUD0BAUQuIP0soNvvQe6m4O//H3zMcHUcfXJxCqc9n/3lX1hWuhGjO5+HE+oh+JIIyw9uQW5iJuYUf4W7Hrobd4wfj6LvD+DdPy3F6s83gggYcEkv3Dv2PJwzNB8ut5a9ycrRVlE7FZ5/Ey9E6ERAG4ES52WR4+7NwdCXGH2ytQcWqwebfWMd+unkmJyMJ421bWKyj2qrx+f04J22USwxOpgcFctoJ6eHEms7xnaanFg7nZPkvGbnx+5cPBE4tK1O+isnjmMwBaGR4nTeECkJQFoPLYtjKtcE0DagbCPUVfcALfK1BRK2vKZtA4Dl4+Ar+hcovR8ooy+Q3g/UNLvuDlI4pTlxqBwb3v0WvoMVGOjqiGOHjmJxZQGW/LQa7XPaY0BiF6z8ZhW+eHcN7hv8Cg7vP4rMdi1x86OXYtjNg9C6fbqt3yHXnt2ohY0VEToRoQY+R6c2YguaRh43aizGIuxXI5dRl+uKw4SVhobjlSDifdajNxDpKzETHFwjMQlBDn4b1jD+y2TEKuqjfuJqKSMqCKczJztvSBNA3bS/726CcuF8kJIA9lUBZYXggyvBqycBJ4rBhZPB7NN2TM4G0vuCMvqB0s/SXjdpVXsHKpxyHNy0G+v+8QW2/GclfNVeVKle/O/Ibuze2QLNlF64suu5+OU5HVH27RqMO/tZKAph4PAzcdnY83D2xflwuRr2Ilp1jQidaDgVOg76SozYO0FRfca66poTnzhFulWnwFCvWiPWExSPpeFisNeyRLE5jtt1TBHfBsG1thqHsy8ER7VTbJmnU+USFoT6Jl7zhszD4MiVpA1h8xwFp/WA69IVYG8FcHg9uHQNcGgt+NBa8J6PA5/VlFxQRj9tEYWMflDLtwObp8l8n9MI1aei6Mv1WPfWF9izcgvgVrBB3YePipaiZ3IPDG3VA5fdfDaqEtKw/O2lqPxuPbYcVzDm8ZEYdvMgZLZtUd+H0GA5pYUOEd0H4HZov+0/ArgVQDaAdwBkAFgD4CZmriaiJAD/ANAPQCmA0cxcFLECBjjG5+hE7GTESUGE1HGyK69Z3tPJjVxrkDhduODUEI01GZrkIF0S0/NsnNQX7yOvhYGf9Xy+Hc4Oismrc5+CIMSDaMPgyN0UyBwIyhzo34ery4DDP4BL12rip3QNsHNe4JPZtD2QOwrUJEvm+zRiqspPoPD97/Dj/32Fo7sPwpMEfHZ0Hb7avx7df5GPP055Bh8/W4D15UeR/+FqpLr/P3vnHR9Hdf3t5+yuem+WZLkbXDDGBWNMLw4lhAB5IaaGFkIIkBBIQiA/QkggBAiBEAgtkBB6CwESCCWhF4Nt3Hu33CVZvWv3vH/MSlbZcmc1a0n2PB/PZ7Wzd849M7OS73fOuefCxEwfn1fvgMyRfOeGU/r6FPo9A1boiEgJ8CPgAFVtFJEXgXOAU4B7VfV5EXkY+C7wUPC1UlX3E5FzgDuBqH81zIWO2cBBYx789bTfsT6Nw6O1PVVyunfYmPSN2ZN7K+MptmsZybqt0sSGfZl72Zc30/EESEettV9DJ399pP2X0nHiZdfFxaW3xJIGJ4lZVgSo0yKq2lRO4K0jkaJj0eZdsP09tKnM+nD29whseRMGHYEMOtKaM7SXrnuyL1C5fgeLnnqP5a98TltjC2UJDby+9XNWte3grFln8cgh17Nh7i5e/9VCWppaSSzK5dXmFSze+Bmjx4/gxt9dzxNXftLXpzEgGLBCJ4gPSBGRViAV2AYcD7SvJPZ34BYsoXN68GeAl4EHREQ0ygjYfI6Os4sEmtp3/Lm5xuNJdxwm6GBXNBrOxYjpvMN4opZucjQqyO55LWa0N4xmtX+Lknabzv/Hbk8wR7XWnmbm+PjD5vV0xz8uLnsUJ9LgJDkfGrcg0+/H40mwHtDVrEJ3fIjOvRYt+ww2vWz9NUjKh4LDkUFHIoVHQvZExOmnai69ovvaNwd//2RSctJZ+OR7bPxwCeqBRY2lvLV9HslDczj/yu+S0zaMT19bxN9efoeMnFROvvAw5ryzlOv+fAFTjx3XYXtvX/vGSQas0FHVLSJyN7AJaATewUpVq1LVtmCzzUBJ8OcSoDR4bJuIVGOlt5WH7aPfFyMAQlVtihEJagHnh7wS47grxFEd4/ZYYmMGVdps2WtvHcGubSUae8wvvAN9g51qbuZGnbs+wZqFjvpoiSY74slu1bcBEW51cXGJlc7zfUSsYgdN29Gs8XhOmQN169Gdn8DOT9Cdn6CbX7f+KiRkw6DDkUFHIIOOgpxJiMdHYMOL7vo+fUDH2je1X/Hp6q84T2ey6/ptEFCavX7eq1jEpzUrOeaEE7jyjFvYNK+Sjx/YiMdbyqEnTeDEu2cw4+sTSUxK4L0X53DPVU/zkwe/s8+sfeMkA1boiEgOVpRmJFAFvASc7IDdy4HLAUrS01B/L0ZB3Q+Nx7QFJ59Gx20Mpb0enkm3wIRtAWo4r8R4/nyPUXyE2l4O27R35qG+hH1Fb/tWR8VTe7Uzxx+CSqCbtDep7x2JGKJOrihycRmQRJrvIyKQMQrJGAWjLwRA60s7CZ9P0S1vWr/5vnRrcdP6zchBN8GoC5FdcwnMvpIAuGInzvzvjuf4d/k8Lvn6mZyZMpXWuiZ2NleRID4eqf6Y0088hwkN57Dwg7X894OFjJ44hB/ccRbHzzqE3MLMLrbaS0HvS2vfOMmAFTrA14D1qloGICKvAEcA2SLiC0Z1hgBbgu23AEOBzSLiA7KwihJ0QVUfBR4FOKggX3sV0Qk1zrA16DWwb2MOuQkd7vWhIJMQb7qLBbvVsuysqmI0qOzRfc+D7EUMQoXSwh1oLhx3W+hN5CKWAbPVn+OZZmHtdfPRsF+JKCLCnLeRMDG8ZuFyHnvYM+k3nF1X8Li4DBTszveRtKHIyHNh5LkAaOM2dOenlvBZ+yQEmtF5P4WFv0ILj0WGfANd/Ftnqs259MDf0sa6/y6grayeU3wTKHtnOVsbYUltLbsyazknuYTpSd9mxWvVZBcEOP37x3LS+TMYfdCQiHb39rVv6j5+l8qX/07rlo0klAwn56yLSD/qBEdsD2ShswmYISKpWKlrM4G5wPvAWViV1y4CXgu2fz34/vPg5+9Fm58DoOrk414bAw7t8UOYdr1XOqF66P34tLNVe2XcumhLg2JhRjbVxJgTdO3D/PaYn7Q13z2aVe3ov8N+WLPRIgam83zsYnfeiYLH4e+mmAjAYPsw7XruDiCeCGmX3X2IinV/eieeXFxcBgq9me8jKcXI8LNg+Fn41zyOnLEGqfgS3f4BuvUddMsbAPj/PRUpPgEZfCIMOtIqi+0SM9Wbylj64icseeljWqoaCKiyob6Vd+oXMWnyDFK3DiWtvJpanzLpqDGceP4MDvnaAfgSvH3tep9T9/G77Hr2UQquvIHk8ZNoWr6QsgfvAHBE7AxYoaOqX4jIy8BXQBswHysS8wbwvIjcFtz3ePCQx4GnRGQNsAurQluUTpydoxPbmjfxGmRGJsZn+J2O7HqiYkePGYgSUx2424GePvVsYg16e5fC1+28Y7qSUQonGF1Iw+ILYKNdmLbhohKxRiDCCgo1jGCa+mi1Nfud1B4+hj9MEY+ToiQQ3Z6xCGvHjfK4uOz1ZI5FalchQ09Hhp6OqqLrn0UX/BJSh6Cr/4KufAC8qdacoMEnWlv6iL72fEDgb/Wz/n8LWPTsh2z9YhWKsrhuE19Ur2VC8pFMzk3koKZD2DmnjSkTUyhJamDuznqefvp7fe26IzgVhdn14t/IPusitLmZmndfI+P4Uym48gbKH7t33xY6AKr6K+BX3XavA6aHaNsEfNuWfUADMbsXghiGvVFzyayn3H1Lt+hNlBZmtsyGs47N+W4PeMQ6kHacSF708SDV9KLbuTmmYsOuvSh2xXiOTuSoTg+bJucjpjbNhZN5ipsrdFxc9nZCzffRxbcjU+/AM2IW2lYPOz62Ij3b3kG3/sf6y5A5plu0JxnALWwQpKa0nCUvfsyiFz6irbqRKn8Dn1euojwplWH5kyisG8WOxgALq5o5dFgGvqYWklIaeaVsAa31B/a1+45gJwoTaKinrWw7rTu30bZzG21lO2jbuY3Wsm207dxOoLaa8j//rqN9ysSDSR4/idYtGx3xdUALnT2B3dLAUXFwTk3HUMVUjMWhEpSZYWuSv1lwzPzqGMcsTFJ+2secAVObET7q9Jmt6JDxvJIBQhclGuPAutvJGkdEO93zyMd0F1nh/exiJ4pNMcpGCBhFsiwfzSNP5n66uLjszUSb7yO+NCg5GSk52Zr3Wrtmt+hZ/Ri68s/BaM/RVjnr7e/jOfwvXYok7CuFDfytfja8v4ivnvwv2+esRVGW1pWyorGW9PzxtAWmkV7tx5eRwplXH8XHr85n8pnFPPbKoyxftZzx3vFccsH3WfZGWV+fiiORmMqX/07BlTeQMvFgAvV1eNIzyTj+FMr/9iea1ywPiprttJVtI1BX2+VYSUzEV1CMb1AxSaPHUf/FR2SecBqpBx+Or6AIb3YuTUvnk1Ay3JHzdYVOJDSG6l5RiEdCkZP6pX0yvr1hqUMTaWKwKSaDVNN7aDQxPGzD3Ud0ngISsnkvn6b3CGXt+afzJlEvO9GFmAbxEdqFiuiEizUa2wwR+Ql5aNh5PyHuk5FNK+oU2s+ehQssm92/hC4uLvsipvN9RAQy90cy94dxV6FtDbDjI3Tbu+jWd6DuLQACX16DlJxspcMd+gA672d7VWGDJ35xH5v+MY9sTaZKmhhy8kTGDtuPhc99QKC2maq2ehbUbKcuqQBtGImvJUBKaybHfncqx501jfHTR+LxeNh/0lD++uvXeOrBF/pVSWi782FUFX/VLtrKtnfZWkvXU/74H2kr34E21Hc5puad1/ANKsJXUEzymAn4BhVb7wcVW0ImK6fLmngpE6aw69lHSZl4MN7MbJqWzqfswTvIPe9yR87ZFTpR6B/r6EQayJqmw9lIHrM9lyhamEotrWFrPB5tun2oymMR0vuMegyVDhfKZmwVvmzZjIJZ3bUQa86E81Xa77mBXdOIgdj4HhmlhEUj/OA+opuxzNGJaC+aeNLdr93EYOjDAmA8XzVgpeL1hz9bLi4uAxbxpXZEewD8z6YjU3+HbvsfuuoRdMX9kFxkrfGz/QMrxc0zsIeUT/ziPra+tJAtnnzWVDYwNieN+v+s4SvWsKqhjE0tQlPbINqa9yMjOY2jL5jCcWdN46Aj98fr7frUqr+WhO4ciQFIHj+JnHO/R8XTD6Ntbd0EzQ5LyLS2dLHhSU2HhEQ8KalkHHMyvgJLxPhrqqj+94sMvf9ZW4t7twus8sfu7Ygy5Z53ef+uuiYiuQbNAqpaFY/+ncXOiCF6tSznfXA87mMv7NRu1mSutM3QU2STsS5CGqFXjXW9kmh2zQxZpqI3VhHD9X5CDM7DHSc9fghv06SZaZtONqNfexvzaWzM0TGb42Zus706nIlNM1HSXnXNzCZhoz8uLi4uMZI1Dsk5CM+4H6KtNeiWt9DVj0HTDgLvfQOS8pEhpyJDT4fCYxFvYl97bJstLy2kSVOYkNSMJxdq25rZ2OwjN1FYVllIakYSx505mePOmsbBx4+PWjHNyZLQsaSbqSqBhroOweIv30lr6Xpq3n2dXc89RlvZdvyV5RCw5j+U3X8bAN7sXHwFRSSO3J/U6UdaQia4JRQU4UlL74gMpc04piMytOupB8k973JbIqed9KNOcEzYdCde8ntrcIt0tl5gWJz6dwi7Vdc6tw09ojQVO2ZpKlaf9hakjG5TtPdRolDja/PFOE2uuYkYiuBQyI9MpUanRuEKfMnuj00HqNpeDSEcwY9EbVY0iwfdz9sBf7p8j6NGOaJai/jpbl1nnkgqNoROb1Lsuphq79tYvHQSWUZRJRcXF5fodC9sICmFaMMWOPQhPAkZaOmr6MZ/oGufgIRspOTryLAzoGgm4kvpa/fD0lBew6KXP+arZ98jy5NIurayflcd25tTKGtIxJfo5Rupbfz6ue8z/cQJJCYn7HEfw6Wbqb+N5PGTaCvf0SFmOrb2aExjQw97TUvnk1A8lJQDp+IrKERbmqn7/AOKf3UvvvxCPInRS43HOwrjJPESOstVdUqkBiIyP059O0vMqWsRwiK2owCRK5EZi2dDm4qGUeQhRrfhpsX0bOn4XBXzqmuRJx1p559MNUSEFLDoNei69hpzX45h5z6ETg8LOa/Ehk2z+Tzm1dnsTMi3nV4XNS2ud/N+QrYzWu8HkECPdDh6vnVxcXGxRdTCBsPOQP1NsP19S/RsfgPd8Bz40pDBJ1uip/hEJCEd6NsKbm1NLax8ay6f/fU/NK3ciSDsaG4i05fMwkoPZYFcDjlhAt/79jQqS1ex4oGPOfK0ybb76c2kf/X78Vfvoq2ijIonHyTtkCNpmPc5NW+/Slv5DgIN9ZT96bYex3kys/HlF1pC5qBp+PIL8RUU4ssbhK+gkMbFX1H5/GPknH1pF9GUd8EVJA62F3uIZxTGSeIldA5zqE2fosSSbhblSbLtuSoQbphiDfTNZmuY2gTLx9DnHeIY4yfihDjvMGLKxKTElmHX+0ZRMFM5nT40rwhnZrdvCCdsbblqrlyjGzKNvtgVT0Ziw2Y6XFSb1rwbs++wad8uLi4u9ohW2EC8yVDydaTk62ig1SpmUPoquvlf6KZ/gDcZik+AlCLY8jaewx7eYxXcVJXNX67ig4dfpeKLdfj8Ql1bG5sbPGxuEFqTMin0tTEhp5mxVx/FKZefyX+ffI0VD/2XLd5M2/1FmvSfdvjxlogp30lbxU785TtpqyijrWInbeU78VfspK2yHPz+Dns1b71iVSvLL8SXX0jqtCOoe/9N8q+6sYuY8SQlR/Qr45iTEI9nQERinCIuQie4Zg0i8m3gLVWtFZFfAlOA21T1q/Y2/RolhohOpNQjtTnR33DEbwuDOSCKYY6l2rs+fTZA76M0HaOBuw3B09+IHGh03GY/1HchsBcdMxZPxguQmoonFxcXl/ghngQonokUz0Sn/dFaw6f0NbT0NWjcCuIjsOyPyPBNyNAz8Mx40IoWOSx0qjbu5H9//gcb31pIYjO0BgJsbRRKG6AhNZ3jvn0IF582hUlHj+HjV+ez6I4/MuKdx9jy4YMMbk5kTcZgzrrhAuP+tLWVtspyKp55hIxjT6Zlwxoa5n1OW/kOJDGJnX+6Fe67FQL+LsdJYiK+vEK8eQUkHzjFisDkDcKbP4iKx/9I3sU/JHX6UR1js8bF82hes5zMmafaviYDJRLjFPEukfFLVX1JRI4EZgK/Bx4CDo1zv44RewGBUMYiRUtCEX20omInRajdZrTKAfEZJcVjKG+aumYS9xLMCwdYxBCNiWTV8Em8Y4GP3hJlDoid1DWzCEwMc1+i2DRe3NM4zQzEY6OohWk0ycSU4AodFxeXfod4vFB4FFJ4FHrwXQSey4QxV8Dmf6Gzr0DnXAtDToXqFWigzXb1tjtn3UrbvFIyvUKNX/FNLmHy4WNY9PwnpNT4UVWqmoVNDdCQlc7xFx7Opd86mLEHD8fj2f2HfXpxFSUTanlh3UF8uriFIyYmcvaE9ZQUV1kT+2uradtVjn9XGW0VZfh3ldPW/nNlOW0VZQRqdtfYqnrxb9b5t4uY3HxaS9eTfeaFHSLGl1dgzYtJzwz7gFkbG6h44n48qWldokNOlV/e24m30GmXrN8AHlXVN0SkZ1LhPoP08SA1+iN4q2iA2hqmmvbriMV2IwGsgWes1cdC2VTTXCs7oYwBGKmJRvR6CY7aja9NG8UIYuozWlEE07k3Nnx2hc6AQETGAi902jUKuBkoAb4JtABrgUtCVSgVkZOB+7AK+zymqnfE3WkXl14i4oGscXiGnAJT74DyL9ENz6HrnwOUwKv7I8NnIaPOg+yDomaX3DnrVoasXcLEabWktdZQ3ZzI+k3VrF6yjbZWWNoAdbnpHH/R0Vx21qEMG1vU5fj2ymT+ygoqnn6YgpO/wY/SM7lqVxltu8ppKc1i559uQx64vUeZZQBvVg7e3AJ8uQUk7XcAvrx8vLkFVL74N3K+fTFpM47pEDGNi+dR/lgVued/39Y1G0gT//sj8RY6W0TkEeAE4E4RSWKAZZA7GtHB3rwSI+wop44/GJE9CF0prDdeh3MwdBW5iGi3n438NB1B74WiJB6E0XndL2dvRb3ZsQZCoved2GxvPu/HTJSoed9C2L+wXQ93v+t9jaquBCYDiIgX2AL8ExgL3KiqbSJyJ3Aj8PPOxwbb/xnr/9bNwBwReV1Vl+3BU3BxiYkeFdwCTeiWd2D0xVC/CV39CLryAcg6ABl5LjLiHCR1cA9wGCaNAAAgAElEQVQ7gTY/Q9Yu4cDiHXy1qoT6hqGkJ9czqWQzTQGl4KwzuWTmfmT6WmirrMC/+G3KPyrHX7nLel9Vgb+yHG3ZLWCq/vGk5WNSMr7cArw5ebT628j85nnW+9wCfLmWmPHl5CEJoauweZKS2fXsoyQUlZA8fhKNvYzC7GvpZk4Sb6EzCzgZuFtVq0SkGPhZnPt0mHhMQOgjOrqPVoaKEK6GKRxgSsiUvTA2JXKLXvlhbtQlGrbmm0XG6fssYigOelE4QCC0fY+N9X5CtQslwI0XAbUx78clJkQkTVXrRSRdVescMjsTWKuqG4GNnfbPBs4K0X46sEZV1wV9eh44HXCFjku/xzNiFo0rFiP/OhtfSi1tjRnokO+RcvCtAGhzBbrpFXT9c+iCX6ILboaiY5ER59GSdgTv3P8qm9+bR05LM1MGb6OsLp2C9GpKBlVSVJhCWiCZGUlbkDl/omEOdC6w7EnLwJudizcnj+QxE/Dm5OPNycOXk0fFM4+Qe/Z3STv0aCQ1rVMU5l7yLrzK1jm6UZj+Q1yjK6raoKqvqOrq4PttqvqOU/ZFJFtEXhaRFSKyXEQOE5FcEXlXRFYHX3OCbUVE/iQia0RkkYhMdcoPU1RtbkTfwFrrx2jDbAteXQc3m5ExGw+wresQ7Zy6XbcI1xzDe9PtJkQ7lb0IRUSteSgeDc4JCbUR0yYObabpW7b0QDcfHRMT3f2n52ZGp+tv+NfDJSZyRORq4EgHbZ4DPBdi/6XAf0LsLwFKO73fHNwXFyrvKeaza44HoK6snMp7ivn0x9aAbcfqVVTeU8zH154CwMa5c6i8p5iPrjsNgFXvvUvlPcV8+FNLry1741Xr/c/OBWDBi09ReU8xH9xwIQBznnjYen/T9wCY/dDdVvtbrIHmp3/8jWX/t9cB8Mnv/4/Ke4r55Pf/B8BHv73O8u+PvwHgw1uuovKeYmY/dDcAH9z0PSrvKWbOEw9b72+4kMp7ilnw4lNW+5+dS+U9xSx741Xr/U/PovKeYla9965l/7rTqLynmI1z5wDw8bWnUHlPMTtWr7L8+/EJVN5TTF1ZOQCfXXM8lfcUd1zL2T8+moq7d0cnvvzxEZTftfvWzf3xDHbeMbTj/fxrD2H7b3eX/V1w3cFsvXVEx/tFP5nM5t+M7Hi/9GcHsemW0R3vl19/IBtu3q/j/aobDmDdTWM63q++cRyrbxzX8X7dTWNYdcMBHe833Lwfy68/EAhWErttKBU3jaL0mguo+/hdNv9mJIt+srv08tZbR7DguoM73m//7TDmX7t70cyddwxl+XVTKHttBXroG1RtyWbN0iHsfHkxu55+mKo/FLPi5ydR+XkrFSuPp7EilZotWbSs/Qyd/T18/z2AmYNu44xJ85kxciPDv7aCiccuZeZ3vuS4Cz9k3NfeJmHkWgACx55E3lFrKR+exdCHXqLpomvJmrKQdcnK4N/cz9aS0Xh2/ZYFn/+H9KNPpGbkSGTRJcz59XfB72f+HT/D/79T2JlkRXzsfvfm/e9V0of/j50zT2fofU8z9+0X3e9elO9ePIiL0BGRr5xoY8B9WFXdxgGTgOXADcD/VHV/4H/B9wBfB/YPbpdjFUWIirGIMNhsj/o0+mZPQBiO4GNeOygcsZ175OsZQnD0cnwX89BvXxwzxuOc1UmzwZsdVohZgg1PULgZbMYCIkKf4TYNs3X4auQnu8Wnx2BziZWZwMXAKBEZ1FtjIpIInAa81G3//wFtwDO9tH+5iMwVkbllZWW9MeWyD9NeLrnJ72N7czr5l11rpWZJoGtDAa8EaF6/msZFc/F6lHRPM7ue+wvlj9xNosdPrreextpGVt/0U5K8fgZ5a/HvKqPqlafweQLkeeuoev15drz3Pvg9VG/IZc6zhzH3n1Npa0zAl9VE4VHrKDlzCwmZTaQMqeK/2y9kbcnrNNakkDesHM+wRgIHHkZAhUZvKgmFg8EXOYmpqWg//CoU1G5k/TnHkblhHn4V6lIL4nhlXeKNqNOTUAARaQRWR2oCZKmqvdWJuvaRBSwARmmnkxCRlcCxqrotmCr3gaqODc4V+kBVn+veLlwfB+YO0pe+dnasLobA/FrbKUHtfJG0GKtbRbNnp21UArufrBvYDNt3l/0BPIYpRxH7jdWm8WOHAB6vWTszm8F1Wkyve7vNiO0DiNc0GhHeZte3fuPzxhs+LNjDplECr3U+Rifk8Rvec7+hTT/iI3yqXJe+A4RbXLT7rqTvfzZPVaeZeOqyGxEZDyQAQ1X1DQfsnQ5cpaondtp3MfB9YKaq9ljaXEQOA25R1ZOC728EUNXfRepr2rRpOnfu3N667DKA6NWilW1tBOpq8ddVs+22n5I581R8eQX4a6rx11TRsnENTcsXkzhsJP6aKvw1VWhDfWhjInjSM/FmZtOyZSOrq7KQgEJbIlVtwramNL45agPPVhxM06YGcr1ekrxCa0CpSFSKjx7HubdcTG5hrrUw6Za3CKx/Ft3yBgJU7Mhkxfz9Wb+ikCOmbGD4zDoSZi137kK69HtEJOT/afGaozMuehP80ZtEZCRQBvxNRCYB84BrgMJO4mU7UBj8OVyoP6zQgfZIjHMYDVZoT/Xqm6eu5sLJtGE/fnrc2bWoJ97eOMoU904fCmJ4+mocnZNufUS0qhjdJtvfcsfFdWibGvnjCIbCXyBbtzzskebtzEWxA+2Coj5OFeJdAFVtHz0tcsjkuXRKWwtWU7seOCaUyAkyB9hfREZiFTE4BzjPIX9c+pjeiJPudnY9+yj5V1xP4rBRNC74koonHqB53SoSh48mUFuNv66GQG1N8LXr++6ipfK5v+x+4/PhzchGmxrwJKfgKxyMNyMLb2Y23qxsPBnWqzfT2jzpmYjXelL15SkzKd2VQcKpJ1DbnMTKf37Koem11DYlkbO9hVafh+oMD4NPn8a3fnIuyempXfwQbzIMOwPvsDPwP5tOS/alZNS9whEnz+PwEz3404/C07AcVTVcE9BlbyZeC4ZujIfdbviAqcAPVfULEbmP3Wlq7X6odMxKNkNELsdKbaM4NcOmS9G7MtUvYqqIjDG/DM5rLLHSbwzbdh3wR3Ak8ni2R9OoO6Paaj+gHwu3UBiKHWdt2rhGxmu/qHHhgC7/t0Wwax4VxNBHGzZtnLd4DG+hR20ULnDpDSJys6r+ptu+XFXdZcNGGlbltM71Zh8AkoB3g4O02ap6hYgMxiojfUqwItvVwNtY5aX/qqpLe3lKLr3AaXFScOUNHWum7Pzz7wg0N5Fy0CEE6msJNNQRqK8jUFdDoL4Of32dtb++1tof3Fo2r0d8Prb/+sdd+qh+7dndb0SsCfoZWXjSM/Bm5ZI4ZIQVfcnIxJORhTc9k4qnHyL7W98hdcqheDOykJRUmpZ8Rflj91J8y31RzysQCLBu0WbmvreM1u0FHDx4Ox/84wNoTePwjHomlmxh2fYi9vvRTGZeehoJKUlmFyxrHMkHn4mc8ie0chG65q/IuqcBJfDmdGT/y5AR5yCJWcb3wGXvIt5V1+LJZmCzqn4RfP8yltDZISLFnVLXdgY/3wIM7XT8kOC+Lqjqo8CjAAfmFKq9+SqGEQGDgY3zGYX2nofbC9YYOGt8HbvbCnOciK0BfEgPu+0UsRlVcbRhHNlD0Zd+h2lao7E9w1RNj6EgE4Jzfwz7NsFdMHRPcnwwBfoVVW0N7ssTkVNV9UkTA6paD+R127dfmLZbgVM6vX8TeDMmz12A+IqTsgfvQFVJO+RIAo31BBoagq/1aPA10Niw+7WxHm2op37OJyQUDqbiifutz4LipfzByMskeVLT8aS1bxn4Cotp2biGjJP+nyVY0tLxZGThSU1jxx03MPSB5/GkW/vFLNeWXc8+SmLJMHx5g2ha8lXEcsmqysbl21jw0So+e2sBa2avIS/QRlEKDErKYn0ZHD9yKxlJzbRl5tMw9Tx2/HkeZ1/1bVvXvkep6mHfQre8DcXHQ+VCdO516PybkOFnIftfBrlT3SjPPsaAFTqqul1ESkVkbHA9gplYpTWXARcBdwRfXwse8jpwdbAM56FAdaT5OTF45JwpW5GDfp4+Fs9BtpO24+BnPP6WOh3oi+ef+z6/PVGEcJ/rvzjMjzRNUxxgMcn+ShtwO/CwiLyDtQbOm1j/7xgJnX0Jp0SFU7a6i5PGJV9R9tCd+GurSZl0CNrUSKCpsdNrE4GmBrS5iUDnz5qbaJjzKQnFQ9j19MMEmhosUVNfS9kff41J+QdJTMSTkoakpqFNjXjSMyzhkpKKJy0DT0oaVf98ivwrb8AbFDLWFhQ2KWkdaWGdKb3mAtIOPYqUiburoDUunkfCkBEkFA+xdb3SjzqBpbPXsvXGX5CfUEd5azpyzLcYFrzuqsrm1TtY8NEq5r2/nHnvLyO5sZmiZChM9nN8luVfU5LS1Ojnw10FjLjjZoYfPZbFn63hgUsfYoSn54Kc0fCMmEUACMz9CdSshMyxyORf4xkxy/Jr13x09ePoxhfRdU9CziRkv+8iI2YhCXazdlwGIgNW6AT5IfBMsGrNOuASrGepL4rId7HWI5gVbPsm1tOwNVhl1S9x1pV4pDUNlFSpMH7GeyTpREqWwz7G60FRr8zunlrkrM0oBoxvT5TsxJgxmJAftYOOzyP/Dsb3+aCaX0wlYjQpHs8I9mEWYKWc1WKtYXMh8FcG/v+rHcQ74gH0sKeBANraira1oK2t0Gq9tu9rmPsp1e+8RtY3vk1CYQktG1ZR/ti9NMyfTeKQkQRamtGWJrS5GW1ptt4Hf9aWZkuotDTTurUUT0oqO+78BYGWJmhrA6DisXujn5DHgySn4ElKxpOcijY1IElJeFLS8OUNQlLT8CSnUPPmy+ReeBWe1DRrS0nFk5qGpHR6n5zaZdHJ0msuIGfWpT3ESf2cj8mceaqt655z1kWUPXhHj+sey6KV7704hz89sJKNvkYWb5jHxOHTGbpgOcdseJrmhhbmfbCcurJaCpOhILmNo1OFlAwvARQGZ7DfSVM5dNbXyBlVxBO/uI/Wlxby6FWPs35LAyNLUhntqWHwtydHdyQEnhGzYMSskJ9J7hTk0AfQqbejG15AVz+GzvkROv8XyIizkf0uRXJj69dlYOB41bU4LabWJxyYU6gvzjzHsLWdFBjThmY2uw6ue38/20vVmhNN4Ki9Cmk9HArVrpdV10IOgk2rlPW8PuH9MK26Fgg5QA09tygGm50M9bQZj6prfvOqaxK0GdFHy6ZZhTRFvAEDe1gV0kwr2HlNU9cMq66JjaprCab3x99jmB3usMRLZ7tV13qBiBQCJ6vq3zvtywXeUNXD+s6z8Nipulb38btUPPMI6TOOwTeomNYtm6j7+F1SJk8ncehI1N8GbW2ovw1tawO/v9PP1qv6rf2NS74ioXgonpSUoGhpwV9Xi7+yAm9Wdsc+bW0Bf2/rFIEkJCJJSUiitXmSkjt+bt/fMPtD0o//Bp6UVKtNcgqSkMiupx5k0DU3W0ImJRVJSrY+S07peJWExC7pT6XXXED+Zdf2ECflj93L0PuetuV7OFEY62KTTonVM/e7jkDzao4r2g+paaQ+ICyvVCpboTDFT35iC0XJSXjFQ1sCZB00hGlnHcuYEw4mKSOlh70nfnEfm/4xj2xNpkqaGHbmwVx8+zW2/bKLqkLFHHTN4+jGl8HfBLkHI/t/Fxl+Frr5DXTpXbujQxOu74gOufRv9mTVtRwRuQQrcvJWHOz3U/o6otOXUZ9gMkyf5wL1oU2H2UdPG3DIT9M5YQoEoraymnYSL8742O01EgHDTr1d7Q2Uez4QUdUdIvJUt327ROSuvvLJSSpf/jsFV97A9lu6Dj7rP/kvHbW4vF7E6wOfD/H6Ov3sRXw+CO7TpkYkMQk8HjxpGUhCAglFQ6if/QGpU2ZYwiEhIbglWRGOhATE174/+OpLYMedN1J0872W6GgXLh4fpVfNYsSz/7XaGjxpKL3mAjKOOSlkWlf60SdGOLInTkZO2kVI+WP3doiTWEVOu71Yjq2vaWTF3A0s+3I9S2evJa2qgQlZJXy2thG8AYqTG5mam4JXPIAXzc1m1PGTmPL/jqZo8ig83sj34OLbr7ESP/cwIgL505H86ejUO9D1z6Fr/op+cSU69ycgPuTgO5CR50PZZwRmX0kAXLEzgImH0GlfTO2vIjJIVXdGad/PcVhA2CsCZ4A9e86mVpkWV4iBPrAZSyac06lqcTntAXJ/BoKb/V44KF2+yP096XWgo6o9ZLKq/rMvfHGa1i0bSTlgMsMe+YclWIKLLW685FRGvvCBJXIM/7iUXnMBued9r4eoaNmykYKrbrTlV8KQEYjHQ/LYA7vYShgyAk9SsrGdvVGchOK9F+fwzF3/YdPK7QwbW8T513+d42cd0qWNqrJlbRlLZ69l2ZfrWfbFOtYv3WpFP1CyMto4LNtDVWsjh+QlkuRJQD1pSG46DdtruOLD28kcku+Iv3sSScxBxl6JjvmBJWo+PAvaGtAvrkLXPYtn3NXIofej864Pmxrn0v+Jh9D5ErgUazG1gS1yelW9KPQQw+nJ5BCf1DU7Pkb/vy7WSlA9z6Vr2WB765p0aR6hmJsdwnkQ6y122l68bMaD2NbMiWBJowd2JCBdIjURWiJqeC1VDKNEgkaI1EiXnwwrAqogRHDUxcWQhJLhNC1fGDLiIVFWmO+Ok6LCKVv9WZw4xXsvzuGvv36Nnzz4HSYevh+LP1vDH658ipbmVoqG57Psi3Us+3Idy75cT3W5NdPAlyQkpTWSmVpBgU8YkZJDhs8SkH5Jo/CwMRx67jFUexK54wdPcLRPBqTI6YyIwKAjoK0OOWM1bHgeXfUIgY/PhbQRUL8Rba11ixcMUBwXOnFYTK0PUWwuwxPVnl1MRITzT+wVCTn6Mp0/Y6dZFDET4TgxbhvGgRBziYzpMf8j3LG9+/6EPD27JruFqhxLu4poyEYvKiEjET0t2BAQIX5vw32jzfVypG9xJyMBbImncPdTO7UjEPo3Mqwv/U3Fugw4+mvEw2lb/U2cOMkzd/2HyWcO5uLLL2LnumpG5I2jKHUkv79id8Zlap4Pv7eKhJTtFPq8jErNIy8hA1IH48lIZMhh49j/+Cm8f9cLvF+6nJw5Wfz9n4+TNySD2pYlJAye0Idn6DCZY5Galcj4H6Njr4bNrxNYfDugBF4di+x3MTLmB0ja0KimXPoPca0OIyIjVHVDPPuIN30tdGKyGe0ptoHNyJPyYxhpx1KMIEL7sCInSnTLGVHYbfFT48pdBs1i9S/SceLkuFd2X9UIC7tKz10RCWUz1IpKhuU5QhZLCxdjNavHIlE679RnwHT5LTWce+MxL0XtF8uT3oh4Fxf6d8RjbxcosdLW6mfjim2sWVjK6gWlbFi+jZaNmzk7YzIZI6HWDwtqtuOVTJqSFlPo9bGfp5CSxFzIG40k+xh8yP6MPvYghhw2jpxRRR3pid4EH9z6DK/Wfs4HDV9ynEznjJKpzLzh3D4+a+foviYPSXnQ1ggTb0KqV6ArHkBXPIAMPQMZdzWSP72vXXYxIN5lMF8BpnbeISIzVHV2nPt1DOeFjvlzWVMiDt5DjfiMjDpdjS9OkafeRHS6Nwmm15lVCnOs29gam/Yfjyf7Idd07WVHRr8a0cTGbmMakI5DIls0jxJFS7/scM0jiJFNj2FKp4Lf9IYHRVaP5m6Ix8U+rqDoG0zm1TQ3trB+6VZWL9jE6oWlrFlQyrqlW2httspkJ6YkMDjFz8QcYZ5nF+t2rGZ8Ui6HZY/Cm6N4ZCL4PBROGsHIYw5i6GFjKThgGB5f6DKUY061+s9+OJfTdQI5o4qZdsXXO/bvDYRck2fSr3avyVN/G7rqIXTNE+imf0DedDzjfwhDTkPMSoK69AGOl5cGEJFZWALnTOA0YGX7pE0RWaSqBzneaRw4MHeQvnKSvVV6IxPDtTZ4NG57MBtVxKjhJFPzOTK9Ki8dCokWdQptM3K2VSAm4RQ5Lc/UTxvnY6O8tJlNO+WlO6VFRYy42Sgvje7+Tka0GbDKMRvYs87boFiGnWtpUApaADx+8+ve/XxC2g/g8Zn+rvmtymtRbULq1R+55aX3MeyUl3bpG0LNq/n9FX/nhHNnkJmbxuoFpaxZWMrGldsJ+K0nKunZKeQPz0BTm9lZt5n1GxeTUNfAeYVH0RLwkpHgwYugAo3qQf1NnP/U9RRNHY0vKSGKRy7d0dZadN3T6MoHoW4dpA1DxlyBjL4YSczqa/f2WcKVl46X0CnBqr52DzAHGAtUAVuBAlU91PFO48DEvEH6yslnGbTsm7QQ6yG48/n4IgGHhQ6WMInJmfB92ymaYJZqFhzwR7UWpd8uIshc6ESki017Asa0XUxrEnU7ZvfbnmvjhEMIRLTZuZ2Z0DFd68dqa7yOjqlNMV2bx2+tcxT2fDv1bWNNokg2O5N6zQeu0NnHcIVO/6a1pY1LD/41hRNS+fjjT2moaCM3qRhf2+5qcrlFmRSNyoH0Zioat7J8w0IqNm5kRFIBI1MGMSajhCyx1q1RVTQ/nbIa2LCjgZRhhUz8xnD0hdn8aOUjfXWaew0a8MPW/xBYcT/s/AR86cio7yDjrkLSRxLY8KK7Js8eZE+uo4OqbgGeFJG1qvpp0IE8YASwIh599i3towrTaIQd2+FtdjxYt60gYhFmvRFz4QoHhLFpY8DtZGpWr20ZH283jdCuI3YJ10EoPyV0E+n6tqO1wakqu9MGo7aLbg7zFDc7bcPP5enpk810uDB0jkOKQQU566DQN8JNXHNxiS8m6WbtNDe2ULpqBxtXbGPjim1sWrmdjSu2s2XtTvxtATzblNMzh5AxHJp8Xj6t2ERtbQn+yet4f9F8CranMSqlkDEZJUxPOgjfsMkAJOelUzJtf4qmjKZ4yiheuep+Xtj+Mbc8dhdHHnkEn3zyKbdcdj3nFB+5Jy/NXot4vDDkVLxDTkV3zbfm8Kz+C7rqYcidAg1bkcMfRwYd4a7J04fENamwXeQEf64AKuLZX98TbTgRi1iwKaKMbdorzewse+HEaCfT8mzZjAd95Gc30dSvbTpS4CGMOgzVpZ3AbTyq7Lm4uIQlXBnn5sZWRk4YzIbl7WLGEjbbN1TQnk3j8XooGV3AsLFFjD9iKAuf/4QD8xNYUlTJ+6vnUFiTxJkFh1Gb2EryrmLOHDwqmCIr5I8bQvGUUR3CJqMkr0s2xtduPA9uVX531c28v/JLjhs7nbPzD9+rCgj0FyR3CnL44+jk29DVj6DL7gH1owtugvE/RoZ+C8+MB635P67Q2aO4s6ccxekBfF+JDIM8ImNboVr33mZc5thrLPOdnGpsVm0uPti5j53uosl8FTvE47zjYNO5KOLuOURRs+Ecjl66uLg4Q0tTK0/c+i9KpmZw+Xd+RPWOBgZlDCHLV8DdV+4u45yQ6GPI/oWMnTqco751EP7EJioat7N+6yoWL32LF19bSro/kWuGfpPttW0UtSVybdaJJKRZv/ipXmXkkZM7RM2gg0aQmBZ5gdR9oYBAf0NSi5FJt+Bfejcy7R505UPopxehGbch46+B6r0wqamfM6CFjoh4gbnAFlU9VURGAs8DecA84Duq2iIiScCTwMFYUaWzTcpeK+ZVXYMeGfhsZzG/yPbaH9yqrYGqmY/GJXeNqrNZXpoVcjNIJZLd85NMzzzqWcc6iIxnFKI7/WmgG+E2Sacf+sxlg+IGFqahEjVKrwPAo9Y8GRPagzoR5+nYFKKmfrq47OOYpJupKpU7a9m2oZxt68t7vJZvrUJVkW07+VbmSDKGQ6PHy7zqMprI5rK7TqG6pYwN29eweMmXvPXeIrZv2UZRUjZDkvLYP3sIp2aN4zujJuOxCqaRmQCNksLWmjYkJ4uhxw2Dtxbxzb/80PY5jjn1EFfY9AVZ45Csccg35sHm1wgs/T365dUgPgKrHkFGXYj4Uvray32CAS10gGuA5UBm8P2dwL2q+ryIPAx8F3go+FqpqvuJyDnBdmdHta4YJsaboigShzk1sfgY3qaqqY/GEwcwH/VGONcex5uetx2bMRIPwdNOfxy0hjjfXrvp2DWMY2pkyIlCGvFtJGNm4kmNCwwg4dv2x6+Ri0tf0TndbMyUYXz82gIe/PlLzPnvMjKyU7sImqaGli7H5g/OpnhkPlOOHUvxyHzeufefTClKpmDWZLYnVVP62TImLUlmYUsdl/zwbEqSchmeNogJg0ZydMGJpGZ4OkrQ+1KTyB9bQsEBQykYP4wP7n6Jl8o/5+bH7nTn1QxguqzJM+SbSGIu+uklkJiJzr0OXXIHMu6HyP7fQxIy+trdvZq4VF3bE4jIEODvwG+B64BvAmVAkaq2ichhwC2qepKIvB38+XMR8QHbsaq/RTz5vi0vbV7YwFw42SjdHNGo3e9MtPLSsZTdtvGE3di+adW1SP127ctO1bUBVV46atqanfLSAaMISKiqa6F9NitX3d63cdU1g/LSlk+mVdcCPUtBh8SP+Ey/l+3V7qJ/51N+6JaX3tfYW6qumU789/sDVO2spXxbFRXbqqjYVk351irKt1XzwT/mkZAiVO+qxRPoWmI5OS2J4hH5FI/Mp3hEPoNH5lM4PBdPqp/qxgrWbVjLqlWrWb16DatWrebsliksqvQwv3E26b5WJuaOZ6xvCDkJ4Ov0RzglN4P8A4ZSMH4oBQcMJX/8ULKHFyCd/qCv+vcc/nvrM7xa+1XHvJozMqbytV+e70ZmBhihqq7J8G/Dzo8JLP09bH8PEnOQMT9Axl6BJOX1tcsDmj1adW0P8UfgeqBdCucBVaoaDP6yGSgJ/lwClAIERVB1sH15tE5MdaDJINE8UgKORCt6tHPqmW53O2Y+hL+Wne3ZK5dtXIWr3XakVsY3J5Kd2K6NLfrDs4ke5dUcsGkkIkwMma310/6xk2kZIUYAACAASURBVIvOxoTheZsJHTd1zaV/YqcqWTQ7j9/yKj+489sUDctj7nvLeeCnL/DJvxaQlZ9O+dZqKrZVUb61isodNQQCXf9YeTxCTmEmTfXNZHiqOXpkPoktLWhmCu/sWEpD+WhufOUs1qyxxMx7q95n9VuWqGlsbCRBvAxKyGJoegFji0YwK+tQCqoSOK5I+Joe39GPpiVBfROHXnNah6hJG5QV9f8Zd17N3oNnxKzQhQcKj8ZbeDRaPpfAst+jS25HV9yH7H8ZMu5HSErRnnd2L2ZACh0RORXYqarzRORYh21fDlwOMDg13fg4U0HkpNywh9lgX7HGSvbG0mbV5vp+MrWdanMuRkS4pzFnaMahQtoepc+/5y4uzuCkOAlVlQzg8FMnUbOrjpqKemp21VNbab3W7KqnuqLe+mxXPbWVDdTsqmPrujICAeVX53RdB+bDV74iMy+NvKJs8ouzGDmhhPziLPKKs8gfnE1ecTa5RZmQ4Gfr1i3cecK9HFyQRc30ZNbUV1K9cg3TfSUsSa7lqKOOI8ObwuCUXCYMHs2J2RM4f+phpDZ7obZl998qv5CZkUdN4y7WNm3jmAu+wbQTDmd15WZu/dFNnFN8JIdceYrt6+XOq9k3kPxpeI9+Aa1agi79A7rifnTlw8joi5ADrkXShvW1i3sFA1LoAEcAp4nIKUAy1hyd+4BsEfEFozpDgC3B9luAocDmYOpaFmFKXavqo8CjYKWuxfUs9jjOFi0wt2dTYJg0Vax0J9vVCCLM+rZVw7cP6Q8+Oilw+sDm7t3mEVExdcRORMXpynV2+3dxCUM4caKqHPHNyTTWNdHU0EJjXTNNDc001jXTWN9MU31L8NV631jXzH/+/iljpg7ntUc+4Kk73qR2Vz0Ntc3cfulfIz4kTE5LIjM3rWMbNHQom1fvpDJ1PbPO/xaHHD6ZzTs38du7bmNoxeE8tewWSktLKS3dTGlpKRtLF/DJbOv9pk2llJaW0tDQAMAvR5zN7M31rFj/KUUF6eyXMZJWTWFGrp+jh3wfbWrr8COhJYnskkJyRhaSM6qI7PbXEYPwJSey6t9z8Nz6DI+88CTn/OZqt4yziy0k+0DkiL+hB92ELrsHXfs3dM1fkRFnIxN+imSOcRcf7QUDUuio6o3AjQDBiM5PVfV8EXkJOAur8tpFwGvBQ14Pvv88+Pl70ebn7J10SxGzTW8uWaiRVyh7NkZoJhPDI+EOBmMnxLUPlbRn6xIb2LRNPGwadWrWzkw8mc43wl47F5cIPHPXf/jx/efz0M9f7hAy9TWN3H7p32zZSUjy0drcxor566iuraS+uZak9AQmTh5P9Wd1XPbrM8jMs4RMRk5Q1ATfJyYlEAgEqKqqoqysjLKyMt7+5wd8bcoYUj5fwrL/zKcusZXxUsyOQCUZGTkd/QpCdkIa+xUOY1R+CQcOOpi8IceSQRIJTdC2s45Bg4RjONw6oBk0MxEamznwzCPIGVXUsaUVZkdMOXPTzVycQDJGI4f+GT3wRnT5H9G1T6Drn4W8aVC/Gc8Rj0PB4e7iozYZkEInAj8HnheR24D5wOPB/Y8DT4nIGmAXcE4f+dfHxCpU9pb1gYK4A8He42S1tYFm08VlH2DTyu2s3DKfpWsXUl1bRUZ2OoccNoWl723lst+cQUpaEslpSaSkJVqv6UkkpwZf05JICX7m9Xk5a/+f0NKylAumTKJleyre/FT+tfwTUvLG4RlazYbytZRtLA+Kmd2v5eXW5vf7O/w6PmsGuWtTeXrHHOpS6zg0ZyJHJw5nfW45Z0+6hpQ2L576NlorG1F/sLRZg7Ul5ySTMTiXjHG5rP9kCfPr1vPNK8/lkJmHs2zrWm69+v84p/hIjrnZfiTGTTdzcQpJG4JMuxs98Hp0xZ+txUcJEFh+Hx5vGlJ4jLv4qA0GvNBR1Q+AD4I/rwOmh2jTBDhZPm2AYjZPJ/xx3YlVsDhZ0c2mzQjN+m7+1ACkPcjg8HyaeMzj2qfu6T51si7xJKsohRduepKLJxxEy45avPmp/HvBR6QVjGfwtBTq6uqoqt1BaUUtdRvrqK2to66ujtraWmpra6mrq+/4OWtXEjOzx/C3xR/xZcVXHJQ2nlmF03m3YiHnBOfaeBBK8ooYkldEcXY+YwsnkDMsg8yEVNIkkaSAF2+LUr+uHI/Xy0Ulh+521gNj0/PJbEwkvTiXjINyySjJJWNwniVsBueSUZxLQmpSxyGr/j0HufUZ/vzYo7z/s8vcdDOXfockD0Im/xr/sj8gE29CVz1E4J1joOQbyIE3WGlsLlEZ8ELHxS6mC3zupcRzvZt9DXF+bVONoDZjstleWCPcujJ74/fAVewuDiD+NRyVNJKH577LwvplncTJfI499qGQx6SkpJCTnkVeRjbZaRlkpWRQnDqY/bNSqMiGg/yTmZwwiYw0L0kFSZziGcP5047CX9NEc03j7qo+VcENEG8TKbk+UnLTSCnKoGn9Lua3buKk/3cKEw6dzPqKLfzyjtv4bsLhXPT+7cbn56abuQwYssYhgw5Hxl2NrnzISmt7+yhIyECrVyJZY/vaw36NK3T2OXo7T2cvwRU8vcfpRUPjschlNJsD5VfAzoVwv9MuDjAmkMx+F57AjL8K0xsOJS3DR0JhEifJflx40olIq0KLH232429soa2xhdaGZrS9nHNzcKsCEiCvDkhSSIKkrCQ0wUuzx0fR+OGk5maQkmdtnX9Oyc0gOSu1yzozz576G445fBK/efYRlv9hOePHj+f6y36A77My++foppu5DAA6Lz4qB1wL2Qegn18O/mYCb05DRpyDTPwFkj6yr13tl7hCZ58k2ugu3CPhPp5b46TNgTwY7C+Dc+nyEg/T/d5mSPr6/rgRHRcHKEzKJvPQLA54RtEE8CQo0tBKmzeRxAZISEsmMSfZek1PJjEt+HNaEonpKSSkJVn70pN5/UcP8Ub5PK75wy84+sRj+fyLL7jlsus5p/hITrn/+7b8mnbF15l972u89dgLFB+8H9vmreG9/3uKadeeHqcr4eLSt3hGzCIA1pyc9qprh/wRKToOXX4vuuoRdMOLyOgLkQk/R9KG9LXL/QpX6OxT9HYEFo9oUDxtRrDX+SN3UNgrelk7r6shGQA2+zt75Um57GkSCtL4zRU3ctMfb+Wo44/i8y+/7BAn5/7rl7Zsfe2X58OtcPcvfsc3zvxWr+bDtEdgPrrtBSrXbiNndDEzrj3djcy47NWEW3xUptyOjv0huuxudM3j6Lqnkf2+a5WldhceBVyh4xIz8Vh802mbhsUX4jGxfl/A6fS/gRDGMYmW2O3TjcC49ENm3nAuemuA3//8t5yy8ktHxIlT82HclDMXl91IajEy7Q/o+GvQJXeiqx9F1z6BjLnCWng0Ka+vXexTXKGzTxEPcdKHODk4HEgDzf7iazwWu9wDtuJpMz7EsODuwDk5l36KK05cXAYWkjbMWofngOvQxbdbRQtWP4aMuxoZ90MkMQtgn1t81BU6exAFRB2QGp0nf9u2Fz3KoTJAxklODOgGxIn2U6Isxql2y0WHiRD16hbFw+YeR82/63vRc4y9HREZC7zQadco4GZgC3ALMB6Yrqpzwxx/LXAZ1l1fDFwSXErBMVxx4uIy8JCM0cjhj6MH/ITA4tvRJb9DVz2MjL8GTS6EJXfimfHgPrP4qCd6k30dcXBzCN29qXZ9H3EzPa8ebY0Mxn4SfWHT4Vuyz9Ht+oW8nHavr4lNu3Qy4shvYn8PLYmG3CTE5tK3qOpKVZ2sqpOBg7GWtfwnsAT4f8BH4Y4VkRLgR8A0VT0Q8LLPLoTt4uISCsk+AO9RT+M5+VPIn4EuvAW+vBoZfALkTUc8CR2Lj+rSu/ra3bjhCh2XCDghPvqhTVfg9J5OOtKxy9k+V4pwNs0VfciBfajNg/nW2ak98DwjJuJRottlTzATWKuqG1V1uaqarAToA1JExAekAlvj6qGLi8uARHIn4z32ZTwnvg/qR1f/hcC/JhJY8wQaaLMiO3vx4qNu6loU1Okx+YAYdUi313DEcnH60GaUZu7UBnPiUbhhwBSDcDoCY9rORr8D5VK6dHAO8JxpY1XdIiJ3A5uARuAdVX0nXs65uLgMfCR/OmSNR0ZfhG76J/rlVejKB5ARZ0PGmL52L264ER2XPYaq2RY/B+j+4N8lRnrcN3p/Wbvb2SO3SWzkfoqCJ3pKmHjMNwSDaJLayo6VPZxJ69I7RCQROA14ycYxOcDpwEhgMJAmIheEaXu5iMwVkbllZfYX1XRxcdl7kAnXoysfRg66GTniSWiptlLaAN01v2+dixOu0NmXsDOXx6itdNsM7Mbopksn+tMFCQ6a4zH/JXZ7Ni5QIKYOIvfUl/fHFTADka8DX6nqDhvHfA1Yr6plqtoKvAIcHqqhqj6qqtNUdVpBQYED7rq4uAxUPCNmIZN+hc77KfrZxZCQCSMvgOZyAm8dSeDTS9C6jX3tpqMM2NQ1ERkKPAkUYg0tHlXV+0QkF6uSzQhgAzBLVStFRID7gFOwJn1erKpf9YXvzhKPkU20JK5wI7lwx2iv08K69xjdlsFos3MTd4AYE10vW4wjfImettaRTGl0n8Q4JcyJ275HvkbGhvuTCnYx5FxspK0F2QTMEJFUrNS1mUDI6mwuLi4unQm1+Ki21qDL7kFX3I+WvmqtwXPg9UhiTh956RwDOaLTBvxEVQ8AZgBXicgBwA3A/1R1f+B/wfdgPTXbP7hdDjy05102T9+yE3zZ8wyE3BebMYZOF9Uovc5w2/uGnV3Ts7pO7ie2rZ1IhQDj9ZVz2Ga/uN/9/VfTpQMRSQNOwIrItO/7lohsBg4D3hCRt4P7B4vImwCq+gXwMvAVVmlpD/DoHnbfxcVlL0ESMvFMugXPNxchI85GV9xP4PWJBJbfh/qb+9q9XjFghY6qbmuPyKhqLbAcKMHKW/57sNnfgTOCP58OPKkWs4FsESmO3lOso7eem6qN9iapYKaiKeSmYTfnR2t2Rl5m594hBnt1DbqJFxdzDK6X7fH23nIPTE9cMJwjROi5QCHnB3WzHWlz6XNUtV5V81S1utO+f6rqEFVNUtVCVT0puH+rqp7Sqd2vVHWcqh6oqt9R1YE9GnFxcelzJLUEz4yH8Xz9c8ibhs7/BYF/TyGw4QVUe5nr3UcMWKHTGREZAUwBvgAKVXVb8KPtWKltYImg0k6HbQ7u626rY+LmrubGPh5IOz2jOEosKK6BGgcf7zvtZDzOO57Xsj88sd+D0ZXYLmXwex5lXZmwBQXClKc2bWe0tf8eRviai2BvzRu1EWFzcXFxcXEJgeRMxHvcq3iO/xckZqGfXUrg7aPRHR92tAlseBH/G9PwP5eB/41pBDa82Iceh2fAztFpR0TSgX8AP1bVGumUxK+qKjZXxlPVRwmmAByYO2gve+zZfm009O5OO4yFmeGASTAXe8ZlhtW8/9Ad9eLYPWmzP2Jw7W3fnm4H9LfbE89bG9V2yIu5l/15cnFxcXHpV0jR8XhO/hTd8Dy68NcE/ncKDD4ZBh0Jqx/DM+NBax2ess8IzL6SAME5QP2IAR3REZEELJHzjKq25zjvaE9JC77uDO7fAgztdPiQ4L49ipMRotjTrUKlye3ezOeg9Dw29Eb/GpP1+om2hJ8rFeoDw+sZ6zwgoxS/7n72ljiqkIEWYIudYBTI5EaGjAoRYgsfveoReXJxcXFxcYmCiAfPyPPwfHMhMvlWKPscFtwEWWMhcwziSUAKj8Ez40F06V197W4PBqzQCVZRexxYrqr3dProdeCi4M8XAa912n+hWMwAqjuluIXrBVU7WzRhEhz4OzzvxxnfeiueBggRRrtqK71u93uJ1Nb4fhu7aR8N10v/Y49Hcex02Gk+jUTajNPhdvsgUbaQfoYSPx46xFP7FlY4ubi4uLi4GCLeZDwHXIfntMXWju3vEXj9IAKLbkNb66zITs3KvnUyBAM5de0I4DvAYhFZENz3C+AO4EUR+S6wEWiPob2JVVp6DVZ56UucdWfvGjiYnk08Bqa20uYM23YMKuNwm8KZ7M21cdqmaviDY7LZ7mDYg21c6E7RiQhuWjaNHs10FRGdXkL03em7YYJ0eBL+Y2N7Xc87fJdWkQEjszKAVK2Li4uLy4BDkvIgazxywE9hy3/QJb9D1/4dGXU+ZIzpa/d6MGCFjqp+Qvj/zmeGaK/AVfY6wcZ4zWRkodYDfgcH2yKmwkCMB3SqpuMkNTwVsf45qp6ijoq7EPYadTlezecRRfosDoPMeKRy9Q8jPel8C2LrQrv+KBFsBkzFU3fPutLFZi/EhoTtI8IXs3M/bqTGxcXFxSXOyITr0YW/tubojPke+sXV6NLfQ8ZotOIrJG9qX7vYwYAVOnsO09GKyQDD3uDcxKZqJAHT9XjHiwFgrLLsnbfhpXSE3o+qe5rsZNMp0dPFTbtj2RA+dDdh2809FDGI7fYEnyaEOaCLTVOj4bMMe9okfLvuR4lhhMr45KP46eLi4uLi0ls8I2YRAAJzf2Klq2WMgdGXwpZ/E3j7KGTUd5BJtyApRX3tqit0IqHYmbNiFtExbWli09IOkaIqoY53+IlvpJFix0fW7BdHhVb7k3pDUWQyT8PJsWE8ojoxE1Vk2hhI2/j+hDMZ7tpETFmzhYIn8jEdfXmwlw5n8nU3TYezI0rCnU/3Y9vn6RiYdHFxcXFxiRXPiFnw/9m77zipyuuP45+zLCwd6SoioDQBRYWIqFEJEsGOGkMxIjYixpgoKsYWE03QWIMaFWNX1J+KIiKCgi0qUqQ36dKR3svO+f0xs+Oybrm7O7NT9vt+vUb3ztz7zJmdYc+c+zz3efLMsOb77sNn3Y/PfwJf/i7W7las1UCsQlaColShE0BJvjIUPk6q+Bf8F3yAmwUeZpY7hqL3DbhfYa8l+pjhxbgWIthIPIu0HKTBPC3mPch/+l/MOooibSZFwZOAcW8WKZ6CXldSVBGR02axf58xL2IL+bcYfcoiPsG5rx8K2D0XnmAgQJsZxRmKJyIiEjtWsSZ23H34kf0JTR2MT7sDX/g8GR3uh0O7Ywn4UqRCpwjuAcsIhyDFhAX6wl+MgUVxuHK/iK9UB7aaiC/yxf7ymuerZz6/hmjZFHDhXw/wZTKnFyvgR+in77xBeg1iJB5D1izP/2Oh+PVN0b1U4SFmQYunonuJcrcZtJcm2DTPxZglTZMRiIhIglnN5lQ4/S181VhCUwcT+uxiOOQMMo6/H6vVukxjUaFThOL1vhRdTASdOCDPUQXvWWaraxbQalle+5wTvoc3QqGghVbBpVtSThyQ562KSXv5NGR59wk++jJf+X1qi9fbWFSbQT9sBRUa+QwdDXzBUzHWngnaq+LBiifIDl68mHp0REQkOdihvybj4C74gqfxmf8gNLoT1nIAdvRfsEoHlUkMKnQK4wQ/HR9V2On4ElxrUESbPy80Ak0vFvB5i1byQqE40w+X9DkKaTIZC5w8jcQsxMIKnNg3X7IGgsRYnJ6KPP/WCjzMPPJhKGq4WWQKxuJcexOozQD7FbPNwNcHiYiIxJllVMRa/wFv+lt8xt/w+U/iS9/A2t+NHdEPy6hAaOmb4cVGt86Hmq2wtreErwGKARU6RYhpj0XOKe7As4rl/jaS/0E/7ZaYaWVLPnKuoG9a+XxRK3XtFl4wNXe7+cdtAV+PH/g9Oui1KMGajrYZM5HPXTy+26ZKm4XLPU1eIbsFLhiDDv48sHAqtL2871/enaPX6BTaUJAnExERiTmrXB87YSje4ipCk2/Gv70e/34YHHoWLH09PFV1/ZNg/VeEvhlICGJS7KjQKVPF+Hbxsy/c+R/rVsSEACUQdHqDXAcUrRgj5/IWJQU+aeDXXZxZxYon1j1D8TgbH9MYLegkA8VY5JJ86vr8BBrmFW6nOMPMgk/xHLC3JCN4z48V43qeQIIMXVORIyIiCWK125Nxxkf48nfw7/4Cs4dAg19C9WZYRkVoeBoZJz4ZnrpahU78xfoalOBTAuTn52eef6pzivr2UoIZq4KKxWi5vE3m6TGJQZMxbPOnyQ0K+nxY7n2DXpflkQVLi4qtmAHnbTPfZorbZskPzSeQn19AX9AlNsE+w7lmlCiqzRDFuqYl0DQhVtQOOfcHnGTA+Gm/IotBgrcpIiKSAGaGNbkIb9SD0JsNYMNkQqOOw466EWvz53DPztb5MXkuFTqFcCzwrGtBL4ov1lCvwu70n34IGGHkkAABuJXuguacgHLFWJLDf4on3x/DMQZtOu/r8XzCtGKs9ROHQix6dFG9X6ESzOT282cptXh+V87/VxC8Rye/F55vm0F7XwDLp1elgH7WYL1EOcPMAgyJO2DoWqHxOoFnfRMREUkgy6wKtVpj7W6FH0bhsx/AmlwEu9dCzVYxeQ4VOkUIUuhYMb4gB3zWwN9Tiv+0AVouznC4/Jor4Mt1rH5Fxe+ZKujraJ69Ak88UfA1HaXu6SikvXi0mczfh3MX5oXW/YVVxgUdW9iD+d6X/2QE+X2m8x2Oll8vj+U/69rPR636z4usfAokIDLjW5HdjCIiIknB2t6CT/tr+BqdY+6EXSsJfTMQa393TNovV4WOmXUHHgMqAM+6+5BCD/BghY4HPYGa8C8apepOKsWekQVDAz59UbuFr+Ep3jU6QZ7bAxesuXYspGpwilkEB+h98fzuLIWcMqLIRS4LPDZoGVmIAGu/hHtjAlx/ktNk0KFeVkTvixVzPwjHWCFnI58CJbpfZMrqwj6cBhCCjFDBQ+JyF3wW+nmhE7SYExERKWMZTS8hBOFrcrbOx2u2wtrfrVnXisvMKgBPAN2AFcAkMxvp7nMKO85Dwb4RBBoWFrgrwiK7BvuyGHgtmaDPX8SXzgNaDdJBZFasTqJgitOmFfWtPPxQSQMs7HdQ3DaDXIdS3C+pRQyFs+hOAVik4CgyhmJcE5ZRQC/Iz5476NTJB/ZqFHpIhWDFk2UQLjaK2s+AjOyCi6I8hQ4VsvOP8YA7Qlhm6OevPb/tCqGCP8hBrh0SEREpYxlNLyEWEw/kp9wUOsAJwEJ3XwxgZq8D5wMFFjruRii7JBer5Bk6k3PphRNwhifwIr6dRtsM/IWy8P1yP+TFWC0+yH4e/U8QoUBnzoMWoJCn96ewOMzwor/LHhBHQW1Gr/+x4JMRWOQtL2p/86BtBvs+64SCf++NxwqxQWdyywhY1FvRPTrRuzOCfd4wxyoU8OHIKf5yVMzVZmHxWna40CqqALH9ULGgx/JsV8gu+K96rn09QdPRi4iIlKXyVOg0An7Itb0C6FTUQfv3Vyhql3zl94XMvbDCIP/hJpbPfXmPK01RYvm1a/mcPc5XAV+Q8zk9HfxrVUb4ZHwRz2944AvyPaeIOOD4fPazYk6sXeRQK/j5AigFN+YZHmgm7GJ9SbVCrnE58NmD95ZYkIKjgPYK+wwX1aVWIZRrSFghbZpjFbKDvGjIzMYK+yceLXRC0UIn+m8mv15XAyoV0uYBRc3+yF/gPEXZz15PNmQ5nrcgy6/nNSP7wN9RQb2zQaerFhERSWHlqdAJxMyuAa6JbG4/acI/YjO/XWzVA35MdBCllOqvIdXjh9R/DakePyT2NTRJ0PNKgkyZMuVHM1uW665U+zeUavFC6sWseONL8cZPvjmtPBU6K4HGubYPi9x3AHd/BnimrIIqCTOb7O4dEx1HaaT6a0j1+CH1X0Oqxw/p8Rokdbh7/dzbqfb5S7V4IfViVrzxpXjLXmlWS0k1k4AWZtbMzCoBvYCRCY5JRERERETioNz06Lj7fjP7A/AR4VHsz7n77ASHJSIiIiIicVBuCh0Adx8NjE50HDGQ1EPrAkr115Dq8UPqv4ZUjx/S4zVI6kq1z1+qxQupF7PijS/FW8bM4zFdrIiIiIiISAKVp2t0RERERESknFChk8TMrLGZTTCzOWY228xuiNxfx8zGmdn3kf/XTnSsRTGzCmb2nZmNimw3M7OJZrbQzN6ITBCRtMzsIDN7y8zmmdlcM+ucSu+Dmf058hmaZWbDzaxysr8HZvacma0zs1m57sv3d25h/468lhlmdnziIo/Gml/8/4p8hmaY2QgzOyjXY7dF4p9vZmcmJmopL8yse+SzttDMBic6nrxSNf+lUq5LtbyWCnks1fJWechTKnSS237gJndvA5wIXGdmbYDBwCfu3gL4JLKd7G4A5ubavh94xN2bA5uAKxMSVXCPAWPcvTXQnvBrSYn3wcwaAX8EOrp7O8KTcfQi+d+DF4Duee4r6HfeA2gRuV0D/KeMYizMC/w8/nFAO3c/BlgA3AYQ+XfdC2gbOeZJs0KXMhUpschn6wnC/27aAL0jn8Fkkqr5L5VyXcrktRTKYy+QWnnrBdI8T6nQSWLuvtrdp0Z+3kb4j1Aj4HzgxchuLwIXJCbCYMzsMOBs4NnItgG/At6K7JLUr8HMagGnAv8FcPe97r6Z1HofMoEqZpYJVAVWk+Tvgbt/DmzMc3dBv/PzgZc87BvgIDM7pGwizV9+8bv7WHffH9n8hvB6XhCO/3V33+PuS4CFwAllFqyUNycAC919sbvvBV4n/BlMGqmY/1Ip16VoXkv6PJZqeas85CkVOinCzJoCxwETgYbuvjry0BqgYYLCCupR4BYgFNmuC2zO9Q9pBeEElqyaAeuB5yNDEp41s2qkyPvg7iuBB4HlhBPDFmAKqfUe5Cjod94I+CHXfqnweq4APoz8nIrxS+pKqc9bCuW/VMp1KZXXUjyPpXLeSvk8pUInBZhZdeBt4E/uvjX3Yx6eNi9pp84zs3OAde4+JdGxlEImcDzwH3c/DthBnu78ZH4fIuOBzyec2A4FqvHzruqUk8y/86KY2e2Eh+a8muhYRJJZquS/FMx1KZXX0iWPJdPvtCjpkqdU6CQ5M6tI+I/8q+7+TuTutTndXXGOrAAAIABJREFUm5H/r0tUfAGcDJxnZksJD4/4FeFxwQdFup8h3C26MjHhBbICWOHuEyPbbxFOEKnyPpwBLHH39e6+D3iH8PuSSu9BjoJ+5yuBxrn2S9rXY2aXA+cAff2n+f1TJn5JCynxeUux/JdquS7V8loq57GUy1vplKdU6CSxyPje/wJz3f3hXA+NBPpFfu4HvFfWsQXl7re5+2Hu3pTwRWzj3b0vMAG4OLJbsr+GNcAPZtYqcldXYA6p8z4sB040s6qRz1RO/CnzHuRS0O98JHBZZBabE4EtuYYKJA0z6054aMt57r4z10MjgV5mlmVmzQhfnPptImKUcmES0CIyY1Ulwn+bRyY4pgOkWv5LtVyXgnktlfNYSuWttMtT7q5bkt6AUwh3cc4ApkVuZxEe9/sJ8D3wMVAn0bEGfD2nA6MiPx9B+B/IQuD/gKxEx1dE7McCkyPvxbtA7VR6H4B7gHnALOBlICvZ3wNgOOGx2PsIn328sqDfOWCEZ5FaBMwkPDNPMsa/kPAY55x/z0/l2v/2SPzzgR6Jjl+39L5FcsmCyGfu9kTHk098KZv/UiXXpVpeS4U8lmp5qzzkKYsELiIiIiIikjY0dE1ERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQEYkxM2tjZpebWWMzq5HoeEREREpKOU1SmQodkdirCFwP9AS2533QzJqa2S4zmxbrJzazKmY2zcz2mlm9WLcvIiLljnKapCwVOiKx1xh4HlgIFHT2a5G7HxvrJ3b3XZF2V8W6bRERKZeU0yRlqdARKSEzGx850zTNzHab2SUA7j4KeMvdR7v71gDtNDWzeWb2gpktMLNXzewMM/ufmX1vZicUZz8REZHiUk6TdKRCR6SE3P1XkTNNTwMjgbdzPbammM01Bx4CWkdufYBTgEHAX0qwn4iISGDKaZKOMhMdgEgqM7PLgB7ARe6eXYqmlrj7zEibs4FP3N3NbCbQtAT7iYiIFItymqQbFToiJWRmvwH6Aue7+75SNrcn18+hXNshDvx3GnQ/ERGRwJTTJB3pQyRSAmZ2DjAQOMfddyc6HhERkZJSTpN0pWt0RErmReAw4H+RCzevTHRAIiIiJaScJmnJ3D3RMYiUK2bWFBjl7u3i+BxLgY7u/mO8nkNEREQ5TZKZenREyl42UCuei6sRXuAtFOv2RURE8lBOk6SlHh0REREREUk76tEREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNKOCh0REREREUk7KnRERERERCTtqNAREREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTuZiQ4gCDOrAowBfuXu2fk8/iAw2t3Hl3lwInEwZcqUBpmZmc8C7dAJCYmtEDBr//79V3Xo0GFdooMpjwrKaWb2AjDK3d8ys9eBO939+wSFKRIzymkSR4XmtJQodIArgHfyK3IihgLDABU6khYyMzOfPfjgg4+qX7/+poyMDE90PJI+QqGQrV+/vs2aNWueBc5LdDzlVFE5DeA/wC3A1WUTkkj8KKdJvBSV01Klqu4LvAdgZrea2Uwzm25mQwDcfRlQ18wOTmSQIjHUrn79+luVECTWMjIyvH79+lsIn1mVxOgLvGdhj5vZfDP7GGiQa58vgDPMLFVOSIoURjlN4qKonJb0hY6ZVQKOcPelZtYDOB/o5O7tgQdy7ToVODkRMYrEQYYSgsRL5LOV9H//01HunAb0BFoBbYDLgJNy9nP3ELAQaJ+AMEViTTlN4qawnJYKia4esDny8xnA8+6+E8DdN+babx1waBnHJiIiUhy5c9qpwHB3z3b3Vfx8+LXymohIKaRCobMLqBxgv8qRfUVERJJV0JwGymsiIqWS9IWOu28CKphZZWAc0N/MqgKYWZ1cu7YEZiUgRJG09Zvf/KZpnTp12rdo0aJtvNqpUKFCh9atW7dp3rx521atWrW5++67G2ZnF3aNdmop7PWNGjWqRo0aNY5t3bp1m9atW7c56aSTWgLceOONh1apUuW4lStXRq/PqFq16nE5Py9fvjzznHPOOaJx48bt2rZte9Rpp53WfMaMGVkAM2bMyDrttNOaN2nSpF2bNm2OOuuss4744YcfdJ1HksiT0z4HfmtmFczsEKBLnt2V10RiSDmt9FItpyV9oRMxFjjF3ccAI4HJZjYNGARgZhWB5sDkxIUokn6uuOKKH0eOHFnk9LajRo2qcdFFFzUtSTtZWVmhefPmzVm4cOHs8ePHLxg3blytQYMGpc1wnaJeX8eOHbfPmzdvzrx58+Z89dVXC3LuP+igg/bfe++9DfO2FwqFOO+885qfeuqp23744YdZs2fPnjtkyJCVq1atqrhz504799xzWwwYMGD9smXLZs2ZM2fuwIED169Zs0aFTnIZC5wCjAC+B+YALwFf5+xgZg2BXe6+JiERiqQh5bTSS7WcliqFzhNAPwB3H+Lubdz9WHf/S+Txc4C33H1/wiIUSUM9evTYXr9+/VL/uwraTqNGjfY/++yzS59//vkGoVCotE+bdIrz+nr37r1h5MiRddauXVsh9/2jRo2qkZmZ6bfccsv6nPs6d+68q3v37tufeeaZOscff/z2Pn36bMl57Jxzztn2i1/8YnfMX4yUxhNAPw/7g7u3cvdu7n6Wu78V2acP8HQCYxRJO8ppsZUKOS0lzvK5+1Qzm2BmFQpYdyATeKis4xIpC1dccUXjWbNmVY1lm+3atdv53HPP/RDLNmOlTZs2e7Ozs1m5cmVm48aNY3ry4oQTTmh16aWX/vjHP/5xw549e+yXv/xly8svv3z9wIEDN27bti2ja9euLa6++up1V1999aYNGzZU6NGjR/Prrrtubb9+/TavXr068/zzzz/yT3/605o+ffpsWb58eebhhx9e7Phyvz6AyZMnV2/dunUbgPPPP3/j/fffvwagevXq2b179/5xyJAhDR955JFVOcfPmDGjSvv27Xfm1/asWbOqHH/88fk+JskjQE6D8IQFL5dlXCJlQTktdpTTipYShQ6Auz9XyGP/V5axiEjYMccc03rv3r0ZO3fuzNiyZUtmzh+3++67b8VFF120NdHxpYKOHTtunzBhwsL8Hhs8ePC69u3bt7nrrrs0fCnNFJbTIo8/X1axiEiYclrpJVtOS5lCR6S8StazVAAzZsyYB+Gu5+eff77u22+/vbS0bc6ZM6dShQoVaNSoUcyHon777bfzc37Oysry3Ns1atQI5d6uW7dudu7tQw45ZH/u7ZKc+YIDX9/06dML3bdevXrZPXv23Pivf/0rupDk0Ucfvevdd9+tnd/+bdu23f35559XL0lcIiJlQTktdpTTipYq1+iISDmwatWqzKuvvrpJ//7912VkpN+fp5K8vttvv33tiy++WD87O9sAzj333G179+61Bx98sF7OPhMnTqwyZsyY6ldfffWGKVOmVH/99ddr5Tz24YcfVp80aVLQ6YxFRCRGlNN+rqxzWvr91kUkZs4999xmp5xySuslS5ZkNWzY8JhHHnmkXtFHFa+dPXv2ZORMVdmlS5eWXbt23frggw+uKqy9VFLa13fIIYfs79Gjx6a9e/caQEZGBiNHjlw0fvz4mo0bN27XvHnztrfeemujRo0a7atevbq/9957C5944okGTZo0aXfkkUe2feKJJxocfPDBmqhFRMo95bTSS7WcZu5ektcpInE0ffr0pe3bt/8x0XFI+po+fXq99u3bN010HCKS/pTTJN4Kymnq0RERERERkbSjQkdERERERNKOCh0REREREUk7KnREklMoFApZooOQ9BT5bKXfMt0ikqyU0yRuCstpKnREktOs9evX11JikFgLhUK2fv36WsCsRMciIuWGcprERVE5TQuGiiSh/fv3X7VmzZpn16xZ0w6dkJDYCgGz9u/ff1WiAxGR8kE5TeKo0Jym6aVFRERERCTtqKoWEREREZG0o0JHRERERETSjgodERERERFJOyp0REREREQk7ajQERERERGRtKNCR0RERERE0o4KHRERERERSTsqdEREREREJO2o0BERERERkbSjQkdERERERNJOZqIDSGb16tXzpk2bJjoMEZGYmzJlyo/uXj/RcUjZUU4TkXRVUE5ToZMPMzsXOLd58+ZMnjw50eGIiMScmS1LdAxSNpTTRCTdFZTTNHQtH+7+vrtfU6tWrUSHIiIiUirKaSJSXqnQERERSWNmdq6ZPbNly5ZEhyIiUqZU6IiIpJg9e/bw9ddfs2rVqkSHIilAPToiEi8zZszg5ZdfZvv27YkOJV8qdEREktyOHTsYPHgwH3/8MQDr16/npJNO4t13301wZJIK1KMjIrE0fvx4duzYAcDkyZO57LLL2LZtGwATJ07knXfeYf/+/YkMMUqFTj6UFESkrC1YsIB58+YBEAqFOOaYY7j77rsBqFy5Mk899RRTp04FoFGjRrz//vtcdNFFCYtXUod6dEQkVmbPns0ZZ5zBCy+8AECvXr1YsGABDRo0AODpp59m4MCB7NmzJ4FR/kSzruXD3d8H3u/YsePViY5FRNLT008/jZlxzTXXANC9e3d+8Ytf8MYbb5CRkcFpp51Gq1atAKhQoQIbNmygQoUKAJgZ55xzTsJiFxGR8qlt27a88sorXHDBBQBUrVqVFi1aRB9/5plnWLZsGdWqVcPd+f3vf8/ll19O586dExKvenREROIkpysf4JZbbuHiiy+Obr/99tuMGDEiuj1s2DDuuuuu6PbQoUPp06dPdDunyBEpLo1SEJHSevTRR6OjDvr06UPVqlXz3S8zM5MjjzwSgBUrVvDhhx8yZ86cMovzZ/HEo1EzqxNgt5C7b47H84uIlLUtW7Ywc+ZMTjnlFABuuOEG3nzzTVatWoWZUbdu3eiYZoBRo0ZRqVKl6HbXrl3LPGYJJtVzmkYpiEhp/Pjjj/zzn/9k+fLlPPzww4GPa9y4MXPnzqVKlSoAfPjhh2zdupVLLrkEM4tXuAeI19C1VZFbYa+iAnB4nJ5fRCSuFi1axMiRI7nuuuuoVKkSQ4cO5c4772Tz5s3UqlWLs846i8MPP5zs7GwyMzO59dZbDzg+d5EjSU85TUTKrXr16jF58mQOPfTQYh9brVq16M9PPfUUS5cu5cILL6RixYqxDLFA8Rq6Ntfdj3D3ZgXdgA1xem4RkZibM2cO/fv3Z9my8OLLU6ZM4cYbb4x2yffu3ZuxY8dSuXJlAM4880xuuukmMjN1KWQaUE4TkXLn+eef57HHHgPCvTOlHUL99ttv8+GHH1KxYkV2797Ne++9h7vHItQCxavQCXLFUWKuSgpA45lFZPny5Zx77rl89tlnQHjtmg8++IClS5cCcNZZZ7F69WqOPfZYAI488ki6detGVlZWokKW+FFOE5Fyxd0ZPXo0o0ePJjs7OyZtZmZmRnuFhg0bxgUXXBCdTTRe4lLouPvuWOyTKKWZinPv3r3ceOONfPrppwDs3r2bhx56iGnTpkW333jjDRYvXgyEvzx99dVXrF+/HoB9+/axfPlydu3alRNLDF6RiBRl586d9OzZMzplZp06dVi0aBEbN24E4Nhjj2Xt2rWcdtppAFSvXp2DDz44UeFKGSrPOc3d2bRpUxyiEpFkFAqF2Lp1K2bGa6+9xrvvvhuXyXCuvfZaPvjgAzp06ACETy7GQ8wLHTPrZmbDzOzYyPY1sX6OZLZ7926effZZZsyYAYRnXRo0aBBffvklEL6gq1evXnzyyScArFq1ipNPPpkPPvgAgMWLF9OkSZPobEyzZ8+mUqVK0YUB586dS6dOnaLtLVy4kAEDBjB37lwgPMPFf/7zH1avXg3Axo0b+eabb6IXQatwEvlJ//79ozOdVa1alU2bNrFz504gXMjMmTOHnj17AuEpncvq4klJHuU9p/32t7+le/fuyh0i5cTvfvc7evTowb59+6hYsWJ0IoFYy8zM5KyzzgJg6dKltGnThoceeij2zxPzFuEK4FrgjshMNcfG4TmSVs2aNdm6dWt0u169emzZsiV64XHDhg2ZPXs2DRs2jG6PGTOGdu3aAdCgQQOeffZZOnXqBEDt2rW56aabaNmyZbTNOnXqRK8DWLduHe+99x6XXXYZALNmzWLgwIEce+yxHHLIIfzvf//jvPPOY/LkyXTo0IF3332XPn36MGnSJNq1a8enn37Kv//9b4YOHUqjRo2YM2cO//vf/+jVqxc1atRg8+bNbN++nUMPPZSMDM1GLqnt9ttvZ9myZbzyyiv5Pp7TEyuSS7nOaT179mTbtm0q8kXSWHZ2NhkZGdE12jZu3Fim15c2atSI2267jUsuuST2jbt7TG/AM7l+HgJMivVzlNWtQ4cOnmr27Nnjq1ev9t27d7u7+9q1a3306NG+ZcsWd3efNm2a33zzzb5+/Xp3d3/33Xe9Xbt2vnr1and3f/zxxx3wtWvXurv7o48+6oBv2LDB3d2feeYZP/roo33r1q3u7v7ll1/6448/7vv27XN39+3bt/vevXvL7gWLFGLo0KHeuXNnD4VC7u5+zz33+FVXXZXgqJIDMNmT4O9sst+U034yZswYv/nmm33Hjh2lakdEkse6deu8Xbt2/sYbbyQ6lFIpKKfF4xT9B7mKqMHAS3F4DilApUqVOPjgg6MXRDdo0IAePXpQs2ZNANq3b88DDzxAvXr1ADj//POZOXNm9FqDK6+8kuXLl0cfP+OMM3jmmWfIGdtdr149WrZsSfXq1QF49913GTRoUHT85t13303t2rVzvhTw3//+lxtuuCEa39y5c5k5c2a8fw1STn377bdceOGFbN++HYBatWrRuHHj6DVvd911F8OGDUtkiJJ6Uj6nxWoygvHjx/PBBx9E88vixYvZv39/LEIUkTL0zTffMHr0aADq1q3LYYcdRo0aNRIcVXxYzhfSuDRu1hG4HWhCeJicAe7ux8TtSWOoY8eOPnny5ESHkdSys7PZuHEj9evXB8KJcObMmdHiZvDgwXz22Wd8/fXXAPTq1YupU6eyYMECAP7whz+wadMmXn31VQCmTp1KjRo1aNGiRQJejaSaHTt2MGLECE455RSaNm3K559/zqWXXsrIkSOjs6FJ/sxsirt3THQcqUQ5LXwdauXKlQmFQjRr1oyTTz6Z1157DYBJkybRqlWr6Ik1EUkeO3bsiK5p86tf/YoNGzYwffr0BEcVOwXltHgXOvOBm4GZQCjnfndfFrcnLTiWIwgnqFrufnGQY1ToxN7s2bPZsGEDp556KgD33XcfGzZsiK6027lzZ6pUqcL48eMBuOmmm2jcuDF/+tOfgPDkDQ0aNNDaJOXYtm3b2Lp1K40aNWLlypUcdthh/Otf/2LQoEE/dVXrerIiqdApvmTKaSURy5yWnZ3Ne++9R+3atenSpQs7d+6kRo0a3HHHHdxzzz3s2bOHP/7xj/zud7/jlFNOITs7m3Xr1tGwYUP9+xQpY0OHDuWuu+5ixYoVVKtWjYULF9KwYcO06sUpKKfF+6/Nencf6e5L3H1Zzq24jZjZc2a2zsxm5bm/u5nNN7OFZja4sDbcfbG7X1nc55bYatu2bbTIgfDF4TlFDsCTTz7JkCFDottz586NrlsC0KlTJ6688qe38Z577uHjjz+Ob9CScDknZEKhEK1ateIvf/kLEL6Acdq0adx4441AeGY0fYmSOIpJTksHFSpU4MILL6RLly7R7ffff5/evXsDsHbtWt5+++3oUgpLly7l0EMP5eWXXwZg5cqV9O/fn++++w4IT+++YMEC9u7dm4BXI5Je1q1bx+DBg6NTNnfq1IkBAwawZ88eAJo3b55WRU6h8rtwJ1Y3oCvwLNAbuDDnVoJ2TgWOB2bluq8CsAg4AqgETAfaAEcDo/LcGuQ67q2gz5uKkxGks1Ao5C+88IKPHz/e3d337t3rNWrU8Lvvvju6ffjhh/uwYcOi+2/atClR4UqM3Hrrrd61a9fo9iuvvOJff/11AiNKD2gygoTltBjFcgTw32TPaTkTgaxfv94ff/xx//77793dffLkyd6oUaPo3/MJEyY44J988om7u3/33Xfet29fX7hwobu7b9682ZcuXer79+8v89dQ3u3YscPXrFkT3V67dq3/8MMP0e2c91gSL2diqKVLl3rFihX95ZdfTnBEZaegnBbvU5/9CU/F2R04N3I7p7iNuPvnwMY8d58ALPRwT81e4HXgfHef6e7n5LmtK93LkGRgZvTr1y96BrFixYps2bKF2267DQgPaeratSuNGzcGYMmSJdSuXTs6fnz79u1MnjxZZwyT3FdffcUVV1wRXYm5SZMmHHXUUdHtvn37cuKJJyYyRCm/YpLTytMohZxpqevVq8d1111H8+bNAejQoQMrVqyI/j1v3bo1L774IsccE77cac2aNdH14gDee+89mjZtyqJFiwD46KOP6N27d3RB3++//54PP/ww+vc9FIqOLJRievvtt7n22muj29dffz3t27ePbg8ePJjOnTtHt/v37x993wAeffTR6PpkAIsWLYqu7Sfx4e706tUrOuKlSZMmrF69mksvvTTBkSVevC90+IW7t4pT242AH3JtrwA6FbSzmdUF7gOOM7Pb3P2fBex3DXANwOGHHx67aCUuzCw6A1CdOnV47rnnoo9VrVqV++67jxNOOAGAL774grPOOovx48fTpUsXFi9ezMSJEznnnHPKTxduktqxYweZmZlkZWWxcuVKRo8ezZIlS2jevPkBCVekNMzs+MIed/epRTQRq5z2AvA4uWZwM7MKwBNAN8L5bJKZjSQ8eiFvvroi3U7gHXzwwdH14AC6d+9+wLDlk08+mWeeeYYmTZoA4aE5kyZNiv79/7//+z9uv/326AyL9957L//85z/Ztm0bmZmZPPvss4wYMYJRo0ZhZnz00UfMmTOHP//5z0B4Ipy1a9fSo0cPILz49p49ezjyyCMB2LdvH2aWlteHjhgxgiFDhvD555+TlZXF/PnzGT9+PHv27CErK4vLL7/8gCHnV155Jd27d49u//rXv+aoo46Kbs+bN48lS5ZEtwcMGMCOHTuikxINGjSImjVrRouhb7/9lnr16nHEEUfE+6Wmnf3795OZmYmZ0aZNGypVqoS7Y2bUrVs30eElh/y6eWJ1A54H2sSoraYcOHTtYuDZXNu/Ax6PZfwaupZefvzxR3/jjTd827Zt7u7+2GOPOeArVqxwd/dPPvnE77nnHq0RUcZWrFjhDRo08KFDh7p7uOtdw1Pij3I4dA2YELl9DewDJgNTIj9/HeD4eOa0zsBHubZvA24L0E5SD10rK+vWrTtgSOu4ceP8L3/5S3T78ccf9y5dukS3r732Wq9Xr150+6qrrvJDDjkkut2vXz9v0qRJdLtXr17esmXL6Hbfvn39pJNOOuD4Cy+8MLr9xz/+0QcMGBDdvvnmm33w4MHR7TvvvNOHDBkS3f7HP/7hTz31VHT7scce8+HDh0e333vvPZ84cWJ0uzTDxSZNmuSnn366L1q0yN3dR48e7V27do0OR4v1ULTPPvvMx44dG93u27ev/+EPf4hut2zZ0n/zm99Ety+//HJ/8skno9uLFi2Krg0oP5kzZ463aNHCJ02alOhQkkJBOa3AoWtmdmFht4B11InAtEhX/Awzm2lmMwIeW5SVQONc24dF7iu1WK05IMmlbt26XHLJJdE1gK699lqmTZtGo0aNAPjyyy95+OGHo2cI3377bZ577rmcLxMSQ7t37yZn9qdDDz2Uyy67LNrzlpmZGV2XSSSW3L2Lu3cBVgPHu3tHd+8AHEew/BHPnJbfKIVGBe1sZnXN7CkioxQK2e8aM5tsZpPXr18fo1CTT/369Q8Y0nrGGWdw3333Rbevu+666GyeAE888UT0Qm2Av/71r4wdOza6PXDgQIYOHRrdvuSSS6K9PwBdunThvPPOi263aNHigF6NypUrU6VKlej25s2b2bx5c3R79uzZzJ8/P7o9duzYA4bqDRs2jHfffTe6ff311/Pkk09Gt9u0acOtt94a3X7++eejEzu4Oz/88EN0WN/q1au56KKLmDBhAgA1atRg8+bNrFsX7hTs0aMHH3/8MYcddhjw03DDWDn11FPp1q1bdPuVV1454Hf70ksvRYeguzvLly+Pxh4KhTj66KMZPHhw9PEhQ4Ywbdq0mMaYig4++GAOPfTQ6LBuKUB+1Y//dObqecKLpW0C3o7cNgKjCjouTxtN8rsFOTaftppy4NmvTGAx0IyfJiNoW5K2C7ql89kvyd/OnTujP/fs2dN/8YtfRLcnTpwY7Q2S0unXr5/XqVNHv88Eohz26OTcgNlB7stnn3jmNI1SkAItXbrUly9f7u7hHpebb7452uOzb98+r1Chgt9xxx3RbcD/8Y9/uHs4r7Vs2dJfffXVxARfCvv27fNXXnnFv/32W3d3X716tZtZdATAtm3bfMCAAT59+vREhllmNmzY4Pfee69nZ2cnOpSkU1BOC/LHeCxwSK7tQ8jVvV7AMZ2JrNETixswnPAZuH2Ez3JdGbn/LGAB4dnXbo/h850LPNO8efMY/folFYVCIV+/fr27h2d0q1u3rl966aXRx3NmN5Gi7d2715955hlft26du7vPnDkzOttNN3xfAAAgAElEQVSSJEY5L3SGE5497fTIbRgwvJD9Y5rTIm3mLXRKNHQt4HMpp6WxUCjka9asif593b9/vw8bNsynTZuW4MjiY9u2bb5161Z3Dw/Dq1Gjho8bN87d3ZcsWeKPPvqob9y4MZEhxs3zzz/vFStWjBZ+8pOCclqRC4aa2Vx3PyrXdkbkzNdRhRzzH8ITAywAxgBj3H1NoU+UhLRgqOQIhUJ89dVX1KhRg/bt27NmzRratGnDsGHDuOiiixIdXtKbP38+bdq04eGHH+aGG25IdDhC+V4w1MwqA9cSXroA4HPgP+6+u4D9Y57TzKwp4dER7SLbmZH2uxIeRjcJ6OPus0vzPJG2zwXObd68+dXff/99aZsTSSq5J4p4+umn+f3vf8+yZcs4/PDD+fHHH6lZsyaVKlVKdJglFgqFWLZsGc2aNcPdWbhwIS1atEh0WEmnNAuGfmJmH5nZ5WZ2OeGhbIWu0Oju17r78cBfgdrAC2b2tZn9w8xOjcwuk7R0jY7klZGRwSmnnBKdYnPPnj307NmTNm3aADB58mQGDBigKTRzGT58eHSMfKtWrZg6dSp//OMfExyVCEQKmqeAwe7e090fKajIiewf05xmZsMJT4jQysxWmNmV7r4f+APwETAXeDMWRU4k/vfd/ZpatWrFojmRpFKxYsXobHgDBgxg6dKl0VlzBw0aRLt27VL6OpabbrqJE088kQ0bNmBmKnKKqcgeHQAz60muM1/uPqLYT2RWBegC9AA6p8KZRPXoSFAvvfQSN954I4sXL6ZmzZpMmjSJUCjECSecEPMLO5OZu0df77XXXsvUqVP53//+l5ZTsqa6ct6jcx7wL6CSuzczs2OBv7n7eUUcmruNlMlp6tGR8mrcuHEsXryYAQMGAOGptM8+++yU6uGZPXs2n376KQMHDixX3yeKq6CcFrTQaQK0cPePzawqUMHdt5UgiF8Cvdz9uuIeW5aUFKQk9u3bR8WKFQE4//zzmTZtGkuWLCEjI97r8iaHadOm0a9fP15//XWOOuoodu7cSeXKlcvN60815bzQmQL8CvjU3Y+L3DfT3Y8uZjspkdNy6OSdlGcLFiygVatWPPDAA9x8882JDqdA7s4DDzzA1q1bD5g5UApX4qFrZnY18BbwdOSuRsC7BR/xs+OPM7N/mdlS4G+Eu+STmrr5pSRyihwI9/C88847ZGRksG/fPvr168eMGbGahTY5NWrUiKysLDZt2gSEF2xVkSNJap+75x2bHGge+VTMaRqOLQItW7ZkzJgxDBw4EIBly5axbVuxz9nHnZmxdOlSFi9eTCgUSnQ4KS/It5DrgJOBrQDu/j3QoLADzKylmd1tZvOAocBywr1HXdz98VLGLJL0atWqRYcOHQBYvHgxY8eOPWDNhHQxbdo0+vfvz86dO6lfvz7ffvstJ510UqLDEinKbDPrA1QwsxZmNhT4qqCdUz2n6eSdSNiZZ55JtWrVcHcuvvhiunXrRpCRTWXhu+++Y+nSpQAMHTqU1157TScLYyDIwPk97r43Z1xgZGaYoj4V84AvgHPcfWHkuD8XfkjyyDV0LdGhSBpo1aoVCxYsoEaNGgB8+umntG3blvr16yc4stKbOHEi48ePZ+vWrVStWjXR4YgEdT1wO7CH8FTTHwF/L2R/5TSRNGJmPPLII+zYsSMprnvZvXs3Z599Nh07dmTkyJG6rjWGgkwv/QCwGbiMcHIYCMxx99sLOeYCoBfhnqAxwOuEF0JrFqO4y4TGM0us7dq1i6ZNm3LyySfzzjvvJDqcmNi+fTvVq1dPdBhSTOX5Gp3iUk4TSW8vvfQSs2bNYsiQIWXai5J7Ap8vvviCli1b0rBhwzJ7/nRSmumlBwPrgZnAAGA0cEdhB7j7u+7eC2gNTAD+BDQws/+Y2a+LG7xIuqhSpQrjxo3j4YcfBmDnzp3s3bs3wVEVj7szaNAgpk6dCqAiR1KOmb1vZiPz3F42sxsia+wcQDlNJL199913TJkypUzz8a5du7jooot49dVXAfjlL3+pIicOiuwbc/cQ4VWjhxW3cXffAbwGvGZmtYHfALcCY4vblki6OOaYY6I/33DDDcyYMYMvvvgiZaa7XLt2LW+++SZ16tTh+OOPT3Q4IiWxGKhPeNgawG+BbUBLwrnud/kdlKo5TUPXRAr38MMPs2/fPipVqkR2djYZGRlxH9KWkZHBli1b2Lx5c1yfp7wLMnRtJj+/JmcLMBm41903xCm2hNH00lJWRowYwbx587jtttsSHUqxbNq0iYMOOigpxjZLyZTnoWtmNsndf5HffWY2293bJiq2eNLQNZHC7d69m4svvpiTTjqJv/zlL3F5jg0bNlC9enWysrLIzs6mQoVirTcsBSjN0LUPgQ+AvpHb+4SLnDXACwU82dQAARW5T6JohhopKz179owWOTNmzKBfv34k6xSwM2bM4P7778fdqV27toocSWXVzezwnI3IzzljMH82diXVc5qIBJOVlUX9+vWpU6dOXNrfu3cvXbt2pW/fvgAqcspAkGkdznD33ONTZprZVHc/3swuLeCYo8yssEVDDFAVIZLLpEmTmDBhQtJes/Pyyy/z2muvcdVVV1G3bt1EhyNSGjcBX5rZIsL5qBkw0MyqAS/ms39K5zQNXRMJxsx47rnn4nYir1KlSlx33XU0adIkLu3LzwUZujYduNrdv41s/4LwbDPtzey7nFWl8xwT5B3MdvcVJQm6rKibX8razp07qVq1Ku7OG2+8wW9+85ukOePj7qxevZpDDz000aFIDJTnoWsAZpZFeHIBgPnuvruQfZXTRMqZTz/9lIceeoi33nqLrKysUrUVCoVYuXIljRs3jlF0kldBOS1Ij85VwHNmVp3wWautwFWRM1//zO8Ad19WmmATTWe/JFFy1qIZN24cvXv3xt3p3bt3wuJxdx544AEuv/xyGjZsqCJH0kkLoBVQGWhvZrj7S/ntmOo5TUSKb8uWLSxevJiVK1dyxBFHlKqte++9l0ceeYTp06dz+OGHF32AxEyQWdcmAUebWa3Idu4LCN6MV2CJ5O7vA+937Njx6kTHIuVTt27dGDNmDN26dQPCF//Xrl27zOP4/vvv+dvf/kZmZiY33XRTmT+/SDyY2d3A6UAbwksm9AC+BPItdESk/Dn//PM555xzYjKqom/fvmRlZalHJwECrYpkZmcTXkPnBjO7y8zuCnCMmZneUZESMDPOPPNMMjIy2LRpE+3bt+fvfy9s4fb4aNmyJdOnT+fPf06ZReBFgrgY6Aqscff+QHuKuMZGOU2k/KlQoQJ79uxhxIgRJTo+5/KQI488kltvvVWT+CRAkYWOmT1FeI2B6wkPXfsNUOR4ZQ+/u6NLG6BIeVetWjX69OlDjx49gPCsLUVdW1das2bNYuTIkQA0b968TFeKFikDuyJrxO03s5rAOqDQIiaVc5qZnWtmzyTrjI4iyeypp57iwgsvZPr06cU+9sYbb2TAgAFxz9lSsCDfXk5y98uATe5+D9CZ8KJqQUyNTF4gIiVUqVIlhgwZQseO4Wvs/v73v3PKKaewe3eB106X2t/+9jcGDhzIzp074/YcIgk02cwOIrw46BRgKvB1gONSMqdpyQSRkrvqqqv4+OOPD1jsOwh3Jysri8qVK6snJ4GCTEaQ821qp5kdCmwADgnYfiegr5ktA3YQ7hFydy/ep0VEolq1asX27dupXLkyAOvXr6d+/foxfY4XX3yRZcuWRSdHEEkXFv7G8U933ww8ZWZjgJruXtj00TmU00TKmWrVqtG1a9diH2dmDBkyRL05CRak0Hk/cubrX4TPejnhs2BBnFnSwEQkf5deeimXXhpewuqHH36gdevWPProo1x9denmznB3XnzxRXr37k2VKlVo3bp10QeJpBh3dzMbDRwd2V5ajMOV00TKqYcffpjFixfz+OOPF7nv/Pnz2b17N+3bt0+73hx3T6nXVOjQNTPLAD5x983u/jbha3Nau3uRkxFAdErOg4BzI7eDUmGaTo1nllRRo0YNrr/+en79618DsGbNGtavX1+itr755hv69+/Piy/mt16iSFop0RC0VM1pIlJ6P/74I8uWLSM7O7vIff/2t7/RpUsXdu3aVQaRlY1169ZxwQUXkJWVxV//+tdEhxNYkAVD810UNFDjZjcAVwPvRO7qCTzj7kNL0l5Z0+Jqkmouu+wyxo4dy9KlS6ND24rjiy++4OSTT9bkA+VAeV4w1MzmAc2BYg1BS6acZmYXAGcDNYH/uvvYoo5RThMpueL0ZGzatInp06dz+umnxzeoMrJt2zZOPfVU5s2bx3HHHcfXX3/NK6+8Qt++fRMdWlRBOS1IofMg4Ys03/FiDjQ0sxlAZ3ffEdmuBnydKuOZlRQk1cydO5epU6dG//iMGTOGrl27UrFixUKPCYVCtG3btqzClCRQzgudfGcOLap3JlY5zcyeA84B1rl7u1z3dwceAyoAz7r7kABt1QYedPcri9pXOU2k9LZt20aNGjUSHUaZuuKKK3jppZf44IMPOOOMMzj55JNZs2YNS5YsSZphbAXltCCnbQcA/wfsNbOtZrbNzLYGfV4gdx9fduQ+EYmDo446KlrkzJkzhx49evDYY48VuL+7c80113DhhRcG6o4XSQeRgqYx8KvIzzsJlg9jldNeALof0LBZBeAJwouXtgF6m1kbMzvazEbluTXIdegdkeNEJM5Gjx5NgwYNWLhwYb6Ph0Ih+vXrx9dfB5nEMTWMHz+e559/nltuuYUzzzyTChUqcM0117Bs2bISTbld1oqcjMDdS1O2Pg9MNLOclZYuAP5bivZEJKCjjjqKDz74gFNOOQWAqVOnsmHDBrp16xbdx8wYPnw469ati8nqzyKpwMzuBjoCrQjnqYrAK8DJRRwak5zm7p+bWdM8d58ALHT3xZEYXwfOd/d/Eu79yfsaDBgCfOjuU4sbg4gUX9u2bbnmmmvIzMz/6/Py5csZO3Ysv/71r+ncuXMZRxd7u3btYsCAATRv3pw777wzev/ZZ5+NmTFy5EiOPfbYQtvIzs4mFAoVOrIknoIsGGpmdqmZ3RnZbmxmJwQ5jnBPUH9gY+TW390fLWXMIhKAmXHWWWdRs2ZNAB544AEuu+wydu3ahbszbtw43J3DDjuM448/PsHRipSpnsB5hK/Pwd1XAYWe1CuDnNYI+CHX9orIfQW5HjgDuNjMfl/QTmZ2jZlNNrPJJZ2oRETCmjRpwmOPPUbTpk3zfbxp06asXLmSSy65pGwDi5N7772XhQsX8vTTT1OlSpXo/Q0bNuTEE09k9OiC11CeN28e559/PtWrV6dSpUq0a9eOv//975T1RF9BuuqfJLxIaJ/I9nYCdJPnrCLt7lPd/d+R23clD1VESuPFF1/ko48+okqVKqxatYoLL7yQESNGFH2gSPrZG8lRDtFrbQqVbDkt8vwd3P337v5UIfs9A9wDTK1UqVLZBSiSptydhQsXsnfv3nwfz8jISFjvRSzNmDGDBx54gMsvv5xf/epXP3v81FNPZerUqfkuXr5q1Sq6devG559/zoABA7j77rupX78+d999Ny1atOC///1vma0vFKTQ6eTu1xFZONTdNwFB/1omzSrSZnaBmQ0zszfM7NeJjkekrGVlZUVXdt6xYwcDBgzgggsuSHBUIgnxppk9DRxkZlcDHxNsfbh45rSVhK8bynFY5L5Sc/f33f2aWrVqxaI5kXJt1KhRtGjRgkmTJh1w/5o1a+jQoQMTJkxIUGSxs3//fq688kpq167Ngw8+mO8+nTp1Yt++fXz33YHne3bv3k23bt3YvHkz48eP59FHH+Wvf/0rEyZMYNKkSbRq1YqrrrqK3/3ud+zcuTPuryVIobMvcpFkzpmv+kAoYPudgK/NbJGZzTCzmZFZa4rFzJ4zs3VmNivP/d3NbL6ZLTSzwYW14e7vuvvVwO+B3xY3BpF00rJlSx588EFNIy3lkrs/CLwFvE34Op27Ak4RHZOcVoBJQAsza2ZmlYBewMhYNFyateHuuusuzIxQKGjaF0lvJ510Ek899RRHHnnkAfdv3LiRWrVqpcWMbI888giTJ0/m8ccfp27duvnu06lTJwAmTpx4wP2jRo1izpw5vPTSSxx33IGr03To0IHPPvuMe++9l9dee42TTjqJxYsXx+dFRASZXrov4cLgeOBF4GLgDnf/vyKOM+CXhNcpOEBxF1gzs1MJD5l7KWcqzkjxtQDoRngs8ySgN+FpOf+Zp4kr3H1d5LiHgFeDXLypqThFJF2V8+mlbwTecPfAPSYxzmnDgdOBesBa4G53/6+ZnQU8SjiPPefu9xWn3UKe71zg3ObNm1/9/fffF+vYjIwM3J0lS5YUeF2CiKSPOXPm0KFDB7p3784777xT6PTRTZo0oXPnzrz++uvR+y644AImTpzIihUrCp3kaMyYMfTpE74qZuTIkdGJk0qqxNNLu/urwC2Ei4fVwAVFFTmR4xx4wt2X5b0VN3h3/5zwhZ+5RWeocfe9QM4MNTPd/Zw8t3WRSRXuRzPUiIiUdzWAsWb2hZn9wcwaFnVAjHNab3c/xN0ruvth7v7fyP2j3b2lux8ZqyIn0m6Jh64dfPDBAMyePTtW4YikvB9//JHx48cnOoyY2759OxdddBE1a9bkySefLHKNnHbt2jFv3rzo9saNGxk9ejR9+vQpcibX7t27M3nyZBo0aMCZZ54Zt99nkFnX/g3Ucfcn3P1xd59bjPbjOZ5ZM9SIiEixufs97t4WuA44BPjMzD4OcGjSXHdaHKUZutawYbgGVKEj8pMXXniBrl27snFj+Bx8dnY2jRs35t///neCIyu57OxsLrvsMhYsWMDw4cM55JBDijymWbNmLFmyJDqxwFtvvcW+ffu49NJLAz3nEUccwaeffkqzZs04++yz+fDDD0v1GvITZID+FOCOyJjkB82sOEMdOgHfxGk8c7FohhoREcljHbAG2AA0KGJfSKKcVhyl6dHJWUhYhY7ITy6++GImTJhAtWrhCRt37drF2WefzRFHHJHgyErG3bnuuusYMWIEDz30UL6zrOWnWbNmbN26lU2bNgEwbtw4GjduXOTaOrkdfPDBfPrppxx11FGcd955TJkypUSvoSBBFgx9EXjRzOoAFwH3m9nh7t4iQPtnljbAQsR1hhrg/Y4dO14di/ZERCR5mNlA4BKgPuG1ca529zkBDo1nTktKGzZsAFToiOTWtGnTA65Zq169Ok89VeA59KS2b98+rrrqKl566SVuvfVW/vSnPwU+tlmzZgAsXbqUOnXq8NVXX3H66acXOeQtr3r16jFhwgSGDRsW83X9ijPlUnOgNdAEmFfEvjmWE754s19kHLMDRY6FDigpZ6gREZGk1xj4k7u3dfe/BixyIL45LW5KmtPcPVrozJo1K9/1MkTKqy+++IJvv/0W+KnnM9V8//33/PKXv+Sll17i73//O//8Z965vAqXM7xt7dq1bNy4kVWrVv1sprWgatWqxaBBg4pdJBUlyDU6D5jZ98DfgFlAR3c/N2D7OYuN9o5sbyPAYqP5xDAc+BpoZWYrzOxKd98P/AH4CJgLvOnuMTnlpDUHRETSl7vf5u7TzKyBmR2ecwtwaExyWlkraU7bv38/5513Hpdeeil79uzhq6++ilOEIqnnmmuu4f777wfguuuuo127dgmOKLhVq1YxaNAg2rVrx/z583njjTe44447il1k5FzDt3btWhYtWgRAixZBBnyVnSKHrgGLgM7u/mMJ2u/k7seb2XcQXmw00vtSLO7eu4D7RwOjSxBXoXJNxRnrpkVEJMEif+MfBg4lfJ1OE8InzNoWcWhMclpZK2lOq1ixIm+++SZbt25l+PDhfPLJJ4HH7ouku+HDh1OvXj0ATj/9dBo3blzEEYm1fv16PvroI0aMGMF7771HKBSiX79+3HvvvTRqVNhcXgXLXehUrlwZ4GfrCyVakGt0njaz2mZ2AlA51/2fB2i/NIuNJoyu0RERSWv3AicCH7v7cWbWBQgyTVC5zGk1a9bkhBNO4OOPP+a++2I267VISst9wX2vXr0SGEn+3J1p06bx/vvv88EHHzBp0iTcnQYNGvDnP/+Z3//+96UuSqpVq0a1atVYu3ZtdPheznU7yaLIQsfMrgJuIHyx/zTCyeFrIMhpnX8DI4AGZnYfkcVGSxytiIhI6e1z9w1mlmFmGe4+wcweDXBcuc1pZ511FnfeeScrVqzgsMMOS3Q4Igm3aNEivvzyS3r37o27k5WVleiQgHDPzQsvvMBzzz3HvHnzMDM6derEPffcQ48ePTj++OPJyCjOJfqFa9iwIWvXrmXv3r3UqlUrOhNdsgjySm8AfgEsc/cuwHHA5iCNl3Sx0UTTZAQiImlts5lVBz4HXjWzx4AdRR2UqjktFn77/+3dd3hUZfbA8e8hIUAoQboQNAGkRhRBVBBponRQFBssCMiKi7qWRVwWFFZRdBcbRRQUEPW3CIpSVRSMEkGkd4iuQIDQCYSEQJLz+2Mm2SSkTJKZzExyPs9zH+beueXMJZmTc9/3vve++wD47LMS8XGNydOqVasYPHgw27dvp2zZskyfPt2r8cTFxTFu3DjCw8MZNWoUVapU4f333yc2Npaff/6ZsWPH0qpVK7cWOQBVqlTh9OnTHDlyhNq1a7t13+4gaQ/5yXEFkfWqeqOIbMbRPzlJRHY4H7ZWrLVq1Up//fVXb4dhjDFuJyIbVDU/z0UrNkSkPJCI42LfQ0AI8LGqnvRqYB6S4R6dR/bt21fg/aRdCba8aAycOnWKU6dOUblyZd599126d+/u9qGRXaGqzJ49m1GjRnHixAnuu+8+xo0bR9OmTYvk+LfffjuJiYmoKuXKleO7774rkuNmlVNOc2UwghgRqQwsAr4VkdPAfncHaIwxJneqypEjR9i+fTs7duxg+/btjBw5ssDDeZZUqprWepMqIiedz4srttx13+mQIUN4/PHHWbduHTfddJObojP+Yvfu3Vy4cIHrrrvO7UMA+6MqVapQpUoVAP7xj8t7sF66dImjR48SHx9PYmIiSUlJqCoBAQHpU2BgIMHBwVSoUIHy5csTHBzs8rlNTk5m6dKlvPbaa0RFRdG2bVtWrFhBy5Yt3fo58xISEkJsbCznz5+nbdu2RXpsV7gyGMFdzpcvisgqHFe+Vng0Ki+zUdeMMd524sSJ9GImbdqxY0f6E6gBatSoQe/eva3QKZwJwBJvB+EPBg0axN///nfefvttPv74Y2+HY4rIhQsXGDFiBLNnzwagW7duLFy4kHLlynk3MC9LTEzk008/pXnz5lx99dVs3bqVn376iZ9++oktW7Zw/PjxfO9TRNJv8K9YsSIhISGEh4dTs2ZNQkJCqFChAomJicTExLB8+XJiY2OpW7cuM2fO5OGHH3Z7tzRXhISEEBcXx+nTp6lRo0aRHz8vrrToZNRIVd/zSCQ+xEZdM8YUlbNnz2YqaNJeHz16NH2dkJAQIiIi6N+/PxERETRr1oxmzZr5ZFLxQ3Zp2kUVK1bk4YcfZvr06bz++us+2R/fuJeqphc5o0ePpkqVKowaNYrRo0fz1ltveTs8rzl69Chff/01Q4cOJSgoiIsXLwKOQuW6666jb9++hIaGUqtWLSpVqkTZsmUpU6YMIkJKSkr6lJycTGJiIufPnyc+Pj7TdO7cOc6cOcPWrVs5ceIEZ86cITU1lVKlSlGjRg1uvvlm/vSnP9GrVy8CA/P757z7hISEcPLkSRITE6lcubLX4shJfs/Mo4DLhY442t8eAuqp6gTnA9lqqeov+TyuMcb4teTkZHbv3s3GjRsztdIcPHgwfZ3g4GCaNWtG9+7dadasGREREURERFC7dm3rKuI5f3Z1Rctp8OSTTzJt2jTGjx/PjBkzvB2O8bCFCxcye/Zsxo4dy4QJEwDHaGPTpk3jL3/5Cw0bNvRyhO4XHx/P5s2bOXz4MIGBgZQqVYqEhASOHj3Kxo0bWbt2LdHR0QAEBQXRtGlTrrjiCp555hluvfVWPPWweVUlKSmJwMBArxY2WYWEhJCYmJj+2tfk90zlN9NOw/GMgU44ugecAxbiGMXNZ1nXNWNMYaQVNRs2bEifNm3alJ4MgoKCaNKkCbfddlumgubqq6/2SteDkkZEgoFngKtU9RERuQZHj4W8urCV+JxWr149RowYwdSpU3nyySeL7IZnU/QSExN55plnaN68OePGjUtfPn78eD766CP+/e9/F6tiNz4+nr/97W98+OGHJCUlZbtO7dq1adWqFcOHD6ddu3bccMMNBAUVzTODRST9oZy+JGNxU6lSJS9Gkr38Fjq98rm+Xz5F2rquGWNclZyczK5duzIVNZs3b04vasqXL0+LFi0YPnw4LVu2pGXLljRs2NCnrsiVQB8CG4BbnPOHgM/I+14dy2nAuHHjmDNnDiNHjmTlypVWnBdTs2bN4sCBA3z44YeZvq9q1qxJv379+M9//sNbb73lk39859epU6fo1KkT27ZtY9iwYfTq1YuwsDBSUlJITU2lfPnyVK5c+bLuwvPnzycxMZF+/fpRoUIFL0XvXRkLHb9s0RGRmsBEoLaqdhORpsAtqjrLhf375VOkjTEmO/ktalq1akXDhg0JCAjwcuQmi/qqep+IPACgqgniWt9Ay2lAtWrVmDx5MsOGDeNf//oXo0aN8nZIxs0uXrzIa6+9Rtu2benYseNl7//pT3/io48+4quvvqJ///5eiNB9UlJS6Nu3L7t27WLp0qV07drV5W1ff/11fv31V9566y02btzowSh9V8YHhPploQPMxnH1a4xzfi/wH8CVQie7p0iPzX+YxhhT9I4fP05kZCSRkZH88ssvbNmyJVNRc8MNN/DnP/85U0uNFTV+4aKIlON/BUt9IPu+KplZTnMaMmQIy5cvZ8yYMURERNC9e5txAo8AACAASURBVHdvh2Tc6JNPPuHgwYO8++672d4f2LFjR6pWrcqSJUv8vtB54403+PHHH5k7d26+ihyA5cuXs3r1apKTkz0Une/L2KLni4VOfh4YuklVWziXbVbV6106gEhjoDOO+3u+U9VdhQ26qNgDQ40pWY4dO8YPP/zADz/8wOrVq9mxYwcA5cqVo1WrVukFTXEoakr4A0O7AP8AmgLfAG2Bwaq62oVtLac5xcXF0blzZ3bs2MHChQvzXexs3LiRf/3rX6xbt45atWoxfvx4br/9drfFZwpGVWnRogUpKSls3bo1x4FQ7r//fiIjIzl06JDfDpZy8uRJwsLC6NixI19++aXffg5v+vrrr9MLxD179nhtgIqccporHWvPi0hV/nfl62YgzsWDTlLV3ao6VVWnqOouEZmUr8i9QER6ich7cXEufUxjjJ+KjY3lP//5DyNGjKBp06bUrFmT/v37M3v2bEJDQ5k4cSJRUVGcOXOGyMhI3njjDQYMGECTJk38usgp6VT1W+BuYDDwKdDKxSLHZ3KaiDQRkXdFZIGIjPBGDCEhIaxYsYLGjRvTs2dPxo4dm97imZuYmBgGDhxIy5Yt0x9weOzYMbp27cpnn31WBJGb3ERFRbFlyxZGjhyZ6x/+d9xxB0eOHEm/IOSP3nzzTeLj43nllVcKVOT88ssvDB48mISEBA9E5x/KlCmT/tpfByN4GvgKqC8ia4DqOJrrXdEFeC7Lsm7ZLPMphblxc+jQoURHRxMUFESZMmUICgq6bMppeXbvpT0xN22qWLEiFSpUyNfTc40xDocPH05vrfnhhx/Ys2cP4Hg+yK233srgwYNp3749N9xwA6VLl/ZytMZTROQu4HtVXeqcrywifVV1UR6buiWnicgHQE/gmKpGZFjeFXgLCABmquqrOe3D2ZL0qIiUAuYC0/MTg7tUq1aNNWvWMGLECF566SXmzJnDX/7yF+69917Cw8PT85Sqsnv3bmbNmsX06dNJSUlh9OjRjB49mpCQEM6dO0fXrl0ZOnQoLVu2pF69et74OAaYOnUqlSpV4qGHHsp1vS5dugDw/fffExERkeu6vujixYtMnz6dvn370qxZswLt45tvvmHOnDnUrl2biRMnujlC/5Cx65ovDsiQZ6GjqhtFpD3QCEdT/R5VvZTbNs6rS4/hKI62pi0GKgBRhQvZtwUFBSEinD9/ntOnT3Px4sX0KSkp6bL5vLoO5iTt6blphU92xVDWZZUrV6ZKlSpcccUVVKlSJf21jf5kiquDBw9m6oqW9uyDSpUq0a5dO4YNG0b79u1p0aKF/R6ULC+o6hdpM6p6RkReALItdDyQ02YDU3AUKGnHCACm4iimYoD1IvIVjqLnlSzbD1HVYyLSGxgBfFSAGNwmODiYOXPm8PDDDzNu3Lj0AqZ69erUqVMHgEOHDnH8+HECAgK49957mThxIuHh4en7qFixIp988gkRERGMGjWKBQsWeOvjlGhHjx5lwYIFPPbYY3n+0Vq3bl3q1KnDunXriig691q6dCknT57kkUcKPhjhY489Rs2aNWnTpo0bI/MvGQudcuXKeTGS7Llyj04A0AMII0NhpKqTc9kmBLgCx5fzc/zv+TvnVPVU4UIuOkVxj05KSsplBVDGQighIeGyJ+XmNp912blz50hNzX1QoEqVKmUqfNJeZ50yvlejRg274m18jqqyYcMGFi5cyOeff87evXsBqFy5Mrfddhvt27enQ4cOXHfddSW+61kJv0dnq6o2z7Jsm6pem8P6bs9pIhIGLElr0RGRW4AXVfVO5/zzAKqatcjJbl9LVbVHXusV1X2n+/btY+XKlWzYsIGjR48iIlSvXp0bb7yRPn36cOWVV+a47Ysvvsj48eP55ZdfuPFGn348UbH00ksvMXbsWJfvtbj77rvZtm0b+/btK4Lo3KtPnz788ssvHDx40C50FcLu3btp0qQJQIEv3rtDTjnNlf/ZxcAFYBsuDqOpqnFAnIjsxtEHOmMgqOoEV/ZTEgQEBBAcHExwcLBH9q+qXLhwgXPnzhEXF8epU6cum06fPp1pPiYmJn15TiOJiAg1atSgdu3a6VOdOnUyzdeuXZvq1avbMxaMR6WmphIVFZVe3Bw4cIDAwEA6duzIiBEj6NChA9dee22JL2xMJr+KyGQcLSgAf8HxXJ1sFVFOqwMczDAfA9yU08oi0gHHfUZlgGW5rDccGA5w1VVXuSHMvF1zzTVcc801Bdr26aefZsqUKbzwwgssW5bjxyqRUlJSWL16NVFRUVy6dImIiAjuuusut110TE5OZsaMGXTp0sXlG8pvuukmvvjiC06ePEnVqlXdEkdROHbsGMuWLeOpp56yIqeQMt6j44tc+d8NzXrlKx/iM7wui6NPst+MUFMciAjlypWjXLlylz3oKi+qSnx8/GWF0cmTJ4mNjeXw4cPp0/r16zl27Nhl+wgMDOTKK6/MsRiqU6cO4eHhPtncaXxXcnIyP/zwAwsXLuSLL74gNjaWoKAg7rjjDsaPH0/v3r2pUqWKt8M0vutxHMNC/8c5/y2OYicvPpPTnIMnrHZhvfdE5AjQKygoqKWn4yqsSpUq8eyzz/L888+zdu1abr75Zm+H5FWqytatW5k3bx6ffPIJhw8fBtILbJo0acLnn39O48aNC32sr776ipiYGKZMmeLyNjfd5KjFf/nlF7p161boGIrK4sWLSU5O5sEHH/R2KH7P1x8Y60rXtUk4htD8ptAHEykDfK2qHQq7L08SkV5ArwYNGjzij82x3nLp0qX0AujQoUOZCqGMy86cOZNpOxHhqquuomHDhjRq1IiGDRumT1dddZVdiTcAJCUlsXLlShYuXMiXX37JqVOnCA4Opnv37vTr14/u3bv75Igvvqokd11zl8LkNHd2XXPhWH6V0+Lj4wkPD6d58+asXLmyRA68s3//fv7v//6PefPmsX37dgIDA+nWrRsDBgygR48elClThqVLlzJ8+HAqVqzIpk2bqFixYqGO2blzZ6Kjo/n9999dzrvnzp0jJCSEF154gRdeeKFQxy9Kd999N+vXr+fAgQMl8ufLnU6fPp1+YdFfu66tBb5wjuxyCUffZFXVgvxFEQyEFmC7IlWYUddKstKlS1O3bl3q1q2b63oJCQkcOXKEQ4cOERMTQ3R0NHv37mXPnj3MnTuXs2fPpq9bpkwZGjRocFkR1KhRI6pWrWpfUMVcQkICK1asYOHChSxZsoSzZ89SqVIlevXqRb9+/bjzzjs91u3TFF8iUh0YBTTD0TIDgKp2yueu3JnT1gPXiEg4cAi4H3DL5WZ/y2kVKlTgxRdfZOTIkcybN4+BAwd6O6QisWfPnvQuuBs2OHpStmnThmnTpnHvvfdSrVq1TOv36dOHKlWq0KFDB/7+97/zzjvvFPjYu3bt4vvvv2fixIn5urhYsWJFmjVrluOABMnJyaxYsQJVpVu3bj7RTSwpKYlvv/2Whx56yP6GcANfb9Fx5SduMnALsE3zWaqJyDacz9/BMXJMdcDuzynhgoODqV+/PvXr17/sPVXl2LFj7Nmzh71796ZPu3btYsmSJVy69L8B/6644opMBVCjRo1o3bo1devWtS8vP3b27FmWLl3KwoULWb58OQkJCVStWpV77rmHfv360blzZ5/vE2x83sc4uq31BB4FBgHH89rIXTlNRD4FOgDVRCQGxyhws0RkJPC1c98fqKpbHlCSoUXHHbsrEo8++iiffPIJjzzyCGXLluXee+/1dkhup6ps3ryZzz//nM8//5ydO3cCju5gkyZNol+/ftnmyYzatWvHkCFDeP/99/nHP/5BzZo1CxTLtGnTCAoKYtiwYfne9qabbmLRokWoaqbce+HCBbp168bq1asBR9G2aNEiqlevXqAY3WXdunXEx8enP+TSFI7P52NVzXUCIoFSea2Xw7ZXZ5jqAIEF2Y+3ppYtW6rxHZcuXdLo6GhdtmyZvvHGGzpixAjt3Lmz1q1bV3H88aGA1qlTR++55x6dPHmy/vzzz3rhwgVvh25csH79er3nnns0KChIAa1Vq5aOGDFCV65cqZcuXfJ2eMUO8Kv6wPesNyZgg/PfrRmWrXdhO8tpRejEiRPaunVrBfTOO+/UVatWaWpqqrfDKpSUlBRds2aNPv300xoWFqaAlipVSjt27KjvvPOOHjx4MN/73LNnj4qIjhs3rkAxnT17VitWrKgDBgwo0PYzZsxQQPft25dp+bhx4xTQGTNm6OzZs7VcuXJ6yy23aGJiYoGO4y4TJ05UQI8fP+7VOIqTtL+/vBxDtjnNlRad34HVIrIcSMpQIOU4vHSGdfa7sH9jXBIYGJjeEpT1psfz58+za9cu1q1bR1RUFFFRUenPYShTpgytWrXilltuoU2bNtxyyy3UqlXLGx/BZKGqREZGMnHiRL755htCQkIYMWIE99xzD23atLER+4ynpDUNHxGRHsBhIM/RK/w1p/ljiw5A1apV+emnn3jzzTd5/fXX6dixIzfeeCMvvfQSd9xxh7fDQ1WJi4sjOTmZwMBASpUqRWpqKomJiZw5c4aTJ09y4sQJTpw4wdGjR9m4cSNr1qzh6NGjBAUF0aVLF8aOHUuvXr0K1crRsGFDOnbsyPz58xk/fny+t583bx7nzp1j5MiRBTp+xgEJ0n7GEhMTmTp1Kn379mX48OEAlC9fnnvvvZeXX36Zf/7znwU6ljusWbOGRo0aXdYV0BRT2VU/GSfgheymPLY5B5zNMJ3L+G9ex/SVyd+ufpnMDh8+rAsXLtRnnnlG27Rpk95SAGh4eLg++OCDOmXKFN2wYYO1GBSx1NRUXbJkibZp00YBrVGjhr766qsaFxfn7dBKDEp2i05PIASIAFbhGFq6dy7rW07zsoSEBH333Xe1Xr16Cmjfvn117969BdpXXFycxsbGakpKSr62S05O1rVr1+pLL72kHTp00ODg4Ey9CfKa6tevrw899JB++umnbv+umzJligK6c+fOfG2XmpqqzZo105YtWxa4tezSpUsaHBysTzzxRPqymTNnKqCrVq3KtO7AgQM1MDBQd+3aVaBj5eTMmTP6ySef6O7du3NdLyUlRatUqaJDhgxx6/FLOny4RSfPUddKsqJ6uJopGklJSWzatCm9xScqKoojR44AjitNrVu3ztTqY8MTu19KSgoLFixg4sSJbN26lauuuopRo0YxZMgQG2K8iNmoayWHv426lpukpCQmT57MxIkTSUxMpGvXrnTp0oUHHngg10coJCQk8N577zFjxgx2794NOFr7w8PDCQ8PR1VJTEwkMTGR5ORkQkJCuOKKK6hQoQIBAQFER0ezZcuW9MFyrr/+etq1a0dYWBhBQUEkJyeTkpJCqVKlKFu2LJUrV6ZatWrpU9WqVT06cMqhQ4cIDQ3llVdeYfTo0S5v98MPP9ChQwc++OADHn744QIfv3379iQlJbF27VpUleuuuw4RYfPmzZnu2zl+/Dj169enU6dOLFq0qMDHyyguLo7WrVuzd+9egoKC+PLLL3O8/2bv3r00atSImTNnMnToULcc3zhGz73++uvZtGmTN2PINqflWOiIyBRVHSkii/nfzZfpVLW3iwe+DmjnnI1U1a2uh+0+ItIEeBKohmO47Ol5bWOFTvGmqhw4cICoqCh+/vlnoqKi2Lx5c3qyuvPOOxk0aBB9+vTx+VFFfN3Fixf56KOPePXVV4mOjqZx48aMHj2aBx980G0PuzP5U5ILHRGpB7yFY6CdVOBn4ClV/d2FbX0ipxVEccppsbGxTJ48malTp5KQkEBAQABlypShefPmtGzZkpYtW9KsWTNSUlJYunQp77//PseOHaNt27b06NGDSpUq8ccff/Dbb7/xxx9/EBAQQLly5QgODiYgIIC4uDhOnz5NQkICSUlJ6cNdd+jQgU6dOnn9hvrsNG3alPr167N48WKXt7nvvvtYuXIlMTExhbrY9Le//Y23336bs2fPEhUVRadOnZg1axZDhgy5bN2JEycyZswYIiMjadeuXTZ7y59nn32WN954g3nz5jFp0iQOHz7M3r17qVy58mXrfvbZZ/Tv358NGzZwww03FPrYxuHMmTOULVvWq38r5ZjTsmvmcRY/Z53/ts9uymm7LPt4EtiOY1SaCcA24HFXts2ynw+AY8D2LMu7AnuAaGC0i/sqBcxzZV1/buY3BRMfH6+rV6/Wv//97xoaGqqAVq5cWR999FH9+eef/f5G2KIWHx+vb775Zvq5bNmypS5cuDDfXUaM+1Gyu66tBQbiGHk0EBgArHNhO7fkNG9NxTGnxcfH6/r163X06NH6xBNP6G233aYVKlTI1GWsVKlS2rNnT42MjPR2uB41ePBgrV69ust56tSpU1qmTJlMXc4K6rPPPlNAo6KitE+fPlqtWrUcBx04f/681q5dW2+++eZC59SEhAStWLGiPvTQQ6qqumHDBgV00qRJ2a4/ZswYDQgI8PqACMb9csppuX2hb8rpPVcnYCtQPsN8eTKMcpOP/dwG3JCx0MEx/OZvQD0gCNgCNAWuBZZkmWo4t+kNLAcedOW4xTEpGNclJyfrt99+qwMGDNBy5copoI0aNdKJEycWaGSckuT06dP6z3/+U6tWraqAtm/fXr/++msrFH1ICS90LstDwBZXtnNHTvPC5+0FvNegQQMtCVJSUnTXrl26ePFiXbJkicbExHg7pCIxffp0BfS3335zaf200dJ+/fXXQh/75MmTGhgYqPfcc4+KiI4ZM8alYy9evLhQx120aJEC+s0336Qvu+2227R+/frZXlDr2bOnNmvWrFDHNL6pIIVODPB0TlNO22XZxzagbIb5sjiex1OQL+qwLIXOLTieSJ02/zzwvIv7WurKelbomDRxcXE6a9YsbdeunQIqItqlSxedN2+enj9/3tvh+YzY2FgdPXq0VqxYUQHt0aOH/vTTT94Oy2SjhBc6k4DRzrxyNY6Hh76CY+S1Krls57ac5o3JclrxtmnTJgX0448/dmn9tm3bapMmTdx2AapPnz4KaLly5fTQoUO5rnvx4kWtX7++Nm/e/LKC5OTJk7p8+XLdv39/nsccOHCgXnHFFXrx4sX0ZfPmzVNAV69efdn6devW1QcffNDFT2T8SU45LbexWwOACkDFHCZXfAisE5EXRWQ8ju4Cs1zcNi91gIMZ5mOcy7IlIh1E5G0RmQEsy2W94SLyq4j8evx4ns+PMyVEpUqVGDJkCJGRkURHRzN27Fj27dvHgAEDqFWrFsOGDeOnn35K++OnxNm/fz8jR44kLCyM1157je7du7Np0yaWLFlC27ZtvR2eMVn1B/4MfI9j1LURwP04Rl/L7SYWT+Y0YwolIiKC0qVLs23btjzX/eOPP1izZg0DBw502wO2p0yZwtChQ1mwYAG1a9fOdd3SpUszYcIEtm7dyty5cwHHhfd33nmHWrVq0a1bN+rXr89nn32W4z5UlWXLltGzZ89M93r27t2bwMBAVqxYkWn9M2fOcPDgQZo3b16IT2n8TnbVj/OPtY05vZefCUeXsyeAx4HrC7GfMDK36NwDzMwwPxCY4o6Y0ya7+mVyk5KSoqtWrdLBgwdr+fLl04cPnTBhgv7xxx/eDq9IpKam6nPPPaeBgYFaunRpHTZsWIGHfDVFixLYogPcCNTKMD8I+Ap4m1xacrLswy05zRuT5bTir3Hjxnr33Xfnud7UqVMVyHM4Zk9KSUnRtm3banBwsH7++ef62GOPKaC9evXSb7/9Vm+55RatUKGCxsbGZrv9nj17FNCZM2de9l67du0068/7unXrFNBFixZ55PMY78opp+XWolPoEl9E7gX2qerbQGVgnIi0KOx+nQ4BdTPMhzqXFZqI9BKR9+Li4tyxO1NMlSpVig4dOvDhhx8SGxvL7Nmzueqqqxg3bhxhYWF06tSJuXPnEh8f7+1QPSI1NZWRI0cyadIkBgwYwO+//87777/PNddc4+3QjMnJDOAigIjchqO72hwgDngvr409nNM8xnJaydGwYUP27t2b53rLly+nXr16NGzYsAiiyl6pUqXSW3/uvvtupk2bxtNPP82iRYu4/fbbmT17NgkJCbz11lvZbr927VoAbr755sve69KlCxs3buTkyZPpy9KGVrccVbLkVuh0dsP+x6rqORG5FeiEo4n/XTfsF2A9cI2IhItIEI5uB1+5Y8equlhVh4eEhLhjd6YEqFChAoMGDeL777/nv//9LxMmTGD//v0MGjSIq6++mm+++cbbIbpVamoqjz32GNOmTWPUqFF88MEHhIaGejssY/ISoKqnnK/vA95T1YWqOhZo4ML2nsxpHmM5reRo2LAh+/btIzU1Ncd1Lly4wPfff0+3bt3c1m2toGrVqsWWLVtYtmwZmzdv5t///jelSjn+NG3YsCHdu3dnzpw52X6etWvXUqlSJZo0aXLZex07dkRViYqKSl+2b98+RIR69ep57gMZn5NjoZMhGRRGivPfHsD7qroUxwhp+SIin+J4zkEjEYkRkaGqmgyMBL4GdgHzVXWHG2K2q1+mUMLCwhg7dizR0dFERkYSGhpKt27dmDx5clrXF7+WmprKn//8Z2bMmMHzzz/Pq6++6vVkaYyLAkQk0Pm6M457dNIEZrN+Vm7JacZ4yjXXXENSUhIHDx7McZ2NGzeSkJBA587uuJ5deMHBwXTr1o3rrrvusvf69+/P4cOH2bJly2XvrVu3jhtvvDG9MMoo4wNL0+zbt4+rrrrKnotXwuTWouMOh5w3/98PLBORMgU5pqo+oKpXqmppVQ1V1VnO5ctUtaGq1lfVl90VtF39Mu4gIrRr1441a9Zw11138cwzzzB48GAuXLjg7dAKLCUlhWHDhjFz5kz+8Y9/8PLLL1uRY/zJp8APIvIlkAj8CCAiDXB0X8uLW3KaMZ6S1hUtt+5ruXX58jVpxdh3332XaXlqaiq7d+/OcWCBihUr0qBBg8sKHeu2VvJ4+gu6P44Wly6qegbH0J1/8/AxC81adIw7VahQgfnz5zNhwgTmzp1L+/btOXz4sLfDyreUlBSGDBnChx9+yIsvvsg///lPK3KMX3FeEHsGmA3cqv9rYi2FY3CBvPhlTjMlR9of8tHR0Tmus3btWq6++mquvPLKogqrwGrXrk2TJk1YuXJlpuWHDx8mISEh18KlRYsWbNq0CXAMvGWFTsnk6UInFQgHXhORhTiugkV6+JiFZi06xt1KlSrF2LFj+eKLL9i5cyetWrVi3bp13g7LZSkpKQwePJi5c+cyYcIEXnjhBW+HZEyBqOpaVf1CVc9nWLZXVTe6sLlf5jS7eFdy1KpVi8DAQGJiYnJcZ926dX7RmpOmU6dO/PjjjyQnJ6cvc2Vggeuvv57//ve/nDlzhvj4eM6cOUNYWJinwzU+xtOFzlygCfAOMAVoCnzk4WMWmiUF4yl9+/bl559/pmzZstx2223MmTPH2yHlKTk5mYEDBzJv3jxefvllxo4d6+2QjPEWv8xpdvGu5AgICODKK6/MsdA5fvw4Bw4c4MYbbyziyAqudevWJCQkZOqOl/Y6t1Hj0rq17dixg9jYWAC/aMUy7uXKzZeFEaGqTTPMrxKRnR4+ZqGp6mJgcatWrR7xdiym+ImIiGD9+vX079+fwYMHs3XrViZNmkRgoKd/HfPv0qVLDBgwgPnz5/Pqq6/y3HPPeTskY7zJL3OaKVlCQ0NzLHR27nT8uEZERBRlSIXSooVjBPdNmzbRtKnj12/fvn2ULVs219E+GzVqBDiKorRR22rVquXhaI2v8XSLzkYRSW8fFZGbyP2p08aUCFWrVmXFihU8/vjjTJ48mR49enD69Glvh5XJpUuXeOCBB5g/fz6vv/66FTnGWE4zfiA0NJRDh7J/rGBaoZNWMPiDxo0bU6ZMmfT7bcBRvDRo0CDbEdfShIWFUbp0afbu3ZveomOFTsnjkUJHRLaJyFagJRAlIn+IyB84hohu5YljupN1XTNFoXTp0rz99tvMnDmTVatW0bp1a3bt2uXtsAC4ePEi9913HwsXLmTy5Mk8++yz3g7JGK/x1ZwmIuVF5FcR6emtGIzvqVOnDjExMdk+zmDnzp1UrFjRr557Vrp0aa699tpMhY4rAwsEBgYSHh5OdHS0FTolmKdadHoCvYCuOG7cbO+cwoFuHjqm21h/ZlOUhg4dyurVqzl37hw33XQTS5Ys8Wo8Fy9epH///nzxxRe89dZbPPXUU16Nxxgf4NacJiIfiMgxEdmeZXlXEdkjItEiMtqFXT0HzM/v8U3xFhoayvnz54mLiyM2NpY//vgj/b2dO3fStGlTvxsxM20ENVUlOTmZ3377Ldf7c9KktW7FxsYSEBBA1apViyBa40s8Uuio6v60CTgL1ASuzjAZYzJo06YN69evp2HDhvTu3ZuJEyd65eGiSUlJ9OvXjy+//JIpU6bwxBNPFHkMxvgaD+S02TiKpnQiEgBMxVE4NQUeEJGmInKtiCzJMtUQkS7ATuBYwT+ZKY7SWmt+//132rZtS3h4OBs2bCA1NZXt27f7Vbe1NNdffz2nT5/m4MGD7N+/n0uXLrk0VHSdOnXSC52aNWvm2tXNFE8evftZRIYBTwKhwGbgZhxN/Z08eVxj/FHdunWJjIxk2LBhjBkzhq1bt/LBBx8QHBxcJMe/cOEC/fr1Y9myZUyfPp1HH320SI5rjL9wV05T1UgRCcuyuDUQraq/O4/1f0AfVX0FR4tS1lg6AOVxFEWJIrJMVVPzE4cpnurUqQPAK6+8wu+//w5At27dCA0N5dixY3Tp0sWb4RVI2oAEGzZsSG+NShtsIDd16tTh8OHDHD582EZcK6E8Xdo+CdwI7FfVjkAL4IyHj1lodo+O8Zbg4GA+/vhjXn31VebPn8+tt97KgQMHPH7cCxcucNddd7Fs2TLee+89K3KMyZ4nP3DsEAAADM9JREFUc1od4GCG+Rjnsmyp6hhV/SvwCfB+TkWOiAx33sfz6/Hjx90UqvFljRo1IigoiAULFhAREcH7779PfHw8FSpU4I033uD+++/3doj51qJFC2rXrs2QIUN46qmnKF++vEtDZNepU4fk5GS2bdtm9+eUUJ4udC6o6gUAESmjqruBvEtwL7N7dIw3iQjPPfccixcv5rfffqNVq1b8+OOPHjteYmIivXv35uuvv2bWrFk88oiNqm5MDnwup6nqbFXN8cY+VX1PVVupaqvq1asXZWjGS6pXr87ixYt5+umnWbx4McOGDSMhIYHIyEj++te/+t39OQBly5blq6++onfv3pQtW5ahQ4dSpkyZPLdLa906dOiQFTollKcf3BEjIpWBRcC3InIa2O/hYxpTLPTo0YN169bRp08fOnfuzNSpU91ehCQkJNCrVy9WrVrFhx9+yKBBg9y6f2OKGU/mtENA3Qzzoc5lhSYivYBeDRo0cMfujB+44447uOOOO7wdhlu1bNky3w/ZTit0AGrXru3ukIwf8Giho6p3OV++KCKrgBBghSePaUxx0rhxY9atW8f999/P8OHD+eabb7j22mupVq0aVatWpVq1aulT1apVKVu2rMv7Pn/+PD179iQyMpK5c+cyYMAAD34SY/yfh3PaeuAaEQnHUeDcDzzopn0bUyJlLHTq16/vxUiMtxTZo9hV9YeiOlZh2dUv40sqV67M0qVLGTNmDDNmzGDBggU5rlu+fPlMxU92BVG1atWoXLkyf/3rX/npp5/46KOPePBB+3vKmPwoTE4TkU+BDkA1EYkBXlDVWSIyEvgaCAA+UNUdbop1MbC4VatW1i/VlCg1a9ZMf21/05VM4o0hbP1Fq1at9Ndf7aHXxrdcunSJU6dOceLECU6ePMmJEyfSp6zzacuyG1gjICCAjz/+mPvuu88Ln8J4m4hsUFWff4CzKbwMF+8e2bdvn7fDMaZIlStXjgsXLnD06FFq1Kjh7XCMh+SU04qsRccY4x6lS5emZs2ama5U5eXixYuXFUfh4eHccMMNHozUGOMLrEXHlGT79+/nt99+syKnhLJCx5gSICgoiFq1atmoM8aUQNYd25RkNWrUsCKnBLNHxBpjjDHFmD0ywRhTUlmhY4wxxhRj9hBsY0xJZYWOMcYYU4xZi44xpqSyUdeykdafGbgPyDhETTXghFeCKjh/i9ni9SyL1/P8JearVbW6t4MwRUdEjlOwB5z6y890dix27/Hn+C127yhM7NnmNCt08kFEfvW34Vj9LWaL17MsXs/zx5iNyY0//0xb7N7jz/Fb7N7hidit65oxxhhjjDGm2LFCxxhjjDHGGFPsWKGTP+95O4AC8LeYLV7Psng9zx9jNiY3/vwzbbF7jz/Hb7F7h9tjt3t0jDHGGGOMMcWOtegYY4wxxhhjih0rdFwkIl1FZI+IRIvIaG/Hk5WI1BWRVSKyU0R2iMiTzuVVRORbEdnn/PcKb8eakYgEiMgmEVninA8XkXXO8/wfEQnydoxpRKSyiCwQkd0isktEbvGD8/uU8+dhu4h8KiJlfekci8gHInJMRLZnWJbtORWHt51xbxWRG3wk3tedPxNbReQLEamc4b3nnfHuEZE7izpeYwqjuOU9X/gOycrVHCgiZZzz0c73w7wZtzMml3Oir537/ORGXzj37sqVIjLIuf4+ERnkxdjznTcL+n1khY4LRCQAmAp0A5oCD4hIU+9GdZlk4BlVbQrcDPzFGeNo4DtVvQb4zjnvS54EdmWYnwS8oaoNgNPAUK9Elb23gBWq2hi4DkfcPnt+RaQO8ATQSlUjgADgfnzrHM8GumZZltM57QZc45yGA9OLKMaMZnN5vN8CEaraHNgLPA/g/P27H2jm3Gaa87vEGJ9XTPOeL3yHZOVqDhwKnHYuf8O5nrflJyf6zLkvQG70hXM/m0LmShGpArwA3AS0Bl6Qork4O5tC5s3CfB9ZoeOa1kC0qv6uqheB/wP6eDmmTFT1iKpudL4+h+MLpw6OOOc4V5sD9PVOhJcTkVCgBzDTOS9AJ2CBcxWfiVdEQoDbgFkAqnpRVc/gw+fXKRAoJyKBQDBwBB86x6oaCZzKsjinc9oHmKsOa4HKInJl0UTqkF28qvqNqiY7Z9cCoc7XfYD/U9UkVf0vEI3ju8QYf1Ac857Xv0MyymcOzPiZFgCdnet7RQFyok+de/KXG71+7t2UK+8EvlXVU6p6GkexkbUAKZLYC5A3C/x9ZIWOa+oABzPMxziX+SRns2oLYB1QU1WPON+KBWp6KazsvAmMAlKd81WBMxl++H3pPIcDx4EPnd0MZopIeXz4/KrqIeBfwAEcX+JxwAZ89xynyemc+sPv4RBgufO1P8RrTE786ufXxbzna58pPzkwPXbn+3HO9b0lvznRZ859AXKjr537NPk91z7zf5CFK3mzwLFboVPMiEgFYCHwV1U9m/E9dQyx5xPD7IlIT+CYqm7wdiwuCgRuAKaragvgPFm6qfnS+QVwNkn3wZGQagPlKYKrN+7ka+c0NyIyBkdXmo+9HYsxJYm/5L2M/DAHZuV3OTFNcciNWfnquc5LUeRNK3Rccwiom2E+1LnMp4hIaRxf9h+r6ufOxUfTmoed/x7zVnxZtAV6i8gfOJogO+Ho71vZ2ZQMvnWeY4AYVV3nnF+A40veV88vwO3Af1X1uKpeAj7Hcd599Rynyemc+uzvoYgMBnoCD+n/xuz32XiNcYFf/PzmM+/50mfKbw5Mj935fghwsigDziK/OdGXzn1+c6Ovnfs0+T3XvvR/kN+8WeDYrdBxzXrgGueIHEE4bpT6yssxZeLsLzoL2KWqkzO89RWQNrLGIODLoo4tO6r6vKqGqmoYjvP5vao+BKwC7nGu5kvxxgIHRaSRc1FnYCc+en6dDgA3i0iw8+cjLWafPMcZ5HROvwL+5BxR5mYgLkOzvdeISFcc3U96q2pChre+Au4Xx4g94ThuDP3FGzEaUwDFMe/5zHdIAXJgxs90j3N9r13BL0BO9JlzT/5zo0+d+wzye66/Bu4QkSucrVp3OJcVuQLkzYJ/H6mqTS5MQHccI0P8BozxdjzZxHcrjmbLrcBm59QdRz/S74B9wEqgirdjzSb2DsAS5+t6zh/qaOAzoIy348sQ5/XAr85zvAi4wtfPLzAe2A1sBz4CyvjSOQY+xdFH+hKOK4RDczqngOAYdeU3YBuOEXN8Id5oHH2H037v3s2w/hhnvHuAbt7+ebDJpvxMxS3v+cJ3SA6fI88cCJR1zkc736/nA3G7nBN97dznJzf6wrl3V67EcT9MtHN62Iux5ztvFvT7SJwbG2OMMcYYY0yxYV3XjDHGGGOMMcWOFTrGGGOMMcaYYscKHWOMMcYYY0yxY4WOMcYYY4wxptixQscYY4wxxhhT7FihY4wxxhhjjCl2rNAxxhhjjDHGFDtW6BjjZiLSVEQGi0hdEano7XiMMcYYd7NcZ/yBFTrGuF9p4HHgLiA+65siEiYiiSKy2d0HFpFyIrJZRC6KSDV3798YY0zJIyKhInJflsWFznWWs4ynWaFjjPvVBT4EooGcrnL9pqrXu/vAqpro3O9hd+/bGGNMidUZuCHLskLnOstZxtOs0DGmgETke+eVqM0ickFE+gOo6hJggaouU9WzLuwnTER2i8hsEdkrIh+LyO0iskZE9olI6/ysZ4wxxriLiNwKTAbucea7elCgXFdeRJaKyBYR2Z5NC5ExbmeFjjEFpKqdnFeiZgBfAQszvBebz901AP4NNHZODwK3As8Cfy/AesYYY0yhqepPwHqgj6per6q/Z3gvP7muK3BYVa9T1QhghZtDNeYyVugYUwgi8iegG/CQqqYUYlf/VdVtqpoK7AC+U1UFtgFhBVjPGGOMcZdGwO5C7mMb0EVEJolIO1WNc0NcxuTKCh1jCkhE7gUeAvqr6qVC7i4pw+vUDPOpQGAB1jPGGGMKzTlIQJyqJhdmP6q6F8d9PtuAl0RknDviMyY39oeRMQUgIj2Bx4CeqnrB2/EYY4wxHhKGGwYLEJHawClVnSciZ4Bhhd2nMXmxFh1jCmYOEAqscd6cOdTbARljjDEesBuo5hxAoE0h9nMt8ItzuOkXgJfcEp0xuRBH935jTFERkTBgifNmTE8d4w+glaqe8NQxjDHGmJzkJ9dZzjKeYi06xhS9FCDEkw8MxfEgt1R3798YY4xxUZ65znKW8TRr0THGGGOMMcYUO9aiY4wxxhhjjCl2rNAxxhhjjDHGFDtW6BhjjDHGGGOKHSt0jDHGGGOMMcWOFTrGGGOMMcaYYscKHWOMMcYYY0yxY4WOMcYYY4wxptixQscYY4wxxhhT7FihY4wxxhhjjCl2/h/BJdp3tkIOAAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -730,7 +730,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXwcdf348dd7dtM7PdIjLW2T9D5pgFYoiNxCEcoplEMFqoCUIooIKF9ABPwWuSx8oYKliP4UUEQo5SoIiooFWqTYE0rv0vtu06bZ7Pv3x8ymk80m2U1ms7vJ+8lj6c5nPvOezxxJPu85RVUxxhhjjDHGmGznZLoBxhhjjDHGGJMMS16MMcYYY4wxOcGSF2OMMcYYY0xOsOTFGGOMMcYYkxMseTHGGGOMMcbkBEtejDHGGGOMMTkhnOkGGGOMMSZ18+bN6xEOh6cDI7GDkcaY5iEKLIhEIt8ZPXr0pkQVMpa8iEhb4HXgJFWtTDC+FfCWNz7S1O0zzZ+IdAE6AScAL6nq9uY8X2NM+vj+pv0M+IGqnpmgzlvABUH9zIfD4ek9e/Yc1r179+2O49hL24wxOS8ajcrmzZuHb9iwYTpwVqI6mTxSMxF4IVHiAqCqB4C/AhOatFWmWRGRl0Vkj/d5O270aOA6YDzw9eYwX2NMxkwEXgAS/k3z/A6YFOA8R3bv3n2XJS7GmObCcRzt3r37TtwzyonrNGF74l0KvCQiHUTkryLykYj8V0TO9tV50atnTIOo6nhV7eB9Tsq1+YqIisheEbknyfpvi8h+EflnQ+dpjGmQS4GXvO8dReQVEVkqIr8Skdjf2pnAxQHO07HExRjT3Hi/12rNUTKSvHiXhPVX1ZXAfuBcVT0COBF4QETEq7oA+FIm2mhym4hc5jvzsV9EKn3DO0SkNTAPeAR4GXg+i+dbqqq3evFXisgpvvldJCLbReR4AC9R+m4Qy2KMSU7c3zSAI3HPrg4HBgDnAXiXi7UWka6ZaKcxxjQHmTrz0g3Y4X0X4Oci8gnuPS69gUIA75KyAyKSn5FWmpylqk/HznwAPwdm+c6EdFbVclXdrqorVfU3QV2D3pTzFZHLgEeBM1T170G03xjTIP6/aQAfqOpy72/YM8CxvnGbgEOasnHGGNOcZCp52Qe08b5fCnQHRqvqYcBG3ziA1rhnZ4xpqMOA+c1pviJyNfAAcJqqvpeOeRhjkub/mwYQfymXf7iNV79ZWL16dfjMM8/s37dv35EjRowYdvzxxw/85JNPWs+dO7fN2LFjB5eUlIwsLi4e+aMf/ahXNBoF4OGHH+4qIqNffPHFqgOTv/vd7zqLyOinnnqqC8AzzzzTadiwYcOHDBkyfMCAASPuu+++brG6999/f7d+/fqN6Nev34hDDz102BtvvNEhNu7II48c8u6777ZrwlXQIl1wwQUlBQUFpYMGDRqRrjihUGj00KFDhw8cOHDEkCFDht9xxx2FlZV13VJmGqKu9Txr1qz8/Pz8w4YOHTp86NChw4855pjBADfccMMhbdu2PXzdunVVD/5q167d4bHvtf1eAPjkk09aH3/88QOLi4tHDh8+fNjXvva1/mvWrEnpAWIZSV68o80hEWmD+9SlTapaISInAsWxet6p9S2qWpGJdppm4zDg42Y032twn2h0sqrOTUN8Y0wK4v6mARwpIv28e10mAP8E8C6J7gmszEhDAxaNRjnrrLMGHnfccbvXrFmzYOHChYunTJmy7osvvsg799xzB950000bVq5cuWDBggWL3n///Q733ntv99i0gwYN2vfMM88UxIafffbZgiFDhuwDKC8vl+uvv7541qxZny1dunTRggULFp166qm7wU1qnnrqqe7vvffe0hUrViycNm3aqssvv7zf6tWr7dUPTWjixIlbZs6c+Vl99WbNmpV//vnnlzQkTuvWraNLlixZtGzZsoVvv/32p2+++WanG2+80c5aBqy+9TxmzJg9S5YsWbRkyZJF77333qex8s6dO0fuvvvuwvh4df1eKCsrk/Hjxw+6+uqrN69atWrBokWLFk+aNGnzhg0bsj958czGPZX+e2CMiPwX+BawxFfnROCVDLTNNBMi0hEooYmTlzTP96vAHOC/aYhtjGmY2N80gA+B/wMWAyuAv3jlo4E5mXr8/+OPP14waNCgEaFQaPSgQYNGPP744wX1T1W7WbNm5YfDYb3ppps2x8qOPvrofYsXL24zZsyYPeedd94ugPz8/Oi0adNWT506tVes3lFHHbXnP//5T/vy8nLZuXOns3LlytYjRowoA9ixY4cTiUSksLAwAtC2bVstLS0tB7j//vt7/u///u/aXr16RQCOPfbYsgsvvHDrAw880KMxy2JSc/rpp+/p3r17o/fjZOP07t07Mn369JVPPfVUj9gZPBO8VNbzxRdfvHXmzJkFGzduDPnLa/u9MG7cuD1PPPFEwRFHHLHnkksu2Rkbd+aZZ+7+0pe+lNIVVplMXh4FLlPVLap6tKoeqqpXqOow302PlwCPZ66JphkoBXbjdiBSJiJ/8574lehT1xO9GjXfelwDDAam+x5uYYzJrNjftL+p6nGqeoaqDlHV76pqrBfwTeCxTDTu8ccfL7jrrrt6P/jgg6vLyso+evDBB1ffddddvRuTwHzyySdtS0tLy+LLFy5c2OaII46oVj5ixIjysrIyZ9u2bQ6AiHDcccfteuGFFzr+4Q9/6Dxu3Liqe4YKCwsrv/rVr+4oKioaNX78+H7Tpk0riF3GsmzZsrZf/vKXq8X+0pe+VLZ48eK2DV0OkxuGDx9+oLKyEv+lSiZ48et57ty5HWKXjd188809Y/U6dOhQefHFF2+ZMmVKtbMvtf1eAFiwYEHb+N8NDZGxHUBVPxKRd0QkVMdLKl9U1U8TTG5Msg4DPlHVBj1OVFVPCHK+InIvcAzuZSMTG3hJ5EbgZODvuB2haxrYRmNMQOr7m+ZZoKp/bdKGee6///5e06ZNWzl+/PjdAN6/K2+44Yaiq6++elsm2nTppZdu++Uvf1m4e/fu0C9/+cs1d955Z9WZmeeee27VBx98sOm1117Lf/jhh3u+9dZbHf/85z+vzEQ7s9XEiRP7LliwIND7e0aOHFk2Y8aMNY2NM2rUqKEHDhxwysrKnJ07d4aHDh06HOCee+5Ze/755+9qfEubpyOPPHLIN77xjS3f+973tpaXl8tXvvKVwZdffvnmSZMmbdu9e7dz8sknD7ryyis3XXnlldu3bt0aOv300wdee+21Gy+77LId69evD5999tkDvv/972+45JJLdq5evTpcVFTU6LNjY8aM2fPOO+8sSzTulltu2VRaWjr89ttv39DY+aQik2deUNUZdb2kUlV/29RtMs1O1tzvIiKlQG9V/Qru5ZENfkGlqn6Bm8CME5GHGtNQY0ww6vqb5o3/dVO2x2/58uVtTj311D3+slNPPXXP8uXL29Q2TX0OPfTQffPnz6/ReR4+fPj+jz76qFr5okWLWrVr1y5aUFBQdS3KiSeeWLZkyZK227ZtC48aNao8Ps6RRx6574477tj09ttvf/r66693ARg4cOC+f/3rX9Viz507t92wYcOazUMQmoNPPvlkyZIlSxY99thjq0455ZQdsXsmGpO4LFq0qFUoFKJ3794ZueyypUhlPXfr1q3y3HPP3XbfffdVXbZZ2+8FgBEjRtT43dAQdurNNHelwLQsme8xuNfFA7wOXIH7GNUGUdXVInIS8K6I7FfVHzc0ljGmeevfv//+2bNnd4ideQGYPXt2h/79+zf4aZ7jx4/ffdttt8n999/f7cYbb9wC8P7777cdPnz4/gcffLDXiy++mH/OOefs3rNnj1x77bVF1113XY2js3fdddfatm3bVjtDvXPnTucf//hH+zPPPHN3LOYhhxxyAOCGG27Y8JOf/KTPkUce+WnPnj0r33vvvbbPPfdc1zlz5iyJj93cBXGGJFd88cUX4SuvvLL4iiuu2OQ4GT3unlYffPDB0tj31q1bq384Pz8/6h/u2rVrpX+4V69eEf9wQ866NGQ933rrrRvHjBkzrLKyUqD23wvbt28PXXnllVsfeuihns8++2yniy66aCfAa6+91qFbt26RVO57seTFNGuqOiaL5tsFWO993wkkc615OTBPRB5W1dtUtSRuPiuAvrFhEXkTGAt80JB2G2OapxtvvHH9NddcUwKsPPXUU/fMnj27wzXXXFNy2223rWtoTMdxmDlz5ueTJk3qO3Xq1J6tW7fWPn36lD/yyCNrXnjhhWWTJ08u+v73v58XjUa54IILtv74xz/eFB/jwgsvrHEkPhqNct999xVOnjy5uE2bNtF27dpFn3zyyRUAl1566c61a9e2Gjt27DAR0fbt20dnzJixori4uOoS3HPPPXdQOBxWgCOOOGLPa6+9tryhy2gSGz9+fL85c+bkb9++PVxYWDjqlltu+eIHP/jBliDjlJeXO0OHDh0eiUQkFArphAkTtt5xxx0bg1+alq2x67lXr16R008/ffuTTz5ZCHX/XujQoYO+9NJLy773ve/1vfnmm/uGw2EdNmzYvmnTpq1Opc3SwFsBjDEpEpFJwB5V/a2IjAauUNXJmW6XMSY3zZ8/f2VpaWnSHcbHH3+84P777++1fPnyNv37999/4403rs/U/S7GGFOX+fPndystLS1JNM7OvBjTdN4DbgB+C5wG/CuzzTHGtCRXX331NktWjDG5rvleOGhMllHVj4GNIvIPYATw5ww3yRhjjDEmp9iZF2OakKr+KNNtMMYYY4zJVXbmxRhjjMlN0Wg0ai+qNcY0K97vtWht4y15McYYY3LTgs2bN3eyBMYY01xEo1HZvHlzJ2BBbXXssjFjjDEmB0Uike9s2LBh+oYNG0ZiByONMc1DFFgQiUS+U1sFe1SyMcYYY4wxJifYkRpjjDHGGGNMTrDkxRhjjDHGGJMTLHkxxhhjjDHG5ARLXowxxhhjjDE5wZIXY4wxxhhjTE6w5CXNRGSciCwVkWUickuC8TeIyCIR+URE/ioixb5xlSLysfeZmYG2XS4im31t+I5v3GUi8pn3uayJ2/WQr02fisgO37i0rTMRmSEim0Qk4bPHxfWw1+5PROQI37h0rq/62nWp157/ish7IlLqG7fSK/9YROYG2a4k23aCiOz0bbPbfePq3A/S3K4f+dq0wNuvCrxxaVtnItJXRN7xficsFJHrE9TJyH5mjDHGZAVVtU+aPkAI+BzoD7QC5gPD4+qcCLTzvl8DPOcbtyfDbbsc+L8E0xYAy71/u3jfuzRVu+LqXwfMaKJ1dhxwBLCglvFfA14DBBgLvJ/u9ZVku46JzQ84PdYub3gl0C2D6+wEYFZj94Og2xVXdzzwdlOsM6AXcIT3PR/4NMHPZUb2M/vYxz72sY99suFjZ17S60hgmaouV9UDwLPA2f4KqvqOqpZ5g3OAPtnStjqcBrypqttUdTvwJjAuQ+26GHgmoHnXSVXfBbbVUeVs4LfqmgN0FpFepHd91dsuVX3Pmy807T6WzDqrTWP2z6Db1ZT72HpV/cj7vhtYDPSOq5aR/cwYY4zJBpa8pFdvYI1veC01OyJ+38Y9ohrTRkTmisgcETknQ20737s05XkR6ZvitOlsF94ldv2At33F6Vxn9amt7elcX6mK38cUmC0i80Tkqgy16WgRmS8ir4nICK8sK9aZiLTDTQD+7CtuknUmIiXA4cD7caNyYT8zxhhj0iKc6QYYl4h8AxgDHO8rLlbVdSLSH3hbRP6rqp83YbNeBp5R1XIRuRp4GjipCedfn4uA51W10leW6XWWtUTkRNzk5Vhf8bHe+uoBvCkiS7yzEk3lI9xttkdEvga8CAxqwvnXZzzwL1X1n6VJ+zoTkQ64CdP3VXVXkLGNMcaYXGZnXtJrHdDXN9zHK6tGRE4BbgXOUtXyWLmqrvP+XQ78DfcobJO1TVW3+tozHRid7LTpbJfPRcRdzpPmdVaf2tqezvWVFBEZhbsNz1bVrbFy3/raBPwF93KtJqOqu1R1j/f9VSBPRLqRBevMU9c+lpZ1JiJ5uInL71X1hQRVsnY/M8YYY9LNkpf0+hAYJCL9RKQVbkeo2hOwRORw4HHcxGWTr7yLiLT2vncDvgwsauK29fINnoV7/T3AG8CpXhu7AKd6ZU3SLq9tQ3FvSv63ryzd66w+M4FveU+DGgvsVNX1pHd91UtEioAXgG+q6qe+8vYikh/77rUr4dO30ti2niIi3vcjcX8nbSXJ/SDNbeuEeyb0JV9ZWteZty6eBBar6oO1VMvK/cwYY4xpCnbZWBqpakREJuN2IEK4T8VaKCI/A+aq6kzgPqAD8CevD7daVc8ChgGPi0gUt0M3RVUD64gn2bbvichZQAT35ubLvWm3ichduB1MgJ/FXVaT7naB25l9VlXVN3la15mIPIP7dKxuIrIWuAPI89r9K+BV3CdBLQPKgCu8cWlbX0m263agK/CYt49FVHUMUAj8xSsLA39Q1deDaleSbfs6cI2IRIB9wEXeNk24HzRhuwDOBWar6l7fpOleZ18Gvgn8V0Q+9sp+AhT52paR/cwYY4zJBlK972eMMcYYY4wx2cnOvBhjjDE5aN68eT3C4fB0YCR2GbgxpnmIAgsikch3Ro8evSlRBUtejDHGmBwUDoen9+zZc1j37t23O45jl1EYY3JeNBqVzZs3D9+wYcN03Puta7AjNcYYY0xuGtm9e/ddlrgYY5oLx3G0e/fuO3HPKCeu04TtMcYYY0xwHEtcjDHNjfd7rdYcxZIXY4wxxqRs2bJleUcdddTgAQMGjBg4cOCIu+66q0ds3MaNG0PHHHPMoOLi4pHHHHPMoM2bN4cAotEol19+ed+ioqKRgwcPHv7Pf/6zXeaWwCRjy5YtoXHjxvXv16/fiP79+49466232oNt4+bkggsuKCkoKCgdNGjQCH95Q7bxI4880rW4uHhkcXHxyEceeaRrOtpryUuWEJGrMt2GRKxdqcvWtmVruyB725at7YLsbptpGfLy8njggQfWfv755ws//PDDxU8++WSPefPmtQG44447ep1wwgm7V61ateCEE07Yffvtt/cE+NOf/tRp+fLlbVauXLlg2rRpqyZNmlSU2aUw9bnqqqv6nnrqqbtWrFixcNGiRYsOO+yw/WDbuDmZOHHilpkzZ34WX57qNt64cWPo3nvvPeSDDz5YPHfu3MX33nvvIbGEJ0iWvGSPbO2IWLtSl61ty9Z2Qfa2LVvbBdndNtMCFBcXVxx77LFlAF26dIkOGDBg3+rVq1sBvP76652vvvrqrQBXX3311tdee60LwEsvvdT50ksv3eo4DieffPLeXbt2hVetWpXnj7tr1y7nhBNOGDhkyJDhgwYNGvHrX/+6S1Mvm3Ft3bo19P777+d///vf3wLQpk0b7datWyXYNm5OTj/99D3du3ePxJenuo1ffPHFTscdd9yuwsLCyu7du1ced9xxu1544YVO8XEnTZrUe8CAASMGDx48/KqrruqTanvtaWPGGGOMaZSlS5e2WrRoUbvjjz9+D8DWrVvDxcXFFQB9+/at2Lp1axhg/fr1eSUlJQdi0/Xq1evAqlWr8mJ1AV544YWOPXv2rPjb3/62zIsV+JFbk5ylS5e2KigoiFxwwQUlixYtajdq1Ki9v/71r9d07Ngxatu4+Ut1G69bty6vT58+VeW9e/c+sG7dumqJ64YNG0Kvvvpql+XLly9wHIctW7akvO1bVPIiEn9jo8TXqPZdYmVC4vK46aRa3cT1pFr9g+UhaUObUGetvW71tlYb1kQRD36pOS21DvsjiEA7yacgXKjx09SIE7+aaosrKbRBADRh/c6hDvRp3aNqfYmvQvW6WnNeydZNuExax3h3+h6t2jG4fYEenFf13U68uonig1ZrX7X5SnwZIAli11LWu10rRhW0r1qhQuIfh0Tz8u1kvu0TP73W2M5Vy14tXs1l7NtZGN0npHVOV8tOIzXqxG/gGg2v+q5xP7Px0xcVhhk9tK3WmEm1uAfHqUjc/P11fOOqppeqOkp8XZAa08ViC32LChg9uqTaSo/9rM+bt+INVR2HaTEmTryy74IFCwK9t2DkyJFlM2b8ek199Xbu3Omcd955A6ZMmbKmoKAgGj/ecRxvX07OEUccse/WW2/te8011/Q+++yzd44bN25Pik1vlv76k9/23frpukC3cdfBvctO/vm3at3GkUhEFi9e3G7q1KmrTzrppL1XXHFF39tuu63n1KlTv/DXs20cjOic7/bVHYsC3cbSeXiZM/ZX9f4c1yfVbVybrl27VrZu3To6YcKEkjPPPHPHhAkTdqYao0UlL273IM/rADhI7Ko5caqGRWJX0jmIhKqVxb7XLA8h4uB408TqOuK447z5ON50DrF/D07veP8JIW/uDo46VfVidR11a4lXu3qZHCyLDYv4l9RXRtVOGPvuAI7467ldplh9cFfdwXJ809dfjjeuqrxaTK2atlq519E9GFOrphWv8+y2++D0/nIRrRrvLpdXt85yjWuXHpx/1fDBGMTmU2N6X5n3rzuv6uWxujXq+YYT1RVHcSRavcwrr2qrRKvK/HHd4WhVXf+08eUkqusoONGDMX3Dse+11cVJXIbjzcOb58G4Cg5V83c3VtWG5+CPrBz8xAodAcfxPrGN6FR91HHACSUojy8LoVUxQ+5wrLyqrvc9YVnY+x4+WC5hr9wtUycMcWUiYXDy3H8ljPjKRcI4Ej74O0fCON58w/KNbhjTBMrLy+WMM84YcMEFF2y77LLLdsTKu3btGokdbV+1alVeQUFBBKBXr14VK1eubBWrt379+lb+I/IAo0aNKv/oo48W/fnPf+5022239X7rrbd23X///eubbqlMTElJyYHCwsIDJ5100l6ACRMmbJ8yZUpPsG3cEqS6jXv37l3x97//PT9Wvm7dulbHH3/8bn/MvLw8Pv7448UzZ87s+Pzzz3eZNm1ajzlz5nyaSrtaWPJijDHGND/JnCEJWjQa5aKLLioePHjw/p/+9Kcb/eNOO+20HY8//njXn//85xsef/zxruPGjdsBcNZZZ+147LHHelx55ZXb3nnnnfb5+fmV8R3blStX5vXo0SMyadKkbV26dKl88sknLRkH6jpDki5FRUWRnj17Hpg/f37r0tLS8tmzZ3ccMmTIfrBtnA5BnCEJUqrb+Jxzztn5s5/9rHfsJv2///3vHR966KG1/pg7d+509uzZ40yYMGHnKaecsmfAgAGHptouS16MMcYYk7I333yzw4svvth10KBB+4YOHToc4M4771w3YcKEnXfeeef6c889d0BxcXG33r17H/jLX/7yOcCFF16485VXXulUXFw8sm3bttHp06evjI87b968tj/+8Y/7OI5DOBzWxx57bFUTL5rxeeSRR1Zfeuml/Q8cOCBFRUXlzzzzzEoA28bNx/jx4/vNmTMnf/v27eHCwsJRt9xyyxc/+MEPtqS6jQsLCyt/9KMffTF69OhhADfddNMXhYWFlf557dixI3TmmWcOLC8vF4C77ror5YRNVFvO+61ERO2yMbtszC4bs8vGWsBlY/NUdQymWZs/f/7K0tLSLZluhzHGBG3+/PndSktLSxKNs0clG2OMMcYYY3KCJS/GGGOMMcaYnGDJizHGGGOMMSYnWPJijDHGGGOMyQmWvBhjjDHGGGNygiUvxhhjjDHGmJxgyYsxxhhjGiwSiTBs2LDhJ5544sBY2ZIlS1qNGjVqaFFR0cgzzjij//79+wVg3759csYZZ/QvKioaOWrUqKFLly5tVXtkkw3uvPPOHgMHDhwxaNCgEePHj+9XVlYmYNvYZI4lL8YYY4xpsLvvvrtw4MCB+/xlN9xwQ5/JkydvXL169YJOnTpFpk6d2g1g6tSp3Tp16hRZvXr1gsmTJ2+84YYb+mSm1SYZK1asyHviiScKP/7440WfffbZwsrKSpk+fXoB2DY2mWPJizHGGGMa5PPPP8974403Ol155ZVVL8uMRqP8+9//zr/iiiu2A0ycOHHryy+/3Blg1qxZnSdOnLgV4Iorrtj+3nvv5Uej0WoxV61alTdmzJghQ4cOHT5o0KARr7/+eocmXCQTp7KyUvbu3etUVFSwb98+p0+fPhW2jU0mWfJijDHGmAa59tpr+/7iF79Y6zgHuxMbN24M5+fnV+bl5QFQUlJyYOPGja28ca369et3ACAvL48OHTpUbty4MeyPOWPGjIKTTz5555IlSxYtXrx44VFHHVXWdEtk/Pr161dx7bXXbujXr9+oHj16lObn51eed955u2wbm0wK11/FGGOMMdnsvu/+tu+KRV+0CzJmv+GHlP3oV99aU9v4Z555plO3bt0iX/nKV8pmzZqVH9R8x44du/fqq68uqaiocL7+9a9vP+aYY/bVP1Xzt/n/ft73wOrlgW7jVkX9y7pP/kmt23jz5s2hV155pfOyZcv+27Vr18ozzjij/2OPPVZw7rnn7mrMfG0bm8ZoacnLG0pFN9Qd0Fip1lbdGGNy0pb6qxjTOP/85z87vPnmm5179+7dqby83Nm7d69z9tln9/vLX/6yYvfu3aGKigry8vJYuXJlq8LCwgMAhYWFB1asWNFqwIABFRUVFezZsydUWFgY8cc9/fTT97z77rtL//znP3eaOHFiv8mTJ2+cPHny1swsZcv28ssvdywqKio/5JBDIgDnnHPOjvfee6/Dd7/73W22jU2mtKjkRVXHZboNxhhjTNDqOkOSLo8++ui6Rx99dB3ArFmz8h944IHCl156aQXA2LFjdz/11FNdrrrqqu0zZszoeuaZZ+4AOOOMM3bMmDGj6ymnnLL3qaee6nL00Ufv9l9yBvDpp5+26t+//4Ef/vCHW8rLy+Wjjz5qB7T4jm1dZ0jSpaSk5MBHH33UYffu3U779u2jb7/9dv7o0aPLHMexbWwypkUlL8YYY4xJvwceeGDthAkTBtx99929R4wYUXb99ddvAbj++uu3nH/++f2KiopGdurUqfK55577PH7aN954I//hhx/uGQ6HtV27dpW///3vVzT9EhiAk046ae/48eO3jxo1alg4HGbEiJHE8kAAACAASURBVBFlN9xww2awbWwyR1TtmiljjDEm18yfP39laWmpXSJojGl25s+f3620tLQk0Th72pgxxhhjjDEmJ1jyYowxxhhjjMkJlrwYY4wxxhhjcoIlL8YYY0xuikajUcl0I4wxJkje77VobeMteTHGGGNy04LNmzd3sgTGGNNcRKNR2bx5cydgQW117FHJxhhjTA6KRCLf2bBhw/QNGzaMxA5GGmOahyiwIBKJfKe2CvaoZGOMMcYYY0xOsCM1xhhjjDHGmJxgyYsxxhhjjDEmJ1jyYowxxhhjjMkJlrwYY4wxxhhjcoIlL8YYY4wxxpicYMmLMcYYY4wxJidY8mKMMcYYY4zJCU2evIjIDBHZJCILfGX3icgSEflERP4iIp19434sIstEZKmInOYrH+eVLRORW5p6OYwxxhhjjDFNKxNnXn4DjIsrexMYqaqjgE+BHwOIyHDgImCEN81jIhISkRDwKHA6MBy42KtrjDHGGGOMaaaaPHlR1XeBbXFls1U14g3OAfp4388GnlXVclVdASwDjvQ+y1R1uaoeAJ716hpjjDHGGGOaqXCmG5DAROA573tv3GQmZq1XBrAmrvyoRMFE5CrgKoD27VuPHjKkZ/0tkKr/1U01qWq+oJmJiSYbMIMxU4mXZExNIWbS2zyaQsxkjg1oCu0UkCTXZSZjilDnuqyKk+I+VFczNfaPJv/jk66Y9VCU5Jddkp73Rx+t3qKq3ZOsbpqBbt26aUlJSaabYYwxgZs3b16tf9OyKnkRkVuBCPD7oGKq6hPAEwCHH95L3/nrJbG5Ua0DobFh8Y2P/eMvjw07oJXgOL4yP0nQP/HFkESdF4FoBJxQkjFjnUT1tTNBTK30daSTiVlXG721oerr9MbVU4mr7ItbZ0wSLIe3fP6Y8d25WtdlbLlrGV81q9iMfdtZ/B1M//JEE3T2Y9OJr2Me195q8eLaUWvM2Pi4ecTGSVw977sCEo1tH3/dWGjfdlPHt+L901T/+VAEqUrcNK69Xpwau1bcz1hVM7342sDtU7WzxJbNtw8HvC6r2klsPcXHlYPrU6Haz4RUrxbbN9x16T9IET9f//Lgm6/EtbO6Tt0eXJVwhGm2SkpKmDt3bqabYYwxgRORWv+mZU3yIiKXA2cCJ6tW9QDXAX191fp4ZdRRXiunbDutP/qTr8TfcYlPTuKHq1rqK9bqHadqMWvr4MbCqG86X3lUwfHHjGtjfH+wWj+rlpjxHaJal9trt/8Ie63tjJ+0luWuluTE1a1xTDk+ScnU9tG49ZzC9qlVHTFT2T7VgtTVTmrpbHv1YlWj/u2ToFOssSP/6u0L8UmFr52xPBNFJMHyxLfRv87r3d9T3D4J2xgfs9qC1rN94r/GrUvh4M9E1Xzj9lP/PP3JS43V42ujRt2DGXWerZIE29oYY4xpnrIieRGRccBNwPGqWuYbNRP4g4g8CBwCDAI+wP3TPkhE+uEmLRcBl1CffQdg4eokG0VtBzgbLpmYUZK/E6mOPmfSEiVDycSMzx/qm0e9Mb2OcSoxs337JBkzlVVZY8JEw7GOdG3tjN8etW0f9f0j9bQyLqfSIPbNuuZRmwZsn2pXw6XaXvH9E5+LNWL71DjB4m9nLfmLyTzvb9lUIARMV9UpceOLgKeBzl6dW1T1VREpARYDS72qc1T1u03VbtMyRVf+EV34C9i1FDoOQUbchFNyocWyWIHESqcmT15E5BngBKCbiKwF7sB9ulhr4E1xjwLPUdXvqupCEfkjsAj3crJrVbXSizMZeAP3D8AMVV1Y37yj5WH2regaa0n1kdUOpGr1A6wJj/wDWgES9o1LELOqc5NETPViOnn1xnNH19LTijs6rESQqk2doJdT1dH0HYVPeATaPyICtcVs0LokroOcge2T6Ai4v7ICGvFixo33d6z967O+szFAlEqcurZPlRqnuxIMe9tcI0iidqYc05+RKLEed427QKqdFImiNc54JYoZwf3xrWX7+KcW786TWpMLb0Q0Ak79+6U7HLd9asze3eYpbR//z09sH6rW5iR/Jv0xD577SlDfH7zek88mjXxPwfwq7n2YH4rITFVd5Kv2P8AfVXWa94TMV4ESb9znqnpYU7a5OcrWjlxQsQKNM/9OnLGPQfdjYPN7ROdMco+rpBjPYlmsWuOlKRFq8uRFVS9OUPxkHfXvAe5JUP4q7i/+pFVGwuzZ0DWuNFHHobYeksYNKSIJrvWvLWbCo9FxMdWLWUOipMN/aDxxvNRiJtdGt0SRGoeOG77cVYeaNcmY3rjqt5jEtzPqtTGZzrmvpI6YqlEcCcVPQo3L3fxXC1VLihLNL4r4YlZN2oiY7r0f8e30d6STObVWfdKabarW2oQhqufAcTHVu7ysRpJRy3In2t0T/Ew6ifb1OmLWFS8W07+vS4Jv9bWqulimW8+69Cf09bTTzZksecmwqqdgAohI7CmY/uRFgY7e907AF03ZwGzsjAcZK1s7ckHFCrJNuvAXOGMfQwqPdwsKj8cZ+xjRuT8Ei2WxGhkr6EQoXlZcNtZUohGH3Tvdvxs1uyhSx1BDr32p/6h7jVLfyY/UYtbexqaPmfpy169mTPV/84WtcfA7duS6RvJUdztrnIghttx1TRffoa3e844/+A8QVcVJKmZ8m2uP2djtkyhm3VJflzVqJXUQwBcz0TaP2z41l6Oe7aPV4wFEo77nctQbs3oba4uZ8CQn1ffX2mKqb6KkHhRnmkpv6n8K5k+B2SJyHdAeOMU3rp+I/AfYBfyPqv4jyMZlY2c86FjZ2pELKlaQbWLXUnd9+3U/xi1PlcWyWHEC3VcTaFHJS2XUYffe9knU9F8DFISEpx7qr05d3ZjkYiZ6+FVjY9Y8ClyXFJc96ZiZ2T71Jy+pqz+5jEnXunRj1hU1tTknuX285a7/CczZuX1qPwBS/89Ptep1Ssc2Nxl0MfAbVX1ARI4GficiI4H1QJGqbhWR0cCLIjJCVXfFB/A//r+oqCjpGWdjZzzoWNnakQssVpBt6jgENr8HsfUO7nDHIRbLYjU+VpD7agItKnmJqsO+A20DjJgbHYr6zjE0XDJRUz+Gn9XSsDLrS14aspclnxBlWrD7ULUzGgH9eKZjXebO9jEpqOvpmDHfBsYBqOq/RaQN0E1VNwHlXvk8EfkcGAzUeA6y//H/Y8aMSX4vz8bOeNCxsrUjF1SsANskI24iOmdSjTNeUnqHxbJYjY4V6M9PAi0qeVF12F/RKrnKiW4xCbY5CaWro+QEHTPYcE2qUW1PdeLUr8hr2njNTDoSdXfVBnw2J/CIJgt8SP1PwVwNnAz8RkSGAW2AzSLSHdimqpUi0h/3yZrLA21dNnbGA46VrR25oGIF2San5EKi4J7hit1rVHpHg+5HsFgWK16giVCi+BrU4ckcMKh9gT409NRMN6PJ2VHe7Ja+7ZM4aIN+4tOVFaQn00heffPXFJuZyomkoGJ68c76z7PzVHVMitFNgETka8AvOfgUzHtE5GfAXFWd6T1h7NdAB9wtd5OqzhaR84GfARW4j5i7Q1Vfrm9+Y8aM0WRfUlnbvSUN6Zxka6yqeFn2IIEgY+XKo2yNaey+KiK1/k1rUcnLwHZd9f4h4zLdjCZnR3mzW0vePkH/9nHXZYBrM5a8BLmB0nQl5Xkf/96SlxYmleQFsrMzHnQsY0zzUFfy0rIuGwMi0VTeYNeE/Pc4B9xRyvrOVzKPompozGxebi9mTm6fwLKO7E/b/E/3Cj6wMU3HKbkwkCf9ZHMsY0zz18KSFyFS4z0irmQe7htfJ9BOpzcT1TT0t3MhZuzSqSA7dDnQ4cyZ7QMJX9XSqJg5ciN8op9JyzuMMcaYzGhRyQsK0Rov2Wt8zMC11Ji50MaWHjNoLXW5a2jI76WcXFBjcoqqgkZBKw9+8IajsbLowTJ/ub9Mo245UV+86MF6VeO0xjhNOF3UV5ZguNp3Tb0e+MbrwXo1YqmvHm57q+qrb7z64sSVV6tD9TpV08X+pWa5/+hvneOqbdlkd4Dax1U7Uia+YaHqd3q1FzEnqCMCOCC+D87B6aqVxb5XLxdxDsZxwiBhkJD3PXTwUzWcaHxcmZMHTh7itAKnlTec6N+4spBXJnmIk+CF3gFpUcmLApVJJi+ZusE96CPHClUv6Q5US71RI1fWpW2f4EKm4WeSJGPWfUtiS9zAJhuoKkQPQLQcKg+AVkA0AtEKr7wCNDZc4SuPgFag8WXRioMxNOJ1/v3DEa/THvGVufPQaFx51fT+6bzh+ORCfXFjyYXGTxPN9OpOg/hOcVwHutp4fwfbVy9RDH+5fz41YvjKq+LElYvj/Yrzd/ITJQX+cVQfTjhN3HpItG7iSxL8slb1JUaJEiu3UuLv8cmVPzmMfY8mSijjk053eq2W1Hr7b7V9v7L6z5BWJljuxBp1iEwccFohh/8cZ/DVjYlUQ4tKXgA0yeQl6ecYpOGAaYN2ljomavDO18QHdhvaFUv6wEhQMRsWMidi1rffN2R91hmzwQvewOkaGC/on0lI4XeMMQGKfvYkuuB/oUN/pH1ftLIcNv4d2h4CbbpC5T7YsQhadYZwO4jsg/0bwGntBqjc73aAmoKTBzhuxyvc3j2qqwqRPdCmG4TauQnU/q3QoditE9kDZeug03DIy4fy7bB3NXQd7Y7ftwl2fwY9voLktUf3roWdi6H3GUi4Lbp7OexcAEXnI6E26M7FsH0+9P8W4uSh2+bD9v8gg78LEkK3fADbP0aGXg8i6MZ/wI7/IsN/6B7B/mI2unMRzshbQBx0zUx092c4h/7EnX7ln9A9K3BG3eYOL/8duncNzmE/BRyin/0a9m/COewuEIfo4qlQscsbDhFdMAWi5TiH3eOOn/9TEDk4/NHNEGqHc7g3/MF1SOuuOIf9zN0f5lwN7fq48wei702E/ME4h97iDv/zMuhyKM6IG93N/49LkG5H4gz7vjv89wuQwhNwhl7rDr9zDtL7aziDr3KH/3oGUvx1nIFXuMNvjUP6X4rT/5totILo2+ORAZfh9LsYjZQR/dt5yKDv4BR/HT2wk+i7E3CGXIP0PRvdv4XoP7+BM/R7SJ+vofs2EP3X5TjDb0AOORXdu5bov7+DM/ImpOdJ6J4VROdcg3PorUjhV9BdnxL94Hs4pT9Fuo9FdywkOveHOIffg3QdjW6fT3TezTij70W6lKJb5xH9z63ImAeQziPQzXOIzv8pzpEP43QcjG78B9H/3oMzdhrSoR+64W2iC36Bc/R0pH0f9IvZRBc9iPPl3yBte6JrXyW65GGcY/8f0qYbuuYlokun4Rz3HNKqE9FVz6OfTcc54S9IuB3RFc+gnz+Nc9LLiJNHdPnv0OW/J3TK6+62WfYUuup5Qie/4g5/+gS67lVCJ77oDi95FN34N0LH/8kdXvxLdMsHOMf+HjSKLrof3f4JzthpoJXowgfRPZ/jjL4PohVEF/8Syr7AOfTH7vCnv4IDO3AGXQUaIfr5byCyHym5EKIV6Ko/gVYih5zmDq99BcRBOh8a+K+GJk9eRGQGcCawSVVHemUFwHNACbASuFBVt4ub7k4FvgaUAZer6kfeNJcB/+OFvVtVn05m/tHAD8sGG675xkyid1h1lCVAGV/uZhIztn3sUkFjctvGv8H+zRApQ8vWuQlC5X630x/NP3j5R5sebocMYNM/ocsopOMQVCth7SvQ48tIl0PRyv2w4g9wyGluh69iN3w2HSk+H+l6BFq+FV38MDJgItJtDFq2Dl34C2To9Uj3I9HdK9BP7kRG3Y50+xK6YzH6n1txxvyiWgfSSdCBlFQ6kGN/Vb0D+aWHqncgj/h59Q7kqNsOdiAP7MAZcePBDmT5ZpyhkwGIhtqg+zfhDLzcHa4sR8u3VD0tLbpvAxzYhvQ5AwDdtRQqdiI9T3KHt3yIVOxGuo91h9f/FYnsQbqUAiBtukO0HOk4yB1u1Rk0irR334cq4fZQGULadHOHQ26SKXkd3H8l7HYgHbe7F+jTGE1OEhE3UZYQImEkryMAGm6PhNog7Xq79Vq7BzOk4HB3eO0sCLVDertP7ZVN/4LK/TgDvgVAdNcSgKpEN7p/E4TaID3iXkIbxDI09aOSReQ4YA/wW1/y8gvcF3RNEZFbgC6qerP3zPzrcJOXo4CpqnqUl+zMBcbgdivmAaNVdXtd8y5p213v6Hd22pYtCC31ap+cksIGSlS1xk9cChs9qXjpipmCpJfbBGbi4iftUcktTKqPSjbGmFyRVY9KVtV3RaQkrvhs4ATv+9PA34CbvfLfqpthzRGRziLSy6v7pqpuAxCRN4FxwDP1zb+ygalBUyYU6Ti4bQlRUDR3juznRHJge6Yxxhhjkpct97wUqup67/sGoND73htY46u31iurrbxeKZ9o0mr/1BiVK2+uz4l+bE7IkQ1uspgdTjDGGGMaKluSlyqqqiISWF9bRK4CrgIoCHcI/FHJ6bjqzh48ZZo97/6ZdLyTJfgXaQbNfhqNMcaYhsqW5GWjiPRS1fXeZWGbvPJ1QF9fvT5e2ToOXmYWK/9bosCq+gTwBEBxm+6qAXQc/H2idHRDcuMKoqBTolgLW1rMdOxNwbTRP7WqBptoeFffBXeYoipsemJC1f8bHz6d+6UxxhjTvGVL8jITuAyY4v37kq98sog8i3vD/k4vwXkD+LmIdPHqnQr8OJkZRRv1N77mxEEkQ+mWnhYGHTUdrcyFmFnQxlqqV9vb03R9ZOD3d6XpPS/BxpS6YzZopWT/7yFjjDEmCJl4VPIzuGdNuonIWuAO3KTljyLybWAVcKFX/VXcJ40tw31U8hUAqrpNRO4CPvTq/Sx2835d3Ff/NOaPfPZ1EJJpUe4ck62tpUEvZbLbMXtjVh+TKKlOYW/VGl9qVtHEL+rKNjl1NifVd8vkzg+yMcYYkzaZeNrYxbWMOjlBXQWurSXODGBG6vNPdYrs1rwWJ9sSy+yLGcsfqm/3RG//bcjJktonUMnG1L2mhi13jsTMhQ1gjDHGpFm2XDbWRCTwl1S23Jvrk02b0vFmw+YXM+nzNkmcJakam+rDKeoIWTUqlZDJLHqqO3uqZytaUExjjDGmJWhRyYsS/JmX3Li5Ph1S6XUmVze1fmwj3sDYiMqpHzFPR8z64wZ9ZL9BSXUGTlypBt/OoGM2+Hb93DiqYYwxxqRVi0peADTgRyWnRSPf4A5xCVAKva+6qmn8QCNjBvfUplrGKkiKPb50XFaYlksV67khwh1q+L6eqM2Nfa9RopiNvRwrV7ZXwpgBr0tjjDGmJWhxyUs0g/Our69SdUQ2hY5JMlUVSTpmUvG8xCXomEGffYjFDVp2xvStC2/7BN1OIQ1nLrNyXcbFq/pfwHEtATHGGGNS1rKSlzR0vFLpcCeXaKRHqnHrrJ+my4ECbePBsC1Pmha6Jfe1W/Kym+SJyDhgKhACpqvqlLjxRcDTQGevzi2q+qo37sfAt4FK4Huq+kZTtt0YY3JFi0pelMa+5yVBzHQckQ06WBo6s+m4vT0dcqGNgan2Vsm0vZolMFnzFK9mEtNkloiEgEeBrwJrgQ9FZKaqLvJV+x/gj6o6TUSG474OoMT7fhEwAjgEeEtEBqtqZdMuhTHGZL8WlbxAY9/z0jgZmXOWHoVvinWRjrwtPTEDetVp3EYJMrFOV2c7Fy4by6aYdqlZVjsSWKaqywG8lyufDfiTFwU6et87AV94388GnlXVcmCFiCzz4v27KRpujDG5pMUlLxn9459E56+lHOWN3wzpekR0tj8Nzl1uyf4zRCle1pdlu1vzEXdrk8kqvYE1vuG1wFFxdX4KzBaR64D2wCm+aefETds7Pc00xpjc1uKSl9ol/ZytBks2ccqWo7x1xUpHgtVSe7yZ7oSm5YxK8CGTm2+OJP/ZeEDBNImLgd+o6gMicjTwOxEZmUoAEbkKuAqgqKgoDU00xpjs1qKSF6Whl43VPk0uXJYUuAbcXJ9MzFyQucvG4msEtwWSSWxzqbOdLcm/XeLV4qwD+vqG+3hlft8GxgGo6r9FpA3QLclp8aZ7AngCYMyYMbaXGWNanBaVvKRDtl+WlCtyImnzZMdlY6mnO42SjoS1uavv5ZdN0wrTdD4EBolIP9zE4yLgkrg6q4GTgd+IyDCgDbAZmAn8QUQexL1hfxDwQVM13BhjcklWJS8i8gPgO7h/1/8LXAH0Ap4FugLzgG+q6gERaQ38FhgNbAUmqOrK+uZhR0OzV6Y3TaIzC+l4sWK1WKTxZvjgQxpjaqGqERGZDLyB+xjkGaq6UER+BsxV1ZnAD4Ffe3/rFLhcVRVYKCJ/xL25PwJca08aM8aYxLImeRGR3sD3gOGqus/7RX4R8DXgIVV9VkR+hXvafZr373ZVHSgiFwH3AhPqm082369f9ZLKgOebS2c1MsnuSTLGNIb3zpZX48pu931fBHy5lmnvAe5JawONMaYZcDLdgDhhoK2IhIF2wHrgJOB5b/zTwDne97O9YbzxJ4vU32VTJMAPKX2i9XySrZfKpzINMf1tbYmfoAUdU+wSL2OMMcY0U1lz5kVV14nI/bjXBO8DZuNeJrZDVSNeNf/jI6seS+mdrt+Je2nZlrrnE0x73Zc0StY/hUggLadeWm7nWLM+gYlt7sCTooDjGWOMMcakKmuSFxHpgns2pR+wA/gT3lNZGhm36rGSnUIdAuvQxeJk1SVEAbSlzg6qP36W9mTjXjKfhuQy+IQ1aOlqXm4krEFffJmOnT7dMY0xxpjmK2uSF9yXda1Q1c0AIvIC7rXBnUUk7J198T8+MvZoybXeZWadcG/cr8b/WMlDWvdo3n/hA+gH1bmC0thpD+rkUHz7syK5TKZ+kguf5XlTQnW2OeuTS0nDPUTpiWmMMca0BNmUvKwGxopIO9zLxk4G5gLvAF/HfeLYZcBLXv2Z3vC/vfFve09tqZM9baxuyXao0nJ5W3MV4MJlavdtTHJZZ5vTkAg2eh0lCBBkzAZf1me/u4wxxpjsSV5U9X0ReR74CPdRkf/BPWPyCvCsiNztlT3pTfIk7tuJlwHbcJ9MZhopqeTO633ZE7KCk+3LnjXNa4qGpGMekvBrg2MYY4wxLVXWJC8AqnoHcEdc8XLgyAR19wMXpDyPhjWtTkH2KdJwb33w0tDAbO+8p5slgsHJ9odopCumSZ6ItFfVvSLSQVX3ZLo9xhhjkpdVyUtTaFgfsa6pGvJ29LrnoWnIDnKhn5QLbcwFLb1TnBX3OaUppl05FpguInIFsAx4PX6kiFwCnIX7tHkBXlbVZ5q2icYYYxJpYcmL0LAucq5eqxKTnsf7ptqG+sa6a6Ax66HmPCRHUiJ7MalJhm3TwJwMXA7MEJEeqropbvzxqlp1KbKIPApY8mKMMVmghSUvwcqdSz+yoZF1tyGYFtaMEnzS1piINac9ePN2Q9ZAfW3Jhu1evxZ32aXJBh8AE4E+CRIXgNYicgbuu8T6AG2bsnHGGGNql1TyIiIFSVSLquqORrYnvTT4yz+y/ellImm6Zp+W2klszFLXnLZx67DuqYN/8WV6nhGdfNTkaubCZZdZ/muj2VPVxQAichnwaoIqk4DzgENxE5jJTdc6Y4wxdUn2zMsX3qeuv+EhoKjRLTKBiiVX6bghPBs7YP4kzW60Dk7DLukLekVlbsVn475uAnFiokJVLQP+XxO3xRhjTBKSTV4Wq+rhdVUQkf8E0B6TA7K58x6fpGXLjdZBydR7eIxpLkTkA1Wt8QRLY4wxuSHZ5OXogOpklBL8EVTrH5qmlEziVHVmLMizbaTp9Sd2OaNpenm+76UisgL4L7DA9+9iVY1konHGGGPqllTy4r1TBRG5AHhdVXeLyG3A4cDdqvpRrE62Czp5yfb3xqQzpslO6Tjjkq79Jy1nxoIPaZqX3b7vnwBnACNx7285FfghMEhE1qjqyAy0zxhjTB1SfdrYbar6JxE5FvdRk/cB04CjAm9ZCxb8jdaWZBljDICqHhc3HLunc3asTEQEGNjETTPGGJMEJ8X6ld6/ZwBPqOorQKtgm2SClN63xwT3ifr+DfITZBv97QySnSkwJmP+L1Ghuj5r6sYYY4ypX6pnXtaJyOPAV4F7RaQ1qSdAxtSQtsuS0hQzFxIOO4tlTN1U9clMt8EYY0xqUk1eLgTGAfer6g4R6QX8KPhmpU+ync5kOn72RCcTFLtU0BhjjDGmfimdNVHVMlV9IXY6XVXXq+rs+qZLloh0FpHnRWSJiCwWkaNFpEBE3hSRz7x/u3h1RUQeFpFlIvKJiByR3DIk94km8dEU4qXyMaYx0pEMqO/fdFyKF/SlgulY9myPaTJPRMaJyFLv79ItCcY/JCIfe59PRWSHb1ylb9zMpm25McbkjqSSFxH5KIg6SZiK+zSzoUApsBi4Bfirqg4C/uoNA5wODPI+V+E+OKDJpaUzl2TyFM1gQmSdr5Yll86OBJkQVQYcz59gNaZNiT6m8URkfCOmDQGP4v5tGg5cLCLD/XVU9QeqepiqHgY8ArzgG70vNk5Vz2poO4wxprlL9rKxYSLySR3jBejUmIaISCfgOOByAFU9ABwQkbOBE7xqTwN/A24GzgZ+q6oKzPHO2vRS1fWNaUeuqS+JqLqEKODrkkTSdFlSLvWSTbOXjbtjNrapGbkHeLmB0x4JLFPV5QAi8izu36lFtdS/GLijgfMyxpgWK9nkZWgSdRp78K8fsBl4SkRKgXnA9UChLyHZABR633sDa3zTr/XKWlTyUp+0XEKUhqCpvlgxlSZYQmSMSVJjflsk+puU8DUCIlKM+zfvbV9xGxGZC0SAKar6Yi3TXoV7tQFFRUWNaK4xxuSmZF9SuSrdDcFtyxHAdar6vohM5eAlYrF2qIikdMDf/4u+Yyg/qLa2aGnJBVIMmspOYAmRMSZJTXVF7EXA86rqP+hXrKrrRKQ/8LaI/FdVP6/RXTEnKwAAIABJREFUQNUngCcAxowZY1fwGmNanGx6zPFaYK2qvu8NP4+bzGz0nmqG9+8mb/w6oK9v+j5eWTWq+oSqjlHVMe2ctmlrvGmcbMgFkr0nCewhDcaYGpL6m+S5CHjGX6Cq67x/l+NeHn148E00xpjclzXJi6puANaIyBCv6GTca4VnApd5ZZcBL3nfZwLf8p46NhbY2dLudzGZEfQDGowxzcKHwCAR6ScirXATlBpPDRORoUAX4N++si7ee9MQkW7Al6n9XhljjGnRUn3PS7pdB/ze+8W/HLgCN8H6o4h8G1iF+64ZgFeBrwHLgDKvrjG5Rb17iNKQxdilbcakbGNDJ1TViIhMBt4AQsAMVV0oIj8D5qpqLJG5CHjWe9hMzDDgcRGJ4v7Nm6KqlrwYY0wC9SYvItJeVfeKSAdV3ZPOxqjqx8CYBKNOTlBXgWvT2R5j0k0lPS+UtLzFmNSp6lcbOf2ruAfW/GW3xw3/NMF07wGHNmbexhjTUiRz2VgX72jSselujDHGGGOMMcbUJpnLxk7GfffKDBHpoaqb6qlvjDHGGGOMSWDPP95k+/NPU7FuFXm9i+ny9cvo8JWGnfhtCbHiJZO8fABMBPpa4mJMsCT2seu8jDHGmKztQAcVa88/3mTbH56g+6RbaDOslP2L57P5sSkAKcdrCbESqTd5UdXF3tdPGj03Y2qhNN/7NJrrchmTq5ryXk5jgpSNnfEgY2VrBzrIWNuff5ruk26h7aGjAWh76Gi6T7qFLdMfslhJSulpYyJSoqorGz1Xk9OyKdFIph12VsMYE6eLiFyB+7TK1zPdGBOcbOyQBxUrWzvj1rFPLVbFulW0GVZarazNsFIq1qX+PviWECuRVB+V/ALuiyOriMhYVZ0TSGtM4NKRaKQaL6kEI/avJRrGmPSzezkbKds69rE42dghDypWtnbGs7Fjr6pUrF1Jq/5DiO7dg0Yr0cpKwj16UbF2JRXr16KVlVAZQSvdcUQr0UjE/bcyAl65VkaoWLuSyJZN7H7nVW+6SjRSQcXalex4+VmojEI0ika9ONGoWyca9eJVQtSt47Rtz4YpNxPqVOCWaZTI9q1Im7ZsvP82UEU1ClEFjbrD0ajvzdYHyySvFet+NBFp275q2aNle5BwHut+ck3iPlXiwqpYTvt8cBzEcdxYrVqz4X9vdstC4apxhEKIEwIn5A77ypz2+Wx65B7yeh5CuyOOps2QkexfPJ+83sUpbcfaJJW8iMiFuElLvogMA5aqatQb/QQwKpDWmAapq79vSYExxtQQu5ezT0tKXJp7kpCtHfKgYqXzyLiq0nrQCCrWrnQ7+5URtyNfGfG+ex39SGy4wuvAux37yt072fOvv1ZNEz1wgIq1K9k5649V0xycvhJicSojvu+VSOs2fHH7dYTad6hqQ+WuHUg4j7U/mgiRyoPTefOvamMsGYm4CQTAqm+elnD511w7IeV1tvmRuxOWb3vqkcQTOCGvw+/964QgFAKNsu/jD3DyO+G0ao1GKqjctYNQx84cWPU5OALiIOL4vovbkRNxkwRxEEcIdy+k4os15PUpwemQT3TvbiIb1hIu7I3k5dVskyZ6MYNbFu7e043Vuwhp247KnbuoWL+OcEE3Ips3eIlYLCmr9CVnCZK2SAV7/zHbXQ3t89ED5Wx+bAoFl1yV8npPJNkzL/8C2gDfAR4EhojIDuALYF8gLclCdkmSMa5sulQwXbJt+dLw3lLjid3LKSKXEfdeluaqJSQJTX3ZS+yofKzDXNURj/o6517nnlCIfQs/PtiBP1BOxdqV1Tr86u+MJ+jwO+06sPGB2wh1LqiKH9m6GWndhg1Tbqkz2YhPHABWfvM09wi+lwjErKylw1+XTffflrB864yp1QtEIBRGwmH3KH4ohIRC7vdwGKdtO8qXLSLcvSehDh2Jlu8nsn4teYf0JdSp4OB04TDihJBwLIb3b1XcMBVrV7Lvkw9p/+WTyevVl8jmDex5dzbtjz6BNsNKvaTCN3+vLdXieQnHvo8/YOcrf6Lgm9fQZvAIyj9fytan/48uX7+M9l8+yTvzED54BsLxEo5axB9I6Hr5dY0+c7l/4X/I611M92t/0uhYB5YuIK93MT2uu7XRsbY9/X/k9Smh4JKrmvRpY6jqOuC3IvK5qv4LQES6AiXAkkBa0kScbOuhmBYtHUlBui4VTMePjv041s7WTZM4MdMNaCr+JOGL2yaTf+LpdJ90C5t//SC7Zr9E/injyT/+NKLl+9lw9410PO0cOhx7CtG9e9gw5RY6nfF12o89gcpdO6hYs4LoXvc5B5HtW9n04B10OvtiKtatIrJlI5um3kXnr19Gu9IvUbFhHZsf/V+6XPRt2o44nPK1q9j6q3vpfMEVtB4whIo1K9j2/35Fp3O/Qau+JRxYtZwdf/4tFWtWsH/xfMpXfc6uN16k41fPIdy1GwdWL2fPu7PpcMI490j1mhWUzf0X7Y8+ESe/E+vvuZGKdatpd8TROK1bs//ThYCw8cE7kHCYik0bqFi7ktYDhoIIlVs3UbF5I3m9ixGUyM7tRHduB3FY/d3z0QMHiO4vcy/LqTgA0SjLzzvWe7tw8ocY1v9P4ndqb3rg9oTlNYTzEIGy99+FcJhQfmfQKJU7tyOtWhPZuB7CISq3bgbHcZenTVs32QqFad1/MBIOs/+zxTgd8mlV3J/9ny0i1D6fUEE38nr2oWzuv5B27WnVp5h2o49BQmF2/XUWeT160X7s8RAKsfOlZ2jVtx/t/z979x0fVZU+fvzzTEuHAKEECL13NVgQxfoVXJC1rHVZC6KuBbuLi6vo6v5QsYttUeyAoquIgqKAXaQIiPQeQgKhpEDalPP7YyYhCQkkZCYzN3ner9ckt80z504757nn3DuDz0EcDva99xq22DiKt26kyRXXk/fN5ziT21Lw+1KaXDSKAz98TdwpZ5Bw7gWI3UHGhNtJOHMYCWf9CePxkPHwHYe99+JOPoOC35dStHEN4ooi4bw/k3Td7Xhzs9n15AM0vuBy4gYOLn3vJV74V2KPP7nS917mfzaRv+wXvHtn4WiRjL1xIglnDCO6R1+Kt21mz5Snafq3W4ju2pOiLevZ+8bzNLtuLFEdu1G4YQ1733yBpOvvIvHPV2KKCtjz8uOY4iKcbTuQcOYwDnw/j5h+qThbtSF/xWKyZ75Fi9v/hSOpJfnLfiH7f+/S4q6HcTRpxsHFP5Azazot732U+NPORZxOcj6fSatxE7HFxXPgh6/J/fITWj0wCVtUNHnffkne15+R/NCziMNB3vzPyVswh9b/fhGA3HmzOPjjNyRPeI74084lZ87H5C/5sTRByJn9AQUrl9Dqn08AkP3J+xSuX0Wr+/7jn//4HYq2bKDl3Y/4vyM+mIp753ZSnnsXgH3T/kv+8l9L4+1792W8ebk0//s/ANj75ouY4iKSbrgbgD2vPwtA0ug7AChcs5LY406mWSBeMNXonJeSxCUwvRfYG/QSKdWA1LaBWvnI1eDEVqo+EpFfjTEnhrscda2kJ6Foywa8B3Ip2rIBcUXj2bEV8fko+H0pvgO5+AoL/Eeof1pA8daN+ArycWekkTP3Ew4u/hFfwUGw2dj77ivkfvUJvoJ8irdvYc+rT4Ldwc6HxuLdm8XuZx9G7HZ8xUWY/INkPHynf6x+4Ah/5sN3lJataMNqdj/xz8PKvHP8zaXTe6c8VW7d/vdeLTef8z9/A6lwxWIA8uZ/jtgEU1wMNhsFq5Zhc7rwedyYwgI8WbuQKBe+4mLAIE4nNpcLu8eDKcjH2bYD7vRtOFokQ242UZ17ULh6Bc72nfEdzCPhjGGIw0HRlg0Ub9tM4/MvBruDwjUrKd6+icQL/4oEjtgX/LEcX1EBiRdcgTtjB0Ub/sCbm02jYRfjzdmPe2caSWPuQuwOcr6YiWfXTprfej/YHWR/+BaefVm0uG28/3n7f/+gYPUKvDn7cLZpj6tzd5zNk6tsQO557SnEFUWza24FIOvlx7EnNKLpX//Oge/nkfXqJDxZmfjyD5J0w93kL/0JZ+t2ND7/EgAKVi0jqmNX4gefA/iPpjvbtCe2/0AA7PEJxPRLJWHIef6ehLQtuDPTSbrW35Nw8JeFiCsKmyuq2u/V6B59Sbr+ztLEOaZX/6PfqQr2xk1JCiTOxenb2PPKk8ccK6b/iRSs+o2km+7F1aY9BX/8RuHqFcccTx07MTU4cmB1ya6W5rpWNR/nqFRt1OSCBUodq0fTXlhqjEkNdzkinYj8Zow5LjDtBbYDvwOryvxfY4zxhK+U1ZOammqWLFlSrW3Tbv8rSdffSfan0yhY9nP1HsBuR5wu/1Ach/8/TiemuAhvTjbOVq2xJTTGFBXi3rENZ9sOOFskg9PpH4rjcB4a4uNwIA7noSFDgfmirRvIX/wjCecMx5XSEXdmOrlffkLCmcOI6Tew/DAhe2DaWWa6ZLnDDnYHB39eSPbH70TUhQSCHUuphkBEqqzTIi55ERE7sARIN8YMF5GOwHSgGbAUGGWMKRaRKOBt4AT8PUCXHe0yzpq8qGAI1RAqpWpDk5fqEZHvjDGnB6Z/A/4E9AH6lvnfFUgzxvQJW0GroSbJS8k5L4kX/w1ncgrFaVvInvkWjUdcRtzJQxCn059sOJz+E33tgfH7R4inDXulVKgcKXmp6aWS68LtwBqgUWD+ceAZY8x0EXkFGA28HPi/3xjTRUQuD2ynmYmqE8FO+TUZUqpulCQuZeZ34r/4zFcly8R/pm2XOi5aSJUkA+VOEr76lmNOEuJPOzdoCUYwYyml6r+ISl5EpC3+o2CPAXcFKpCzgCsDm7wFTMCfvIwMTAPMBF4UETGR1pWk6p1QJC6heNNqQqTUUb1Y2cJAPbKhjssScpokKKXqg4hKXoBngfuAhMB8MyC7zNjjHUCbwHQbIA3AGOMRkZzA9nvqrrhK1U6oMu1QJESaDKn6xhjzerjLoJRSqmaqHtBax0RkOLDbGLM0yHFvEJElIrIk31dvf5JGWVQoEgITopsvRPGUUkoppaorknpeTgUuEJHz8f8gZiPgOSBRRByB3pe2QHpg+3QgBdghIg6gMZVcutkY8xrwGvhP2PcFubUUkt++0EPcqhZClRCFojenJJEJJv34KKWUUvVXxPS8GGPuN8a0NcZ0AC4H5htjrgIWAJcENrsa+DQwPSswT2D9/HCc7xKSI9ymdjdT2a2aj13t/dZD5g2KlRKCUPU8hfvmO8pNKaWUaggiJnk5gn/gP3l/I/5zWkrGKL8ONAssvwsYF6byRZzKhuZUmtBUcqtWghRoKVU3Zo1uVO9WredBEyxVj8hRbir8RGSoiKwTkY0iclidJCLPiMjywG29iGSXWXe1iGwI3K6u25IrpZR1RNKwsVLGmIXAwsD0ZuCwX0M2xhQCf6nTgllQSBo1UrNemuowJjBcrpqBq/34IUhgdFifUqqiwG+UTQbOxX9xmcUiMssYs7pkG2PMnWW2vw0o+bHMpsBDQCr+b62lgfvur8NdUEopS7BCz4tqAEKVEIRk+E51e6iq2YtV5VC/Wt6UUnXqRGCjMWazMaYY/48rjzzC9lcA0wLT5wHzjDH7AgnLPGBoSEurlKoX5n+wmNGpj3Buws2MTn2E+R8sjohYoRSRPS9WYdDhGqqWAm+gYOYaJb1YQU1gTHASzLIxTJBiKhUhSi/fH7ADOKmyDUWkPdARmH+E+7apeD+lVM3M/2Ax7z0xh+3rMmnXvRVX3TeMsy4dWG9izf9gMW88/Cl3vzSKvoO68PtPG3nq5ncAahwvmLFK4gXr+aqowSUvQR/uFOR4oAmRqp1QJAQmSDErJlSh6CHSz4+ygMuBmcYYb03vKCI3ADcAtGvXLtjlUuqYaMM+PLHee2IOd780iuOGdAfguCHdufulUbx494ywxgp2IlRRg0terMAqI360kdhwWOm1tsrnR9U7JZfvL1H20v4VXQ7cUuG+Z1S478LK7lj28v+pqan6dreIYDbINUmonmA37P92zUDWPDmDnzZl0KRzMn+7ZiDvPTEnrLG2r8skOjub94c/wv5ArOPGnMf2dZk1ihPsWMHcx8po8qJqrGS4nBVqTSs1upVSlrYY6CoiHfEnI5cDV1bcSER6AE2An8ss/hL4j4g0Ccz/H3B/aItbP9Xnxr0mCeFr2Hu3Z5Axt4izH/sbySd0IWPpRr4Z/zbe7fvCGqt/p0b88MRHDHtqdGmsOXe/Tv9OjcIaK5j7WBlNXlSNhfJHEEMR1wo0yVLK2owxHhG5FX8iYgfeMMb8ISKPAEuMMbMCm14OTC/7u2TGmH0i8m/8CRDAI8aY4NTyZURiwz6Ysep7416ThJo5UmPcGIPH7cXj9uIN/Pd4ykyXrPP4//dqYsN+Qm8y8rykfb0ar8eLu1dXeqb9yrxpi/B6fHg93sDNVzrvqTDv9fjo0VjYHp3IzGlL8b27BK/XR57E06PRPv5z7Rt4fT58XoPx+fB6DT6vD+Pz//eWTPv8022K8liYAT/cNI2YOBf5B4rwZBxgQBPhxkH/KR2bXfJtYyrMY0zpsm4FuSzYCQuufZvouCiKC934dvtj3TLkcWx2GzabHPpfMm23ITbBHpi22W10bwQbfLHs/O9PnHvAS+o5vWh36Zn03vlJjV/HymjyoiJCQ228h7IXq6E+p0qFizHmC+CLCsserDA/oYr7vgG8EaqyRWrDPhKThJJYkda4j8Qkwefz0bdjI75//COGTLiSpj3bkbl8E989OoPeKXFsWrkDt9uDpziQEBR7cAcSBndxmeVuD+5iDz0bC3ubt2L+/A14vlyLu9jLntim9Gi8j6dvfQ93scd/X/eheGWTjbLzPfJzmZ8On1/yGgDFhR4SfEX0T4Rz4m+u0X7+uY3hzcnfYSZ/X7pMMIxsA0+OmYoN//mmFf8LYAv8dzrt2O3CyY18/LxoE9Erd+CKsmM8Poryizgh0bBp0VpsNvyJAYH/4k8U7AIuAZuI/zEEYoyXTi3jObg/C89uL7FOOwnJccQU5tFJ8g9rCEjJn0oumBOd56Nnm3gOZGfjzvVid9qJT44lpvAAbYtyA78ZaPxXSAV/EmVM4DcC/cs9PoMBmtoMW9fuIC9tDzt6NMfutPPGcws4qean+VVKwvCj9GHTytXSXN3ismpte6STnss+ZXq1JBVprHQVPKuU0wom7nhhqTEmNdzlUHUnNTXVLFmypFrbjk59hFufuqy0YQ/w27frePHuGby+5MEj3DP0sS67rD97vl1R2iBPGtKfGTNW1DjWuQk38/y7V/Pbf78s17gf+9e3mJf3Uo1iXdPi75zZt+lhjfsFv+/jzd0v1yjWPf3H0T3ed1gPwLoDNiatmAiA1+s71KAvadyX6RVwF3t4/tLn6JHgo/cN5xPboRXZa3ewfuqXrM4TLnr0cv99Pd5yiULFeXexv3egYPZ3HOzQjqg2LQLbeChM20WzrN1kdursv0+gLO6KSUIgjsftxef1cXZLw4ps2FN06Bs9KcrQPxG+2VWdb3lT2sgf0RrmZPjbVg6b4HDYwOPljBawwhuP3WHD6RQcdlvg5j/i77ALdtuhm80GMTt2kt2oCbl78vAUe4iKctC0eQKx2ftxtE/21z/GIMYgmEO/W+Dzgc/fw4HPh/H6cOflg82G1+NFzKHEJBKITRC7HbGVXL7U4HV7cca4AhvIobaqCFJSeJFD+yBCUW4+rrho7C4Hxhfo+Sn24CksxhHtwgR6hDAl/6uXP6zMEbxtk/nzJf3J+2EFV86u3udaRKqs0xpcz0vQf509RLlfMJMivSRtw6LD+oIv2Ptulf1W9Ueknthb2x4AY/zDaTxuL307JPD9xJkM/tcVNOmZwu7lm/n2Px/SOyWO9b9t9w/1CRy597h9lQ4T8rj9jfSeicK+Vq359vvNeOdvwOP2siu+GT0a7+f5u6YHGvHlhxYdiu0tlzR0Kshj/k7DvKumInahKL+Y6IJ8+icahja9Da/bi8939G+Fs1saFu6CmbfPLF1WkiQ8dm1lnXbGf/RewOGwEeVy4HDacDntnOQyLP1tO4227SMmzoVxe8nbk0v7REPjonzsNsERK9jsDuziwG6Lxm7zxyqJacP/3ehev42TejYle3ceniI3UdEOmibFI3uzuWpQi0Ai4AOvPxHwebwYrxfj8eLz+OfLNrrOb32o/HDoSP0AxwH/hDtwq4Zm+bm0SHRgc7qwOx0Yn5sih514mw+b047d6cTmsGN32rE57NicjsD/Q8vsTge56XvZ/ftW2g0eQEKbZuTvyWHrgt9JGdyLFr3bld7HZrf5p0tudhs2px0pszz91/Ws/vBHBt58Ps37tGfv2h38+uJsBlx9Nh3P7ofYbYjNhs0R+B+Yl8DwLFuZ9Ru+WMovz3zKWY+NKv38zB//DiffOZJuw2vWQ7h+9uIaxTLG+JMcr88/HRjSZnw+Ns5dxuKXvmDw/Zdw/ck92LMmrTRWMDS4npe/tbg8iBEj5LmrRjFsQf45Uk2IlIosj2vPS4NTk56Xskf/n35oNoMHd2Tv3F9Ym2fDtG7BsKtP5axLB3IgO58HL3uFc688iZPO60PO3gM8fet7nHlJKv0GdyU7K5dXr3mFAS0cdL9uKJ74OOY+P5cu5gDrCxwMGnMOc9/5heOGdKdV+2bs353LD58tp9dJnWjWsjH7s3JZ/t16uvRLISExFvluMWsLnTTqnkJ0rIsD2fnkbdpJr1g3W5uncDCvgH2ZuSQkxviPDucXk3+gCIfLjvEa3MWe0n2sfQ/AIX9uY/g0vaRPwPgb6wLDk+HL3TYaN43D6bThLvTgLiqmZetEHA4b+XkFFB0som3H5jgcNnL25NGpYD8Zic3Zl5mNu9CNw26jbeckmmTtZl9iM4oOFtG+e0tsQNaO/bgLi0np3BzBsGfHfrzFHlq1a0reujTyndEUFxSBz+By2XE4bDg9bmKaJWA8PgoPFoLPX17j9dVon6tNBEeUA5vTQUF+MXafj9ikBFzxMezemU1cYhwJCVHkpu8lDydNWyeS3LkFdqedZd+up02XlrTv1RrsNr6ftZzO/dvR5bj2+ID5UxbQ2FdMv8tPI65NMz57YR4tvPn0vew0mvbuwDtPzOGMSwfS/7TuHMgt4LUHP+FPo4dw3Fk92J+Vx/N3f8Cld53HCef0ZvHbC/j56U85/o6RDL7mTFZ8+ivfPvQ+/a8/j7PuHM6WP9J54e4Z3PDYRfQ4oQMbV6Tx0j8+5ObH/0KX/imsXbqV18Z/zG1PXUbH3m2Y/8xslr/+FS6vm6adk2l+xgDmfL2Re14eReuOzVk6fw3vPTGHcVOuoUXbpvz61R9Mf/pLHnhzNE1bNeanL1Yy8/mveejdG9j1yxq+e+JjCnbtp0mnVpx4y59ILxQ+m/Id//n4VqJjXcybtog5b/3IE5/djsNpZ+47P/PVez/z9Ny7APh86g8snLmEMX8/lSWvzGHfxgzcLhd/+s9f6TZ8IB9Nns9vC9fy6If+IXIfPDuP1b9uZsL7NwIwbdKXbPw9jX+9dT0A70z8gowf/6CtKWD/pgxIiKOwdTJ3f3I3AFMe/ITcfQe568WrAHjl/o8oKizm9meuAGDyvR8AcMuTlwLw/GXPYdu8HTmQT5POyaTeNKxGCZX2vIRMqFrvNUyKjjTELbC6Ggd1avyQIfmNDu1xUkqpoOveCH7bA1ue+JrG6zfy5R9byC3w0i/RULQ2m/fGrmfi9W9iF8MpSfDBfRt55jbBIYaTk2DWw1t5pVBw2QzntYI1u7x8+s9ZRNkMA5vBmgJoF1fMtEdncUJT+PX93WQVCbF2w/FNYc2cbPLtLuLshr7OItJXFJMVF0t/u6GLq5jd6ZmYpESis3NpG+0mwQEpiQ58NoguduNNbkJ0s0a49+Rg21WIvX1zYpvEk79rH77MvcR0ao3ZvIPjO8Rjyz1AViG4Ylw0iXfiyj/IlUOScUU5ycvch3vfARq1a47dYedAVg6evALiWjRGBAqyD+IrciMCF7a34fX4sFWoR4a29AF5/pnowO1g1qENYoDMHQAkAQi0zsmidUxgHT7I2g1A0+y9/v6F9YUYp4OEQjfG58O234XNaSe6MB/j9RHjslEQ7STW+IiJc9LhlO7YnXY2/7AG4xU6ndkPm9POqs+XgQjHX3EqdqeDRW9/izjtnHbTedidduY/MxtHTBR9zunDhi+WcKDIh6tZY0658lSWTfmK3INuYtu14C/PXovdaWfKJU/SuEMrRk25CZvTwXOnP0Cznu245k3/lb4npd5LfJumOA4c5IwJVzL95teIap2EJ2sfZz06ik8fmEZs17ac/9y1AKzsfyfRKS0Y8tAVFOUX8+uHv+Bs1piBN5/Pgb0H+O7VeSQO6Mz2H1azb+NOEhEST+3DqfddzK6Nu2iSvRfPwSJa9uuA548dJO3dTWFWNgnJTdmbkU3L3TvJ25yB3dmPZj1TMALrp37Fqqc/IrZlIkYgOsl/9ay8bbtJzkgjZ1MGnNCB3K2ZJGekkbs1E/qnkLMpg+SMNPK27YbebYhOaoTXbues52+g11l9+HbKNyRnpHEwYx90bE72mu0kZ6SRvzsb2jYle/U2kjPSKNibB60ak71qK8kZaRRmH6Tb8IGsW76dtR/+wPlTxtK0TVNWPziD5Iw0PAXFEOsiZ8UmkjPS8Lq9OJx2cldsJDnj0G/Z5i7fQIv07XQbfgfdhg/k3ZunkPnL2tIE4eDy9SRu2VK6ff7y9SRs2l46X7B8HXGbM0rnC5evw7E/myt/eAyAVy+ZhD0ru3S9e+U67LkFpfPe39cjRYe6wMyq9eU/KPtykJZJ3LI4+BdO1OQlIgWvxR26oT7BzVxKT1w/lrBHuY8mREqphq54Tw4XP3gN742fQRcxJDoNyR1bkrA7k4TGMbTslsipzRojPh/FG9No2yORqCaNMF5jOw1PAAAgAElEQVQP+Zt20r57Y1yN4zDFbnLWbKdv+wRSsgvwFXtIcEHLZjH4DhRwYb/GFO0/QOumThDwFnvwFXtoHuUDCkvL05QCKC4AgSYuaMJB2HPQvzIwVL9JScPLBuzaBbt2+VcJsD0dz/bSTTFb00EgobgQ47LRrXksjign7vwiigSijQ+HGBo1jiW/2E2jFo1wxkQRFesiL30vyQM64IyJ4kDmfvZv3kXTLsns/n0bLTq34uDuHNqe1I0t81fSpFMrCvbncdzo/8PmsJOxbCO7Vmzl5DsuwOaws+37P9i1ciunjbsEm9PBxrlL2brwd4oPFDHo3gvZt2EnO35ZR35WDieOHcHBXdnsXZfOec/4j34vnvw5+7fs4v8mXQfAoudmkZe5n3P+39Wsn72YhRPeJ/n4zpz/4k1kLN3Ijp/X0fKUHpz12CgA7E5/s+6UO/8MQMHePOzRTvqPOhOA3X9sJzoxjkF3X0irAZ1YOOF9irftZPXMHxk87hK2LvydJh1b0qRjSwB6n9KVpJ5tccXHANDzxE60GtCx9HXskdqRlFO6E9OsEd89OoPogwfx7djFoHGX0G34QLrO/JGup3Yp3b5zv7b0HNQZAIfTTud+bel9in8+KtZF535t6XvZILqen0pRXgGf3/wS/S8bBECjpnH++6d2ACCxRQKd+7Wl+/HtAWiWnEjnfm3pdpz/x1tbpDSlw3EdOOm2EbQ5sRv7N2ey4KH36Ni7DQBturSgc7+2dOiRDEBKt1Z07teWlG6tAOjQI5n0fm1p06UFAB17tyGzX1uSOyQB0KVfCnv7taVFSlMAuh3Xjpx+bWmWnAhA9+Pbc2BpWxJbJPifu9QOFP7elkZN4wDodWIn3Ou2EtfI/9z2Prkzvi07iIr1v6v7ntIZW3oGDqfdPz+oM45du0ufy36ndiEmJ6d0vv+pXWhUfCi56D+4K2n2Q71v/U7rSmbCoWZ//9O7sad5bOn8gNO6sX9L43LzeZn7D21/WjcKsw+Wme+Kt/BQ8tJ/cDfK6j+4K/ZoJ6EQMcPGRCQFeBtoib85+pox5jkRaQrMADoAW4FLjTH7RUSA54DzgXzgGmPMsiM9RvCHjalg8ScvkfFerMtkKJQxVcOiw8YanpoMG3t/+COc/sBl/PbGPLZ9u+qI2/rH+ztK/9tdjjLLHOzfnEli++bENE3A5nRgd9opys1nz9p0Op3bv/Q8AVuZcwZsTnvptqXLHHZ2/7GNTV/+Rt+rhtCse1uyt+5ixZvf0Puy02g/pE+F8xEO3a/ieQlis9V4zP7RrJ+9mCWvzCk9r6emw15CESuYZVIqkh1p2FgkJS/JQLIxZpmIJABLgT8D1wD7jDETRWQc0MQY8w8ROR+4DX/ychLwnDHmpCM9hiYvqvaC/3kJVd6iCVHDoslLw1OT5KWkYX/S7SNo2rU1e9el88szn3LCjUPpMuwE7C5HaZIhR/nyaAhJglJWMW3adB57bCJr1qyhZ8+ejB8/jiuuOLa2biTFssQ5L8aYDCAjMJ0nImuANsBI4IzAZm8BC4F/BJa/Hfihr19EJFFEkgNxlAqR4GYEoRiCB5FzCUelVGQoacCXbdgPuveiY2rYl9znu0dnlMY61sSlJF6wEoxgxlLWF0mN8VDEmjZtOuPHP8jrr7/G4MGn8sMPPzJ69A0ANY4XqbEqEzE9L2WJSAfgO6APsN0YkxhYLsB+Y0yiiMwGJhpjfgis+wb4hzFmSYVYNwA3ADSyJ5xwY6tr62w/lKqe0Jw/FIqHD/ZV61TwaM9Lw1OTnhelQslKDfvHHnskaI3xcMfq02cAL7zwLGeeeUbpsgULFnLbbXewatVyS8c6Us9LxDVFRCQe+Ai4wxiTW3ZdoJelRi09Y8xrxphUY0xqjC0miCVVKlgkBLfgP7yI/4IFwb4ppVR9N23adPr0GYDdHkWfPgOYNm16WOMEu0zjxz/ICy88S2HhAV544VnGj3/wmOIFM9Zjj03k9ddf48wzz8DpdHLmmWfw+uuv8dhjE+tNrDVr1jB48Knllg0efCpr1qypN7EqE1HJi4g48Scu7xljPg4s3hU4H6bkvJiSSy2kAyll7t42sOyIgt74Ct7uKxUUUvo3eLfA7w8H/QbBS3I0GVJK1efGvSYJNROpjfFgxurZsyc//PBjuWU//PAjPXv2rDexKhMxyUtgSNjrwBpjzNNlVs0Crg5MXw18Wmb538TvZCBHz3dRKpSC3ztUk0THZ458K91WExilKhWJDftgxqrvjXtNEmomUhvjwYw1fvw4Ro++gQULFuJ2u1mwYCGjR9/A+PHj6k2sykTMCfvAqcAo4HcRKRkQ909gIvCBiIwGtgGXBtZ9gf9KYxvxXyo5PCezhKL3RfSEaxVZrPZ+DHYCE+wrt+nvBam6Fqkn4wYzVtkGOVDaIL/ttjvCGitYDfJITxLKnt9Q24Z9MGKVNKArO7ekvsQqeS/edtsdpecIHcu5M5EcqzIRecJ+qLRytTSjmjfMSyVrQ0k1DGG++MHRgpWNeqyBq9jFJ3fqCfsNTU1O2I+0k3FDEctuj6Kw8ABO56EfxnO73URHx+P1FoUtVrD2MVKf90g9mb0kXqRdSCDYseorS/zOS11oiMlLKI/wakKkVOR4Mv15TV4amJokL5HasI/EJCHYsYLVINckQTUklvidFxUaoUgwShKiYOa9QT3CXYYmWEopFblDexrCMKFgDaGJ5GE9V1xxedASjGDGUvWTJi+qxkKREEiIsherdCzqORVKqVCK1IZ9JCYJwY5VEi8YDXJNEpRqgMmLRdqyQRfsdmzQc40G3tAOai9WCHrGrMQKiaAml6quRWrDPlKThGDHUvWXMQav14vH48Htdh/xf/ll/nmv11vLmw+v14vP5ystz9FuR9oOQESw2WzY7fZy/8svs1Wy7PDtBg5MpUePHkF9zhvcOS9XNbBzXkIhZEO8QhCzIdPnM7yO9s16LK/PkWI+tVPPeQk3ERkKPAfYgSnGmMOuOysilwIT8L+cK4wxVwaWe4HfA5ttN8ZccLTHq8k5L0pFMmMMbreb4uJiiouLy00fvsxd6Tbl5w/fxu12l86XTLvdngrzFbfxVHKfwxMSKxERJHD0rGS64q0kIfP5fKVJ0bF67rmnGTv2tmMpp57zArX/DYjK7hrxPRohEoqUNyRpdA2ezCNtWvZCUZF+FN4E/gQ7phXel2Cdz2TDOWzUMIiIHZgMnAvsABaLyCxjzOoy23QF7gdONcbsF5EWZUIUGGMG1GmhVb3l8/nKNcQra8gfmvYcIQk4lAwcOaE4lDAcKUZV691ud8ieC4fDgdPpLL25XK4K885y89HR0SQkJBxxG6fTWRrX4XCUm3Y6K85Xts2hZXa7v5eitjebzXbUpORYlPTI+HyHenjKJjZHWubz+WjWrFkwX06ggSUvBH7Mrlqq8xobMBHekPUHDU1MS7Rma9BCrO6moeisDGrMwGtT3ZjVeqvX8L1esmkwd6u6MRvqW12F3YnARmPMZgARmQ6MBFaX2WYMMNkYsx/AGLO7zkupqs3r9VZxtL78fEkCUPW6ivfzlGvAV9y2qm3Kb3vkxCSUvQEOhwOXy1Xpzeksvy4uLo4mTZqUJgwul/MI9y1ZdyjBiIqKKrO88m0OX+cql6DYbBHze+yWVJL42Gw2HI7ISBsioxR1xADemmwcjG1q6lhiBrsc4dyvY2wlVnq3mrY6Q1HGasQ0VD+5rPZDR8p7U6mGow2QVmZ+B3BShW26AYjIj/iHlk0wxswNrIsWkSWAB5hojPkkVAU944yzueaav3HNNVfjdrs599yhXH/9dfz1r1eRn5/P+eeP4O9/v5HLLruUnJwcRo68iLFjb+Wiiy5kz549XHLJZdx9952MGDGczMxMLr/8KsaNu4+hQ88jLS2NUaOuYdy4+zjttMFs2LCBW24Zy5133k5q6gmsXbuOf/3rIW655e/06tWTdevW8dRTzzJ69HV06tSR9evXM2XKG1x11RW0bt2aDRs28OGHH3HRRX8mKak5GzduYu7cLxk27DwaNWrEli1b+PHHnxky5DRiYmLYvn07K1b8zgknHI/T6WTnzp1s2rSZHj26IyJkZWWRkZFJmzZtMMaQnZ1NTk4OCQkJeL1eCgoKKC4upq6G1NvtdgAaNWqE0+mksLAQr9dL27ZtcTod7NmzB4/HS48e3YmKimLnzgy8Xi+pqSfgcrlYuXIlMTHRnHHGEFwuF99//wN2u50//el8nE4ns2d/QXS0i7/85RJcLhfvvPMejRs35uqrR+F0Onnhhcm0bNmSm24ag8vlYsKER+jUqRO3334bLpeLsWPvoF+/ftx33z24XC4uv/wqBg06hXvuuQuACy64kLPPPpPbbx8LwLBhwxkx4k/cfPPfATjnnPMYOXIEY8ZcX6v33oUX/rla773LL7+KBx74J+ecczabN2/muuvG8PDDDzFkyOmsW7eOG2+8mf/8598MGjSIVatWceutt/PkkxMZOHAgy5cv54477ubZZ59iwIABLF68mHvvHceLLz5Hnz59+Omnn/jnP//Fq6++RPfu3fn22+946KGHeeON/9KpUye+/vobHn30P7zzzpukpKQwd+6XTJz4BNOnv0erVq347LPZPPXUM8ycOYOkpCQ+/vh/PP/8i3z66cc0btyYGTM+4OWXX+WLLz4jNjaWd999jylT3mDevLk4nU7efPMt3nzzbRYu/AaA//53CjNmfMjXX38JwEsvvcxnn33OnDmzAXjuuef55psFzJr1PwAmTXqan3/+hY8++gCAiROfYPnyFUyf/h4A//73Y6xbt453330bgAcfnEBaWhpTp74OwP33j2fv3r289torANxzz30UFBQwefILANxxh/898eyzTwNwyy23ERMTw6RJTwT5U9PAkhcAT+2G7pVXjcbxMbXFrdLwtELMEJRRghzThCBmQ6YnwqsI5gC6AmcAbYHvRKSvMSYbaG+MSReRTsB8EfndGLOpYgARuQG4AaBdu3Y1LsD//vcJaWlpzJo1my1btlJQUMCmTZt4++13+P77H8jPz2fNmjU8++zzTJs2g4MHD7JixUoeeOBBnnhiEgUFBWzcuImbbrqFsWPvpKCggH379nHxxZcCUFxcjMfj4dtvvyv3uD/99HO5+Wuvvb7c/Nixd5SbHz/+wXLzjz8+qdz8q6/+F5fLhc1mw+1289VXXxMdHY3H4+HAgQNs3ryF2NgY8vPz8fl8iAhxcXEUFRWzf3823bp1JT4+noyMnaxbt4Fhw4YSHx/H5s2bWblyFVdeeTmxsbGsWvUHS5cu49Zb/050dDS//rqYX35ZxIMPPoDT6WTBgoX89NPPPPnk4zidTj77bDY//fQzL7/8Ik6nk/ffn86iRYt4662pOJ1OXn31NZYsWcbMmTOw2+08/viTIWlAPvTQvwBIT08nJiaGv//9JgAWLfqVZs2acdFFFwLw8cf/IyUlhVNPPRWAJk2a0KJFC7p06QJAdHQMsbGxxMfHAxzz0COlgqlBnbDf3NnSjEw8/IT9ao4Qq5FwxDyWVzLYMcP1XEaq6j4fVW5XX16gWsaUykLU0QeoJj1j1VLyONWIWel+V+G/WXrCfjiJyCn4e1LOC8zfD2CM+X9ltnkFWGSMmRqY/wYYZ4xZXCHWm8BsY8zMIz3msZywP3z4SD7//IvS+aqG8FQ2BKiq9RXPIyg/Xfm5BodPOypdV9WtpMdCKVU/6Qn7AT4DRdUeN3Z01RmVVNM2jw+D7Sj3qmlMg0GCnAIcFjPYl04KQsxKX59axwzCflslpkVfH1uQn8vDShopMRvOcSerWAx0FZGOQDpwOXBlhW0+Aa4ApopIEv5hZJtFpAmQb4wpCiw/FQj+WAtgxoz3AX/S4nA49Ei6UspyLJ28VOeylGX5jCHf46ViS+HYDhxXXFLzmIdvb8o0aUqW1Cze4dsbfIAtqDFLml6m3PrqxqzO9pEas3S/g1XfGwvEPPJbPaJiHst+V7Zp6TJD4PNzKGatcwZT8hj+mMGKp8LLGOMRkVuBL/HXSW8YY/4QkUeAJcaYWYF1/yciq/GfgnmvMWaviAwCXhWRkq/riWWvUhZMcXFxoQirlFJ1xrLJS3UuS1mRz8ABT/mul5rU+4cP4ai8R6M2MQ87clzDmJVfkan65ayYoFRcdmj54TGrKmNlZapp4nQsMavqcaqrmLV5LkMR81ie/2NRWRkre0z/cKyq9/tYklBjTK1iVnZP/xUAgxuzsrFoR3t96ur1U8fOGPMF8EWFZQ+WmTbAXYFb2W1+AvrWRRmVUsrqLJu8UL3LUpbjxstucgNzlTZTSqel0lSl/D3LN2SPFq/iNpU3of3Dxiq7rN/hTeuSxzZVxCr7SIeXsmzfzOExDzWBjxaz8gFplccsG7k8OWpTsOw9y/eDVL21qeR5r6ok1euL8WKwI0GNWbG3rfKYNWmulvS2BftEjZoPWDzq63PE6y/XfL+9GOzmSJfFrHlMA0Evpw+wBfU669r9opRSqmGwcvJSnctSluOmkHQ2VVLNH56k2A5beviwMGN8iNiqaDaYw6bKxzy84SKA1/iwVzNmSRP6SDEBfD6D3SZBjWmMwSbBjSmHBv1UGa+yCKaSmMKho/BHK2PJPcoOqjO1fH1qFhPsVQ4fOraYJedOBTNmVfeu/PU59IpX+foEkv/68/pUloJW8fnBF3j08iWorH+3fDmrSni0L0YppVTDYOXkpVrKXlYSOJBVsGhdOMtThSRgT7gLUUtW3werlx90HyJBOMvfPkyPq8Jk6dKle0RkW4XFVvsMaXlDS8sbWlYrL1inzFXWaVZOXtKBlDLzbQPLyjHGvAa8VleFOhYissTqlzi1+j5Yvfyg+xAJrF5+ZS3GmOYVl1ntPajlDS0tb2hZrbxgzTJXdKTB4ZGu9LKUIuLCf1nKWWEuk1JKKaWUUipELNvzUtVlKcNcLKWUUkoppVSIWDZ5gcovS2lRET2srZqsvg9WLz/oPkQCq5dfWZ/V3oNa3tDS8oaW1coL1ixzOeK/7LxSSimllFJKRTYrn/OilFJKKaWUakA0ealjIpIiIgtEZLWI/CEitweWNxWReSKyIfC/SbjLeiQiYheR30RkdmC+o4gsEpGNIjIjcBGFiCUiiSIyU0TWisgaETnFSq+BiNwZeP+sEpFpIhId6a+BiLwhIrtFZFWZZZU+5+L3fGBfVorI8eEr+SFV7MOTgffRShH5n4gklll3f2Af1onIeeEptWoIRGRo4H22UUTGhbs8FVm17rNaXWe1ui3S6zKr1VsNpY7S5KXueYC7jTG9gJOBW0SkFzAO+MYY0xX4JjAfyW4H1pSZfxx4xhjTBdgPjA5LqarvOWCuMaYH0B//vljiNRCRNsBYINUY0wf/BSsuJ/JfgzeBoRWWVfWcDwO6Bm43AC/XURmP5k0O34d5QB9jTD9gPXA/QOBzfTnQO3Cfl0TEXndFVQ1F4H01Gf/nphdwReD9F0msWvdZra6zTN1mkbrsTaxVb71JA6ijNHmpY8aYDGPMssB0Hv4vljbASOCtwGZvAX8OTwmPTkTaAn8CpgTmBTgLmBnYJNLL3xg4HXgdwBhTbIzJxkKvAf6LbcSIiAOIBTKI8NfAGPMdsK/C4qqe85HA28bvFyBRRJLrpqRVq2wfjDFfGWM8gdlf8P/mFPj3YboxpsgYswXYCJxYZ4VVDcmJwEZjzGZjTDEwHf/7L2JYse6zWl1n0botousyq9VbDaWO0uQljESkA3AcsAhoaYzJCKzKBFqGqVjV8SxwH+ALzDcDsst8OHbgr5QiVUcgC5gaGA4wRUTisMhrYIxJByYB2/F/0ecAS7HWa1Cique8DZBWZjur7M91wJzAtFX3QVmPpd5rFqr7rFbXWapus3BdZuV6q17UUZq8hImIxAMfAXcYY3LLrjP+S8BF5GXgRGQ4sNsYszTcZakFB3A88LIx5jjgIBW60SP8NWiC/4hJR6A1EMfh3cSWE8nPeXWIyHj8Q2PeC3dZlIpUVqn7LFrXWapuqw91WSQ9n0dTn+ooTV7CQESc+L+83zPGfBxYvKukezHwf3e4yncUpwIXiMhW/EMTzsI/xjYx0O0L/i7J9PAUr1p2ADuMMYsC8zPxf+Fb5TU4B9hijMkyxriBj/G/LlZ6DUpU9ZynAylltovo/RGRa4DhwFXm0PXnLbUPytIs8V6zWN1nxbrOanWbVesyy9Vb9a2O0uSljgXGzL4OrDHGPF1m1Szg6sD01cCndV226jDG3G+MaWuM6YD/RK/5xpirgAXAJYHNIrb8AMaYTCBNRLoHFp0NrMYirwH+LvaTRSQ28H4qKb9lXoMyqnrOZwF/C1y95WQgp0w3fUQRkaH4h5ZcYIzJL7NqFnC5iESJSEf8J3H+Go4yqnpvMdA1cJUmF/7v5llhLlM5Vqv7rFjXWbBus2pdZql6q17WUcYYvdXhDRiMv4txJbA8cDsf/1jab4ANwNdA03CXtRr7cgYwOzDdCf+bfiPwIRAV7vIdpewDgCWB1+EToImVXgPgYWAtsAp4B4iK9NcAmIZ/XLMb/xHC0VU954Dgv3rSJuB3/FejidR92Ih/3HDJ5/mVMtuPD+zDOmBYuMuvt/p7C9Qj6wPvt/HhLk8l5bNs3Welus5qdVuk12VWq7caSh0lgcIrpZRSSimlVETTYWNKKaWUUkopS9DkRSmllFJKKWUJmrwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpRSSimllFKWoMmLUkoppZRSyhI0eVHqKESkl4hcIyIpIpIQ7vIopZRSx0rrNGV1mrwodXRO4DbgQuBAxZUi0kFECkRkebAfWERiRGS5iBSLSFKw4yullGpwtE5TlqbJi1JHlwJMBTYCVR2l2mSMGRDsBzbGFATi7gx2bKWUUg2S1mnK0jR5USpAROYHjggtF5FCEbkUwBgzG5hpjPnCGJNbjTgdRGStiLwpIutF5D0ROUdEfhSRDSJyYk22U0oppWpK6zRVX2nyolSAMeaswBGhV4FZwEdl1mXWMFwX4CmgR+B2JTAYuAf45zFsp5RSSlWb1mmqvnKEuwBKRRIR+RswDLjYGOOtRagtxpjfAzH/AL4xxhgR+R3ocAzbKaWUUjWidZqqjzR5USpARP4CXAWMNMa4axmuqMy0r8y8j/Kfu+pup5RSSlWb1mmqvtI3klKAiAwHbgaGG2MKw10epZRS6lhpnabqMz3nRSm/t4C2wI+BkxtHh7tASiml1DHSOk3VW2KMCXcZlLI0EekAzDbG9AnhY2wFUo0xe0L1GEoppZTWaSrSac+LUrXnBRqH8ge98P+omC/Y8ZVSSqkKtE5TEU17XpRSSimllFKWoD0vSimllFJKKUvQ5EUppZRSSillCZq8KKWUUkoppSxBkxellFJKKaWUJWjyopRSSimllLIETV6UUkoppZRSlqDJi1JKKaWUUsoSNHlRSimllFJKWYImL0oppZRSSilL0ORFKaWUUkopZQmavCillFJKKaUsQZMXpZRSSimllCVo8qKUUkoppZSyBE1elFJKKaWUUpagyYtSSimllFLKEjR5UUoppZRSSlmCJi9KKaWUUkopS9DkRSmllFJKKWUJmrwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpRSSimllFKWoMmLUkoppZRSyhI0eVFKKaWUUkpZgiYvSimllFJKKUvQ5EUppZRSSillCZq8KKWUUkoppSxBkxellFJKKaWUJWjyopRSSimllLIETV6UUkoppZRSlqDJi1JKKaWUUsoSHOF6YBGJAeYCZxljvJWsnwR8YYyZX+eFUyrIli5d2sLhcEwB+qAHDVRw+YBVHo/n+hNOOGF3uAvTUFVVp4nIm8BsY8xMEZkO/MsYsyFMxVQqKLROUyF01DotbMkLcB3wcWWJS8ALwH8BTV6U5TkcjimtWrXq2bx58/02m82Euzyq/vD5fJKVldUrMzNzCnBBuMvTgB2tTgN4GbgPGFM3RVIqNLROU6FSnTotnNnyVcCnACLyDxH5XURWiMhEAGPMNqCZiLQKYxmVCpY+zZs3z9UveRVsNpvNNG/ePAf/EVAVPlcBn4rfiyKyTkS+BlqU2eZ74BwRCeeBQ6WCQes0FRLVqdPCkryIiAvoZIzZKiLDgJHAScaY/sATZTZdBpwajjIqFWQ2/ZJXoRJ4b+nQjTApW6cBFwLdgV7A34BBJdsZY3zARqB/GIqpVDBpnaZC5mh1WrgquyQgOzB9DjDVGJMPYIzZV2a73UDrOi6bUkopVRNl67TTgWnGGK8xZieHD33Wek0ppWohXMlLARBdje2iA9sqpZRSkaq6dRpovaaUUrUSluTFGLMfsItINDAPuFZEYgFEpGmZTbsBq8JQRKXqpb/85S8dmjZt2r9r1669QxXHbref0KNHj15dunTp3b17914PPfRQS6/3SOcwW8uR9m/27NkJCQkJA3r06NGrR48evQYNGtQN4K677modExNzXHp6eum5DrGxsceVTG/fvt0xfPjwTikpKX169+7dc8iQIV1WrlwZBbBy5cqoIUOGdGnfvn2fXr169Tz//PM7paWl6TkTEaRCnfYdcJmI2EUkGTizwuZarykVJFqn1Z4V67RwjpH+ChhsjJkLzAKWiMhy4B4AEXECXYAl4SuiUvXLddddt2fWrFlHvUzr7NmzEy6++OIOxxInKirKt3bt2tUbN278Y/78+evnzZvX+J577qk3w2SOtn+pqakH1q5du3rt2rWrf/rpp/UlyxMTEz2PPvpoy4rxfD4fF1xwQZfTTz89Ly0tbdUff/yxZuLEiek7d+505ufny4gRI7reeOONWdu2bVu1evXqNTfffHNWZmamJi+R5ytgMPA/YAOwGngb+LlkAxFpCRQYYzLDUkKl6hmt02rPiuxYvPgAACAASURBVHVaOJOXycDVAMaYicaYXsaYAcaYfwbWDwdmGmM8YSuhUvXMsGHDDjRv3rzWn6nqxmnTpo1nypQpW6dOndrC5/PV9mEjTk3274orrtg7a9asprt27bKXXT579uwEh8Nh7rvvvqySZaecckrB0KFDD7z22mtNjz/++ANXXnllTsm64cOH5w0cOLAw6DujamsycLXxu9UY090Yc64x5nxjzMzANlcCr4axjErVK1qnBZdV6rSwHb0zxiwTkQUiYq/iuvgO4Km6LpdSoXbdddelrFq1KjaYMfv06ZP/xhtvpAUzZrD06tWr2Ov1kp6e7khJSQnqwYgTTzyx+1//+tc9Y8eO3VtUVCSnnXZat2uuuSbr5ptv3peXl2c7++yzu44ZM2b3mDFj9u/du9c+bNiwLrfccsuuq6++OjsjI8MxcuTIznfccUfmlVdembN9+3ZHu3btaly+svsHsGTJkvgePXr0Ahg5cuS+xx9/PBMgPj7ee8UVV+yZOHFiy2eeeWZnyf1XrlwZ079///zKYq9atSrm+OOPr3SdiizVqNPAf1L/O3VZLqVCTeu04NE6rXrCOvTAGPPGEdZ9WJdlUUpBv379ehQXF9vy8/NtOTk5jpIvrMcee2zHxRdfnBvu8llBamrqgQULFmysbN24ceN29+/fv9eDDz6ow4bqoSPVaYH1U+uqLEoprdOCIRLrNB03rVQdi9SjSQArV65cC/5u36lTpzb76KOPttY25urVq112u502bdoEfQjor7/+uq5kOioqypSdT0hI8JWdb9asmbfsfHJysqfs/LEcoYLy+7dixYojbpuUlOS98MIL9z355JOlP1zYt2/fgk8++aRJZdv37t278Lvvvos/lnIppVRd0DoteLROqx79UTOlVMjs3LnTMWbMmPbXXnvtbput/n3dHMv+jR8/ftdbb73V3Ov1CsCIESPyiouLZdKkSUkl2yxatChm7ty58WPGjNm7dOnS+OnTpzcuWTdnzpz4xYsXV/eyvEoppYJE67TDhaNOq3/PvFKqSiNGjOg4ePDgHlu2bIlq2bJlv2eeeSbp6PeqWZyioiJbyWUXzzzzzG5nn3127qRJk3YeKZ6V1Hb/kpOTPcOGDdtfXFwsADabjVmzZm2aP39+o5SUlD5dunTp/Y9//KNNmzZt3PHx8ebTTz/dOHny5Bbt27fv07lz596TJ09u0apVK72QiVKqwdM6rfasWKeJMaam+6mUqqEVK1Zs7d+//55wl0PVXytWrEjq379/h3CXQylV/2mdpkLtSHWa9rwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpSqGz6fzyfhLoSqnwLvrfr3c89KqUildZoKmaPVaZq8KFU3VmVlZTXWL3sVbD6fT7KyshoDq8JdFqVUg6F1mgqJ6tRp+iOVStUBj8dzfWZm5pTMzMw+6EEDFVw+YJXH47k+3AVRSjUMWqepEDpqndbgLpUsIm8Aw4Hdxpg+tYw1AHgZaAR4gceMMTNqX0qllFJKKaVURQ0xeTkdOAC8HYTkpRtgjDEbRKQ1sBToaYzJDkJRlVJKKaWUUmU0uK4+Y8x3wL6yy0Sks4jMFZGlIvK9iPSoZqz1xpgNgemdwG6gedALrZRSSimllNJzXgJeA24K9KCcBLwEnFWTACJyIuACNoWgfEoppZRSSjV4DT55EZF4YBDwoUjpRTOiAusuAh6p5G7pxpjzysRIBt4BrjbG6OVKlVJKKaWUCoEGn7zgHzqXbYwZUHGFMeZj4OMj3VlEGgGfA+ONMb+EpohKKaWUUkqpBnfOS0XGmFxgi4j8BUD8+lfnviLiAv6H/+T/mSEsplJKKaWUUg1eg0teRGQa8DPQXUR2iMho4CpgtIisAP4ARlYz3KXA6cA1IrI8cDusB0cppZRSSilVew3uUslKKaWUUkopa2pwPS9KKaWUUkopa9LkRSmllFJKKWUJDepqY0lJSaZDhw7hLoZSSgXd0qVL9xhj9EdyGxCt05RS9dWR6rQGlbx06NCBJUuWhLsYSikVdCKyLdxlUHVL6zSlVH11pDqtQSUvSimlVCQSkTjgJaAYWGiMeS/MRVJKqYik57wopZRSISAib4jIbhFZVWH5UBFZJyIbRWRcYPFFwExjzBjggjovrFJKWYQmL0qpei8/P5+Sy8KvX7+ed999F71MvKoDbwJDyy4QETswGRgG9AKuEJFeQFsgLbCZtw7LqJRSQVdUVMSkSZPIzMwMemxNXpRSluL1etm9ezdutxuAzZs38+qrr5KTkwPAvHnzOO+889i7dy8AL774InFxcezbtw+A2bNnM2rUKHJzcwF47rnnGDhwIEVFRQCkp6eX3lep2jDGfAfsq7D4RGCjMWazMaYYmI7/h5F34E9gQOtmpZSFLVu2jOTkZO69915ef/31oMfXL0ilVERLS0tjwoQJpKenAzBr1ixatmzJqlX+kTjLli3jpptuYts2/7l9breb7OxsDh48CMCgQYOYOHEiDof/FL9Ro0axbt064uPjAUhKSqJLly5ERUUBMGHCBLp3717aM/PZZ5/x0Ucf1d0Oq/quDYd6WMCftLQBPgYuFpGXgc+qurOI3CAiS0RkSVZWVmhLqpRSNbB//37uuusuBg4cCMDYsWO5//77g/440pCGTqSmphq9MotSkW3//v1MnjyZoUOHkpqayooVKzj++OP5+OOPGTlyJNu2beOzzz7jkksuoVWrVhw8eJCcnBxatGhRmqDUxqJFi9i6dSuXXXYZAGeffTb5+fn8/PPPANx+++00atSIf//73wDk5eWRkJBQ68etLRFZaoxJDXc5VHki0gGYbYzpE5i/BBhqjLk+MD8KOMkYc2tNY2udppSKFAsXLuS8886juLiYG264gccff5zExMRjjnekOi2irzYWGBu8BEg3xgyvsK4d8BaQCNiBccaYL+q+lEqp2vB4PEyaNInevXszYsQInE4njzzyCPHx8aSmptK3b1/27t1b+iXYvn17br31UDsvLi6OuLi4oJXnpJNO4qSTTiqdnzNnDnv27Cmdz83NxWY71GmdmprKCSecwPvvvx+0Mqh6LR1IKTPfNrBMKaUsxxjDSy+9xB133IHL5WLChAkh6W0pK6KTF+B2YA3QqJJ1DwAfGGNeDpzs+AXQoQ7LppQ6RpMnT8bhcHDjjTdit9t59dVXGTlyJCNGjCA+Pp49e/bQqJH/Y2+z2Wp19Ka2XC4XrVu3Lp2fOnVqufU33ngjffv2Bf4/e/cdHlWZPXD8e5IACQk9gEhCCb0j3Q4KrAgisi6iKFaURRHLqiA/FlCwsboKi6IsCCiCCi4CFrBQFJQqXWpACCI1tJCe8/tjJjGElJlJmZnkfJ7nPpl7571zzwxhTs69931fSEpKIjo6msaNGxdpjMavrAMaiEhdHEVLf+Au74ZkjDHuO3z4MNdddx3R0dH07NmTGTNmEB4eXujH9dk+LyISAfQE/ptDE+XPoqYC8HtRxGWMcd9HH33E6NGjM9YXLlzIl186LpSKCNu3b+fNN9/MeD69cPEHTz31FN26dQNg6tSpNG/ePKM/jinZRGQO8BPQSERiRORBVU0BHgOW4Dg594mqbvdmnMYY4669e/fSuXNnoqOj6d+/PwsXLiySwgV8+8rLm8CzQE43k48BlorIUCAU6FpEcRlj8rB//34WLVrE448/DsDPP//MypUrGTNmDCLCwoULMzrIA5QtW9ZboRaofv36kZKSQrNmzQBYu3YtzZs3Lzbvz7hHVe/MYfuXOO4WMMYYv/PJJ58wZMgQVJX58+fTt2/fIj2+T155EZFewDFV3ZBLszuBGaoaAdwMfCAil7wfG5nFmKJx6tQpkpKSAEc/kSeffJJ9+/YB8Prrr7Np0yZEBOCiwqU4qVq1KsOGDUNEiIuLo0ePHgwaNMjbYRljjDEFYvjw4dxxxx0EBwezdu3aIi9cwEeLF+BqoLeIHMAxBv4NIvJhljYPAp8AqOpPQDBwyfUqVX1PVduparuqVasWbtTGlFC//PILNWrUYPHixQDcfffdHDx4kHr16gFQqlQpb4bnFaGhoSxYsIDnn38ecBR333//vZejMsYYY9ynqrzyyiu8+uqrREZGsmrVqowcX9R8snhR1RGqGqGqdXB0ZvxeVe/O0uwgcCOAiDTBUbzYpRVjikBKSgpDhw7lvffeA6BFixY8/fTTGbdLlS9fnpo1a3ozRJ9w7bXXZnwmkyZNolu3bkRHR3s5KmOMMcZ1aWlp/OUvf2HEiBHceeed7Nmzh9q1a3stHp8sXnIiIi+ISG/n6tPAIBHZDMwB7tOSNGmNMUXs4MGDLFmyBICgoCC2bt3KgQMHMtZfeuklGjVq5MUIfdtzzz3H4sWLiYqKAmDevHkcPXrUy1EZY4wxOUtLS+Nvf/sb33zzDddffz0ffvih12/9tkkqjTE5SkxMzPiSuuuuu1i6dClHjhyhVKlSpKWlXTTfiXFdbGwsERER3HfffUyePLlAXtMmqSx5LKcZYwpTSkoKDz30EDNnzmTAgAHMmjWryPJ+bjnN/vIwxmTr008/pWrVqhw5cgSAMWPGsHbt2oz+K1a4eK5SpUps2rSJf/7znwDs2bOH999/n9TUVC9HZowxxjj6adapU4eZM2cyduxYPvjgA5/J+74RhTHG6+Li4pg4cWLGHCWtWrXirrvuIiUlBYCGDRtm3PJk8q9BgwZUr14dgGnTpvH4449z8uRJL0dljDGmpEtISKBfv34cPnyYu+66i3/+858Zo4X6gkK7bUxEtrjQ7Liq3lgoAWTDLrEbc6mUlBSCgoKIjY0lMjKS5557jlGjRnk7rBJFVdm5cydNmjTx+DXstjHP+WK+coXlNGNMQTt06BD33nsvy5cvZ+LEiTz22GNeiSO3nFaYk1QG4ph/JScCLCzE4xtj8jBkyBAOHjzI4sWLqVSpEr/++iuRkZHeDqvEEZF8FS4m3yxfGWNKvF27dtGyZUuSk5OZNWsWd9+ddaBf31CYxcsjqvpbbg1EZEghHt8Yk0ViYiKLFy+mb9++GX8wV65cOaPzvRUupoSyfGWMKdGOHj3K3/72N1JSUpgwYYLPFi5QuH1eQnJ6QkReBVDVHwvx+MaYLObOncvtt9/OqlWrABg6dCjjxo3zmU54xniJ5StjTIn11ltv0alTJ/bt28fXX3/N008/7e2QclWYV14mi8iTqvpF+gYRCQCmA5cV4nGNMU7nzp1j6NCh3HzzzfTr14877riDmjVrcvXVV3s7NGMKjYi0ye15Vd2YZZPlK2NMiTR37lyeeOIJQkJC+O6777jyyiu9HVKeCrN4+QvwlYiUVtX/iUgwMA84A9xSiMc1pkRLTU3lwIED1KtXj9DQULZv306rVq0ACA4OpmvXrl6O0JhC97rzZzDQDtiMo99KS2A9kDU7W74yxpQou3fvZvbs2YwbN4769evz1VdfUb9+fW+H5RKXihcR6Zvb86r6WTbb9otIV2CJiFQH7gbWqeqTHkVqjHHJwIED+fHHH9m3bx9BQUGsWbPGbgszJYqqdgEQkc+ANqq61bneHBiTTXvLV8aYEmPq1Kk8/PDDANxzzz28/fbbhIWFeTkq17l65SX9zFM14Crge+d6F2A1cEnxkumy/XPATOAb4IP07dlctjfGeODo0aNMnDiRESNGEBYWxuDBgzM65INNJmlKtEbphQuAqm4TkUuGdbN8ZYwp7k6dOsWuXbuYM2cOkydPJjg4mHfeeYf77rvP26G5zaXiRVXvBxCRpUBTVT3iXK8BzMhht9czPd4CVM+0TYEbPIjXGOOkqogI+/fv55VXXuGqq66iZ8+eXHvttd4OzRhfsUVE/gt86FwfgCMfZWX5yhhTbP3xxx+0adOGo0ePoqoMHjyYsWPHUrVqVW+H5hF3+7xEphcuTkeBWtk1TL9sb4wpWGlpadx///3UqVOHsWPH0qlTJw4ePEjNmjW9HZoxvuZ+4O/AMOf6SuCdrI0sX3lGVVFVu7prjA/69NNPefHFF2nXrh0fffQRiYmJdO3alTfeeIMWLVp4O7x8cfcb5zsRWSIi94nIfcAXwLfZNcxrtBdX2xhjHA4dOgQ4bgMLCAjIuC0MsMLFmGyoagIwBRiuqrep6r+d2y5i+Sp7cXFxjB49mu+//55jx46xatUqKlWqxBNPPMHXX3/NrFmzCAwM5NFHH+W7777js88+o2LFirzyyiscPHiQ3bt3061bN5YtWwbA8ePHeeWVV9i9ezfgmHfqyJEjpKamevNtGlMsbNu2jQEDBrBkyRJefPFFnnzySbZu3cqcOXMYOHAgu3bt4ptvvvH7wgVAVNW9HURuA65zrq5U1f/l0G4z0BnHCC85+U5Vr3ArgHxo166drl+/vqgOZ0yBefPNNxk+fDjR0dFcfvnl3g7H+CAR2aCq7bwdhy8Rkd7ABKC0qtYVkdbAC6raO0s7n8tXrijonJaamsrrr79OSkoKoaGhrFixggULFiAipKWlefy65cuXp1q1agQHB7Nt2zZ69uzJ1VdfzYULFxg3bhzvvPMOAwcOJDo6mjFjxvDCCy/QtGlTTp06xYEDB2jatCnBwcEF9j6N8Uepqans37+fChUqULVqVfbv38+9997LkCFDEBE+++wz5s2bR1paGiLCNddcw3333cff/vY3ypUr5+3w3ZZbTvNkqOSNwDlV/VZEyopIOVU9l027CsAGck8Gxz04vjHFnqryxRdf0LhxY+rXr0/v3r1JSkqifPny3g7NGH8yGugALAdQ1U0iUjebdiU+X6kq8+bNY+zYsVy4cAGAunXr0qtXL5o0aUJkZCTh4eFUrlyZkJAQgoKCKFWqFAEBASQnJ5OQkEBiYiKJiYkkJCRw5swZYmNjL1pOnjxJSkoKP/74I198kTGlDn//+9/5+9//TuXKlYmPjycxMZErrriCkydP8vbbb7N06VJuvPFGvvvuO/71r38xbdo0IiIiOHz4ML///jutW7emVKlS3vrojCkw586dIykpiSpVqpCQkMCwYcPo0aMHffr04Y8//qBBgwYMHDiQqKgotmzZwtq1a/nhhx8AKFu2LD179uTWW2+lV69eVK9e3cvvpvC4deVFRAYBDwOVVbWeiDQApqjqjYUVYEGyKy/GX5w4cYJatWoxePBg3njjDW+HY/yAXXm5lIj8rKqdROSX9KsmIrJFVVt6O7asRKQP0BMoD0xT1aV57VMQOS0pKYlhw4axdetWVq1aRePGjfn73//OrbfeSu3atfP12rm5cOECR44c4fDhw8TExHDgwAGio6MzlkOHDl10tads2bJUr16d06dPM2jQIFq1asW6det48803OXHiBFWqVOGjjz5i7ty5fPzxx4SEhLB//37Onz9P8+bNL7rN1hhvSh9sB2DChAnUrl2bfv36oaqEhoby4IMPMnDgQLZv386wYcOIiIggOTmZvXv3kv43u4hQp04drrjiCq699lquueYaWrduTVBQYU7fWLRyy2nuFi+bcJzFWpMpEWxVVb+4gc6KF+PL5syZw08//cTEiRMBWLdunZ1RNC6z4uVSIjIN+A4YDvwVeBwopaqDC/g404FewDFVbZ5p+03AW0Ag8F9VfcWF16oE/EtVH8yrbUHktLlz53LnnXcSHBzMpEmTuP/++wkMDMzXaxaEpKQkDh48yP79+9m7dy+7d+9m165d7Nq1iwMHDlxU2NSoUYPGjRtnTND7zjvv0LhxYyZOnMjUqVM5f/48IsKkSZPYsGEDM2bMAGDPnj0EBARQr149L71LU9z9/vvvnDx5MqOfSY8ePQgPD+eDDz4gLi6OFi1aULNmTTp27Mj27dtZs2YNsbGxGfuXKlWKBg0a0KRJE5o2bUqTJk1o0qQJDRs2pGzZst56W0WiIG8bS1TVpPSKUUSCcAwjaYzxQHx8PMHBwYgIe/bs4aeffiI+Pp6QkBDat2/v7fCM8XdDgZFAIjAHWAK8WAjHmQH8B5iVvkFEAoHJQDcgBlgnIgtxFDIvZ9n/AVU95nz8f879Cl1cXByjRo2iYsWKrFy50qc68pYuXZr69etTv359unXrdtFzCQkJ7Nu3L6OY2blzZ8bj06dP07NnTwDKlClDREQEAwcOpGnTpmzdupWYmBhSU1MJDAxkxIgRbN26lV27dgEwduxYEhISePllxz/Pzp07qVChAjVq1CjaN2/81hdffMGePXt44oknALjvvvs4deoUq1atYsuWLQQFBbFnzx6aN2/Or7/+SlpaGvv372fdunU0btyYHj160KxZs4xCJSoqyk5gZsPd4mWFiDwPhIhIN2AIsCinxuKociJU9VA+YjSmWFq/fj09evRg/vz5XHfddQwfPpxRo0bZ7Q3GFBBVvYCjeBmZV9v85CtVXSkidbJs7gDsVdVo5+vPBW5V1ZdxXKXJ7vivAF8VxaSYiYmJPPLII+zdu5dly5b5VOGSl+DgYJo1a0azZs0u2q6qHD9+PKOg+fXXX9mxYwcrVqzgww8/zGgXGhpKo0aNuOyyy+jUqROfffYZTZs2JSYmhoSEPweju/feeylfvjzffPMNAE8++SR16tRh2DDHyNu//vorl112GZUqVSqCd218QVpaGjExMdSq5ZglZPLkycydOzej38nixYtZtGgRDz74IKtWraJq1arExMRQrlw5kpOTAahatSrt27fn9ttvp3Xr1jRr1oyoqCifuOLpL9wtXoYDDwJbgUeAL4H/5tRYVVVEvgT851vRmEJ09uxZjhw5QqNGjWjWrBndu3enYsWKgONMozGm4IjIIi69O+AMsB54N/OwyYWQr2oCmQuhGKBjLu2HAl2BCiJSX1WnZNdIRB7G0fc04w8oT0ydOpXZs2fTu3dvOnfu7PHr+BIRoVq1alSrVu2SyXrPnj2bUcxkXpYuXcqsWY4LZqVKlaJhw4b069ePpk2b0qNHD+rUqUNiYiJlypRh165dF81p07VrV7p37877778PwP3330+3bt246667AIiOjiYyMtLOnPuxffv28dVXXzFo0CDKlCnDK6+8wsiRIzl37hxhYWGEhYVRrVo1Tp8+zYYNGyhXrhyRkZFUrlyZlJQUSpUqRadOnbjlllto37497du3p1atWnaSMp/cKl5UNQ2Y6lxctVFE2qvqOrciM6YY6tatG2lpaaxdu5aQkBBmz57t7ZCMKc6igao4bhkDuAM4BzTEkcfuydLea/lKVScCE11o9x7wHjj6vHh6vJiYGABeffVVT1/Cr5QvX56OHTvSsePF9WNcXBw7d+68qKD55ZdfmDdvXkbn6IceeoiGDRvSsmVLwsPD+eKLL2jVqhVvv/02l112GeAYxnbjxo00btwYcFzZatiwISNGjODFF18kJSWFf/7zn/Tt25d27axrmq9ITU3lt99+o1q1aoSFhbFhwwaef/553nnnHaKioli3bh1Dhw7l+uuvp0WLFvTq1YuqVauSmJjIxo0bOXDgACdOnKB69eokJSURGBhI+/bteeaZZ7jhhhu46qqrin3fFG9wq3gRka3kfBZrnKqezGa3jsAAEfkNiMMxFKX64mgvxhS0s2fPMnPmTIYMGUJgYCDjx4+nQoUKdtbFmKJxlapm7jy2SETWqWp7EdmeTfuCzFeHgchM6xHObV6nqnz88cd0794944/tkio0NJS2bdvStm3bi7bHx8eze/fujIJm69atrFmzho8//jijTeXKlWnVqlXGMmPGDJo2bQo4PuPp06dn3I53+PBhJkyYQIMGDWjXrh2HDx/m1ltvZcKECXTp0uWiEaj8zbfffku5cuUyCsMXX3yRunXrcvfddwMwdOhQWrVqxUMPPQTAY489RocOHRg4cCAAw4cPp2PHjtx2220A/Otf/6J9+/Zcf/31AMycOZNWrVrRunVrVJWlS5fSsGFD6tatS1paGtu2bePyyy8nPDyctLQ0Tp48SWhoKGXLliU+Pp6VK1fSpEkTatWqxaFDh3j++ed59NFH6dSpEz///DPXXHMNX375JT169AAco32md5rv2bMnhw8fJjw8nJ9++olly5axbNkyhg0bRnx8PCJCmzZtePzxx+nSpQvXXnutX86p4ndU1eUFeA1HR8MWzmU88G/gOWBRDvvUzm5x57gFtbRt21aNKUrz589XQL/77jtvh2KKOWC9euF71ZcX4FegVqb1WsCvzse/ZNPe43wF1AG2ZVoPwnHlpy5QGtgMNCvI9+dpTlu4cKECOnHiRI/2L8lOnz6tP/zwg/7nP//RQYMGaYcOHTQkJERxnNjVoKAgbdOmjT766KP64Ycf6t69ezUtLU1VVZOSkjQ+Pl5VVbdv36433HCDrl27VlVVV65cqY0bN9bNmzd77b3lZOPGjbp8+fKM9a5du+qdd96Zsd60aVO9/fbbM9ZbtGihjzzySMb6VVddpSNGjMhYv+KKK3TUqFEZ6xERERc9X6pUqYz11NRUBXT06NGqqpqYmKiAjh8/XlVVz549q4BOmDBBVVVPnDihgE6ePFlVVWNiYhTQd999V1VVDx06pLVr19b//e9/qur495w2bZoeOnTooveckpKi69at09dee0179OihYWFhGf/GLVu21GHDhumCBQv01KlT7n6cxkW55TR3h0reqKptstuW25DJItIKSL8B9QdV3ezyQQuQDZVsCltKSgovvfQStWvX5t577yUtLY2tW7fSqlUrb4dmijkbKvlSInIzMAXYh+MqSl0cA80sBwap6pvZ7ON2vhKROUBnIBw4CoxW1WnO47+JY4Sx6ao6Pr/vKTNPc1qvXr344osv2LJli1911PdVqamp7Nu3j82bN/PLL7+wZs0a1q5dy/nz5wGoVq0aV111Fd26deOmm24iKirqktdYvXo148aN46OPPqJixYp8/vnnrF69mtGjRxf5bUeLFy9m165dPP300wDcdNNNHD9+Hnjp1gAAIABJREFUnA0bNgCOuUlCQkJ47LHHAMfABaGhofnqg5VZYmIiIkLp0qVRVX777TfKly9P5cqVSU1NZe3atURERBAZGUlSUhKLFi2iefPmNGrUiAsXLjB9+nSuvfZaWrVqRXJyMuvWraNBgwZUrVo1x2OmpKSwadMmVq5cyYoVK1ixYgVnzpwBoEmTJnTp0oUuXbpw/fXX5/o6puAU5Dwvm3F84a91rrfHMXZ9q8yTgGXZZxgwCPjMuek24D1VneTm+8g3K15MYUkfelNVue6662jRogVvv/22t8MyJYgVL9kTkTJA+r1RuzRTJ/1s2vpMvnKFpzlt8ODBfPDBB5w7d+6iDuim4KSmprJt2zZ+/vlnfvrpJ1asWMGBAwcAqF+/Pr169WLAgAG0bds229vFRo8ezZw5c9i1axciwoYNG4iKiiqUkc0WLlzI/PnzmTFjBiLC0KFD+fzzz/ntt98QEXbs2EFISAh169Yt8GN7S2xsLL/88gs///wzK1euZNWqVRnFZv369TOKlc6dO9tQ2V5SkMVLe2A6EIbjLNZZ4CFgO9BTVT/JZp8twJWqGudcDwV+Ui/0ebHixRSGOXPmMGrUKDZt2kRYWBgJCQkEBwd7OyxTwljxkj0RaQ40BTL+U6rqrBza+ky+coWnOe36668nNTWVH3/8sRCiMtlRVfbs2cOSJUv4+uuv+fbbb0lKSqJRo0Y8+OCDPPzww1SoUOGifZKSkjKuPjRo0ICoqCiWLl160XPuHB8cI7J9++23vPjiiyxatIjy5cszefJkJk2axM8//0zFihWJi4sjJCTEpcL2xIkTbNu2jd27d3P48GFiYmL4/fffOXPmDOfOnePcuXPEx8dfsl9ISAihoaEZS9myZTOurlSpUiVjCQ8Pv2i9fPnyLvcNSktL49ixY+zbt4/o6Gj27dvH1q1bMzrap2vevDnXXXcd1113Hddeey2XX365ax+qKVQFNkmlOkZgaSEiFZzrZzI9fUnhkn58IDXTeqpzmzF+KzY2loCAACpUqEBUVBQtW7bk7NmzhIWFWeFijI8QkdE4budqimNo/x7Aj2SaTDLrLpSAfLVt27ZLRt0yhUtEaNiwIQ0bNmTo0KHExsYyb948Zs2axbPPPsu4ceN46qmnePbZZwkJCQH+HD5fRPj0009JSkoCHCOkRURE8MYbb3D//fcTFxfHt99+S7t27ahZsyaxsbEsWrSILl26EBkZyQ8//EDfvn358ssvad++PQEBASQkJPDHH39Qvnx5hgwZwqOPPpoRa2hoaI7vY/fu3SxZsoTly5ezevVq/vjjj4veY40aNahRowYVK1akevXqlCtXjrJly15UcKgq8fHxxMXFZSx//PEHu3fv5uTJk5w+fZqcTqwHBAQQFhZGuXLlMoYqLlWqFKpKWloaqampnDt3jlOnThEbG0taWtpF8dWrV48OHTrwyCOP0KZNG9q2bUuVKlU8+Bc13uTuPC+ISE+gGRCc/suoqi/kssv7wBoR+Z9zvQ8wzd3jGuMrTp8+TVRUFEOGDGH8+PF07NiRzz77LO8djTFF7XagFY7O+feLSHXgw1zaF/t8dfr0aU6dOpXt2XBTdCpVqsSgQYMYNGgQGzZs4KWXXmLMmDG8//77vPfee3Tv3v2i9ldc8edd+fHx8dx///3UqVMHgEOHDtGnTx/mzJlD//79iYmJ4d577+Xjjz8mMjKSWrVq0adPn4yi5IYbbmDNmjUZr5fXlYxTp04xffp0Zs+ezaZNmwCoW7cu3bt3p1WrVjRv3pzGjRtz+eWXExTk9p+Vl0hNTSU2NpaTJ09essTGxnL+/HnOnz+fcWUnJSWFgICAjKVhw4ZUrlyZypUrc9lllxEVFUVUVBR16tShTJky+Y7PeJ+7QyVPAcoCXXBMTnk7sDaX9gHAzzg6R17j3Hy/qv7i4vECcQzDfFhVs5uRuB8wBscIEJtV9S5X34sx7jhz5gyrV6+mR48eVKxYkTFjxtClSxdvh2WMyV28qqaJSIqIlAeOcfHwxRnym6/8RWJiIgA333yzlyMx6dq2bcv8+fNZsWIFQ4YM4aabbmLUqFGMGTMm28IiPDycN954I2O9Tp06bNiwgdq1awPQoEEDdu/endGBvnbt2kyd6s70fA6nT59m3LhxTJkyhbi4ODp16sSbb75Jnz59Mo5VGAIDAwkPDyc8PLzQjmH8m7sl8lWq2lJEtqjqWBF5Hfgqp8bOpDHZ2ZF/owfxDcMx1GX5rE+ISANgBHC1qsaKSDUPXt8Yl/zf//0fU6dO5fDhw1SpUoVhw4Z5OyRjTN7Wi0hFHBNSbgDOAz9l17AA8pVfOHzYMdVM/fr1vRyJyer6669n3bp1PProo7zwwgucOHGCSZMm5dn3JDg4mDZt2ly03qBBA4/jUFVmz57NU089xcmTJ7nrrrt49tlnbWQ64zPcHWYkfZSWCyJyOZAM5DUMw3ci8ldxc/YlEYkAeuK4wpOdQcBkVY0FUNVj7ry+MbmJi4vjtddeY/fu3QA899xzrF692u6NNcZPOHPOy6p6WlWnAN2Ae1X1/lx28yhf+ZPo6GgAu23MR5UtW5bp06fzzDPP8PbbbzNy5MgiPX58fDwPPPAA99xzD/Xq1WP9+vV88MEHVrgYn+LulZdFzrNYE3CcmVIcZ7Ry8wjwFJAiIgn8OWPxJVdTsngTeBbIaarShgAisgrHGPpjVPVrl96FMXk4f/48Y8eORUR45plniIiIICIiwtthGWNcpKoqIl/imFAZVT3gwm6e5iu/kX7lJXNHa+NbRIRXX32VM2fO8Morr9CxY0f69OlT6MeNi4ujd+/eLFu2jNGjRzNq1CgCAwML/bjGuMvl4sV5P/B3qnoamC8ii4HgLCOOZbfPTaq6yp2gRKQXcExVN4hI5xyaBQENcIwkEwGsFJEWzvgyv9bDwMNAgU2gZIqnadOmsXbtWt59912qV6/Orl27rGAxxr9tFJH2zpEyc+VpvvI3zZs3B7CJc32ciDBp0iTWrl3LI488wnXXXUflypUL7XgpKSn06dOH5cuXM2vWLO6+++5CO5Yx+eXybWOqmgZMzrSemFvhkmmf/3gQ19VAbxE5AMwFbhCRrCPExAALVTVZVfcDu3EUM1ljeE9V26lqO5sV1WSVnJyc8fj3339nz549JCQ47o60wsUYv9cR+ElE9onIFhHZ6pzL5RL5yFd+Jf2OOHfmCDHeUbp0ad5//32OHz/Oq6++mmvbTZs20b9/f8LDwwkMDCQqKoonn3yS33//3aVjjRw5km+//ZapU6da4WJ8nrt9Xjy5H9jtfVR1hKpGqGodoD/wvapm/d+0AMdVF0QkHMdtZNFuxGVKuK1bt1K/fn1WrFgBwPPPP8/3339v87QYU3z8BagH3ADcAvRy/sxJse/zkn7b2PHjx70ciXFF69atGTBgAJMmTeLo0aPZtnn33Xdp3749S5Ys4dZbb2X48OG0bNmSyZMn07hxYz7//PNcj7Fs2TJee+01Bg8ezAMPPFAYb8OYAuVu8fII8CmQJCJnReSciJwthH2yJSIviEhv5+oS4KSI7ACWAc+o6klPXteUHCkpKRw6dAhwjLZzxRVXZBQrdm+vMcWLqv6GY2jkG5yPL5B73iuwfOWrYmJiACte/Mnzzz9PfHw8s2ZdOrfq/PnzGTx4MN27dyc6Oppp06Yxfvx4FixYwK+//kqTJk3o27dvjgVMSkoKjz32GHXr1r1o+GVjfJnkNItpcdSuXTtdv369t8MwXvSXv/yFEydOsH79+jwn5jLGn4jIBlVt5+04fImIjAbaAY1UtaFzlMxPVfVqL4dWIDzJaV999RU333wzq1at4qqrriqkyExBu/rqqzl16hQ7duzIyF2xsbE0aNCA+vXrs3z58mzvGoiLi6Nz587s2rWLzZs3U7du3Yuenzt3LnfeeSfz5s3jr3/9a5G8F2NckVtOc+vKizjcLSKjnOuRItKhoPcxpqCkpaXx+eefk5qaCsDjjz/OmDFjvBuUMaao3Ab0BuIAVPV3ch7BskTlK7vS7F/uu+8+du7cyZYtf3bZevXVVzl16hRTpkzJ8Xbn0NBQ5s2bR2pqKiNGjLjoOVXl9ddfp0GDBtx2222FGr8xBcnd28beBq4E0meyP0+mTvwFuI8xBeLrr7+mT58+LFiwAICePXtyyy232FUXY0qGJHXcXqAAIhKaR/tin68OHjwIwIkTJ7wciXHHLbc4ump99ZVjXvDU1FRmzJhBnz59aN26da771q5dm3/84x98/PHHbNq0KWP7jh07WL9+PUOHDs1zIkxjfIm7v60dVfVRnJNVOieIzGvIEk/2McYjqsrSpUszipWbbrqJzz//vEjGyDfG+JxPRORdoKKIDAK+Jfe5yYp9vkrv8xIbG+vlSIw7LrvsMpo3b87KlSsBRyf7o0ePMmDAAJf2f/LJJwkJCWHKlCkZ2xYuXAhA3759Cz5gYwqRu8VLsogE8udZrKpAWiHsY4zHXnjhBSZMmABAQEAAvXv3tlskjCmBVPVfwDxgPtAI+KeqTspll2Kfr9q3bw9A06ZNvRyJcVfHjh1Zs2YNqsr8+fMpV64cPXv2dGnfihUr0qdPH+bPn09KSgrgKF7atm1LzZo1CzNsYwqcu8XLROB/QDURGQ/8CLxUCPsY47Jt27bRr18/zp07h4gwZ84cvv/+e2+HZYzxMhF5Ctihqs+o6j9U9Zs8din2+SotzVGL2W1C/qddu3acOnWKQ4cOsXr1aq666iq3hva/9dZbMwasOXv2LGvWrHG5+DHGlwS501hVZ4vIBuBGQIA+qvprQe9jjCtUFRHhwoULLFu2jG3btnHllVcSGRnp7dCMMb6hHLBURE4BH+MYaSz7yTIoGflq//79AJw6dcrLkRh3NWrUCHBMSLlt2za3b4fu3LkzAD/++CMJCQmoKldeeWVBh2lMoXOreBGRicBcVXWrA6Oq7gR2urOPMTlJTU3lnnvuoW7duowfP54OHTpw8OBBQkJCvB2aMcaHqOpYYKyItATuAFaISIyqds1ln2Kdr9JnXD97tlhNX1MiNGzYEHB02k9LS6NZs2Zu7V+9enWioqJYs2ZNxqA1bdu2LfA4jSls7l433gD8n4jsE5F/iYjNKWCKzJkzZwDHEJ+hoaGULVs24zkrXIwxuTgG/AGcBKp5ORav6tDBMfJz+h/Cxn9cfvnlBAcH8803jrsf69Wr5/ZrNGvWjJ07d7Jnzx6qVKlC1apVCzpMYwqdW8WLqs5U1ZuB9sAu4FUR2VMokRmTyUcffURERASHDh0CYOrUqYwcOdLLURljfJmIDBGR5cB3QBVgkKq29G5U3pXe58WGi/c/IkK1atXYt28fAFFRUW6/RuPGjdm9ezd79+69ZMJKY/yFpz326gONgdq4cHldRGqLSFfn4xARyXGSMGPSHTt2LOMWh2uuuYaBAwdSunSxGrXUGFO4IoEnVLWZqo5R1R157eDNfCUioSKyXkR6FdYx0v/wPX36dGEdwhSiKlWqAI7JJytVquT2/g0bNiQpKYkffvjBihfjt9wqXkTkNeeVlheAbUA7Vb0lj30G4Riq8l3npghggQexmhIkMTGRFi1a8OyzzwJQq1YtJk+eTPXq1b0cmTHGX6jqCFXdJCLVRKRW+pJTe0/zlYhMF5FjIrIty/abRGSXiOwVkeEuhPwc8IkL7Tx25MgRAC5cuFCYhzGFJDw8HIAKFSp4tH96Dk1KSqJ27doFFpcxRcndKy/7gCtV9SZVfV9VXTl18yhwNXAWQFX3UMLvOTbZO336NLNnzwagTJkyvPXWW4waNcrLURlj/JWI3OI84bYfWAEcAL7KZRdP89UM4KYsxw4EJgM9gKbAnSLSVERaiMjiLEs1EekG7MDRP6fQdOzYEYA6deoU5mFMIUm/8lK+fHmP9k8vfrI+NsafuDtU8rsiUklEOgDBmbavzGW3RFVNSr+/VkSCcE4AZkxm77zzDiNHjqRTp07Uq1eP/v37ezskY4x/Gwd0Ar5V1StEpAtwdy7tPcpXqrpSROpk2dwB2Kuq0c7XmgvcqqovA5fcFiYinYFQHIVOvIh8qaqXTJApIg8DD4PjirS7rM+Lf0svODwtXjJ30PfktjNjfIG7t409BKwElgBjnT/H5LHbChF5Hghxnln6FFjkfqimuElISOC1117jxx9/BODRRx9l48aNHo2gYowx2UhW1ZNAgIgEqOoyILdRMgsyX9UEDmVaj3Fuy5aqjlTVJ4CPgKnZFS7Odu+pajtVbefJSFG7d+8GbKhkf5VevHg6wmbm35nKlSsXSEzGFDV3bxsbhmOksd9UtQtwBZDXrWPDgePAVuAR4EtVtWGiDKrKW2+9xRdffAE4ziS1bt3ay1EZY4qR0yIShuOk22wReQuIy6W91/OVqs5Q1cWF9frHjjnuSktMTCysQ5hCdPnllwMQF5fbr3HOMl+xsSsvxl+5W7wkqGoCgIiUcU7m1SiPfYaq6lRV/Zuq3q6qU0VkmEfRGr83Z84cbrnlFlSVkJAQNm/ezMsvv+ztsIwxxdOtwAXgSeBrHP02cxtkpiDz1WEco52li3Bu86r0Pi/pfwQb/xIREQF4fuUs8+2CduXF+Ct3i5cYEamIY/SVb0Tkc+C3PPa5N5tt97l5XOPHkpOTSU1NBRwjnJw+fZqTJ08C1mHQGFN4VDVOVdNUNQU4qaoTnbeR5aQg89U6oIGI1BWR0kB/YKGHr1Vg0vu8BAR4OlOC8ab8Fi+Z2ZUX46/cnaTyNlU9rapjgFHANKBPdm1F5E4RWQTUFZGFmZZlwKn8Bm78w6FDh2jUqBEfffQRAPfccw8rV660osUYU9ReyOmJ/OYrEZkD/AQ0EpEYEXnQWTA9hqNv6K/AJ6q6vWDeiud27nRMzXb+/HkvR2I8UbOmo9tUcnKyx68xevRo4OL+L8b4E7dGG8uikaq+l8vzq4EjQDjweqbt54At+Tiu8XGpqans37+f+vXrU7NmTa699tqMs0V2ts8Y4yW5Da+Vr3ylqnfmsP1L4Es3Yix06Ve98/PHr/GeSpUq8Y9//IM77rjD49cYPXo0zz33nMed/o3xtvwUL4OBHIsXVf0Nxy1lV+bjGMYPPfTQQyxdupS9e/cSEhLCzJkzvR2SMcY8ktMTJSlfdejQgZkzZ1Ktmk235o9EhAkTJuT7NaxwMf4sP6fBXRokXkTOichZ55IgIqkiYmM0FiOpqal88sknGffgPvzww/z73/+mTJkyXo7MGFOSiUhZERklIlNVda2INBCRS+ZYydS+2Ocr6/NijPF3+fn2ym3ElgyqWk5Vy6tqeSAE+Cvwdj6Oa3zMli1buOOOO/jggw8AuPLKK+nXr58lR2OMt70PJPLnFZXDOCauzFZJyFc7duwAID4+3suRGGOMZ9ydpLK6iEwTka9UNUZEmorIg67urw4LgL+4HanxKXPmzGHixIkAXHHFFSxbtozBgwd7OSpjjLlIPVV9DUgGUNULuHjXQHHNV7GxscCfV2CMMcbfuNvnZQaOM1npk3btBj7GMepYtkSkb6bVAByzGye4eVzjA1Q1Y4z4RYsW8dtvvzF06FBEhM6dO3s3OGOMuVSSiIQACiAi9XBciclWSchXHTp0YO7cuVSsWNHboRhjjEfcLV7CVfUTERkBoKopIpKaxz6Zby9LAQ7gmDjM+JHVq1czaNAgvv76ayIjI5kyZQphYWEXTXhljDE+ZjSOySkjRWQ2cDW5z9tS7POV9Xkxxvg7d4uXOBGpwp9nsToBZ3LbQVXv9zA242VJSUmcO3eOKlWqEBERQYUKFTh58iSRkZGUL1/e2+EZY0yuVPUbEdkIdMJxu9gwVT2RS/tin6+2bdsGOL7fjTHGH7lbvDyFY4bgeiKyCqgK3J5dQxGZhLPIyY6qPu7msU0RSk1NpU2bNrRu3ZoPP/yQWrVqsXr1am+HZYwxLhOR24DvVfUL53pFEenj7MuSuV2JyVfnzp3zdgjGGJMvbhUvqrpRRK4HGuE4i7VLVXOa6Wp9foMzRSsxMZGlS5dyyy23EBgYyNChQ6ldu7a3wzLGGE+NVtX/pa+o6mkRGQ0syNKuxOSrdu3aMX/+fEJDQ70dijHGeMSt4kVEAoGbgTrOfbuLCKr6Rta2qjozy75hzu3n3TzeeuCwqmY7Nr+I/BWYB7RX1RKTgArD5MmTefrpp9m2bRvNmjXjkUdynNPNGGP8QXYdOy7JewWRr/yF9Xkxxvg7d7+9FuHo7FgFKJdpyZGINBeRX4DtwA4R2SAizVw83jDg11xeu5yzzRoXX89kkpyczJQpU1i1ahUADz30EN988w1Nmzb1cmTGGFMg1ovIGyJSz7m8AWzIqXE+85Vf2LJlC+AYPdIYY/yRu31eIlS1pZv7vAc8parLAESkMzAVuCq3nUQkAugJjMfR1yY7LwKvAs+4GZMBUlJSePHFF/nrX//K1VdfTfny5enatau3wzLGmIIyFBiFY0h/gG+AR3Np71G+8icXLlwAsJEijTF+y90rL1+JSHc39wlNTwQAqroccOVm2zeBZ4FsZ9ISkTZAZHpHTOOaL774gjvuuANVJSQkhLVr1/LWW295OyxjjClwqhqnqsNVtZ1zGaGqcbns4mm+8htt27YFoFSpUl6OxBhjPOPulZefgf+JSACOGYsFx0TEuY2bGy0io4APnOt3A9G5HUREegHHVHWD88xX1ucDgDfIfbz+9LYPAw8D1KpVK6/mxZKqoqoEBARw8uRJduzYwR9//EGNGjWoWbOmt8MzxphCISJVcZwEawYEp29X1Rty2MXtfOVv0vu82JUXY4y/cvfKyxvAlUBZVS2vquXyKFwAHsAxpPJnziXcuS03VwO9ReQAMBe4QUQ+zPR8OaA5sNzZphOwUETaZX0hVX0v/axb1apV83yDxc2xY8fo0KEDs2fPBmDAgAFs3ryZGjVqeDkyY4wpdLOBnUBdYCyOSSfX5dLek3zlVzZv3uztEIwxJl/cvfJyCNimbvT0U9VY4HHIGD0sVFXP5rHPCGCEc5/OwD9U9e5Mz5/BkVRwtlnubGOjjTkdP36cqlWrEh4eTmRkZMawmIGBgV6OzBhjikwVVZ0mIsNUdQWwQkRyLF48yVf+JiEhwdshGGNMvrh75SUax9WOESLyVPqS2w4i8pGIlBeRUGArjhFcPOpgLyIviEhvT/YtSZ599llat25NfHw8AQEBfPbZZ/Tt29fbYRljTFFLn4fsiIj0FJErgMo5NS7IfOWr2rRpY/1djDF+zd0rL/udS2nn4oqmqnpWRAYAXwHDcQxVOcGVnZ0dJpc7H/8zhzadXYyl2Nq0aRP16tWjXLly9O7dm8suu8zuaTbGlHTjRKQC8DQwCSgPPJlL+3zlK3+QlpZmc7wYY/yaW8WLqo714BilRKQU0Af4j6omi4gNMF+A9u3bR5s2bXjppZcYPnw411xzDddcc423wzLGGK9S1cXOh2eALi7sUuzz1aZNm0hOTs67oTHG+CiXTr+IyH+cPxeJyMKsSx67v4ujk2QosFJEagPF6h5ib4iOjubTTz8FoF69esyaNYvBgwd7OSpjjPEdIhLlzFsnROSYiHwuIlG57FLs85UVLsYYfyeu9L0XkbOqWl5Ers/ueWdHSNcPKhKkqinu7FMQ2rVrp+vXF48+/QMGDGDp0qUcOnSI4ODgvHcwxhRrIrJBVS8ZcbEkE5GfgcnAHOem/sBQVe3oxmsUSb5yTgHwIo5b29ar6sy89vEkpz399NO89957nDt3zrNAjTGmCOSW01y98XUfOIqU7JY8Dl5FRCaKyEYR2SAibwEV3HsLJjU1lalTp3L48GEAXnvtNTZt2mSFizHG5Kysqn6gqinO5UMyzfeSlaf5SkSmO6/sbMuy/SYR2SUie0VkeB4vcysQgWOQgZi835pnrM+LMcbfudrnpWpuo4qp6hu57DsXWAn81bk+APgY6OrisQ0QExPD0KFDOXbsGCNHjrTJJY0xJm9fOYuGuYACdwBfikhlAFU9laW9p/lqBvAfYFb6BudQy5OBbjiKkXXO26wDgZez7P8A0AhYrarvisg84DvX36brfvnlFy5cuFAYL22MMUXC1eIlEAgDPBm+qoaqvphpfZyI3OHB65Q4e/bsYcmSJTz22GPUrl2bDRs20LRpU2+HZYwx/qKf8+fDzp/pOaw/jmIma/8Xj/KVqq4UkTpZNncA9qpqNICIzAVuVdWXgV5ZX0NEYoAk52pqXsf0lKraSJTGGL/mavFyRFVf8PAYS0WkP/CJc/12YImHr1WiTJ8+nbfffpv+/fsTHh5Os2bNvB2SMcb4PBFpDxxS1brO9XtxXE05AIzJ5opLuoLMVzVxTOycLgbIra/NZ8AkEbkWx9WfbInIwziLsVq1arkdVIsWLdi+fbvb+xljjK9wtXhx+zSNiJzDcWZLgCeAD51PBQDngX+4+5rFXUpKClOnTqVjx460adOG559/nmHDhhEeHl5kMagqqamppKSk5LgkJyfn+nxKSgqpqal5Lq60S0tLy/iZvuS2nlfbtLQ0VDXbx7k9l91jVb1kyWl7bm3SP/fcfrraJqvMZ1iznm3Naz0gIAARQUTy/TggIIDAwEACAwPdepx1W1BQEEFBQZQqVYpSpUp5/DgoKIgyZcoQHByc8TPrEhgY6OL/GuOD3sV5q5eIXIfjNq2hQGvgPRxFSQZfyFeqegF40IV27+F4D7Rr187tYZytz4sxxt+5Wrzc6O4Lq2o5d/cpKVSV5ORkEhISLlqOHz/OyJEj6dq1Kw899BDx8fGXtMm8JCYmkpSURHJyMklJSRc9zm5bbs+nFySpqYV2t0K+pP8BnPkP4ZzWs3tORDJ+pm/P/DjretbH6a+Z3R/nuW1ztQ2Q509X26TLrvBxZz1roeXp46yFZHJy8kWFqSuP039mLaALc9jXoKBCdVwFAAAOmUlEQVSgjEImpwInfSlbtixhYWEZS7ly5fJcDw0NJSjI3XmCjYsCM11duQN4T1XnA/NFZFPWxoWUrw4DkZnWI5zbvGrjxo2cOXPG22EYY4zHXMqcuVxid4mIVAIakGmUF1XN8bK4L0lISODMmTOcP3+euLg4zp8/f9Hi7ra4uDgSEhJyPVv+6aefZszhkpPSpUtftJQqVSrHx2FhYdk+n/Vn+lltV5f0M9iZl8DAwIyfuS2utElfMv+Bb0xmma8UZi7CXXmcmJhIYmJiticFcjtpkLnN6dOniY+PJz4+nnPnznH+/HkSEhJcjj84OPiS4qZXr148//zzhfiplQiBmYY4vpE/+7xAHnmvAPPVOqCBiNTFUbT0B+7y4HUKVPpJGWOM8VeFftpPRB4ChuE467QJ6AT8BNxQ2McuCOPGjWP8+PEutQ0LCyM0NPSiM6wVK1YkIiIiY3vZsmUJCQnJOGO7bt06FixYwPjx46lTp85FZ3Mzt8u8lClTxpKPMTiuOKUXzr4ybHhKSgpxcXEZxUzmxZVt9n+7QMwBVojICSAe+AFAROoDOV528DRficgcoDMQ7ux4P1pVp4nIYzj6zAQC01XV651NmjVrxm+//ebtMIwxxmNFcc/CMKA98LOqdhGRxsBLRXDcAtGrVy8uv/zyiwqSrAVKWFgYISEhLv3RkZKSwpQpU6hbty49e/YkJSWFU6dOUa1atSJ4N8aYwhYUFESFChWoUMGms/IWVR0vIt8BNYCl+uel7gAcfV9y4lG+UtU7c9j+JfClW8EXMuvzYozxd0VRvCSoaoLz1p8yqrpTRBoVwXELRKdOnejUqVOBvua7775Lx44d6dmzJ0FBQVa4GGNMAVPVn7PZtjuP3fw6X7li48aNnDhxwtthGGOMx4qieIkRkYrAAuAbEYkFStQ16zNnzvD6668zcuRIypQpw/Lly6lcubK3wzLGGHOxYp+vSpUqZSPpGWP8WqEXL6p6m/PhGBFZBlQAvi7s4/qSn376iZdeeolrrrmG7t27U6VKFW+HZIwxJouSkK8aN25sV16MMX6tSMfpVNUVRXk8bzp58iS//PILXbt25aabbmLPnj3UrVvX22EZY4xxQXHNV9bnxRjj7+wbrJAMHTqUfv36cf78eQArXIwxxnjdxo0bOXLkiLfDMMYYj1nxUoCOHj1KbGwsAC+//DLLly8nLCzMy1EZY4wxDsHBwZQuXdrbYRhjjMdseucCcv78eVq3bs3NN9/MtGnTqF27trdDMsYYYy7SoEED4uPjvR2GMcZ4zIqXfIqLi8uY92X8+PFceeWV3g7JGGOMyVZaWhoi4u0wjDHGY3bbWD6sXLmS2rVrs379egAeeOABmjRp4uWojDHGmOxt3LiRQ4cOeTsMY4zxmBUvHkifrLlly5bceOONVKpUycsRGWOMMXkLDQ0lODjY22EYY4zHrHhx0/Tp0+nTpw+qSsWKFfn444+pV6+et8Myxhhj8hQVFUXNmjW9HYYxxnjMihc3paSkEB8fz9mzZ70dijHGGOMW6/NijPF3VrzkITU1lTfeeIPFixcDMGjQIJYsWUKFChW8HJkxxhjjnk2bNhEdHe3tMIwxxmNWvOQhNTWVGTNmsHDhQgBExM5aGWOM8UthYWGEhoZ6OwxjjPGYDZWch9KlS7N8+XLrlG+MMcbvTZw4kYSEBG+HYYwxHrPixQWVK1f2dgjGGGNMvnXt2tXbIRhjTL7YbWPGGGOMMcYYv2DFizHGGGOMMcYvWPFijDHGGGOM8QuSPlt8SSAix4HfsmwOB054IRxPWbyFy+ItfP4Ws7/EW1tVq3o7CFN0cshprvCX3+ns+HPs4N/xW+ze4c+xg+fx55jTSlTxkh0RWa+q7bwdh6ss3sJl8RY+f4vZ3+I1Ji/+/Dvtz7GDf8dvsXuHP8cOhRO/3TZmjDHGGGOM8QtWvBhjjDHGGGP8ghUv8J63A3CTxVu4LN7C528x+1u8xuTFn3+n/Tl28O/4LXbv8OfYoRDiL/F9XowxxhhjjDH+wa68GGOMMcYYY/xCiS1eROQmEdklIntFZLi348lKRCJFZJmI7BCR7SIyzLm9soh8IyJ7nD8reTvWzEQkUER+EZHFzvW6IrLG+Tl/LCKlvR1jZiJSUUTmichOEflVRK705c9YRJ50/j5sE5E5IhLsS5+xiEwXkWMisi3Ttmw/T3GY6Ix7i4i08ZF4Jzh/H7aIyP9EpGKm50Y4490lIn8p6niNya/ilvt84XskK1fzoIiUca7vdT5fx8txu5wPfe1zdyc3+sLnXlC5UkTudbbfIyL3ejF2t/Nmfr6LSmTxIiKBwGSgB9AUuFNEmno3qkukAE+ralOgE/CoM8bhwHeq2gD4zrnuS4YBv2ZafxX4t6rWB2KBB70SVc7eAr5W1cZAKxyx++RnLCI1gceBdqraHAgE+uNbn/EM4KYs23L6PHsADZzLw8A7RRRjZjO4NN5vgOaq2hLYDYwAcP7/6w80c+7ztvO7xBi/UExzny98j2Tlah58EIh1bv+3s503uZMPfeZz9yA3+sLnPoN85koRqQyMBjoCHYDRUjQnW2eQz7yZ3++iElm84PhH3quq0aqaBMwFbvVyTBdR1SOqutH5+ByOL5GaOOKc6Ww2E+jjnQgvJSIRQE/gv851AW4A5jmb+Fq8FYDrgGkAqpqkqqfx4c8YCAJCRCQIKAscwYc+Y1VdCZzKsjmnz/NWYJY6/AxUFJEaRROpQ3bxqupSVU1xrv4MRDgf3wrMVdVEVd0P7MXxXWKMvyiOuc/r3yOZuZkHM7+necCNzvZFzoN86FOfO+7lRq9/7gWUK/8CfKOqp1Q1FkcBkbWoKJLYPcib+fouKqnFS03gUKb1GOc2n+S8pHkFsAaorqpHnE/9AVT3UljZeRN4FkhzrlcBTmf6hfa1z7kucBx433mJ/78iEoqPfsaqehj4F3AQxxfzGWADvv0ZQ86fpz/8P3wA+Mr52B/iNSY3fvU77GLu87X35E4ezIjd+fwZZ3tvcDcf+szn7kFu9KXPPTN3P2uf+TfIwpW8ma/YS2rx4jdEJAyYDzyhqmczP6eOoeJ8Yrg4EekFHFPVDd6OxQ1BQBvgHVW9Aogjyy1iPvYZV8JxZqIucDkQShGcZSlIvvR55kVERuK4hWW2t2MxpqTxl9yXmZ/mwXR+lQ8zKw65MStf/azzUlR5s6QWL4eByEzrEc5tPkVESuH48p6tqp85Nx9NvzTr/HnMW/FlcTXQW0QO4Lj8dwOO+2crOi/jgu99zjHw/+3dT4hd5RnH8e8PtGqLiOKqRJgGxVIqDUUkSASpVlRCSyG1xYBNsSvBXTcaUAQ3LnStC7GligttqUMsLVTd6KLaRXTUpjoxhRYRbMWI+C+ap4vzRm+nmUzuv9xznO8HDsy95/De5z5z5zzznPecc/lXVf2lPX6cbufd1xxfDRyqqrer6gjwO7q89znHsH4+e/t3mGQPsBPYXV/cT7638UonaRCf4TFrX5/e07h18PPY2/pzgP+cyoBHjFsP+5T3cWtjn/I+atxc9+l3MG7dnCr2zdq8vABc1O5E8RW6i4mWFxzT/2jnXz4I/K2q7htZtQwcu6PEz4AnTnVsx1NVt1XVlqpaosvn01W1G3gG2NU26028AFX1FvDPJBe3p64CXqWnOaabEt+e5Kvt83Es3t7muFkvn8vATe1OKtuBwyNT5guT5Fq60z5+UFUfjKxaBn6a7k4136C7ePL5RcQoTejLWPt6sx+ZoA6OvqddbfuFHG2foB72Ju+MXxt7k/c1xs31n4BrkpzbZp+uac+dchPUzen2RVW1KRfgero7IhwE9i46nuPEt4NuyvAlYH9brqc7L/Mp4HXgz8B5i471OLFfCexrP29tH9RV4DHgjEXHtybWbcBfW55/D5zb5xwDdwEHgJeB3wBn9CnHwKN05xwfoTuSd/N6+QRCd7eRg8AK3Z1i+hDvKt25uMf+7u4f2X5vi/fvwHWL/jy4uIy7fNlqXx/2I+u8jw3rIHBme7za1m9dcMwnXQ/7lvdxamMf8j6rWkl3fclqW36+wNjHrpvT7IvSBpAkSZKkXtusp41JkiRJGhibF0mSJEmDYPMiSZIkaRBsXiRJkiQNgs2LJEmSpEGweZEkSZI0CDYvkiRJkgbB5kXaQJJvJdmT5IIkZy86HkmS5sF6pyGweZE2djpwK/Aj4P21K5MsJfkwyf5Zv3CSs5LsT/JJkvNnPb4kaXNKsiXJT9Y8PXW9s25p3mxepI1dADwErALrHYk6WFXbZv3CVfVhG/fNWY8tSdrUrgK+u+a5qeuddUvzZvMiNUmebkeL9if5KMkNAFW1D3i8qv5QVe+dxDhLSQ4k+VWS15I8kuTqJM8leT3JZeNsJ0nSLCXZAdwH7Go1bytMVO++luTJJC8mefk4MznSzNm8SE1Vfa8dLXoAWAZ+O7LurTGHuxC4F/hmW24EdgC/BG6fYDtJkmaiqp4FXgB+WFXbquqNkXXj1LtrgTer6jtV9W3gjzMOVfo/Ni/SiCQ3AdcBu6vqsymGOlRVK1V1FHgFeKqqClgBlibYTpKkWboYODDlGCvA95Pck+SKqjo8g7ikE7J5kZokPwZ2AzdU1ZEph/t45OejI4+PAqdNsJ0kSTPRLqQ/XFWfTjNOVb1Gd93MCnB3kjtmEZ90Iv5zJAFJdgK3ADur6qNFxyNJ0hwtMYML6pN8HXinqh5O8i7wi2nHlDbizIvU+TWwBXiuXbx486IDkiRpTg4A57eL7C+fYpxLgOfbrZPvBO6eSXTSCaQ7vV7SpJIsAfvaxYrzeo1/AJdW1b/n9RqSJJ3IOPXOuqV5ceZFmt5nwDnz/JJKui8OOzrr8SVJGsOG9c66pXlz5kWSJEnSIDjzIkmSJGkQbF4kSZIkDYLNiyRJkqRBsHmRJEmSNAg2L5IkSZIGweZFkiRJ0iDYvEiSJEkaBJsXSZIkSYNg8yJJkiRpEP4LKRfhd9qasb4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAHbCAYAAADCsaUWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwcdf348dd7dtM7PdIjLW2T9D5pgFYoiNxCEcoplEMFqoCUIooIKF9ABPwWuSx8oYKliP4UUEQo5SoIiooFWqTYE0rv0vtu06bZ7Pv3x8ymk80m2U1ms7vJ+8lj6c5nPvOezxxJPu85RVUxxhhjjDHGmGznZLoBxhhjjDHGGJMMS16MMcYYY4wxOcGSF2OMMcYYY0xOsOTFGGOMMcYYkxMseTHGGGOMMcbkBEtejDHGGGOMMTkhnOkGGGOMMSZ18+bN6xEOh6cDI7GDkcaY5iEKLIhEIt8ZPXr0pkQVMpa8iEhb4HXgJFWtTDC+FfCWNz7S1O0zzZ+IdAE6AScAL6nq9uY8X2NM+vj+pv0M+IGqnpmgzlvABUH9zIfD4ek9e/Yc1r179+2O49hL24wxOS8ajcrmzZuHb9iwYTpwVqI6mTxSMxF4IVHiAqCqB4C/AhOatFWmWRGRl0Vkj/d5O270aOA6YDzw9eYwX2NMxkwEXgAS/k3z/A6YFOA8R3bv3n2XJS7GmObCcRzt3r37TtwzyonrNGF74l0KvCQiHUTkryLykYj8V0TO9tV50atnTIOo6nhV7eB9Tsq1+YqIisheEbknyfpvi8h+EflnQ+dpjGmQS4GXvO8dReQVEVkqIr8Skdjf2pnAxQHO07HExRjT3Hi/12rNUTKSvHiXhPVX1ZXAfuBcVT0COBF4QETEq7oA+FIm2mhym4hc5jvzsV9EKn3DO0SkNTAPeAR4GXg+i+dbqqq3evFXisgpvvldJCLbReR4AC9R+m4Qy2KMSU7c3zSAI3HPrg4HBgDnAXiXi7UWka6ZaKcxxjQHmTrz0g3Y4X0X4Oci8gnuPS69gUIA75KyAyKSn5FWmpylqk/HznwAPwdm+c6EdFbVclXdrqorVfU3QV2D3pTzFZHLgEeBM1T170G03xjTIP6/aQAfqOpy72/YM8CxvnGbgEOasnHGGNOcZCp52Qe08b5fCnQHRqvqYcBG3ziA1rhnZ4xpqMOA+c1pviJyNfAAcJqqvpeOeRhjkub/mwYQfymXf7iNV79ZWL16dfjMM8/s37dv35EjRowYdvzxxw/85JNPWs+dO7fN2LFjB5eUlIwsLi4e+aMf/ahXNBoF4OGHH+4qIqNffPHFqgOTv/vd7zqLyOinnnqqC8AzzzzTadiwYcOHDBkyfMCAASPuu+++brG6999/f7d+/fqN6Nev34hDDz102BtvvNEhNu7II48c8u6777ZrwlXQIl1wwQUlBQUFpYMGDRqRrjihUGj00KFDhw8cOHDEkCFDht9xxx2FlZV13VJmGqKu9Txr1qz8/Pz8w4YOHTp86NChw4855pjBADfccMMhbdu2PXzdunVVD/5q167d4bHvtf1eAPjkk09aH3/88QOLi4tHDh8+fNjXvva1/mvWrEnpAWIZSV68o80hEWmD+9SlTapaISInAsWxet6p9S2qWpGJdppm4zDg42Y032twn2h0sqrOTUN8Y0wK4v6mARwpIv28e10mAP8E8C6J7gmszEhDAxaNRjnrrLMGHnfccbvXrFmzYOHChYunTJmy7osvvsg799xzB950000bVq5cuWDBggWL3n///Q733ntv99i0gwYN2vfMM88UxIafffbZgiFDhuwDKC8vl+uvv7541qxZny1dunTRggULFp166qm7wU1qnnrqqe7vvffe0hUrViycNm3aqssvv7zf6tWr7dUPTWjixIlbZs6c+Vl99WbNmpV//vnnlzQkTuvWraNLlixZtGzZsoVvv/32p2+++WanG2+80c5aBqy+9TxmzJg9S5YsWbRkyZJF77333qex8s6dO0fuvvvuwvh4df1eKCsrk/Hjxw+6+uqrN69atWrBokWLFk+aNGnzhg0bsj958czGPZX+e2CMiPwX+BawxFfnROCVDLTNNBMi0hEooYmTlzTP96vAHOC/aYhtjGmY2N80gA+B/wMWAyuAv3jlo4E5mXr8/+OPP14waNCgEaFQaPSgQYNGPP744wX1T1W7WbNm5YfDYb3ppps2x8qOPvrofYsXL24zZsyYPeedd94ugPz8/Oi0adNWT506tVes3lFHHbXnP//5T/vy8nLZuXOns3LlytYjRowoA9ixY4cTiUSksLAwAtC2bVstLS0tB7j//vt7/u///u/aXr16RQCOPfbYsgsvvHDrAw880KMxy2JSc/rpp+/p3r17o/fjZOP07t07Mn369JVPPfVUj9gZPBO8VNbzxRdfvHXmzJkFGzduDPnLa/u9MG7cuD1PPPFEwRFHHLHnkksu2Rkbd+aZZ+7+0pe+lNIVVplMXh4FLlPVLap6tKoeqqpXqOow302PlwCPZ66JphkoBXbjdiBSJiJ/8574lehT1xO9GjXfelwDDAam+x5uYYzJrNjftL+p6nGqeoaqDlHV76pqrBfwTeCxTDTu8ccfL7jrrrt6P/jgg6vLyso+evDBB1ffddddvRuTwHzyySdtS0tLy+LLFy5c2OaII46oVj5ixIjysrIyZ9u2bQ6AiHDcccfteuGFFzr+4Q9/6Dxu3Liqe4YKCwsrv/rVr+4oKioaNX78+H7Tpk0riF3GsmzZsrZf/vKXq8X+0pe+VLZ48eK2DV0OkxuGDx9+oLKyEv+lSiZ48et57ty5HWKXjd188809Y/U6dOhQefHFF2+ZMmVKtbMvtf1eAFiwYEHb+N8NDZGxHUBVPxKRd0QkVMdLKl9U1U8TTG5Msg4DPlHVBj1OVFVPCHK+InIvcAzuZSMTG3hJ5EbgZODvuB2haxrYRmNMQOr7m+ZZoKp/bdKGee6///5e06ZNWzl+/PjdAN6/K2+44Yaiq6++elsm2nTppZdu++Uvf1m4e/fu0C9/+cs1d955Z9WZmeeee27VBx98sOm1117Lf/jhh3u+9dZbHf/85z+vzEQ7s9XEiRP7LliwIND7e0aOHFk2Y8aMNY2NM2rUqKEHDhxwysrKnJ07d4aHDh06HOCee+5Ze/755+9qfEubpyOPPHLIN77xjS3f+973tpaXl8tXvvKVwZdffvnmSZMmbdu9e7dz8sknD7ryyis3XXnlldu3bt0aOv300wdee+21Gy+77LId69evD5999tkDvv/972+45JJLdq5evTpcVFTU6LNjY8aM2fPOO+8sSzTulltu2VRaWjr89ttv39DY+aQik2deUNUZdb2kUlV/29RtMs1O1tzvIiKlQG9V/Qru5ZENfkGlqn6Bm8CME5GHGtNQY0ww6vqb5o3/dVO2x2/58uVtTj311D3+slNPPXXP8uXL29Q2TX0OPfTQffPnz6/ReR4+fPj+jz76qFr5okWLWrVr1y5aUFBQdS3KiSeeWLZkyZK227ZtC48aNao8Ps6RRx6574477tj09ttvf/r66693ARg4cOC+f/3rX9Viz507t92wYcOazUMQmoNPPvlkyZIlSxY99thjq0455ZQdsXsmGpO4LFq0qFUoFKJ3794ZueyypUhlPXfr1q3y3HPP3XbfffdVXbZZ2+8FgBEjRtT43dAQdurNNHelwLQsme8xuNfFA7wOXIH7GNUGUdXVInIS8K6I7FfVHzc0ljGmeevfv//+2bNnd4ideQGYPXt2h/79+zf4aZ7jx4/ffdttt8n999/f7cYbb9wC8P7777cdPnz4/gcffLDXiy++mH/OOefs3rNnj1x77bVF1113XY2js3fdddfatm3bVjtDvXPnTucf//hH+zPPPHN3LOYhhxxyAOCGG27Y8JOf/KTPkUce+WnPnj0r33vvvbbPPfdc1zlz5iyJj93cBXGGJFd88cUX4SuvvLL4iiuu2OQ4GT3unlYffPDB0tj31q1bq384Pz8/6h/u2rVrpX+4V69eEf9wQ866NGQ933rrrRvHjBkzrLKyUqD23wvbt28PXXnllVsfeuihns8++2yniy66aCfAa6+91qFbt26RVO57seTFNGuqOiaL5tsFWO993wkkc615OTBPRB5W1dtUtSRuPiuAvrFhEXkTGAt80JB2G2OapxtvvHH9NddcUwKsPPXUU/fMnj27wzXXXFNy2223rWtoTMdxmDlz5ueTJk3qO3Xq1J6tW7fWPn36lD/yyCNrXnjhhWWTJ08u+v73v58XjUa54IILtv74xz/eFB/jwgsvrHEkPhqNct999xVOnjy5uE2bNtF27dpFn3zyyRUAl1566c61a9e2Gjt27DAR0fbt20dnzJixori4uOoS3HPPPXdQOBxWgCOOOGLPa6+9tryhy2gSGz9+fL85c+bkb9++PVxYWDjqlltu+eIHP/jBliDjlJeXO0OHDh0eiUQkFArphAkTtt5xxx0bg1+alq2x67lXr16R008/ffuTTz5ZCHX/XujQoYO+9NJLy773ve/1vfnmm/uGw2EdNmzYvmnTpq1Opc3SwFsBjDEpEpFJwB5V/a2IjAauUNXJmW6XMSY3zZ8/f2VpaWnSHcbHH3+84P777++1fPnyNv37999/4403rs/U/S7GGFOX+fPndystLS1JNM7OvBjTdN4DbgB+C5wG/CuzzTHGtCRXX331NktWjDG5rvleOGhMllHVj4GNIvIPYATw5ww3yRhjjDEmp9iZF2OakKr+KNNtMMYYY4zJVXbmxRhjjMlN0Wg0ai+qNcY0K97vtWht4y15McYYY3LTgs2bN3eyBMYY01xEo1HZvHlzJ2BBbXXssjFjjDEmB0Uike9s2LBh+oYNG0ZiByONMc1DFFgQiUS+U1sFe1SyMcYYY4wxJifYkRpjjDHGGGNMTrDkxRhjjDHGGJMTLHkxxhhjjDHG5ARLXowxxhhjjDE5wZIXY4wxxhhjTE6w5CXNRGSciCwVkWUickuC8TeIyCIR+URE/ioixb5xlSLysfeZmYG2XS4im31t+I5v3GUi8pn3uayJ2/WQr02fisgO37i0rTMRmSEim0Qk4bPHxfWw1+5PROQI37h0rq/62nWp157/ish7IlLqG7fSK/9YROYG2a4k23aCiOz0bbPbfePq3A/S3K4f+dq0wNuvCrxxaVtnItJXRN7xficsFJHrE9TJyH5mjDHGZAVVtU+aPkAI+BzoD7QC5gPD4+qcCLTzvl8DPOcbtyfDbbsc+L8E0xYAy71/u3jfuzRVu+LqXwfMaKJ1dhxwBLCglvFfA14DBBgLvJ/u9ZVku46JzQ84PdYub3gl0C2D6+wEYFZj94Og2xVXdzzwdlOsM6AXcIT3PR/4NMHPZUb2M/vYxz72sY99suFjZ17S60hgmaouV9UDwLPA2f4KqvqOqpZ5g3OAPtnStjqcBrypqttUdTvwJjAuQ+26GHgmoHnXSVXfBbbVUeVs4LfqmgN0FpFepHd91dsuVX3Pmy807T6WzDqrTWP2z6Db1ZT72HpV/cj7vhtYDPSOq5aR/cwYY4zJBpa8pFdvYI1veC01OyJ+38Y9ohrTRkTmisgcETknQ20737s05XkR6ZvitOlsF94ldv2At33F6Vxn9amt7elcX6mK38cUmC0i80Tkqgy16WgRmS8ir4nICK8sK9aZiLTDTQD+7CtuknUmIiXA4cD7caNyYT8zxhhj0iKc6QYYl4h8AxgDHO8rLlbVdSLSH3hbRP6rqp83YbNeBp5R1XIRuRp4GjipCedfn4uA51W10leW6XWWtUTkRNzk5Vhf8bHe+uoBvCkiS7yzEk3lI9xttkdEvga8CAxqwvnXZzzwL1X1n6VJ+zoTkQ64CdP3VXVXkLGNMcaYXGZnXtJrHdDXN9zHK6tGRE4BbgXOUtXyWLmqrvP+XQ78DfcobJO1TVW3+tozHRid7LTpbJfPRcRdzpPmdVaf2tqezvWVFBEZhbsNz1bVrbFy3/raBPwF93KtJqOqu1R1j/f9VSBPRLqRBevMU9c+lpZ1JiJ5uInL71X1hQRVsnY/M8YYY9LNkpf0+hAYJCL9RKQVbkeo2hOwRORw4HHcxGWTr7yLiLT2vncDvgwsauK29fINnoV7/T3AG8CpXhu7AKd6ZU3SLq9tQ3FvSv63ryzd66w+M4FveU+DGgvsVNX1pHd91UtEioAXgG+q6qe+8vYikh/77rUr4dO30ti2niIi3vcjcX8nbSXJ/SDNbeuEeyb0JV9ZWteZty6eBBar6oO1VMvK/cwYY4xpCnbZWBqpakREJuN2IEK4T8VaKCI/A+aq6kzgPqAD8CevD7daVc8ChgGPi0gUt0M3RVUD64gn2bbvichZQAT35ubLvWm3ichduB1MgJ/FXVaT7naB25l9VlXVN3la15mIPIP7dKxuIrIWuAPI89r9K+BV3CdBLQPKgCu8cWlbX0m263agK/CYt49FVHUMUAj8xSsLA39Q1deDaleSbfs6cI2IRIB9wEXeNk24HzRhuwDOBWar6l7fpOleZ18Gvgn8V0Q+9sp+AhT52paR/cwYY4zJBlK972eMMcYYY4wx2cnOvBhjjDE5aN68eT3C4fB0YCR2GbgxpnmIAgsikch3Ro8evSlRBUtejDHGmBwUDoen9+zZc1j37t23O45jl1EYY3JeNBqVzZs3D9+wYcN03Puta7AjNcYYY0xuGtm9e/ddlrgYY5oLx3G0e/fuO3HPKCeu04TtMcYYY0xwHEtcjDHNjfd7rdYcxZIXY4wxxqRs2bJleUcdddTgAQMGjBg4cOCIu+66q0ds3MaNG0PHHHPMoOLi4pHHHHPMoM2bN4cAotEol19+ed+ioqKRgwcPHv7Pf/6zXeaWwCRjy5YtoXHjxvXv16/fiP79+49466232oNt4+bkggsuKCkoKCgdNGjQCH95Q7bxI4880rW4uHhkcXHxyEceeaRrOtpryUuWEJGrMt2GRKxdqcvWtmVruyB725at7YLsbptpGfLy8njggQfWfv755ws//PDDxU8++WSPefPmtQG44447ep1wwgm7V61ateCEE07Yffvtt/cE+NOf/tRp+fLlbVauXLlg2rRpqyZNmlSU2aUw9bnqqqv6nnrqqbtWrFixcNGiRYsOO+yw/WDbuDmZOHHilpkzZ34WX57qNt64cWPo3nvvPeSDDz5YPHfu3MX33nvvIbGEJ0iWvGSPbO2IWLtSl61ty9Z2Qfa2LVvbBdndNtMCFBcXVxx77LFlAF26dIkOGDBg3+rVq1sBvP76652vvvrqrQBXX3311tdee60LwEsvvdT50ksv3eo4DieffPLeXbt2hVetWpXnj7tr1y7nhBNOGDhkyJDhgwYNGvHrX/+6S1Mvm3Ft3bo19P777+d///vf3wLQpk0b7datWyXYNm5OTj/99D3du3ePxJenuo1ffPHFTscdd9yuwsLCyu7du1ced9xxu1544YVO8XEnTZrUe8CAASMGDx48/KqrruqTanvtaWPGGGOMaZSlS5e2WrRoUbvjjz9+D8DWrVvDxcXFFQB9+/at2Lp1axhg/fr1eSUlJQdi0/Xq1evAqlWr8mJ1AV544YWOPXv2rPjb3/62zIsV+JFbk5ylS5e2KigoiFxwwQUlixYtajdq1Ki9v/71r9d07Ngxatu4+Ut1G69bty6vT58+VeW9e/c+sG7dumqJ64YNG0Kvvvpql+XLly9wHIctW7akvO1bVPIiEn9jo8TXqPZdYmVC4vK46aRa3cT1pFr9g+UhaUObUGetvW71tlYb1kQRD36pOS21DvsjiEA7yacgXKjx09SIE7+aaosrKbRBADRh/c6hDvRp3aNqfYmvQvW6WnNeydZNuExax3h3+h6t2jG4fYEenFf13U68uonig1ZrX7X5SnwZIAli11LWu10rRhW0r1qhQuIfh0Tz8u1kvu0TP73W2M5Vy14tXs1l7NtZGN0npHVOV8tOIzXqxG/gGg2v+q5xP7Px0xcVhhk9tK3WmEm1uAfHqUjc/P11fOOqppeqOkp8XZAa08ViC32LChg9uqTaSo/9rM+bt+INVR2HaTEmTryy74IFCwK9t2DkyJFlM2b8ek199Xbu3Omcd955A6ZMmbKmoKAgGj/ecRxvX07OEUccse/WW2/te8011/Q+++yzd44bN25Pik1vlv76k9/23frpukC3cdfBvctO/vm3at3GkUhEFi9e3G7q1KmrTzrppL1XXHFF39tuu63n1KlTv/DXs20cjOic7/bVHYsC3cbSeXiZM/ZX9f4c1yfVbVybrl27VrZu3To6YcKEkjPPPHPHhAkTdqYao0UlL273IM/rADhI7Ko5caqGRWJX0jmIhKqVxb7XLA8h4uB408TqOuK447z5ON50DrF/D07veP8JIW/uDo46VfVidR11a4lXu3qZHCyLDYv4l9RXRtVOGPvuAI7467ldplh9cFfdwXJ809dfjjeuqrxaTK2atlq519E9GFOrphWv8+y2++D0/nIRrRrvLpdXt85yjWuXHpx/1fDBGMTmU2N6X5n3rzuv6uWxujXq+YYT1RVHcSRavcwrr2qrRKvK/HHd4WhVXf+08eUkqusoONGDMX3Dse+11cVJXIbjzcOb58G4Cg5V83c3VtWG5+CPrBz8xAodAcfxPrGN6FR91HHACSUojy8LoVUxQ+5wrLyqrvc9YVnY+x4+WC5hr9wtUycMcWUiYXDy3H8ljPjKRcI4Ej74O0fCON58w/KNbhjTBMrLy+WMM84YcMEFF2y77LLLdsTKu3btGokdbV+1alVeQUFBBKBXr14VK1eubBWrt379+lb+I/IAo0aNKv/oo48W/fnPf+5022239X7rrbd23X///eubbqlMTElJyYHCwsIDJ5100l6ACRMmbJ8yZUpPsG3cEqS6jXv37l3x97//PT9Wvm7dulbHH3/8bn/MvLw8Pv7448UzZ87s+Pzzz3eZNm1ajzlz5nyaSrtaWPJijDHGND/JnCEJWjQa5aKLLioePHjw/p/+9Kcb/eNOO+20HY8//njXn//85xsef/zxruPGjdsBcNZZZ+147LHHelx55ZXb3nnnnfb5+fmV8R3blStX5vXo0SMyadKkbV26dKl88sknLRkH6jpDki5FRUWRnj17Hpg/f37r0tLS8tmzZ3ccMmTIfrBtnA5BnCEJUqrb+Jxzztn5s5/9rHfsJv2///3vHR966KG1/pg7d+509uzZ40yYMGHnKaecsmfAgAGHptouS16MMcYYk7I333yzw4svvth10KBB+4YOHToc4M4771w3YcKEnXfeeef6c889d0BxcXG33r17H/jLX/7yOcCFF16485VXXulUXFw8sm3bttHp06evjI87b968tj/+8Y/7OI5DOBzWxx57bFUTL5rxeeSRR1Zfeuml/Q8cOCBFRUXlzzzzzEoA28bNx/jx4/vNmTMnf/v27eHCwsJRt9xyyxc/+MEPtqS6jQsLCyt/9KMffTF69OhhADfddNMXhYWFlf557dixI3TmmWcOLC8vF4C77ror5YRNVFvO+61ERO2yMbtszC4bs8vGWsBlY/NUdQymWZs/f/7K0tLSLZluhzHGBG3+/PndSktLSxKNs0clG2OMMcYYY3KCJS/GGGOMMcaYnGDJizHGGGOMMSYnWPJijDHGGGOMyQmWvBhjjDHGGGNygiUvxhhjjDHGmJxgyYsxxhhjGiwSiTBs2LDhJ5544sBY2ZIlS1qNGjVqaFFR0cgzzjij//79+wVg3759csYZZ/QvKioaOWrUqKFLly5tVXtkkw3uvPPOHgMHDhwxaNCgEePHj+9XVlYmYNvYZI4lL8YYY4xpsLvvvrtw4MCB+/xlN9xwQ5/JkydvXL169YJOnTpFpk6d2g1g6tSp3Tp16hRZvXr1gsmTJ2+84YYb+mSm1SYZK1asyHviiScKP/7440WfffbZwsrKSpk+fXoB2DY2mWPJizHGGGMa5PPPP8974403Ol155ZVVL8uMRqP8+9//zr/iiiu2A0ycOHHryy+/3Blg1qxZnSdOnLgV4Iorrtj+3nvv5Uej0WoxV61alTdmzJghQ4cOHT5o0KARr7/+eocmXCQTp7KyUvbu3etUVFSwb98+p0+fPhW2jU0mWfJijDHGmAa59tpr+/7iF79Y6zgHuxMbN24M5+fnV+bl5QFQUlJyYOPGja28ca369et3ACAvL48OHTpUbty4MeyPOWPGjIKTTz5555IlSxYtXrx44VFHHVXWdEtk/Pr161dx7bXXbujXr9+oHj16lObn51eed955u2wbm0wK11/FGGOMMdnsvu/+tu+KRV+0CzJmv+GHlP3oV99aU9v4Z555plO3bt0iX/nKV8pmzZqVH9R8x44du/fqq68uqaiocL7+9a9vP+aYY/bVP1Xzt/n/ft73wOrlgW7jVkX9y7pP/kmt23jz5s2hV155pfOyZcv+27Vr18ozzjij/2OPPVZw7rnn7mrMfG0bm8ZoacnLG0pFN9Qd0Fip1lbdGGNy0pb6qxjTOP/85z87vPnmm5179+7dqby83Nm7d69z9tln9/vLX/6yYvfu3aGKigry8vJYuXJlq8LCwgMAhYWFB1asWNFqwIABFRUVFezZsydUWFgY8cc9/fTT97z77rtL//znP3eaOHFiv8mTJ2+cPHny1swsZcv28ssvdywqKio/5JBDIgDnnHPOjvfee6/Dd7/73W22jU2mtKjkRVXHZboNxhhjTNDqOkOSLo8++ui6Rx99dB3ArFmz8h944IHCl156aQXA2LFjdz/11FNdrrrqqu0zZszoeuaZZ+4AOOOMM3bMmDGj6ymnnLL3qaee6nL00Ufv9l9yBvDpp5+26t+//4Ef/vCHW8rLy+Wjjz5qB7T4jm1dZ0jSpaSk5MBHH33UYffu3U779u2jb7/9dv7o0aPLHMexbWwypkUlL8YYY4xJvwceeGDthAkTBtx99929R4wYUXb99ddvAbj++uu3nH/++f2KiopGdurUqfK55577PH7aN954I//hhx/uGQ6HtV27dpW///3vVzT9EhiAk046ae/48eO3jxo1alg4HGbEiJHE8kAAACAASURBVBFlN9xww2awbWwyR1TtmiljjDEm18yfP39laWmpXSJojGl25s+f3620tLQk0Th72pgxxhhjjDEmJ1jyYowxxhhjjMkJlrwYY4wxxhhjcoIlL8YYY0xuikajUcl0I4wxJkje77VobeMteTHGGGNy04LNmzd3sgTGGNNcRKNR2bx5cydgQW117FHJxhhjTA6KRCLf2bBhw/QNGzaMxA5GGmOahyiwIBKJfKe2CvaoZGOMMcYYY0xOsCM1xhhjjDHGmJxgyYsxxhhjjDEmJ1jyYowxxhhjjMkJlrwYY4wxxhhjcoIlL8YYY4wxxpicYMmLMcYYY4wxJidY8mKMMcYYY4zJCU2evIjIDBHZJCILfGX3icgSEflERP4iIp19434sIstEZKmInOYrH+eVLRORW5p6OYwxxhhjjDFNKxNnXn4DjIsrexMYqaqjgE+BHwOIyHDgImCEN81jIhISkRDwKHA6MBy42KtrjDHGGGOMaaaaPHlR1XeBbXFls1U14g3OAfp4388GnlXVclVdASwDjvQ+y1R1uaoeAJ716hpjjDHGGGOaqXCmG5DAROA573tv3GQmZq1XBrAmrvyoRMFE5CrgKoD27VuPHjKkZ/0tkKr/1U01qWq+oJmJiSYbMIMxU4mXZExNIWbS2zyaQsxkjg1oCu0UkCTXZSZjilDnuqyKk+I+VFczNfaPJv/jk66Y9VCU5Jddkp73Rx+t3qKq3ZOsbpqBbt26aUlJSaabYYwxgZs3b16tf9OyKnkRkVuBCPD7oGKq6hPAEwCHH95L3/nrJbG5Ua0DobFh8Y2P/eMvjw07oJXgOL4yP0nQP/HFkESdF4FoBJxQkjFjnUT1tTNBTK30daSTiVlXG721oerr9MbVU4mr7ItbZ0wSLIe3fP6Y8d25WtdlbLlrGV81q9iMfdtZ/B1M//JEE3T2Y9OJr2Me195q8eLaUWvM2Pi4ecTGSVw977sCEo1tH3/dWGjfdlPHt+L901T/+VAEqUrcNK69Xpwau1bcz1hVM7342sDtU7WzxJbNtw8HvC6r2klsPcXHlYPrU6Haz4RUrxbbN9x16T9IET9f//Lgm6/EtbO6Tt0eXJVwhGm2SkpKmDt3bqabYYwxgRORWv+mZU3yIiKXA2cCJ6tW9QDXAX191fp4ZdRRXiunbDutP/qTr8TfcYlPTuKHq1rqK9bqHadqMWvr4MbCqG86X3lUwfHHjGtjfH+wWj+rlpjxHaJal9trt/8Ie63tjJ+0luWuluTE1a1xTDk+ScnU9tG49ZzC9qlVHTFT2T7VgtTVTmrpbHv1YlWj/u2ToFOssSP/6u0L8UmFr52xPBNFJMHyxLfRv87r3d9T3D4J2xgfs9qC1rN94r/GrUvh4M9E1Xzj9lP/PP3JS43V42ujRt2DGXWerZIE29oYY4xpnrIieRGRccBNwPGqWuYbNRP4g4g8CBwCDAI+wP3TPkhE+uEmLRcBl1CffQdg4eokG0VtBzgbLpmYUZK/E6mOPmfSEiVDycSMzx/qm0e9Mb2OcSoxs337JBkzlVVZY8JEw7GOdG3tjN8etW0f9f0j9bQyLqfSIPbNuuZRmwZsn2pXw6XaXvH9E5+LNWL71DjB4m9nLfmLyTzvb9lUIARMV9UpceOLgKeBzl6dW1T1VREpARYDS72qc1T1u03VbtMyRVf+EV34C9i1FDoOQUbchFNyocWyWIHESqcmT15E5BngBKCbiKwF7sB9ulhr4E1xjwLPUdXvqupCEfkjsAj3crJrVbXSizMZeAP3D8AMVV1Y37yj5WH2regaa0n1kdUOpGr1A6wJj/wDWgES9o1LELOqc5NETPViOnn1xnNH19LTijs6rESQqk2doJdT1dH0HYVPeATaPyICtcVs0LokroOcge2T6Ai4v7ICGvFixo33d6z967O+szFAlEqcurZPlRqnuxIMe9tcI0iidqYc05+RKLEed427QKqdFImiNc54JYoZwf3xrWX7+KcW786TWpMLb0Q0Ak79+6U7HLd9asze3eYpbR//z09sH6rW5iR/Jv0xD577SlDfH7zek88mjXxPwfwq7n2YH4rITFVd5Kv2P8AfVXWa94TMV4ESb9znqnpYU7a5OcrWjlxQsQKNM/9OnLGPQfdjYPN7ROdMco+rpBjPYlmsWuOlKRFq8uRFVS9OUPxkHfXvAe5JUP4q7i/+pFVGwuzZ0DWuNFHHobYeksYNKSIJrvWvLWbCo9FxMdWLWUOipMN/aDxxvNRiJtdGt0SRGoeOG77cVYeaNcmY3rjqt5jEtzPqtTGZzrmvpI6YqlEcCcVPQo3L3fxXC1VLihLNL4r4YlZN2oiY7r0f8e30d6STObVWfdKabarW2oQhqufAcTHVu7ysRpJRy3In2t0T/Ew6ifb1OmLWFS8W07+vS4Jv9bWqulimW8+69Cf09bTTzZksecmwqqdgAohI7CmY/uRFgY7e907AF03ZwGzsjAcZK1s7ckHFCrJNuvAXOGMfQwqPdwsKj8cZ+xjRuT8Ei2WxGhkr6EQoXlZcNtZUohGH3Tvdvxs1uyhSx1BDr32p/6h7jVLfyY/UYtbexqaPmfpy169mTPV/84WtcfA7duS6RvJUdztrnIghttx1TRffoa3e844/+A8QVcVJKmZ8m2uP2djtkyhm3VJflzVqJXUQwBcz0TaP2z41l6Oe7aPV4wFEo77nctQbs3oba4uZ8CQn1ffX2mKqb6KkHhRnmkpv6n8K5k+B2SJyHdAeOMU3rp+I/AfYBfyPqv4jyMZlY2c86FjZ2pELKlaQbWLXUnd9+3U/xi1PlcWyWHEC3VcTaFHJS2XUYffe9knU9F8DFISEpx7qr05d3ZjkYiZ6+FVjY9Y8ClyXFJc96ZiZ2T71Jy+pqz+5jEnXunRj1hU1tTknuX285a7/CczZuX1qPwBS/89Ptep1Ssc2Nxl0MfAbVX1ARI4GficiI4H1QJGqbhWR0cCLIjJCVXfFB/A//r+oqCjpGWdjZzzoWNnakQssVpBt6jgENr8HsfUO7nDHIRbLYjU+VpD7agItKnmJqsO+A20DjJgbHYr6zjE0XDJRUz+Gn9XSsDLrS14aspclnxBlWrD7ULUzGgH9eKZjXebO9jEpqOvpmDHfBsYBqOq/RaQN0E1VNwHlXvk8EfkcGAzUeA6y//H/Y8aMSX4vz8bOeNCxsrUjF1SsANskI24iOmdSjTNeUnqHxbJYjY4V6M9PAi0qeVF12F/RKrnKiW4xCbY5CaWro+QEHTPYcE2qUW1PdeLUr8hr2njNTDoSdXfVBnw2J/CIJgt8SP1PwVwNnAz8RkSGAW2AzSLSHdimqpUi0h/3yZrLA21dNnbGA46VrR25oGIF2San5EKi4J7hit1rVHpHg+5HsFgWK16giVCi+BrU4ckcMKh9gT409NRMN6PJ2VHe7Ja+7ZM4aIN+4tOVFaQn00heffPXFJuZyomkoGJ68c76z7PzVHVMitFNgETka8AvOfgUzHtE5GfAXFWd6T1h7NdAB9wtd5OqzhaR84GfARW4j5i7Q1Vfrm9+Y8aM0WRfUlnbvSUN6Zxka6yqeFn2IIEgY+XKo2yNaey+KiK1/k1rUcnLwHZd9f4h4zLdjCZnR3mzW0vePkH/9nHXZYBrM5a8BLmB0nQl5Xkf/96SlxYmleQFsrMzHnQsY0zzUFfy0rIuGwMi0VTeYNeE/Pc4B9xRyvrOVzKPompozGxebi9mTm6fwLKO7E/b/E/3Cj6wMU3HKbkwkCf9ZHMsY0zz18KSFyFS4z0irmQe7htfJ9BOpzcT1TT0t3MhZuzSqSA7dDnQ4cyZ7QMJX9XSqJg5ciN8op9JyzuMMcaYzGhRyQsK0Rov2Wt8zMC11Ji50MaWHjNoLXW5a2jI76WcXFBjcoqqgkZBKw9+8IajsbLowTJ/ub9Mo245UV+86MF6VeO0xjhNOF3UV5ZguNp3Tb0e+MbrwXo1YqmvHm57q+qrb7z64sSVV6tD9TpV08X+pWa5/+hvneOqbdlkd4Dax1U7Uia+YaHqd3q1FzEnqCMCOCC+D87B6aqVxb5XLxdxDsZxwiBhkJD3PXTwUzWcaHxcmZMHTh7itAKnlTec6N+4spBXJnmIk+CF3gFpUcmLApVJJi+ZusE96CPHClUv6Q5US71RI1fWpW2f4EKm4WeSJGPWfUtiS9zAJhuoKkQPQLQcKg+AVkA0AtEKr7wCNDZc4SuPgFag8WXRioMxNOJ1/v3DEa/THvGVufPQaFx51fT+6bzh+ORCfXFjyYXGTxPN9OpOg/hOcVwHutp4fwfbVy9RDH+5fz41YvjKq+LElYvj/Yrzd/ITJQX+cVQfTjhN3HpItG7iSxL8slb1JUaJEiu3UuLv8cmVPzmMfY8mSijjk053eq2W1Hr7b7V9v7L6z5BWJljuxBp1iEwccFohh/8cZ/DVjYlUQ4tKXgA0yeQl6ecYpOGAaYN2ljomavDO18QHdhvaFUv6wEhQMRsWMidi1rffN2R91hmzwQvewOkaGC/on0lI4XeMMQGKfvYkuuB/oUN/pH1ftLIcNv4d2h4CbbpC5T7YsQhadYZwO4jsg/0bwGntBqjc73aAmoKTBzhuxyvc3j2qqwqRPdCmG4TauQnU/q3QoditE9kDZeug03DIy4fy7bB3NXQd7Y7ftwl2fwY9voLktUf3roWdi6H3GUi4Lbp7OexcAEXnI6E26M7FsH0+9P8W4uSh2+bD9v8gg78LEkK3fADbP0aGXg8i6MZ/wI7/IsN/6B7B/mI2unMRzshbQBx0zUx092c4h/7EnX7ln9A9K3BG3eYOL/8duncNzmE/BRyin/0a9m/COewuEIfo4qlQscsbDhFdMAWi5TiH3eOOn/9TEDk4/NHNEGqHc7g3/MF1SOuuOIf9zN0f5lwN7fq48wei702E/ME4h97iDv/zMuhyKM6IG93N/49LkG5H4gz7vjv89wuQwhNwhl7rDr9zDtL7aziDr3KH/3oGUvx1nIFXuMNvjUP6X4rT/5totILo2+ORAZfh9LsYjZQR/dt5yKDv4BR/HT2wk+i7E3CGXIP0PRvdv4XoP7+BM/R7SJ+vofs2EP3X5TjDb0AOORXdu5bov7+DM/ImpOdJ6J4VROdcg3PorUjhV9BdnxL94Hs4pT9Fuo9FdywkOveHOIffg3QdjW6fT3TezTij70W6lKJb5xH9z63ImAeQziPQzXOIzv8pzpEP43QcjG78B9H/3oMzdhrSoR+64W2iC36Bc/R0pH0f9IvZRBc9iPPl3yBte6JrXyW65GGcY/8f0qYbuuYlokun4Rz3HNKqE9FVz6OfTcc54S9IuB3RFc+gnz+Nc9LLiJNHdPnv0OW/J3TK6+62WfYUuup5Qie/4g5/+gS67lVCJ77oDi95FN34N0LH/8kdXvxLdMsHOMf+HjSKLrof3f4JzthpoJXowgfRPZ/jjL4PohVEF/8Syr7AOfTH7vCnv4IDO3AGXQUaIfr5byCyHym5EKIV6Ko/gVYih5zmDq99BcRBOh8a+K+GJk9eRGQGcCawSVVHemUFwHNACbASuFBVt4ub7k4FvgaUAZer6kfeNJcB/+OFvVtVn05m/tHAD8sGG675xkyid1h1lCVAGV/uZhIztn3sUkFjctvGv8H+zRApQ8vWuQlC5X630x/NP3j5R5sebocMYNM/ocsopOMQVCth7SvQ48tIl0PRyv2w4g9wyGluh69iN3w2HSk+H+l6BFq+FV38MDJgItJtDFq2Dl34C2To9Uj3I9HdK9BP7kRG3Y50+xK6YzH6n1txxvyiWgfSSdCBlFQ6kGN/Vb0D+aWHqncgj/h59Q7kqNsOdiAP7MAZcePBDmT5ZpyhkwGIhtqg+zfhDLzcHa4sR8u3VD0tLbpvAxzYhvQ5AwDdtRQqdiI9T3KHt3yIVOxGuo91h9f/FYnsQbqUAiBtukO0HOk4yB1u1Rk0irR334cq4fZQGULadHOHQ26SKXkd3H8l7HYgHbe7F+jTGE1OEhE3UZYQImEkryMAGm6PhNog7Xq79Vq7BzOk4HB3eO0sCLVDertP7ZVN/4LK/TgDvgVAdNcSgKpEN7p/E4TaID3iXkIbxDI09aOSReQ4YA/wW1/y8gvcF3RNEZFbgC6qerP3zPzrcJOXo4CpqnqUl+zMBcbgdivmAaNVdXtd8y5p213v6Hd22pYtCC31ap+cksIGSlS1xk9cChs9qXjpipmCpJfbBGbi4iftUcktTKqPSjbGmFyRVY9KVtV3RaQkrvhs4ATv+9PA34CbvfLfqpthzRGRziLSy6v7pqpuAxCRN4FxwDP1zb+ygalBUyYU6Ti4bQlRUDR3juznRHJge6Yxxhhjkpct97wUqup67/sGoND73htY46u31iurrbxeKZ9o0mr/1BiVK2+uz4l+bE7IkQ1uspgdTjDGGGMaKluSlyqqqiISWF9bRK4CrgIoCHcI/FHJ6bjqzh48ZZo97/6ZdLyTJfgXaQbNfhqNMcaYhsqW5GWjiPRS1fXeZWGbvPJ1QF9fvT5e2ToOXmYWK/9bosCq+gTwBEBxm+6qAXQc/H2idHRDcuMKoqBTolgLW1rMdOxNwbTRP7WqBptoeFffBXeYoipsemJC1f8bHz6d+6UxxhjTvGVL8jITuAyY4v37kq98sog8i3vD/k4vwXkD+LmIdPHqnQr8OJkZRRv1N77mxEEkQ+mWnhYGHTUdrcyFmFnQxlqqV9vb03R9ZOD3d6XpPS/BxpS6YzZopWT/7yFjjDEmCJl4VPIzuGdNuonIWuAO3KTljyLybWAVcKFX/VXcJ40tw31U8hUAqrpNRO4CPvTq/Sx2835d3Ff/NOaPfPZ1EJJpUe4ck62tpUEvZbLbMXtjVh+TKKlOYW/VGl9qVtHEL+rKNjl1NifVd8vkzg+yMcYYkzaZeNrYxbWMOjlBXQWurSXODGBG6vNPdYrs1rwWJ9sSy+yLGcsfqm/3RG//bcjJktonUMnG1L2mhi13jsTMhQ1gjDHGpFm2XDbWRCTwl1S23Jvrk02b0vFmw+YXM+nzNkmcJakam+rDKeoIWTUqlZDJLHqqO3uqZytaUExjjDGmJWhRyYsS/JmX3Li5Ph1S6XUmVze1fmwj3sDYiMqpHzFPR8z64wZ9ZL9BSXUGTlypBt/OoGM2+Hb93DiqYYwxxqRVi0peADTgRyWnRSPf4A5xCVAKva+6qmn8QCNjBvfUplrGKkiKPb50XFaYlksV67khwh1q+L6eqM2Nfa9RopiNvRwrV7ZXwpgBr0tjjDGmJWhxyUs0g/Our69SdUQ2hY5JMlUVSTpmUvG8xCXomEGffYjFDVp2xvStC2/7BN1OIQ1nLrNyXcbFq/pfwHEtATHGGGNS1rKSlzR0vFLpcCeXaKRHqnHrrJ+my4ECbePBsC1Pmha6Jfe1W/Kym+SJyDhgKhACpqvqlLjxRcDTQGevzi2q+qo37sfAt4FK4Huq+kZTtt0YY3JFi0pelMa+5yVBzHQckQ06WBo6s+m4vT0dcqGNgan2Vsm0vZolMFnzFK9mEtNkloiEgEeBrwJrgQ9FZKaqLvJV+x/gj6o6TUSG474OoMT7fhEwAjgEeEtEBqtqZdMuhTHGZL8WlbxAY9/z0jgZmXOWHoVvinWRjrwtPTEDetVp3EYJMrFOV2c7Fy4by6aYdqlZVjsSWKaqywG8lyufDfiTFwU6et87AV94388GnlXVcmCFiCzz4v27KRpujDG5pMUlLxn9459E56+lHOWN3wzpekR0tj8Nzl1uyf4zRCle1pdlu1vzEXdrk8kqvYE1vuG1wFFxdX4KzBaR64D2wCm+aefETds7Pc00xpjc1uKSl9ol/ZytBks2ccqWo7x1xUpHgtVSe7yZ7oSm5YxK8CGTm2+OJP/ZeEDBNImLgd+o6gMicjTwOxEZmUoAEbkKuAqgqKgoDU00xpjs1qKSF6Whl43VPk0uXJYUuAbcXJ9MzFyQucvG4msEtwWSSWxzqbOdLcm/XeLV4qwD+vqG+3hlft8GxgGo6r9FpA3QLclp8aZ7AngCYMyYMbaXGWNanBaVvKRDtl+WlCtyImnzZMdlY6mnO42SjoS1uavv5ZdN0wrTdD4EBolIP9zE4yLgkrg6q4GTgd+IyDCgDbAZmAn8QUQexL1hfxDwQVM13BhjcklWJS8i8gPgO7h/1/8LXAH0Ap4FugLzgG+q6gERaQ38FhgNbAUmqOrK+uZhR0OzV6Y3TaIzC+l4sWK1WKTxZvjgQxpjaqGqERGZDLyB+xjkGaq6UER+BsxV1ZnAD4Ffe3/rFLhcVRVYKCJ/xL25PwJca08aM8aYxLImeRGR3sD3gOGqus/7RX4R8DXgIVV9VkR+hXvafZr373ZVHSgiFwH3AhPqm082369f9ZLKgOebS2c1MsnuSTLGNIb3zpZX48pu931fBHy5lmnvAe5JawONMaYZcDLdgDhhoK2IhIF2wHrgJOB5b/zTwDne97O9YbzxJ4vU32VTJMAPKX2i9XySrZfKpzINMf1tbYmfoAUdU+wSL2OMMcY0U1lz5kVV14nI/bjXBO8DZuNeJrZDVSNeNf/jI6seS+mdrt+Je2nZlrrnE0x73Zc0StY/hUggLadeWm7nWLM+gYlt7sCTooDjGWOMMcakKmuSFxHpgns2pR+wA/gT3lNZGhm36rGSnUIdAuvQxeJk1SVEAbSlzg6qP36W9mTjXjKfhuQy+IQ1aOlqXm4krEFffJmOnT7dMY0xxpjmK2uSF9yXda1Q1c0AIvIC7rXBnUUk7J198T8+MvZoybXeZWadcG/cr8b/WMlDWvdo3n/hA+gH1bmC0thpD+rkUHz7syK5TKZ+kguf5XlTQnW2OeuTS0nDPUTpiWmMMca0BNmUvKwGxopIO9zLxk4G5gLvAF/HfeLYZcBLXv2Z3vC/vfFve09tqZM9baxuyXao0nJ5W3MV4MJlavdtTHJZZ5vTkAg2eh0lCBBkzAZf1me/u4wxxpjsSV5U9X0ReR74CPdRkf/BPWPyCvCsiNztlT3pTfIk7tuJlwHbcJ9MZhopqeTO633ZE7KCk+3LnjXNa4qGpGMekvBrg2MYY4wxLVXWJC8AqnoHcEdc8XLgyAR19wMXpDyPhjWtTkH2KdJwb33w0tDAbO+8p5slgsHJ9odopCumSZ6ItFfVvSLSQVX3ZLo9xhhjkpdVyUtTaFgfsa6pGvJ29LrnoWnIDnKhn5QLbcwFLb1TnBX3OaUppl05FpguInIFsAx4PX6kiFwCnIX7tHkBXlbVZ5q2icYYYxJpYcmL0LAucq5eqxKTnsf7ptqG+sa6a6Ax66HmPCRHUiJ7MalJhm3TwJwMXA7MEJEeqropbvzxqlp1KbKIPApY8mKMMVmghSUvwcqdSz+yoZF1tyGYFtaMEnzS1piINac9ePN2Q9ZAfW3Jhu1evxZ32aXJBh8AE4E+CRIXgNYicgbuu8T6AG2bsnHGGGNql1TyIiIFSVSLquqORrYnvTT4yz+y/ellImm6Zp+W2klszFLXnLZx67DuqYN/8WV6nhGdfNTkaubCZZdZ/muj2VPVxQAichnwaoIqk4DzgENxE5jJTdc6Y4wxdUn2zMsX3qeuv+EhoKjRLTKBiiVX6bghPBs7YP4kzW60Dk7DLukLekVlbsVn475uAnFiokJVLQP+XxO3xRhjTBKSTV4Wq+rhdVUQkf8E0B6TA7K58x6fpGXLjdZBydR7eIxpLkTkA1Wt8QRLY4wxuSHZ5OXogOpklBL8EVTrH5qmlEziVHVmLMizbaTp9Sd2OaNpenm+76UisgL4L7DA9+9iVY1konHGGGPqllTy4r1TBRG5AHhdVXeLyG3A4cDdqvpRrE62Czp5yfb3xqQzpslO6Tjjkq79Jy1nxoIPaZqX3b7vnwBnACNx7285FfghMEhE1qjqyAy0zxhjTB1SfdrYbar6JxE5FvdRk/cB04CjAm9ZCxb8jdaWZBljDICqHhc3HLunc3asTEQEGNjETTPGGJMEJ8X6ld6/ZwBPqOorQKtgm2SClN63xwT3ifr+DfITZBv97QySnSkwJmP+L1Ghuj5r6sYYY4ypX6pnXtaJyOPAV4F7RaQ1qSdAxtSQtsuS0hQzFxIOO4tlTN1U9clMt8EYY0xqUk1eLgTGAfer6g4R6QX8KPhmpU+ync5kOn72RCcTFLtU0BhjjDGmfimdNVHVMlV9IXY6XVXXq+rs+qZLloh0FpHnRWSJiCwWkaNFpEBE3hSRz7x/u3h1RUQeFpFlIvKJiByR3DIk94km8dEU4qXyMaYx0pEMqO/fdFyKF/SlgulY9myPaTJPRMaJyFLv79ItCcY/JCIfe59PRWSHb1ylb9zMpm25McbkjqSSFxH5KIg6SZiK+zSzoUApsBi4Bfirqg4C/uoNA5wODPI+V+E+OKDJpaUzl2TyFM1gQmSdr5Yll86OBJkQVQYcz59gNaZNiT6m8URkfCOmDQGP4v5tGg5cLCLD/XVU9QeqepiqHgY8ArzgG70vNk5Vz2poO4wxprlL9rKxYSLySR3jBejUmIaISCfgOOByAFU9ABwQkbOBE7xqTwN/A24GzgZ+q6oKzPHO2vRS1fWNaUeuqS+JqLqEKODrkkTSdFlSLvWSTbOXjbtjNrapGbkHeLmB0x4JLFPV5QAi8izu36lFtdS/GLijgfMyxpgWK9nkZWgSdRp78K8fsBl4SkRKgXnA9UChLyHZABR633sDa3zTr/XKWlTyUp+0XEKUhqCpvlgxlSZYQmSMSVJjflsk+puU8DUCIlKM+zfvbV9xGxGZC0SAKar6Yi3TXoV7tQFFRUWNaK4xxuSmZF9SuSrdDcFtyxHAdar6vohM5eAlYrF2qIikdMDf/4u+Yyg/qLa2aGnJBVIMmspOYAmRMSZJTXVF7EXA86rqP+hXrKrrRKQ/8LaI/FdVP6/RXTEnKwAAIABJREFUQNUngCcAxowZY1fwGmNanGx6zPFaYK2qvu8NP4+bzGz0nmqG9+8mb/w6oK9v+j5eWTWq+oSqjlHVMe2ctmlrvGmcbMgFkr0nCewhDcaYGpL6m+S5CHjGX6Cq67x/l+NeHn148E00xpjclzXJi6puANaIyBCv6GTca4VnApd5ZZcBL3nfZwLf8p46NhbY2dLudzGZEfQDGowxzcKHwCAR6ScirXATlBpPDRORoUAX4N++si7ee9MQkW7Al6n9XhljjGnRUn3PS7pdB/ze+8W/HLgCN8H6o4h8G1iF+64ZgFeBrwHLgDKvrjG5Rb17iNKQxdilbcakbGNDJ1TViIhMBt4AQsAMVV0oIj8D5qpqLJG5CHjWe9hMzDDgcRGJ4v7Nm6KqlrwYY0wC9SYvItJeVfeKSAdV3ZPOxqjqx8CYBKNOTlBXgWvT2R5j0k0lPS+UtLzFmNSp6lcbOf2ruAfW/GW3xw3/NMF07wGHNmbexhjTUiRz2VgX72jSselujDHGGGOMMcbUJpnLxk7GfffKDBHpoaqb6qlvjDHGGGOMSWDPP95k+/NPU7FuFXm9i+ny9cvo8JWGnfhtCbHiJZO8fABMBPpa4mJMsCT2seu8jDHGmKztQAcVa88/3mTbH56g+6RbaDOslP2L57P5sSkAKcdrCbESqTd5UdXF3tdPGj03Y2qhNN/7NJrrchmTq5ryXk5jgpSNnfEgY2VrBzrIWNuff5ruk26h7aGjAWh76Gi6T7qFLdMfslhJSulpYyJSoqorGz1Xk9OyKdFIph12VsMYE6eLiFyB+7TK1zPdGBOcbOyQBxUrWzvj1rFPLVbFulW0GVZarazNsFIq1qX+PviWECuRVB+V/ALuiyOriMhYVZ0TSGtM4NKRaKQaL6kEI/avJRrGmPSzezkbKds69rE42dghDypWtnbGs7Fjr6pUrF1Jq/5DiO7dg0Yr0cpKwj16UbF2JRXr16KVlVAZQSvdcUQr0UjE/bcyAl65VkaoWLuSyJZN7H7nVW+6SjRSQcXalex4+VmojEI0ika9ONGoWyca9eJVQtSt47Rtz4YpNxPqVOCWaZTI9q1Im7ZsvP82UEU1ClEFjbrD0ajvzdYHyySvFet+NBFp275q2aNle5BwHut+ck3iPlXiwqpYTvt8cBzEcdxYrVqz4X9vdstC4apxhEKIEwIn5A77ypz2+Wx65B7yeh5CuyOOps2QkexfPJ+83sUpbcfaJJW8iMiFuElLvogMA5aqatQb/QQwKpDWmAapq79vSYExxtQQu5ezT0tKXJp7kpCtHfKgYqXzyLiq0nrQCCrWrnQ7+5URtyNfGfG+ex39SGy4wuvAux37yt072fOvv1ZNEz1wgIq1K9k5649V0xycvhJicSojvu+VSOs2fHH7dYTad6hqQ+WuHUg4j7U/mgiRyoPTefOvamMsGYm4CQTAqm+elnD511w7IeV1tvmRuxOWb3vqkcQTOCGvw+/964QgFAKNsu/jD3DyO+G0ao1GKqjctYNQx84cWPU5OALiIOL4vovbkRNxkwRxEEcIdy+k4os15PUpwemQT3TvbiIb1hIu7I3k5dVskyZ6MYNbFu7e043Vuwhp247KnbuoWL+OcEE3Ips3eIlYLCmr9CVnCZK2SAV7/zHbXQ3t89ED5Wx+bAoFl1yV8npPJNkzL/8C2gDfAR4EhojIDuALYF8gLclCdkmSMa5sulQwXbJt+dLw3lLjid3LKSKXEfdeluaqJSQJTX3ZS+yofKzDXNURj/o6517nnlCIfQs/PtiBP1BOxdqV1Tr86u+MJ+jwO+06sPGB2wh1LqiKH9m6GWndhg1Tbqkz2YhPHABWfvM09wi+lwjErKylw1+XTffflrB864yp1QtEIBRGwmH3KH4ohIRC7vdwGKdtO8qXLSLcvSehDh2Jlu8nsn4teYf0JdSp4OB04TDihJBwLIb3b1XcMBVrV7Lvkw9p/+WTyevVl8jmDex5dzbtjz6BNsNKvaTCN3+vLdXieQnHvo8/YOcrf6Lgm9fQZvAIyj9fytan/48uX7+M9l8+yTvzED54BsLxEo5axB9I6Hr5dY0+c7l/4X/I611M92t/0uhYB5YuIK93MT2uu7XRsbY9/X/k9Smh4JKrmvRpY6jqOuC3IvK5qv4LQES6AiXAkkBa0kScbOuhmBYtHUlBui4VTMePjv041s7WTZM4MdMNaCr+JOGL2yaTf+LpdJ90C5t//SC7Zr9E/injyT/+NKLl+9lw9410PO0cOhx7CtG9e9gw5RY6nfF12o89gcpdO6hYs4LoXvc5B5HtW9n04B10OvtiKtatIrJlI5um3kXnr19Gu9IvUbFhHZsf/V+6XPRt2o44nPK1q9j6q3vpfMEVtB4whIo1K9j2/35Fp3O/Qau+JRxYtZwdf/4tFWtWsH/xfMpXfc6uN16k41fPIdy1GwdWL2fPu7PpcMI490j1mhWUzf0X7Y8+ESe/E+vvuZGKdatpd8TROK1bs//ThYCw8cE7kHCYik0bqFi7ktYDhoIIlVs3UbF5I3m9ixGUyM7tRHduB3FY/d3z0QMHiO4vcy/LqTgA0SjLzzvWe7tw8ocY1v9P4ndqb3rg9oTlNYTzEIGy99+FcJhQfmfQKJU7tyOtWhPZuB7CISq3bgbHcZenTVs32QqFad1/MBIOs/+zxTgd8mlV3J/9ny0i1D6fUEE38nr2oWzuv5B27WnVp5h2o49BQmF2/XUWeT160X7s8RAKsfOlZ2jVtx/t/z979x0fVZU+fvzzTEuHAKEECL13NVgQxfoVXJC1rHVZC6KuBbuLi6vo6v5QsYttUeyAoquIgqKAXaQIiPQeQgKhpEDalPP7YyYhCQkkZCYzN3ner9ckt80z504757nn3DuDz0EcDva99xq22DiKt26kyRXXk/fN5ziT21Lw+1KaXDSKAz98TdwpZ5Bw7gWI3UHGhNtJOHMYCWf9CePxkPHwHYe99+JOPoOC35dStHEN4ooi4bw/k3Td7Xhzs9n15AM0vuBy4gYOLn3vJV74V2KPP7nS917mfzaRv+wXvHtn4WiRjL1xIglnDCO6R1+Kt21mz5Snafq3W4ju2pOiLevZ+8bzNLtuLFEdu1G4YQ1733yBpOvvIvHPV2KKCtjz8uOY4iKcbTuQcOYwDnw/j5h+qThbtSF/xWKyZ75Fi9v/hSOpJfnLfiH7f+/S4q6HcTRpxsHFP5Azazot732U+NPORZxOcj6fSatxE7HFxXPgh6/J/fITWj0wCVtUNHnffkne15+R/NCziMNB3vzPyVswh9b/fhGA3HmzOPjjNyRPeI74084lZ87H5C/5sTRByJn9AQUrl9Dqn08AkP3J+xSuX0Wr+/7jn//4HYq2bKDl3Y/4vyM+mIp753ZSnnsXgH3T/kv+8l9L4+1792W8ebk0//s/ANj75ouY4iKSbrgbgD2vPwtA0ug7AChcs5LY406mWSBeMNXonJeSxCUwvRfYG/QSKdWA1LaBWvnI1eDEVqo+EpFfjTEnhrscda2kJ6Foywa8B3Ip2rIBcUXj2bEV8fko+H0pvgO5+AoL/Eeof1pA8daN+ArycWekkTP3Ew4u/hFfwUGw2dj77ivkfvUJvoJ8irdvYc+rT4Ldwc6HxuLdm8XuZx9G7HZ8xUWY/INkPHynf6x+4Ah/5sN3lJataMNqdj/xz8PKvHP8zaXTe6c8VW7d/vdeLTef8z9/A6lwxWIA8uZ/jtgEU1wMNhsFq5Zhc7rwedyYwgI8WbuQKBe+4mLAIE4nNpcLu8eDKcjH2bYD7vRtOFokQ242UZ17ULh6Bc72nfEdzCPhjGGIw0HRlg0Ub9tM4/MvBruDwjUrKd6+icQL/4oEjtgX/LEcX1EBiRdcgTtjB0Ub/sCbm02jYRfjzdmPe2caSWPuQuwOcr6YiWfXTprfej/YHWR/+BaefVm0uG28/3n7f/+gYPUKvDn7cLZpj6tzd5zNk6tsQO557SnEFUWza24FIOvlx7EnNKLpX//Oge/nkfXqJDxZmfjyD5J0w93kL/0JZ+t2ND7/EgAKVi0jqmNX4gefA/iPpjvbtCe2/0AA7PEJxPRLJWHIef6ehLQtuDPTSbrW35Nw8JeFiCsKmyuq2u/V6B59Sbr+ztLEOaZX/6PfqQr2xk1JCiTOxenb2PPKk8ccK6b/iRSs+o2km+7F1aY9BX/8RuHqFcccTx07MTU4cmB1ya6W5rpWNR/nqFRt1OSCBUodq0fTXlhqjEkNdzkinYj8Zow5LjDtBbYDvwOryvxfY4zxhK+U1ZOammqWLFlSrW3Tbv8rSdffSfan0yhY9nP1HsBuR5wu/1Ach/8/TiemuAhvTjbOVq2xJTTGFBXi3rENZ9sOOFskg9PpH4rjcB4a4uNwIA7noSFDgfmirRvIX/wjCecMx5XSEXdmOrlffkLCmcOI6Tew/DAhe2DaWWa6ZLnDDnYHB39eSPbH70TUhQSCHUuphkBEqqzTIi55ERE7sARIN8YMF5GOwHSgGbAUGGWMKRaRKOBt4AT8PUCXHe0yzpq8qGAI1RAqpWpDk5fqEZHvjDGnB6Z/A/4E9AH6lvnfFUgzxvQJW0GroSbJS8k5L4kX/w1ncgrFaVvInvkWjUdcRtzJQxCn059sOJz+E33tgfH7R4inDXulVKgcKXmp6aWS68LtwBqgUWD+ceAZY8x0EXkFGA28HPi/3xjTRUQuD2ynmYmqE8FO+TUZUqpulCQuZeZ34r/4zFcly8R/pm2XOi5aSJUkA+VOEr76lmNOEuJPOzdoCUYwYyml6r+ISl5EpC3+o2CPAXcFKpCzgCsDm7wFTMCfvIwMTAPMBF4UETGR1pWk6p1QJC6heNNqQqTUUb1Y2cJAPbKhjssScpokKKXqg4hKXoBngfuAhMB8MyC7zNjjHUCbwHQbIA3AGOMRkZzA9nvqrrhK1U6oMu1QJESaDKn6xhjzerjLoJRSqmaqHtBax0RkOLDbGLM0yHFvEJElIrIk31dvf5JGWVQoEgITopsvRPGUUkoppaorknpeTgUuEJHz8f8gZiPgOSBRRByB3pe2QHpg+3QgBdghIg6gMZVcutkY8xrwGvhP2PcFubUUkt++0EPcqhZClRCFojenJJEJJv34KKWUUvVXxPS8GGPuN8a0NcZ0AC4H5htjrgIWAJcENrsa+DQwPSswT2D9/HCc7xKSI9ymdjdT2a2aj13t/dZD5g2KlRKCUPU8hfvmO8pNKaWUaggiJnk5gn/gP3l/I/5zWkrGKL8ONAssvwsYF6byRZzKhuZUmtBUcqtWghRoKVU3Zo1uVO9WredBEyxVj8hRbir8RGSoiKwTkY0iclidJCLPiMjywG29iGSXWXe1iGwI3K6u25IrpZR1RNKwsVLGmIXAwsD0ZuCwX0M2xhQCf6nTgllQSBo1UrNemuowJjBcrpqBq/34IUhgdFifUqqiwG+UTQbOxX9xmcUiMssYs7pkG2PMnWW2vw0o+bHMpsBDQCr+b62lgfvur8NdUEopS7BCz4tqAEKVEIRk+E51e6iq2YtV5VC/Wt6UUnXqRGCjMWazMaYY/48rjzzC9lcA0wLT5wHzjDH7AgnLPGBoSEurlKoX5n+wmNGpj3Buws2MTn2E+R8sjohYoRSRPS9WYdDhGqqWAm+gYOYaJb1YQU1gTHASzLIxTJBiKhUhSi/fH7ADOKmyDUWkPdARmH+E+7apeD+lVM3M/2Ax7z0xh+3rMmnXvRVX3TeMsy4dWG9izf9gMW88/Cl3vzSKvoO68PtPG3nq5ncAahwvmLFK4gXr+aqowSUvQR/uFOR4oAmRqp1QJAQmSDErJlSh6CHSz4+ygMuBmcYYb03vKCI3ADcAtGvXLtjlUuqYaMM+PLHee2IOd780iuOGdAfguCHdufulUbx494ywxgp2IlRRg0terMAqI360kdhwWOm1tsrnR9U7JZfvL1H20v4VXQ7cUuG+Z1S478LK7lj28v+pqan6dreIYDbINUmonmA37P92zUDWPDmDnzZl0KRzMn+7ZiDvPTEnrLG2r8skOjub94c/wv5ArOPGnMf2dZk1ihPsWMHcx8po8qJqrGS4nBVqTSs1upVSlrYY6CoiHfEnI5cDV1bcSER6AE2An8ss/hL4j4g0Ccz/H3B/aItbP9Xnxr0mCeFr2Hu3Z5Axt4izH/sbySd0IWPpRr4Z/zbe7fvCGqt/p0b88MRHDHtqdGmsOXe/Tv9OjcIaK5j7WBlNXlSNhfJHEEMR1wo0yVLK2owxHhG5FX8iYgfeMMb8ISKPAEuMMbMCm14OTC/7u2TGmH0i8m/8CRDAI8aY4NTyZURiwz6Ysep7416ThJo5UmPcGIPH7cXj9uIN/Pd4ykyXrPP4//dqYsN+Qm8y8rykfb0ar8eLu1dXeqb9yrxpi/B6fHg93sDNVzrvqTDv9fjo0VjYHp3IzGlL8b27BK/XR57E06PRPv5z7Rt4fT58XoPx+fB6DT6vD+Pz//eWTPv8022K8liYAT/cNI2YOBf5B4rwZBxgQBPhxkH/KR2bXfJtYyrMY0zpsm4FuSzYCQuufZvouCiKC934dvtj3TLkcWx2GzabHPpfMm23ITbBHpi22W10bwQbfLHs/O9PnHvAS+o5vWh36Zn03vlJjV/HymjyoiJCQ228h7IXq6E+p0qFizHmC+CLCsserDA/oYr7vgG8EaqyRWrDPhKThJJYkda4j8Qkwefz0bdjI75//COGTLiSpj3bkbl8E989OoPeKXFsWrkDt9uDpziQEBR7cAcSBndxmeVuD+5iDz0bC3ubt2L+/A14vlyLu9jLntim9Gi8j6dvfQ93scd/X/eheGWTjbLzPfJzmZ8On1/yGgDFhR4SfEX0T4Rz4m+u0X7+uY3hzcnfYSZ/X7pMMIxsA0+OmYoN//mmFf8LYAv8dzrt2O3CyY18/LxoE9Erd+CKsmM8Poryizgh0bBp0VpsNvyJAYH/4k8U7AIuAZuI/zEEYoyXTi3jObg/C89uL7FOOwnJccQU5tFJ8g9rCEjJn0oumBOd56Nnm3gOZGfjzvVid9qJT44lpvAAbYtyA78ZaPxXSAV/EmVM4DcC/cs9PoMBmtoMW9fuIC9tDzt6NMfutPPGcws4qean+VVKwvCj9GHTytXSXN3ismpte6STnss+ZXq1JBVprHQVPKuU0wom7nhhqTEmNdzlUHUnNTXVLFmypFrbjk59hFufuqy0YQ/w27frePHuGby+5MEj3DP0sS67rD97vl1R2iBPGtKfGTNW1DjWuQk38/y7V/Pbf78s17gf+9e3mJf3Uo1iXdPi75zZt+lhjfsFv+/jzd0v1yjWPf3H0T3ed1gPwLoDNiatmAiA1+s71KAvadyX6RVwF3t4/tLn6JHgo/cN5xPboRXZa3ewfuqXrM4TLnr0cv99Pd5yiULFeXexv3egYPZ3HOzQjqg2LQLbeChM20WzrN1kdursv0+gLO6KSUIgjsftxef1cXZLw4ps2FN06Bs9KcrQPxG+2VWdb3lT2sgf0RrmZPjbVg6b4HDYwOPljBawwhuP3WHD6RQcdlvg5j/i77ALdtuhm80GMTt2kt2oCbl78vAUe4iKctC0eQKx2ftxtE/21z/GIMYgmEO/W+Dzgc/fw4HPh/H6cOflg82G1+NFzKHEJBKITRC7HbGVXL7U4HV7cca4AhvIobaqCFJSeJFD+yBCUW4+rrho7C4Hxhfo+Sn24CksxhHtwgR6hDAl/6uXP6zMEbxtk/nzJf3J+2EFV86u3udaRKqs0xpcz0vQf509RLlfMJMivSRtw6LD+oIv2Ptulf1W9Ueknthb2x4AY/zDaTxuL307JPD9xJkM/tcVNOmZwu7lm/n2Px/SOyWO9b9t9w/1CRy597h9lQ4T8rj9jfSeicK+Vq359vvNeOdvwOP2siu+GT0a7+f5u6YHGvHlhxYdiu0tlzR0Kshj/k7DvKumInahKL+Y6IJ8+icahja9Da/bi8939G+Fs1saFu6CmbfPLF1WkiQ8dm1lnXbGf/RewOGwEeVy4HDacDntnOQyLP1tO4227SMmzoVxe8nbk0v7REPjonzsNsERK9jsDuziwG6Lxm7zxyqJacP/3ehev42TejYle3ceniI3UdEOmibFI3uzuWpQi0Ai4AOvPxHwebwYrxfj8eLz+OfLNrrOb32o/HDoSP0AxwH/hDtwq4Zm+bm0SHRgc7qwOx0Yn5sih514mw+b047d6cTmsGN32rE57NicjsD/Q8vsTge56XvZ/ftW2g0eQEKbZuTvyWHrgt9JGdyLFr3bld7HZrf5p0tudhs2px0pszz91/Ws/vBHBt58Ps37tGfv2h38+uJsBlx9Nh3P7ofYbYjNhs0R+B+Yl8DwLFuZ9Ru+WMovz3zKWY+NKv38zB//DiffOZJuw2vWQ7h+9uIaxTLG+JMcr88/HRjSZnw+Ns5dxuKXvmDw/Zdw/ck92LMmrTRWMDS4npe/tbg8iBEj5LmrRjFsQf45Uk2IlIosj2vPS4NTk56Xskf/n35oNoMHd2Tv3F9Ym2fDtG7BsKtP5axLB3IgO58HL3uFc688iZPO60PO3gM8fet7nHlJKv0GdyU7K5dXr3mFAS0cdL9uKJ74OOY+P5cu5gDrCxwMGnMOc9/5heOGdKdV+2bs353LD58tp9dJnWjWsjH7s3JZ/t16uvRLISExFvluMWsLnTTqnkJ0rIsD2fnkbdpJr1g3W5uncDCvgH2ZuSQkxviPDucXk3+gCIfLjvEa3MWe0n2sfQ/AIX9uY/g0vaRPwPgb6wLDk+HL3TYaN43D6bThLvTgLiqmZetEHA4b+XkFFB0som3H5jgcNnL25NGpYD8Zic3Zl5mNu9CNw26jbeckmmTtZl9iM4oOFtG+e0tsQNaO/bgLi0np3BzBsGfHfrzFHlq1a0reujTyndEUFxSBz+By2XE4bDg9bmKaJWA8PgoPFoLPX17j9dVon6tNBEeUA5vTQUF+MXafj9ikBFzxMezemU1cYhwJCVHkpu8lDydNWyeS3LkFdqedZd+up02XlrTv1RrsNr6ftZzO/dvR5bj2+ID5UxbQ2FdMv8tPI65NMz57YR4tvPn0vew0mvbuwDtPzOGMSwfS/7TuHMgt4LUHP+FPo4dw3Fk92J+Vx/N3f8Cld53HCef0ZvHbC/j56U85/o6RDL7mTFZ8+ivfPvQ+/a8/j7PuHM6WP9J54e4Z3PDYRfQ4oQMbV6Tx0j8+5ObH/0KX/imsXbqV18Z/zG1PXUbH3m2Y/8xslr/+FS6vm6adk2l+xgDmfL2Re14eReuOzVk6fw3vPTGHcVOuoUXbpvz61R9Mf/pLHnhzNE1bNeanL1Yy8/mveejdG9j1yxq+e+JjCnbtp0mnVpx4y59ILxQ+m/Id//n4VqJjXcybtog5b/3IE5/djsNpZ+47P/PVez/z9Ny7APh86g8snLmEMX8/lSWvzGHfxgzcLhd/+s9f6TZ8IB9Nns9vC9fy6If+IXIfPDuP1b9uZsL7NwIwbdKXbPw9jX+9dT0A70z8gowf/6CtKWD/pgxIiKOwdTJ3f3I3AFMe/ITcfQe568WrAHjl/o8oKizm9meuAGDyvR8AcMuTlwLw/GXPYdu8HTmQT5POyaTeNKxGCZX2vIRMqFrvNUyKjjTELbC6Ggd1avyQIfmNDu1xUkqpoOveCH7bA1ue+JrG6zfy5R9byC3w0i/RULQ2m/fGrmfi9W9iF8MpSfDBfRt55jbBIYaTk2DWw1t5pVBw2QzntYI1u7x8+s9ZRNkMA5vBmgJoF1fMtEdncUJT+PX93WQVCbF2w/FNYc2cbPLtLuLshr7OItJXFJMVF0t/u6GLq5jd6ZmYpESis3NpG+0mwQEpiQ58NoguduNNbkJ0s0a49+Rg21WIvX1zYpvEk79rH77MvcR0ao3ZvIPjO8Rjyz1AViG4Ylw0iXfiyj/IlUOScUU5ycvch3vfARq1a47dYedAVg6evALiWjRGBAqyD+IrciMCF7a34fX4sFWoR4a29AF5/pnowO1g1qENYoDMHQAkAQi0zsmidUxgHT7I2g1A0+y9/v6F9YUYp4OEQjfG58O234XNaSe6MB/j9RHjslEQ7STW+IiJc9LhlO7YnXY2/7AG4xU6ndkPm9POqs+XgQjHX3EqdqeDRW9/izjtnHbTedidduY/MxtHTBR9zunDhi+WcKDIh6tZY0658lSWTfmK3INuYtu14C/PXovdaWfKJU/SuEMrRk25CZvTwXOnP0Cznu245k3/lb4npd5LfJumOA4c5IwJVzL95teIap2EJ2sfZz06ik8fmEZs17ac/9y1AKzsfyfRKS0Y8tAVFOUX8+uHv+Bs1piBN5/Pgb0H+O7VeSQO6Mz2H1azb+NOEhEST+3DqfddzK6Nu2iSvRfPwSJa9uuA548dJO3dTWFWNgnJTdmbkU3L3TvJ25yB3dmPZj1TMALrp37Fqqc/IrZlIkYgOsl/9ay8bbtJzkgjZ1MGnNCB3K2ZJGekkbs1E/qnkLMpg+SMNPK27YbebYhOaoTXbues52+g11l9+HbKNyRnpHEwYx90bE72mu0kZ6SRvzsb2jYle/U2kjPSKNibB60ak71qK8kZaRRmH6Tb8IGsW76dtR/+wPlTxtK0TVNWPziD5Iw0PAXFEOsiZ8UmkjPS8Lq9OJx2cldsJDnj0G/Z5i7fQIv07XQbfgfdhg/k3ZunkPnL2tIE4eDy9SRu2VK6ff7y9SRs2l46X7B8HXGbM0rnC5evw7E/myt/eAyAVy+ZhD0ru3S9e+U67LkFpfPe39cjRYe6wMyq9eU/KPtykJZJ3LI4+BdO1OQlIgWvxR26oT7BzVxKT1w/lrBHuY8mREqphq54Tw4XP3gN742fQRcxJDoNyR1bkrA7k4TGMbTslsipzRojPh/FG9No2yORqCaNMF5jOw1PAAAgAElEQVQP+Zt20r57Y1yN4zDFbnLWbKdv+wRSsgvwFXtIcEHLZjH4DhRwYb/GFO0/QOumThDwFnvwFXtoHuUDCkvL05QCKC4AgSYuaMJB2HPQvzIwVL9JScPLBuzaBbt2+VcJsD0dz/bSTTFb00EgobgQ47LRrXksjign7vwiigSijQ+HGBo1jiW/2E2jFo1wxkQRFesiL30vyQM64IyJ4kDmfvZv3kXTLsns/n0bLTq34uDuHNqe1I0t81fSpFMrCvbncdzo/8PmsJOxbCO7Vmzl5DsuwOaws+37P9i1ciunjbsEm9PBxrlL2brwd4oPFDHo3gvZt2EnO35ZR35WDieOHcHBXdnsXZfOec/4j34vnvw5+7fs4v8mXQfAoudmkZe5n3P+39Wsn72YhRPeJ/n4zpz/4k1kLN3Ijp/X0fKUHpz12CgA7E5/s+6UO/8MQMHePOzRTvqPOhOA3X9sJzoxjkF3X0irAZ1YOOF9irftZPXMHxk87hK2LvydJh1b0qRjSwB6n9KVpJ5tccXHANDzxE60GtCx9HXskdqRlFO6E9OsEd89OoPogwfx7djFoHGX0G34QLrO/JGup3Yp3b5zv7b0HNQZAIfTTud+bel9in8+KtZF535t6XvZILqen0pRXgGf3/wS/S8bBECjpnH++6d2ACCxRQKd+7Wl+/HtAWiWnEjnfm3pdpz/x1tbpDSlw3EdOOm2EbQ5sRv7N2ey4KH36Ni7DQBturSgc7+2dOiRDEBKt1Z07teWlG6tAOjQI5n0fm1p06UFAB17tyGzX1uSOyQB0KVfCnv7taVFSlMAuh3Xjpx+bWmWnAhA9+Pbc2BpWxJbJPifu9QOFP7elkZN4wDodWIn3Ou2EtfI/9z2Prkzvi07iIr1v6v7ntIZW3oGDqfdPz+oM45du0ufy36ndiEmJ6d0vv+pXWhUfCi56D+4K2n2Q71v/U7rSmbCoWZ//9O7sad5bOn8gNO6sX9L43LzeZn7D21/WjcKsw+Wme+Kt/BQ8tJ/cDfK6j+4K/ZoJ6EQMcPGRCQFeBtoib85+pox5jkRaQrMADoAW4FLjTH7RUSA54DzgXzgGmPMsiM9RvCHjalg8ScvkfFerMtkKJQxVcOiw8YanpoMG3t/+COc/sBl/PbGPLZ9u+qI2/rH+ztK/9tdjjLLHOzfnEli++bENE3A5nRgd9opys1nz9p0Op3bv/Q8AVuZcwZsTnvptqXLHHZ2/7GNTV/+Rt+rhtCse1uyt+5ixZvf0Puy02g/pE+F8xEO3a/ieQlis9V4zP7RrJ+9mCWvzCk9r6emw15CESuYZVIqkh1p2FgkJS/JQLIxZpmIJABLgT8D1wD7jDETRWQc0MQY8w8ROR+4DX/ychLwnDHmpCM9hiYvqvaC/3kJVd6iCVHDoslLw1OT5KWkYX/S7SNo2rU1e9el88szn3LCjUPpMuwE7C5HaZIhR/nyaAhJglJWMW3adB57bCJr1qyhZ8+ejB8/jiuuOLa2biTFssQ5L8aYDCAjMJ0nImuANsBI4IzAZm8BC4F/BJa/Hfihr19EJFFEkgNxlAqR4GYEoRiCB5FzCUelVGQoacCXbdgPuveiY2rYl9znu0dnlMY61sSlJF6wEoxgxlLWF0mN8VDEmjZtOuPHP8jrr7/G4MGn8sMPPzJ69A0ANY4XqbEqEzE9L2WJSAfgO6APsN0YkxhYLsB+Y0yiiMwGJhpjfgis+wb4hzFmSYVYNwA3ADSyJ5xwY6tr62w/lKqe0Jw/FIqHD/ZV61TwaM9Lw1OTnhelQslKDfvHHnskaI3xcMfq02cAL7zwLGeeeUbpsgULFnLbbXewatVyS8c6Us9LxDVFRCQe+Ai4wxiTW3ZdoJelRi09Y8xrxphUY0xqjC0miCVVKlgkBLfgP7yI/4IFwb4ppVR9N23adPr0GYDdHkWfPgOYNm16WOMEu0zjxz/ICy88S2HhAV544VnGj3/wmOIFM9Zjj03k9ddf48wzz8DpdHLmmWfw+uuv8dhjE+tNrDVr1jB48Knllg0efCpr1qypN7EqE1HJi4g48Scu7xljPg4s3hU4H6bkvJiSSy2kAyll7t42sOyIgt74Ct7uKxUUUvo3eLfA7w8H/QbBS3I0GVJK1efGvSYJNROpjfFgxurZsyc//PBjuWU//PAjPXv2rDexKhMxyUtgSNjrwBpjzNNlVs0Crg5MXw18Wmb538TvZCBHz3dRKpSC3ztUk0THZ458K91WExilKhWJDftgxqrvjXtNEmomUhvjwYw1fvw4Ro++gQULFuJ2u1mwYCGjR9/A+PHj6k2sykTMCfvAqcAo4HcRKRkQ909gIvCBiIwGtgGXBtZ9gf9KYxvxXyo5PCezhKL3RfSEaxVZrPZ+DHYCE+wrt+nvBam6Fqkn4wYzVtkGOVDaIL/ttjvCGitYDfJITxLKnt9Q24Z9MGKVNKArO7ekvsQqeS/edtsdpecIHcu5M5EcqzIRecJ+qLRytTSjmjfMSyVrQ0k1DGG++MHRgpWNeqyBq9jFJ3fqCfsNTU1O2I+0k3FDEctuj6Kw8ABO56EfxnO73URHx+P1FoUtVrD2MVKf90g9mb0kXqRdSCDYseorS/zOS11oiMlLKI/wakKkVOR4Mv15TV4amJokL5HasI/EJCHYsYLVINckQTUklvidFxUaoUgwShKiYOa9QT3CXYYmWEopFblDexrCMKFgDaGJ5GE9V1xxedASjGDGUvWTJi+qxkKREEiIsherdCzqORVKqVCK1IZ9JCYJwY5VEi8YDXJNEpRqgMmLRdqyQRfsdmzQc40G3tAOai9WCHrGrMQKiaAml6quRWrDPlKThGDHUvWXMQav14vH48Htdh/xf/ll/nmv11vLmw+v14vP5ystz9FuR9oOQESw2WzY7fZy/8svs1Wy7PDtBg5MpUePHkF9zhvcOS9XNbBzXkIhZEO8QhCzIdPnM7yO9s16LK/PkWI+tVPPeQk3ERkKPAfYgSnGmMOuOysilwIT8L+cK4wxVwaWe4HfA5ttN8ZccLTHq8k5L0pFMmMMbreb4uJiiouLy00fvsxd6Tbl5w/fxu12l86XTLvdngrzFbfxVHKfwxMSKxERJHD0rGS64q0kIfP5fKVJ0bF67rmnGTv2tmMpp57zArX/DYjK7hrxPRohEoqUNyRpdA2ezCNtWvZCUZF+FN4E/gQ7phXel2Cdz2TDOWzUMIiIHZgMnAvsABaLyCxjzOoy23QF7gdONcbsF5EWZUIUGGMG1GmhVb3l8/nKNcQra8gfmvYcIQk4lAwcOaE4lDAcKUZV691ud8ieC4fDgdPpLL25XK4K885y89HR0SQkJBxxG6fTWRrX4XCUm3Y6K85Xts2hZXa7v5eitjebzXbUpORYlPTI+HyHenjKJjZHWubz+WjWrFkwX06ggSUvBH7Mrlqq8xobMBHekPUHDU1MS7Rma9BCrO6moeisDGrMwGtT3ZjVeqvX8L1esmkwd6u6MRvqW12F3YnARmPMZgARmQ6MBFaX2WYMMNkYsx/AGLO7zkupqs3r9VZxtL78fEkCUPW6ivfzlGvAV9y2qm3Kb3vkxCSUvQEOhwOXy1Xpzeksvy4uLo4mTZqUJgwul/MI9y1ZdyjBiIqKKrO88m0OX+cql6DYbBHze+yWVJL42Gw2HI7ISBsioxR1xADemmwcjG1q6lhiBrsc4dyvY2wlVnq3mrY6Q1HGasQ0VD+5rPZDR8p7U6mGow2QVmZ+B3BShW26AYjIj/iHlk0wxswNrIsWkSWAB5hojPkkVAU944yzueaav3HNNVfjdrs599yhXH/9dfz1r1eRn5/P+eeP4O9/v5HLLruUnJwcRo68iLFjb+Wiiy5kz549XHLJZdx9952MGDGczMxMLr/8KsaNu4+hQ88jLS2NUaOuYdy4+zjttMFs2LCBW24Zy5133k5q6gmsXbuOf/3rIW655e/06tWTdevW8dRTzzJ69HV06tSR9evXM2XKG1x11RW0bt2aDRs28OGHH3HRRX8mKak5GzduYu7cLxk27DwaNWrEli1b+PHHnxky5DRiYmLYvn07K1b8zgknHI/T6WTnzp1s2rSZHj26IyJkZWWRkZFJmzZtMMaQnZ1NTk4OCQkJeL1eCgoKKC4upq6G1NvtdgAaNWqE0+mksLAQr9dL27ZtcTod7NmzB4/HS48e3YmKimLnzgy8Xi+pqSfgcrlYuXIlMTHRnHHGEFwuF99//wN2u50//el8nE4ns2d/QXS0i7/85RJcLhfvvPMejRs35uqrR+F0Onnhhcm0bNmSm24ag8vlYsKER+jUqRO3334bLpeLsWPvoF+/ftx33z24XC4uv/wqBg06hXvuuQuACy64kLPPPpPbbx8LwLBhwxkx4k/cfPPfATjnnPMYOXIEY8ZcX6v33oUX/rla773LL7+KBx74J+ecczabN2/muuvG8PDDDzFkyOmsW7eOG2+8mf/8598MGjSIVatWceutt/PkkxMZOHAgy5cv54477ubZZ59iwIABLF68mHvvHceLLz5Hnz59+Omnn/jnP//Fq6++RPfu3fn22+946KGHeeON/9KpUye+/vobHn30P7zzzpukpKQwd+6XTJz4BNOnv0erVq347LPZPPXUM8ycOYOkpCQ+/vh/PP/8i3z66cc0btyYGTM+4OWXX+WLLz4jNjaWd999jylT3mDevLk4nU7efPMt3nzzbRYu/AaA//53CjNmfMjXX38JwEsvvcxnn33OnDmzAXjuuef55psFzJr1PwAmTXqan3/+hY8++gCAiROfYPnyFUyf/h4A//73Y6xbt453330bgAcfnEBaWhpTp74OwP33j2fv3r289torANxzz30UFBQwefILANxxh/898eyzTwNwyy23ERMTw6RJTwT5U9PAkhcAT+2G7pVXjcbxMbXFrdLwtELMEJRRghzThCBmQ6YnwqsI5gC6AmcAbYHvRKSvMSYbaG+MSReRTsB8EfndGLOpYgARuQG4AaBdu3Y1LsD//vcJaWlpzJo1my1btlJQUMCmTZt4++13+P77H8jPz2fNmjU8++zzTJs2g4MHD7JixUoeeOBBnnhiEgUFBWzcuImbbrqFsWPvpKCggH379nHxxZcCUFxcjMfj4dtvvyv3uD/99HO5+Wuvvb7c/Nixd5SbHz/+wXLzjz8+qdz8q6/+F5fLhc1mw+1289VXXxMdHY3H4+HAgQNs3ryF2NgY8vPz8fl8iAhxcXEUFRWzf3823bp1JT4+noyMnaxbt4Fhw4YSHx/H5s2bWblyFVdeeTmxsbGsWvUHS5cu49Zb/050dDS//rqYX35ZxIMPPoDT6WTBgoX89NPPPPnk4zidTj77bDY//fQzL7/8Ik6nk/ffn86iRYt4662pOJ1OXn31NZYsWcbMmTOw2+08/viTIWlAPvTQvwBIT08nJiaGv//9JgAWLfqVZs2acdFFFwLw8cf/IyUlhVNPPRWAJk2a0KJFC7p06QJAdHQMsbGxxMfHAxzz0COlgqlBnbDf3NnSjEw8/IT9ao4Qq5FwxDyWVzLYMcP1XEaq6j4fVW5XX16gWsaUykLU0QeoJj1j1VLyONWIWel+V+G/WXrCfjiJyCn4e1LOC8zfD2CM+X9ltnkFWGSMmRqY/wYYZ4xZXCHWm8BsY8zMIz3msZywP3z4SD7//IvS+aqG8FQ2BKiq9RXPIyg/Xfm5BodPOypdV9WtpMdCKVU/6Qn7AT4DRdUeN3Z01RmVVNM2jw+D7Sj3qmlMg0GCnAIcFjPYl04KQsxKX59axwzCflslpkVfH1uQn8vDShopMRvOcSerWAx0FZGOQDpwOXBlhW0+Aa4ApopIEv5hZJtFpAmQb4wpCiw/FQj+WAtgxoz3AX/S4nA49Ei6UspyLJ28VOeylGX5jCHf46ViS+HYDhxXXFLzmIdvb8o0aUqW1Cze4dsbfIAtqDFLml6m3PrqxqzO9pEas3S/g1XfGwvEPPJbPaJiHst+V7Zp6TJD4PNzKGatcwZT8hj+mMGKp8LLGOMRkVuBL/HXSW8YY/4QkUeAJcaYWYF1/yciq/GfgnmvMWaviAwCXhWRkq/riWWvUhZMcXFxoQirlFJ1xrLJS3UuS1mRz8ABT/mul5rU+4cP4ai8R6M2MQ87clzDmJVfkan65ayYoFRcdmj54TGrKmNlZapp4nQsMavqcaqrmLV5LkMR81ie/2NRWRkre0z/cKyq9/tYklBjTK1iVnZP/xUAgxuzsrFoR3t96ur1U8fOGPMF8EWFZQ+WmTbAXYFb2W1+AvrWRRmVUsrqLJu8UL3LUpbjxstucgNzlTZTSqel0lSl/D3LN2SPFq/iNpU3of3Dxiq7rN/hTeuSxzZVxCr7SIeXsmzfzOExDzWBjxaz8gFplccsG7k8OWpTsOw9y/eDVL21qeR5r6ok1euL8WKwI0GNWbG3rfKYNWmulvS2BftEjZoPWDzq63PE6y/XfL+9GOzmSJfFrHlMA0Evpw+wBfU669r9opRSqmGwcvJSnctSluOmkHQ2VVLNH56k2A5beviwMGN8iNiqaDaYw6bKxzy84SKA1/iwVzNmSRP6SDEBfD6D3SZBjWmMwSbBjSmHBv1UGa+yCKaSmMKho/BHK2PJPcoOqjO1fH1qFhPsVQ4fOraYJedOBTNmVfeu/PU59IpX+foEkv/68/pUloJW8fnBF3j08iWorH+3fDmrSni0L0YppVTDYOXkpVrKXlYSOJBVsGhdOMtThSRgT7gLUUtW3werlx90HyJBOMvfPkyPq8Jk6dKle0RkW4XFVvsMaXlDS8sbWlYrL1inzFXWaVZOXtKBlDLzbQPLyjHGvAa8VleFOhYissTqlzi1+j5Yvfyg+xAJrF5+ZS3GmOYVl1ntPajlDS0tb2hZrbxgzTJXdKTB4ZGu9LKUIuLCf1nKWWEuk1JKKaWUUipELNvzUtVlKcNcLKWUUkoppVSIWDZ5gcovS2lRET2srZqsvg9WLz/oPkQCq5dfWZ/V3oNa3tDS8oaW1coL1ixzOeK/7LxSSimllFJKRTYrn/OilFJKKaWUakA0ealjIpIiIgtEZLWI/CEitweWNxWReSKyIfC/SbjLeiQiYheR30RkdmC+o4gsEpGNIjIjcBGFiCUiiSIyU0TWisgaETnFSq+BiNwZeP+sEpFpIhId6a+BiLwhIrtFZFWZZZU+5+L3fGBfVorI8eEr+SFV7MOTgffRShH5n4gklll3f2Af1onIeeEptWoIRGRo4H22UUTGhbs8FVm17rNaXWe1ui3S6zKr1VsNpY7S5KXueYC7jTG9gJOBW0SkFzAO+MYY0xX4JjAfyW4H1pSZfxx4xhjTBdgPjA5LqarvOWCuMaYH0B//vljiNRCRNsBYINUY0wf/BSsuJ/JfgzeBoRWWVfWcDwO6Bm43AC/XURmP5k0O34d5QB9jTD9gPXA/QOBzfTnQO3Cfl0TEXndFVQ1F4H01Gf/nphdwReD9F0msWvdZra6zTN1mkbrsTaxVb71JA6ijNHmpY8aYDGPMssB0Hv4vljbASOCtwGZvAX8OTwmPTkTaAn8CpgTmBTgLmBnYJNLL3xg4HXgdwBhTbIzJxkKvAf6LbcSIiAOIBTKI8NfAGPMdsK/C4qqe85HA28bvFyBRRJLrpqRVq2wfjDFfGWM8gdlf8P/mFPj3YboxpsgYswXYCJxYZ4VVDcmJwEZjzGZjTDEwHf/7L2JYse6zWl1n0botousyq9VbDaWO0uQljESkA3AcsAhoaYzJCKzKBFqGqVjV8SxwH+ALzDcDsst8OHbgr5QiVUcgC5gaGA4wRUTisMhrYIxJByYB2/F/0ecAS7HWa1Cique8DZBWZjur7M91wJzAtFX3QVmPpd5rFqr7rFbXWapus3BdZuV6q17UUZq8hImIxAMfAXcYY3LLrjP+S8BF5GXgRGQ4sNsYszTcZakFB3A88LIx5jjgIBW60SP8NWiC/4hJR6A1EMfh3cSWE8nPeXWIyHj8Q2PeC3dZlIpUVqn7LFrXWapuqw91WSQ9n0dTn+ooTV7CQESc+L+83zPGfBxYvKukezHwf3e4yncUpwIXiMhW/EMTzsI/xjYx0O0L/i7J9PAUr1p2ADuMMYsC8zPxf+Fb5TU4B9hijMkyxriBj/G/LlZ6DUpU9ZynAylltovo/RGRa4DhwFXm0PXnLbUPytIs8V6zWN1nxbrOanWbVesyy9Vb9a2O0uSljgXGzL4OrDHGPF1m1Szg6sD01cCndV226jDG3G+MaWuM6YD/RK/5xpirgAXAJYHNIrb8AMaYTCBNRLoHFp0NrMYirwH+LvaTRSQ28H4qKb9lXoMyqnrOZwF/C1y95WQgp0w3fUQRkaH4h5ZcYIzJL7NqFnC5iESJSEf8J3H+Go4yqnpvMdA1cJUmF/7v5llhLlM5Vqv7rFjXWbBus2pdZql6q17WUcYYvdXhDRiMv4txJbA8cDsf/1jab4ANwNdA03CXtRr7cgYwOzDdCf+bfiPwIRAV7vIdpewDgCWB1+EToImVXgPgYWAtsAp4B4iK9NcAmIZ/XLMb/xHC0VU954Dgv3rSJuB3/FejidR92Ih/3HDJ5/mVMtuPD+zDOmBYuMuvt/p7C9Qj6wPvt/HhLk8l5bNs3Welus5qdVuk12VWq7caSh0lgcIrpZRSSimlVETTYWNKKaWUUkopS9DkRSmllFJKKWUJmrwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpRSSimllFKWoMmLUkoppZRSyhI0eVHqKESkl4hcIyIpIpIQ7vIopZRSx0rrNGV1mrwodXRO4DbgQuBAxZUi0kFECkRkebAfWERiRGS5iBSLSFKw4yullGpwtE5TlqbJi1JHlwJMBTYCVR2l2mSMGRDsBzbGFATi7gx2bKWUUg2S1mnK0jR5USpAROYHjggtF5FCEbkUwBgzG5hpjPnCGJNbjTgdRGStiLwpIutF5D0ROUdEfhSRDSJyYk22U0oppWpK6zRVX2nyolSAMeaswBGhV4FZwEdl1mXWMFwX4CmgR+B2JTAYuAf45zFsp5RSSlWb1mmqvnKEuwBKRRIR+RswDLjYGOOtRagtxpjfAzH/AL4xxhgR+R3ocAzbKaWUUjWidZqqjzR5USpARP4CXAWMNMa4axmuqMy0r8y8j/Kfu+pup5RSSlWb1mmqvtI3klKAiAwHbgaGG2MKw10epZRS6lhpnabqMz3nRSm/t4C2wI+BkxtHh7tASiml1DHSOk3VW2KMCXcZlLI0EekAzDbG9AnhY2wFUo0xe0L1GEoppZTWaSrSac+LUrXnBRqH8ge98P+omC/Y8ZVSSqkKtE5TEU17XpRSSimllFKWoD0vSimllFJKKUvQ5EUppZRSSillCZq8KKWUUkoppSxBkxellFJKKaWUJWjyopRSSimllLIETV6UUkoppZRSlqDJi1JKKaWUUsoSNHlRSimllFJKWYImL0oppZRSSilL0ORFKaWUUkopZQmavCillFJKKaUsQZMXpZRSSimllCVo8qKUUkoppZSyBE1elFJKKaWUUpagyYtSSimllFLKEjR5UUoppZRSSlmCJi9KKaWUUkopS9DkRSmllFJKKWUJmrwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpRSSimllFKWoMmLUkoppZRSyhI0eVFKKaWUUkpZgiYvSimllFJKKUvQ5EUppZRSSillCZq8KKWUUkoppSxBkxellFJKKaWUJWjyopRSSimllLIETV6UUkoppZRSlqDJi1JKKaWUUsoSHOF6YBGJAeYCZxljvJWsnwR8YYyZX+eFUyrIli5d2sLhcEwB+qAHDVRw+YBVHo/n+hNOOGF3uAvTUFVVp4nIm8BsY8xMEZkO/MsYsyFMxVQqKLROUyF01DotbMkLcB3wcWWJS8ALwH8BTV6U5TkcjimtWrXq2bx58/02m82Euzyq/vD5fJKVldUrMzNzCnBBuMvTgB2tTgN4GbgPGFM3RVIqNLROU6FSnTotnNnyVcCnACLyDxH5XURWiMhEAGPMNqCZiLQKYxmVCpY+zZs3z9UveRVsNpvNNG/ePAf/EVAVPlcBn4rfiyKyTkS+BlqU2eZ74BwRCeeBQ6WCQes0FRLVqdPCkryIiAvoZIzZKiLDgJHAScaY/sATZTZdBpwajjIqFWQ2/ZJXoRJ4b+nQjTApW6cBFwLdgV7A34BBJdsZY3zARqB/GIqpVDBpnaZC5mh1WrgquyQgOzB9DjDVGJMPYIzZV2a73UDrOi6bUkopVRNl67TTgWnGGK8xZieHD33Wek0ppWohXMlLARBdje2iA9sqpZRSkaq6dRpovaaUUrUSluTFGLMfsItINDAPuFZEYgFEpGmZTbsBq8JQRKXqpb/85S8dmjZt2r9r1669QxXHbref0KNHj15dunTp3b17914PPfRQS6/3SOcwW8uR9m/27NkJCQkJA3r06NGrR48evQYNGtQN4K677modExNzXHp6eum5DrGxsceVTG/fvt0xfPjwTikpKX169+7dc8iQIV1WrlwZBbBy5cqoIUOGdGnfvn2fXr169Tz//PM7paWl6TkTEaRCnfYdcJmI2EUkGTizwuZarykVJFqn1Z4V67RwjpH+ChhsjJkLzAKWiMhy4B4AEXECXYAl4SuiUvXLddddt2fWrFlHvUzr7NmzEy6++OIOxxInKirKt3bt2tUbN278Y/78+evnzZvX+J577qk3w2SOtn+pqakH1q5du3rt2rWrf/rpp/UlyxMTEz2PPvpoy4rxfD4fF1xwQZfTTz89Ly0tbdUff/yxZuLEiek7d+505ufny4gRI7reeOONWdu2bVu1evXqNTfffHNWZmamJi+R5ytgMPA/YAOwGngb+LlkAxFpCRQYYzLDUkKl6hmt02rPiuxYvPgAACAASURBVHVaOJOXycDVAMaYicaYXsaYAcaYfwbWDwdmGmM8YSuhUvXMsGHDDjRv3rzWn6nqxmnTpo1nypQpW6dOndrC5/PV9mEjTk3274orrtg7a9asprt27bKXXT579uwEh8Nh7rvvvqySZaecckrB0KFDD7z22mtNjz/++ANXXnllTsm64cOH5w0cOLAw6DujamsycLXxu9UY090Yc64x5nxjzMzANlcCr4axjErVK1qnBZdV6rSwHb0zxiwTkQUiYq/iuvgO4Km6LpdSoXbdddelrFq1KjaYMfv06ZP/xhtvpAUzZrD06tWr2Ov1kp6e7khJSQnqwYgTTzyx+1//+tc9Y8eO3VtUVCSnnXZat2uuuSbr5ptv3peXl2c7++yzu44ZM2b3mDFj9u/du9c+bNiwLrfccsuuq6++OjsjI8MxcuTIznfccUfmlVdembN9+3ZHu3btaly+svsHsGTJkvgePXr0Ahg5cuS+xx9/PBMgPj7ee8UVV+yZOHFiy2eeeWZnyf1XrlwZ079///zKYq9atSrm+OOPr3SdiizVqNPAf1L/O3VZLqVCTeu04NE6rXrCOvTAGPPGEdZ9WJdlUUpBv379ehQXF9vy8/NtOTk5jpIvrMcee2zHxRdfnBvu8llBamrqgQULFmysbN24ceN29+/fv9eDDz6ow4bqoSPVaYH1U+uqLEoprdOCIRLrNB03rVQdi9SjSQArV65cC/5u36lTpzb76KOPttY25urVq112u502bdoEfQjor7/+uq5kOioqypSdT0hI8JWdb9asmbfsfHJysqfs/LEcoYLy+7dixYojbpuUlOS98MIL9z355JOlP1zYt2/fgk8++aRJZdv37t278Lvvvos/lnIppVRd0DoteLROqx79UTOlVMjs3LnTMWbMmPbXXnvtbput/n3dHMv+jR8/ftdbb73V3Ov1CsCIESPyiouLZdKkSUkl2yxatChm7ty58WPGjNm7dOnS+OnTpzcuWTdnzpz4xYsXV/eyvEoppYJE67TDhaNOq3/PvFKqSiNGjOg4ePDgHlu2bIlq2bJlv2eeeSbp6PeqWZyioiJbyWUXzzzzzG5nn3127qRJk3YeKZ6V1Hb/kpOTPcOGDdtfXFwsADabjVmzZm2aP39+o5SUlD5dunTp/Y9//KNNmzZt3PHx8ebTTz/dOHny5Bbt27fv07lz596TJ09u0apVK72QiVKqwdM6rfasWKeJMaam+6mUqqEVK1Zs7d+//55wl0PVXytWrEjq379/h3CXQylV/2mdpkLtSHWa9rwopZRSSimlLEGTF6WUUkoppZQlaPKilFJKKaWUsgRNXpSqGz6fzyfhLoSqnwLvrfr3c89KqUildZoKmaPVaZq8KFU3VmVlZTXWL3sVbD6fT7KyshoDq8JdFqVUg6F1mgqJ6tRp+iOVStUBj8dzfWZm5pTMzMw+6EEDFVw+YJXH47k+3AVRSjUMWqepEDpqndbgLpUsIm8Aw4Hdxpg+tYw1AHgZaAR4gceMMTNqX0qllFJKKaVURQ0xeTkdOAC8HYTkpRtgjDEbRKQ1sBToaYzJDkJRlVJKKaWUUmU0uK4+Y8x3wL6yy0Sks4jMFZGlIvK9iPSoZqz1xpgNgemdwG6gedALrZRSSimllNJzXgJeA24K9KCcBLwEnFWTACJyIuACNoWgfEoppZRSSjV4DT55EZF4YBDwoUjpRTOiAusuAh6p5G7pxpjzysRIBt4BrjbG6OVKlVJKKaWUCoEGn7zgHzqXbYwZUHGFMeZj4OMj3VlEGgGfA+ONMb+EpohKKaWUUkqpBnfOS0XGmFxgi4j8BUD8+lfnviLiAv6H/+T/mSEsplJKKaWUUg1eg0teRGQa8DPQXUR2iMho4CpgtIisAP4ARlYz3KXA6cA1IrI8cDusB0cppZRSSilVew3uUslKKaWUUkopa2pwPS9KKaWUUkopa9LkRSmllFJKKWUJDepqY0lJSaZDhw7hLoZSSgXd0qVL9xhj9EdyGxCt05RS9dWR6rQGlbx06NCBJUuWhLsYSikVdCKyLdxlUHVL6zSlVH11pDqtQSUvSimlVCQSkTjgJaAYWGiMeS/MRVJKqYik57wopZRSISAib4jIbhFZVWH5UBFZJyIbRWRcYPFFwExjzBjggjovrFJKWYQmL0qpei8/P5+Sy8KvX7+ed999F71MvKoDbwJDyy4QETswGRgG9AKuEJFeQFsgLbCZtw7LqJRSQVdUVMSkSZPIzMwMemxNXpRSluL1etm9ezdutxuAzZs38+qrr5KTkwPAvHnzOO+889i7dy8AL774InFxcezbtw+A2bNnM2rUKHJzcwF47rnnGDhwIEVFRQCkp6eX3lep2jDGfAfsq7D4RGCjMWazMaYYmI7/h5F34E9gQOtmpZSFLVu2jOTkZO69915ef/31oMfXL0ilVERLS0tjwoQJpKenAzBr1ixatmzJqlX+kTjLli3jpptuYts2/7l9breb7OxsDh48CMCgQYOYOHEiDof/FL9Ro0axbt064uPjAUhKSqJLly5ERUUBMGHCBLp3717aM/PZZ5/x0Ucf1d0Oq/quDYd6WMCftLQBPgYuFpGXgc+qurOI3CAiS0RkSVZWVmhLqpRSNbB//37uuusuBg4cCMDYsWO5//77g/440pCGTqSmphq9MotSkW3//v1MnjyZoUOHkpqayooVKzj++OP5+OOPGTlyJNu2beOzzz7jkksuoVWrVhw8eJCcnBxatGhRmqDUxqJFi9i6dSuXXXYZAGeffTb5+fn8/PPPANx+++00atSIf//73wDk5eWRkJBQ68etLRFZaoxJDXc5VHki0gGYbYzpE5i/BBhqjLk+MD8KOMkYc2tNY2udppSKFAsXLuS8886juLiYG264gccff5zExMRjjnekOi2irzYWGBu8BEg3xgyvsK4d8BaQCNiBccaYL+q+lEqp2vB4PEyaNInevXszYsQInE4njzzyCPHx8aSmptK3b1/27t1b+iXYvn17br31UDsvLi6OuLi4oJXnpJNO4qSTTiqdnzNnDnv27Cmdz83NxWY71GmdmprKCSecwPvvvx+0Mqh6LR1IKTPfNrBMKaUsxxjDSy+9xB133IHL5WLChAkh6W0pK6KTF+B2YA3QqJJ1DwAfGGNeDpzs+AXQoQ7LppQ6RpMnT8bhcHDjjTdit9t59dVXGTlyJCNGjCA+Pp49e/bQqJH/Y2+z2Wp19Ka2XC4XrVu3Lp2fOnVqufU33ngjffv2Bf4/e/cdHlWZPXD8e5IACQk9gEhCCb0j3Q4KrAgisi6iKFaURRHLqiA/FlCwsboKi6IsCCiCCi4CFrBQFJQqXWpACCI1tJCe8/tjJjGElJlJmZnkfJ7nPpl7571zzwxhTs69931fSEpKIjo6msaNGxdpjMavrAMaiEhdHEVLf+Au74ZkjDHuO3z4MNdddx3R0dH07NmTGTNmEB4eXujH9dk+LyISAfQE/ptDE+XPoqYC8HtRxGWMcd9HH33E6NGjM9YXLlzIl186LpSKCNu3b+fNN9/MeD69cPEHTz31FN26dQNg6tSpNG/ePKM/jinZRGQO8BPQSERiRORBVU0BHgOW4Dg594mqbvdmnMYY4669e/fSuXNnoqOj6d+/PwsXLiySwgV8+8rLm8CzQE43k48BlorIUCAU6FpEcRlj8rB//34WLVrE448/DsDPP//MypUrGTNmDCLCwoULMzrIA5QtW9ZboRaofv36kZKSQrNmzQBYu3YtzZs3Lzbvz7hHVe/MYfuXOO4WMMYYv/PJJ58wZMgQVJX58+fTt2/fIj2+T155EZFewDFV3ZBLszuBGaoaAdwMfCAil7wfG5nFmKJx6tQpkpKSAEc/kSeffJJ9+/YB8Prrr7Np0yZEBOCiwqU4qVq1KsOGDUNEiIuLo0ePHgwaNMjbYRljjDEFYvjw4dxxxx0EBwezdu3aIi9cwEeLF+BqoLeIHMAxBv4NIvJhljYPAp8AqOpPQDBwyfUqVX1PVduparuqVasWbtTGlFC//PILNWrUYPHixQDcfffdHDx4kHr16gFQqlQpb4bnFaGhoSxYsIDnn38ecBR333//vZejMsYYY9ynqrzyyiu8+uqrREZGsmrVqowcX9R8snhR1RGqGqGqdXB0ZvxeVe/O0uwgcCOAiDTBUbzYpRVjikBKSgpDhw7lvffeA6BFixY8/fTTGbdLlS9fnpo1a3ozRJ9w7bXXZnwmkyZNolu3bkRHR3s5KmOMMcZ1aWlp/OUvf2HEiBHceeed7Nmzh9q1a3stHp8sXnIiIi+ISG/n6tPAIBHZDMwB7tOSNGmNMUXs4MGDLFmyBICgoCC2bt3KgQMHMtZfeuklGjVq5MUIfdtzzz3H4sWLiYqKAmDevHkcPXrUy1EZY4wxOUtLS+Nvf/sb33zzDddffz0ffvih12/9tkkqjTE5SkxMzPiSuuuuu1i6dClHjhyhVKlSpKWlXTTfiXFdbGwsERER3HfffUyePLlAXtMmqSx5LKcZYwpTSkoKDz30EDNnzmTAgAHMmjWryPJ+bjnN/vIwxmTr008/pWrVqhw5cgSAMWPGsHbt2oz+K1a4eK5SpUps2rSJf/7znwDs2bOH999/n9TUVC9HZowxxjj6adapU4eZM2cyduxYPvjgA5/J+74RhTHG6+Li4pg4cWLGHCWtWrXirrvuIiUlBYCGDRtm3PJk8q9BgwZUr14dgGnTpvH4449z8uRJL0dljDGmpEtISKBfv34cPnyYu+66i3/+858Zo4X6gkK7bUxEtrjQ7Liq3lgoAWTDLrEbc6mUlBSCgoKIjY0lMjKS5557jlGjRnk7rBJFVdm5cydNmjTx+DXstjHP+WK+coXlNGNMQTt06BD33nsvy5cvZ+LEiTz22GNeiSO3nFaYk1QG4ph/JScCLCzE4xtj8jBkyBAOHjzI4sWLqVSpEr/++iuRkZHeDqvEEZF8FS4m3yxfGWNKvF27dtGyZUuSk5OZNWsWd9+ddaBf31CYxcsjqvpbbg1EZEghHt8Yk0ViYiKLFy+mb9++GX8wV65cOaPzvRUupoSyfGWMKdGOHj3K3/72N1JSUpgwYYLPFi5QuH1eQnJ6QkReBVDVHwvx+MaYLObOncvtt9/OqlWrABg6dCjjxo3zmU54xniJ5StjTIn11ltv0alTJ/bt28fXX3/N008/7e2QclWYV14mi8iTqvpF+gYRCQCmA5cV4nGNMU7nzp1j6NCh3HzzzfTr14877riDmjVrcvXVV3s7NGMKjYi0ye15Vd2YZZPlK2NMiTR37lyeeOIJQkJC+O6777jyyiu9HVKeCrN4+QvwlYiUVtX/iUgwMA84A9xSiMc1pkRLTU3lwIED1KtXj9DQULZv306rVq0ACA4OpmvXrl6O0JhC97rzZzDQDtiMo99KS2A9kDU7W74yxpQou3fvZvbs2YwbN4769evz1VdfUb9+fW+H5RKXihcR6Zvb86r6WTbb9otIV2CJiFQH7gbWqeqTHkVqjHHJwIED+fHHH9m3bx9BQUGsWbPGbgszJYqqdgEQkc+ANqq61bneHBiTTXvLV8aYEmPq1Kk8/PDDANxzzz28/fbbhIWFeTkq17l65SX9zFM14Crge+d6F2A1cEnxkumy/XPATOAb4IP07dlctjfGeODo0aNMnDiRESNGEBYWxuDBgzM65INNJmlKtEbphQuAqm4TkUuGdbN8ZYwp7k6dOsWuXbuYM2cOkydPJjg4mHfeeYf77rvP26G5zaXiRVXvBxCRpUBTVT3iXK8BzMhht9czPd4CVM+0TYEbPIjXGOOkqogI+/fv55VXXuGqq66iZ8+eXHvttd4OzRhfsUVE/gt86FwfgCMfZWX5yhhTbP3xxx+0adOGo0ePoqoMHjyYsWPHUrVqVW+H5hF3+7xEphcuTkeBWtk1TL9sb4wpWGlpadx///3UqVOHsWPH0qlTJw4ePEjNmjW9HZoxvuZ+4O/AMOf6SuCdrI0sX3lGVVFVu7prjA/69NNPefHFF2nXrh0fffQRiYmJdO3alTfeeIMWLVp4O7x8cfcb5zsRWSIi94nIfcAXwLfZNcxrtBdX2xhjHA4dOgQ4bgMLCAjIuC0MsMLFmGyoagIwBRiuqrep6r+d2y5i+Sp7cXFxjB49mu+//55jx46xatUqKlWqxBNPPMHXX3/NrFmzCAwM5NFHH+W7777js88+o2LFirzyyiscPHiQ3bt3061bN5YtWwbA8ePHeeWVV9i9ezfgmHfqyJEjpKamevNtGlMsbNu2jQEDBrBkyRJefPFFnnzySbZu3cqcOXMYOHAgu3bt4ptvvvH7wgVAVNW9HURuA65zrq5U1f/l0G4z0BnHCC85+U5Vr3ArgHxo166drl+/vqgOZ0yBefPNNxk+fDjR0dFcfvnl3g7H+CAR2aCq7bwdhy8Rkd7ABKC0qtYVkdbAC6raO0s7n8tXrijonJaamsrrr79OSkoKoaGhrFixggULFiAipKWlefy65cuXp1q1agQHB7Nt2zZ69uzJ1VdfzYULFxg3bhzvvPMOAwcOJDo6mjFjxvDCCy/QtGlTTp06xYEDB2jatCnBwcEF9j6N8Uepqans37+fChUqULVqVfbv38+9997LkCFDEBE+++wz5s2bR1paGiLCNddcw3333cff/vY3ypUr5+3w3ZZbTvNkqOSNwDlV/VZEyopIOVU9l027CsAGck8Gxz04vjHFnqryxRdf0LhxY+rXr0/v3r1JSkqifPny3g7NGH8yGugALAdQ1U0iUjebdiU+X6kq8+bNY+zYsVy4cAGAunXr0qtXL5o0aUJkZCTh4eFUrlyZkJAQgoKCKFWqFAEBASQnJ5OQkEBiYiKJiYkkJCRw5swZYmNjL1pOnjxJSkoKP/74I198kTGlDn//+9/5+9//TuXKlYmPjycxMZErrriCkydP8vbbb7N06VJuvPFGvvvuO/71r38xbdo0IiIiOHz4ML///jutW7emVKlS3vrojCkw586dIykpiSpVqpCQkMCwYcPo0aMHffr04Y8//qBBgwYMHDiQqKgotmzZwtq1a/nhhx8AKFu2LD179uTWW2+lV69eVK9e3cvvpvC4deVFRAYBDwOVVbWeiDQApqjqjYUVYEGyKy/GX5w4cYJatWoxePBg3njjDW+HY/yAXXm5lIj8rKqdROSX9KsmIrJFVVt6O7asRKQP0BMoD0xT1aV57VMQOS0pKYlhw4axdetWVq1aRePGjfn73//OrbfeSu3atfP12rm5cOECR44c4fDhw8TExHDgwAGio6MzlkOHDl10tads2bJUr16d06dPM2jQIFq1asW6det48803OXHiBFWqVOGjjz5i7ty5fPzxx4SEhLB//37Onz9P8+bNL7rN1hhvSh9sB2DChAnUrl2bfv36oaqEhoby4IMPMnDgQLZv386wYcOIiIggOTmZvXv3kv43u4hQp04drrjiCq699lquueYaWrduTVBQYU7fWLRyy2nuFi+bcJzFWpMpEWxVVb+4gc6KF+PL5syZw08//cTEiRMBWLdunZ1RNC6z4uVSIjIN+A4YDvwVeBwopaqDC/g404FewDFVbZ5p+03AW0Ag8F9VfcWF16oE/EtVH8yrbUHktLlz53LnnXcSHBzMpEmTuP/++wkMDMzXaxaEpKQkDh48yP79+9m7dy+7d+9m165d7Nq1iwMHDlxU2NSoUYPGjRtnTND7zjvv0LhxYyZOnMjUqVM5f/48IsKkSZPYsGEDM2bMAGDPnj0EBARQr149L71LU9z9/vvvnDx5MqOfSY8ePQgPD+eDDz4gLi6OFi1aULNmTTp27Mj27dtZs2YNsbGxGfuXKlWKBg0a0KRJE5o2bUqTJk1o0qQJDRs2pGzZst56W0WiIG8bS1TVpPSKUUSCcAwjaYzxQHx8PMHBwYgIe/bs4aeffiI+Pp6QkBDat2/v7fCM8XdDgZFAIjAHWAK8WAjHmQH8B5iVvkFEAoHJQDcgBlgnIgtxFDIvZ9n/AVU95nz8f879Cl1cXByjRo2iYsWKrFy50qc68pYuXZr69etTv359unXrdtFzCQkJ7Nu3L6OY2blzZ8bj06dP07NnTwDKlClDREQEAwcOpGnTpmzdupWYmBhSU1MJDAxkxIgRbN26lV27dgEwduxYEhISePllxz/Pzp07qVChAjVq1CjaN2/81hdffMGePXt44oknALjvvvs4deoUq1atYsuWLQQFBbFnzx6aN2/Or7/+SlpaGvv372fdunU0btyYHj160KxZs4xCJSoqyk5gZsPd4mWFiDwPhIhIN2AIsCinxuKociJU9VA+YjSmWFq/fj09evRg/vz5XHfddQwfPpxRo0bZ7Q3GFBBVvYCjeBmZV9v85CtVXSkidbJs7gDsVdVo5+vPBW5V1ZdxXKXJ7vivAF8VxaSYiYmJPPLII+zdu5dly5b5VOGSl+DgYJo1a0azZs0u2q6qHD9+PKOg+fXXX9mxYwcrVqzgww8/zGgXGhpKo0aNuOyyy+jUqROfffYZTZs2JSYmhoSEPweju/feeylfvjzffPMNAE8++SR16tRh2DDHyNu//vorl112GZUqVSqCd218QVpaGjExMdSq5ZglZPLkycydOzej38nixYtZtGgRDz74IKtWraJq1arExMRQrlw5kpOTAahatSrt27fn9ttvp3Xr1jRr1oyoqCifuOLpL9wtXoYDDwJbgUeAL4H/5tRYVVVEvgT851vRmEJ09uxZjhw5QqNGjWjWrBndu3enYsWKgONMozGm4IjIIi69O+AMsB54N/OwyYWQr2oCmQuhGKBjLu2HAl2BCiJSX1WnZNdIRB7G0fc04w8oT0ydOpXZs2fTu3dvOnfu7PHr+BIRoVq1alSrVu2SyXrPnj2bUcxkXpYuXcqsWY4LZqVKlaJhw4b069ePpk2b0qNHD+rUqUNiYiJlypRh165dF81p07VrV7p37877778PwP3330+3bt246667AIiOjiYyMtLOnPuxffv28dVXXzFo0CDKlCnDK6+8wsiRIzl37hxhYWGEhYVRrVo1Tp8+zYYNGyhXrhyRkZFUrlyZlJQUSpUqRadOnbjlllto37497du3p1atWnaSMp/cKl5UNQ2Y6lxctVFE2qvqOrciM6YY6tatG2lpaaxdu5aQkBBmz57t7ZCMKc6igao4bhkDuAM4BzTEkcfuydLea/lKVScCE11o9x7wHjj6vHh6vJiYGABeffVVT1/Cr5QvX56OHTvSsePF9WNcXBw7d+68qKD55ZdfmDdvXkbn6IceeoiGDRvSsmVLwsPD+eKLL2jVqhVvv/02l112GeAYxnbjxo00btwYcFzZatiwISNGjODFF18kJSWFf/7zn/Tt25d27axrmq9ITU3lt99+o1q1aoSFhbFhwwaef/553nnnHaKioli3bh1Dhw7l+uuvp0WLFvTq1YuqVauSmJjIxo0bOXDgACdOnKB69eokJSURGBhI+/bteeaZZ7jhhhu46qqrin3fFG9wq3gRka3kfBZrnKqezGa3jsAAEfkNiMMxFKX64mgvxhS0s2fPMnPmTIYMGUJgYCDjx4+nQoUKdtbFmKJxlapm7jy2SETWqWp7EdmeTfuCzFeHgchM6xHObV6nqnz88cd0794944/tkio0NJS2bdvStm3bi7bHx8eze/fujIJm69atrFmzho8//jijTeXKlWnVqlXGMmPGDJo2bQo4PuPp06dn3I53+PBhJkyYQIMGDWjXrh2HDx/m1ltvZcKECXTp0uWiEaj8zbfffku5cuUyCsMXX3yRunXrcvfddwMwdOhQWrVqxUMPPQTAY489RocOHRg4cCAAw4cPp2PHjtx2220A/Otf/6J9+/Zcf/31AMycOZNWrVrRunVrVJWlS5fSsGFD6tatS1paGtu2bePyyy8nPDyctLQ0Tp48SWhoKGXLliU+Pp6VK1fSpEkTatWqxaFDh3j++ed59NFH6dSpEz///DPXXHMNX375JT169AAco32md5rv2bMnhw8fJjw8nJ9++olly5axbNkyhg0bRnx8PCJCmzZtePzxx+nSpQvXXnutX86p4ndU1eUFeA1HR8MWzmU88G/gOWBRDvvUzm5x57gFtbRt21aNKUrz589XQL/77jtvh2KKOWC9euF71ZcX4FegVqb1WsCvzse/ZNPe43wF1AG2ZVoPwnHlpy5QGtgMNCvI9+dpTlu4cKECOnHiRI/2L8lOnz6tP/zwg/7nP//RQYMGaYcOHTQkJERxnNjVoKAgbdOmjT766KP64Ycf6t69ezUtLU1VVZOSkjQ+Pl5VVbdv36433HCDrl27VlVVV65cqY0bN9bNmzd77b3lZOPGjbp8+fKM9a5du+qdd96Zsd60aVO9/fbbM9ZbtGihjzzySMb6VVddpSNGjMhYv+KKK3TUqFEZ6xERERc9X6pUqYz11NRUBXT06NGqqpqYmKiAjh8/XlVVz549q4BOmDBBVVVPnDihgE6ePFlVVWNiYhTQd999V1VVDx06pLVr19b//e9/qur495w2bZoeOnTooveckpKi69at09dee0179OihYWFhGf/GLVu21GHDhumCBQv01KlT7n6cxkW55TR3h0reqKptstuW25DJItIKSL8B9QdV3ezyQQuQDZVsCltKSgovvfQStWvX5t577yUtLY2tW7fSqlUrb4dmijkbKvlSInIzMAXYh+MqSl0cA80sBwap6pvZ7ON2vhKROUBnIBw4CoxW1WnO47+JY4Sx6ao6Pr/vKTNPc1qvXr344osv2LJli1911PdVqamp7Nu3j82bN/PLL7+wZs0a1q5dy/nz5wGoVq0aV111Fd26deOmm24iKirqktdYvXo148aN46OPPqJixYp8/vnnrF69mtGjRxf5bUeLFy9m165dPP300wDcdNNNHD9+Hnjp1gAAIABJREFUnA0bNgCOuUlCQkJ47LHHAMfABaGhofnqg5VZYmIiIkLp0qVRVX777TfKly9P5cqVSU1NZe3atURERBAZGUlSUhKLFi2iefPmNGrUiAsXLjB9+nSuvfZaWrVqRXJyMuvWraNBgwZUrVo1x2OmpKSwadMmVq5cyYoVK1ixYgVnzpwBoEmTJnTp0oUuXbpw/fXX5/o6puAU5Dwvm3F84a91rrfHMXZ9q8yTgGXZZxgwCPjMuek24D1VneTm+8g3K15MYUkfelNVue6662jRogVvv/22t8MyJYgVL9kTkTJA+r1RuzRTJ/1s2vpMvnKFpzlt8ODBfPDBB5w7d+6iDuim4KSmprJt2zZ+/vlnfvrpJ1asWMGBAwcAqF+/Pr169WLAgAG0bds229vFRo8ezZw5c9i1axciwoYNG4iKiiqUkc0WLlzI/PnzmTFjBiLC0KFD+fzzz/ntt98QEXbs2EFISAh169Yt8GN7S2xsLL/88gs///wzK1euZNWqVRnFZv369TOKlc6dO9tQ2V5SkMVLe2A6EIbjLNZZ4CFgO9BTVT/JZp8twJWqGudcDwV+Ui/0ebHixRSGOXPmMGrUKDZt2kRYWBgJCQkEBwd7OyxTwljxkj0RaQ40BTL+U6rqrBza+ky+coWnOe36668nNTWVH3/8sRCiMtlRVfbs2cOSJUv4+uuv+fbbb0lKSqJRo0Y8+OCDPPzww1SoUOGifZKSkjKuPjRo0ICoqCiWLl160XPuHB8cI7J9++23vPjiiyxatIjy5cszefJkJk2axM8//0zFihWJi4sjJCTEpcL2xIkTbNu2jd27d3P48GFiYmL4/fffOXPmDOfOnePcuXPEx8dfsl9ISAihoaEZS9myZTOurlSpUiVjCQ8Pv2i9fPnyLvcNSktL49ixY+zbt4/o6Gj27dvH1q1bMzrap2vevDnXXXcd1113Hddeey2XX365ax+qKVQFNkmlOkZgaSEiFZzrZzI9fUnhkn58IDXTeqpzmzF+KzY2loCAACpUqEBUVBQtW7bk7NmzhIWFWeFijI8QkdE4budqimNo/x7Aj2SaTDLrLpSAfLVt27ZLRt0yhUtEaNiwIQ0bNmTo0KHExsYyb948Zs2axbPPPsu4ceN46qmnePbZZwkJCQH+HD5fRPj0009JSkoCHCOkRURE8MYbb3D//fcTFxfHt99+S7t27ahZsyaxsbEsWrSILl26EBkZyQ8//EDfvn358ssvad++PQEBASQkJPDHH39Qvnx5hgwZwqOPPpoRa2hoaI7vY/fu3SxZsoTly5ezevVq/vjjj4veY40aNahRowYVK1akevXqlCtXjrJly15UcKgq8fHxxMXFZSx//PEHu3fv5uTJk5w+fZqcTqwHBAQQFhZGuXLlMoYqLlWqFKpKWloaqampnDt3jlOnThEbG0taWtpF8dWrV48OHTrwyCOP0KZNG9q2bUuVKlU8+Bc13uTuPC+ISE+gGRCc/suoqi/kssv7wBoR+Z9zvQ8wzd3jGuMrTp8+TVRUFEOGDGH8+PF07NiRzz77LO8djTFF7XagFY7O+feLSHXgw1zaF/t8dfr0aU6dOpXt2XBTdCpVqsSgQYMYNGgQGzZs4KWXXmLMmDG8//77vPfee3Tv3v2i9ldc8edd+fHx8dx///3UqVMHgEOHDtGnTx/mzJlD//79iYmJ4d577+Xjjz8mMjKSWrVq0adPn4yi5IYbbmDNmjUZr5fXlYxTp04xffp0Zs+ezaZNmwCoW7cu3bt3p1WrVjRv3pzGjRtz+eWXExTk9p+Vl0hNTSU2NpaTJ09essTGxnL+/HnOnz+fcWUnJSWFgICAjKVhw4ZUrlyZypUrc9lllxEVFUVUVBR16tShTJky+Y7PeJ+7QyVPAcoCXXBMTnk7sDaX9gHAzzg6R17j3Hy/qv7i4vECcQzDfFhVs5uRuB8wBscIEJtV9S5X34sx7jhz5gyrV6+mR48eVKxYkTFjxtClSxdvh2WMyV28qqaJSIqIlAeOcfHwxRnym6/8RWJiIgA333yzlyMx6dq2bcv8+fNZsWIFQ4YM4aabbmLUqFGMGTMm28IiPDycN954I2O9Tp06bNiwgdq1awPQoEEDdu/endGBvnbt2kyd6s70fA6nT59m3LhxTJkyhbi4ODp16sSbb75Jnz59Mo5VGAIDAwkPDyc8PLzQjmH8m7sl8lWq2lJEtqjqWBF5Hfgqp8bOpDHZ2ZF/owfxDcMx1GX5rE+ISANgBHC1qsaKSDUPXt8Yl/zf//0fU6dO5fDhw1SpUoVhw4Z5OyRjTN7Wi0hFHBNSbgDOAz9l17AA8pVfOHzYMdVM/fr1vRyJyer6669n3bp1PProo7zwwgucOHGCSZMm5dn3JDg4mDZt2ly03qBBA4/jUFVmz57NU089xcmTJ7nrrrt49tlnbWQ64zPcHWYkfZSWCyJyOZAM5DUMw3ci8ldxc/YlEYkAeuK4wpOdQcBkVY0FUNVj7ry+MbmJi4vjtddeY/fu3QA899xzrF692u6NNcZPOHPOy6p6WlWnAN2Ae1X1/lx28yhf+ZPo6GgAu23MR5UtW5bp06fzzDPP8PbbbzNy5MgiPX58fDwPPPAA99xzD/Xq1WP9+vV88MEHVrgYn+LulZdFzrNYE3CcmVIcZ7Ry8wjwFJAiIgn8OWPxJVdTsngTeBbIaarShgAisgrHGPpjVPVrl96FMXk4f/48Y8eORUR45plniIiIICIiwtthGWNcpKoqIl/imFAZVT3gwm6e5iu/kX7lJXNHa+NbRIRXX32VM2fO8Morr9CxY0f69OlT6MeNi4ujd+/eLFu2jNGjRzNq1CgCAwML/bjGuMvl4sV5P/B3qnoamC8ii4HgLCOOZbfPTaq6yp2gRKQXcExVN4hI5xyaBQENcIwkEwGsFJEWzvgyv9bDwMNAgU2gZIqnadOmsXbtWt59912qV6/Orl27rGAxxr9tFJH2zpEyc+VpvvI3zZs3B7CJc32ciDBp0iTWrl3LI488wnXXXUflypUL7XgpKSn06dOH5cuXM2vWLO6+++5CO5Yx+eXybWOqmgZMzrSemFvhkmmf/3gQ19VAbxE5AMwFbhCRrCPExAALVTVZVfcDu3EUM1ljeE9V26lqO5sV1WSVnJyc8fj3339nz549JCQ47o60wsUYv9cR+ElE9onIFhHZ6pzL5RL5yFd+Jf2OOHfmCDHeUbp0ad5//32OHz/Oq6++mmvbTZs20b9/f8LDwwkMDCQqKoonn3yS33//3aVjjRw5km+//ZapU6da4WJ8nrt9Xjy5H9jtfVR1hKpGqGodoD/wvapm/d+0AMdVF0QkHMdtZNFuxGVKuK1bt1K/fn1WrFgBwPPPP8/3339v87QYU3z8BagH3ADcAvRy/sxJse/zkn7b2PHjx70ciXFF69atGTBgAJMmTeLo0aPZtnn33Xdp3749S5Ys4dZbb2X48OG0bNmSyZMn07hxYz7//PNcj7Fs2TJee+01Bg8ezAMPPFAYb8OYAuVu8fII8CmQJCJnReSciJwthH2yJSIviEhv5+oS4KSI7ACWAc+o6klPXteUHCkpKRw6dAhwjLZzxRVXZBQrdm+vMcWLqv6GY2jkG5yPL5B73iuwfOWrYmJiACte/Mnzzz9PfHw8s2ZdOrfq/PnzGTx4MN27dyc6Oppp06Yxfvx4FixYwK+//kqTJk3o27dvjgVMSkoKjz32GHXr1r1o+GVjfJnkNItpcdSuXTtdv369t8MwXvSXv/yFEydOsH79+jwn5jLGn4jIBlVt5+04fImIjAbaAY1UtaFzlMxPVfVqL4dWIDzJaV999RU333wzq1at4qqrriqkyExBu/rqqzl16hQ7duzIyF2xsbE0aNCA+vXrs3z58mzvGoiLi6Nz587s2rWLzZs3U7du3Yuenzt3LnfeeSfz5s3jr3/9a5G8F2NckVtOc+vKizjcLSKjnOuRItKhoPcxpqCkpaXx+eefk5qaCsDjjz/OmDFjvBuUMaao3Ab0BuIAVPV3ch7BskTlK7vS7F/uu+8+du7cyZYtf3bZevXVVzl16hRTpkzJ8Xbn0NBQ5s2bR2pqKiNGjLjoOVXl9ddfp0GDBtx2222FGr8xBcnd28beBq4E0meyP0+mTvwFuI8xBeLrr7+mT58+LFiwAICePXtyyy232FUXY0qGJHXcXqAAIhKaR/tin68OHjwIwIkTJ7wciXHHLbc4ump99ZVjXvDU1FRmzJhBnz59aN26da771q5dm3/84x98/PHHbNq0KWP7jh07WL9+PUOHDs1zIkxjfIm7v60dVfVRnJNVOieIzGvIEk/2McYjqsrSpUszipWbbrqJzz//vEjGyDfG+JxPRORdoKKIDAK+Jfe5yYp9vkrv8xIbG+vlSIw7LrvsMpo3b87KlSsBRyf7o0ePMmDAAJf2f/LJJwkJCWHKlCkZ2xYuXAhA3759Cz5gYwqRu8VLsogE8udZrKpAWiHsY4zHXnjhBSZMmABAQEAAvXv3tlskjCmBVPVfwDxgPtAI+KeqTspll2Kfr9q3bw9A06ZNvRyJcVfHjh1Zs2YNqsr8+fMpV64cPXv2dGnfihUr0qdPH+bPn09KSgrgKF7atm1LzZo1CzNsYwqcu8XLROB/QDURGQ/8CLxUCPsY47Jt27bRr18/zp07h4gwZ84cvv/+e2+HZYzxMhF5Ctihqs+o6j9U9Zs8din2+SotzVGL2W1C/qddu3acOnWKQ4cOsXr1aq666iq3hva/9dZbMwasOXv2LGvWrHG5+DHGlwS501hVZ4vIBuBGQIA+qvprQe9jjCtUFRHhwoULLFu2jG3btnHllVcSGRnp7dCMMb6hHLBURE4BH+MYaSz7yTIoGflq//79AJw6dcrLkRh3NWrUCHBMSLlt2za3b4fu3LkzAD/++CMJCQmoKldeeWVBh2lMoXOreBGRicBcVXWrA6Oq7gR2urOPMTlJTU3lnnvuoW7duowfP54OHTpw8OBBQkJCvB2aMcaHqOpYYKyItATuAFaISIyqds1ln2Kdr9JnXD97tlhNX1MiNGzYEHB02k9LS6NZs2Zu7V+9enWioqJYs2ZNxqA1bdu2LfA4jSls7l433gD8n4jsE5F/iYjNKWCKzJkzZwDHEJ+hoaGULVs24zkrXIwxuTgG/AGcBKp5ORav6tDBMfJz+h/Cxn9cfvnlBAcH8803jrsf69Wr5/ZrNGvWjJ07d7Jnzx6qVKlC1apVCzpMYwqdW8WLqs5U1ZuB9sAu4FUR2VMokRmTyUcffURERASHDh0CYOrUqYwcOdLLURljfJmIDBGR5cB3QBVgkKq29G5U3pXe58WGi/c/IkK1atXYt28fAFFRUW6/RuPGjdm9ezd79+69ZMJKY/yFpz326gONgdq4cHldRGqLSFfn4xARyXGSMGPSHTt2LOMWh2uuuYaBAwdSunSxGrXUGFO4IoEnVLWZqo5R1R157eDNfCUioSKyXkR6FdYx0v/wPX36dGEdwhSiKlWqAI7JJytVquT2/g0bNiQpKYkffvjBihfjt9wqXkTkNeeVlheAbUA7Vb0lj30G4Riq8l3npghggQexmhIkMTGRFi1a8OyzzwJQq1YtJk+eTPXq1b0cmTHGX6jqCFXdJCLVRKRW+pJTe0/zlYhMF5FjIrIty/abRGSXiOwVkeEuhPwc8IkL7Tx25MgRAC5cuFCYhzGFJDw8HIAKFSp4tH96Dk1KSqJ27doFFpcxRcndKy/7gCtV9SZVfV9VXTl18yhwNXAWQFX3UMLvOTbZO336NLNnzwagTJkyvPXWW4waNcrLURlj/JWI3OI84bYfWAEcAL7KZRdP89UM4KYsxw4EJgM9gKbAnSLSVERaiMjiLEs1EekG7MDRP6fQdOzYEYA6deoU5mFMIUm/8lK+fHmP9k8vfrI+NsafuDtU8rsiUklEOgDBmbavzGW3RFVNSr+/VkSCcE4AZkxm77zzDiNHjqRTp07Uq1eP/v37ezskY4x/Gwd0Ar5V1StEpAtwdy7tPcpXqrpSROpk2dwB2Kuq0c7XmgvcqqovA5fcFiYinYFQHIVOvIh8qaqXTJApIg8DD4PjirS7rM+Lf0svODwtXjJ30PfktjNjfIG7t409BKwElgBjnT/H5LHbChF5Hghxnln6FFjkfqimuElISOC1117jxx9/BODRRx9l48aNHo2gYowx2UhW1ZNAgIgEqOoyILdRMgsyX9UEDmVaj3Fuy5aqjlTVJ4CPgKnZFS7Odu+pajtVbefJSFG7d+8GbKhkf5VevHg6wmbm35nKlSsXSEzGFDV3bxsbhmOksd9UtQtwBZDXrWPDgePAVuAR4EtVtWGiDKrKW2+9xRdffAE4ziS1bt3ay1EZY4qR0yIShuOk22wReQuIy6W91/OVqs5Q1cWF9frHjjnuSktMTCysQ5hCdPnllwMQF5fbr3HOMl+xsSsvxl+5W7wkqGoCgIiUcU7m1SiPfYaq6lRV/Zuq3q6qU0VkmEfRGr83Z84cbrnlFlSVkJAQNm/ezMsvv+ztsIwxxdOtwAXgSeBrHP02cxtkpiDz1WEco52li3Bu86r0Pi/pfwQb/xIREQF4fuUs8+2CduXF+Ct3i5cYEamIY/SVb0Tkc+C3PPa5N5tt97l5XOPHkpOTSU1NBRwjnJw+fZqTJ08C1mHQGFN4VDVOVdNUNQU4qaoTnbeR5aQg89U6oIGI1BWR0kB/YKGHr1Vg0vu8BAR4OlOC8ab8Fi+Z2ZUX46/cnaTyNlU9rapjgFHANKBPdm1F5E4RWQTUFZGFmZZlwKn8Bm78w6FDh2jUqBEfffQRAPfccw8rV660osUYU9ReyOmJ/OYrEZkD/AQ0EpEYEXnQWTA9hqNv6K/AJ6q6vWDeiud27nRMzXb+/HkvR2I8UbOmo9tUcnKyx68xevRo4OL+L8b4E7dGG8uikaq+l8vzq4EjQDjweqbt54At+Tiu8XGpqans37+f+vXrU7NmTa699tqMs0V2ts8Y4yW5Da+Vr3ylqnfmsP1L4Es3Yix06Ve98/PHr/GeSpUq8Y9//IM77rjD49cYPXo0zz33nMed/o3xtvwUL4OBHIsXVf0Nxy1lV+bjGMYPPfTQQyxdupS9e/cSEhLCzJkzvR2SMcY8ktMTJSlfdejQgZkzZ1Ktmk235o9EhAkTJuT7NaxwMf4sP6fBXRokXkTOichZ55IgIqkiYmM0FiOpqal88sknGffgPvzww/z73/+mTJkyXo7MGFOSiUhZERklIlNVda2INBCRS+ZYydS+2Ocr6/NijPF3+fn2ym3ElgyqWk5Vy6tqeSAE+Cvwdj6Oa3zMli1buOOOO/jggw8AuPLKK+nXr58lR2OMt70PJPLnFZXDOCauzFZJyFc7duwAID4+3suRGGOMZ9ydpLK6iEwTka9UNUZEmorIg67urw4LgL+4HanxKXPmzGHixIkAXHHFFSxbtozBgwd7OSpjjLlIPVV9DUgGUNULuHjXQHHNV7GxscCfV2CMMcbfuNvnZQaOM1npk3btBj7GMepYtkSkb6bVAByzGye4eVzjA1Q1Y4z4RYsW8dtvvzF06FBEhM6dO3s3OGOMuVSSiIQACiAi9XBciclWSchXHTp0YO7cuVSsWNHboRhjjEfcLV7CVfUTERkBoKopIpKaxz6Zby9LAQ7gmDjM+JHVq1czaNAgvv76ayIjI5kyZQphYWEXTXhljDE+ZjSOySkjRWQ2cDW5z9tS7POV9Xkxxvg7d4uXOBGpwp9nsToBZ3LbQVXv9zA242VJSUmcO3eOKlWqEBERQYUKFTh58iSRkZGUL1/e2+EZY0yuVPUbEdkIdMJxu9gwVT2RS/tin6+2bdsGOL7fjTHGH7lbvDyFY4bgeiKyCqgK3J5dQxGZhLPIyY6qPu7msU0RSk1NpU2bNrRu3ZoPP/yQWrVqsXr1am+HZYwxLhOR24DvVfUL53pFEenj7MuSuV2JyVfnzp3zdgjGGJMvbhUvqrpRRK4HGuE4i7VLVXOa6Wp9foMzRSsxMZGlS5dyyy23EBgYyNChQ6ldu7a3wzLGGE+NVtX/pa+o6mkRGQ0syNKuxOSrdu3aMX/+fEJDQ70dijHGeMSt4kVEAoGbgTrOfbuLCKr6Rta2qjozy75hzu3n3TzeeuCwqmY7Nr+I/BWYB7RX1RKTgArD5MmTefrpp9m2bRvNmjXjkUdynNPNGGP8QXYdOy7JewWRr/yF9Xkxxvg7d7+9FuHo7FgFKJdpyZGINBeRX4DtwA4R2SAizVw83jDg11xeu5yzzRoXX89kkpyczJQpU1i1ahUADz30EN988w1Nmzb1cmTGGFMg1ovIGyJSz7m8AWzIqXE+85Vf2LJlC+AYPdIYY/yRu31eIlS1pZv7vAc8parLAESkMzAVuCq3nUQkAugJjMfR1yY7LwKvAs+4GZMBUlJSePHFF/nrX//K1VdfTfny5enatau3wzLGmIIyFBiFY0h/gG+AR3Np71G+8icXLlwAsJEijTF+y90rL1+JSHc39wlNTwQAqroccOVm2zeBZ4FsZ9ISkTZAZHpHTOOaL774gjvuuANVJSQkhLVr1/LWW295OyxjjClwqhqnqsNVtZ1zGaGqcbns4mm+8htt27YFoFSpUl6OxBhjPOPulZefgf+JSACOGYsFx0TEuY2bGy0io4APnOt3A9G5HUREegHHVHWD88xX1ucDgDfIfbz+9LYPAw8D1KpVK6/mxZKqoqoEBARw8uRJduzYwR9//EGNGjWoWbOmt8MzxphCISJVcZwEawYEp29X1Rty2MXtfOVv0vu82JUXY4y/cvfKyxvAlUBZVS2vquXyKFwAHsAxpPJnziXcuS03VwO9ReQAMBe4QUQ+zPR8OaA5sNzZphOwUETaZX0hVX0v/axb1apV83yDxc2xY8fo0KEDs2fPBmDAgAFs3ryZGjVqeDkyY4wpdLOBnUBdYCyOSSfX5dLek3zlVzZv3uztEIwxJl/cvfJyCNimbvT0U9VY4HHIGD0sVFXP5rHPCGCEc5/OwD9U9e5Mz5/BkVRwtlnubGOjjTkdP36cqlWrEh4eTmRkZMawmIGBgV6OzBhjikwVVZ0mIsNUdQWwQkRyLF48yVf+JiEhwdshGGNMvrh75SUax9WOESLyVPqS2w4i8pGIlBeRUGArjhFcPOpgLyIviEhvT/YtSZ599llat25NfHw8AQEBfPbZZ/Tt29fbYRljTFFLn4fsiIj0FJErgMo5NS7IfOWr2rRpY/1djDF+zd0rL/udS2nn4oqmqnpWRAYAXwHDcQxVOcGVnZ0dJpc7H/8zhzadXYyl2Nq0aRP16tWjXLly9O7dm8suu8zuaTbGlHTjRKQC8DQwCSgPPJlL+3zlK3+QlpZmc7wYY/yaW8WLqo714BilRKQU0Af4j6omi4gNMF+A9u3bR5s2bXjppZcYPnw411xzDddcc423wzLGGK9S1cXOh2eALi7sUuzz1aZNm0hOTs67oTHG+CiXTr+IyH+cPxeJyMKsSx67v4ujk2QosFJEagPF6h5ib4iOjubTTz8FoF69esyaNYvBgwd7OSpjjPEdIhLlzFsnROSYiHwuIlG57FLs85UVLsYYfyeu9L0XkbOqWl5Ers/ueWdHSNcPKhKkqinu7FMQ2rVrp+vXF48+/QMGDGDp0qUcOnSI4ODgvHcwxhRrIrJBVS8ZcbEkE5GfgcnAHOem/sBQVe3oxmsUSb5yTgHwIo5b29ar6sy89vEkpz399NO89957nDt3zrNAjTGmCOSW01y98XUfOIqU7JY8Dl5FRCaKyEYR2SAibwEV3HsLJjU1lalTp3L48GEAXnvtNTZt2mSFizHG5Kysqn6gqinO5UMyzfeSlaf5SkSmO6/sbMuy/SYR2SUie0VkeB4vcysQgWOQgZi835pnrM+LMcbfudrnpWpuo4qp6hu57DsXWAn81bk+APgY6OrisQ0QExPD0KFDOXbsGCNHjrTJJY0xJm9fOYuGuYACdwBfikhlAFU9laW9p/lqBvAfYFb6BudQy5OBbjiKkXXO26wDgZez7P8A0AhYrarvisg84DvX36brfvnlFy5cuFAYL22MMUXC1eIlEAgDPBm+qoaqvphpfZyI3OHB65Q4e/bsYcmSJTz22GPUrl2bDRs20LRpU2+HZYwx/qKf8+fDzp/pOaw/jmIma/8Xj/KVqq4UkTpZNncA9qpqNICIzAVuVdWXgV5ZX0NEYoAk52pqXsf0lKraSJTGGL/mavFyRFVf8PAYS0WkP/CJc/12YImHr1WiTJ8+nbfffpv+/fsTHh5Os2bNvB2SMcb4PBFpDxxS1brO9XtxXE05AIzJ5opLuoLMVzVxTOycLgbIra/NZ8AkEbkWx9WfbInIwziLsVq1arkdVIsWLdi+fbvb+xljjK9wtXhx+zSNiJzDcWZLgCeAD51PBQDngX+4+5rFXUpKClOnTqVjx460adOG559/nmHDhhEeHl5kMagqqamppKSk5LgkJyfn+nxKSgqpqal5Lq60S0tLy/iZvuS2nlfbtLQ0VDXbx7k9l91jVb1kyWl7bm3SP/fcfrraJqvMZ1iznm3Naz0gIAARQUTy/TggIIDAwEACAwPdepx1W1BQEEFBQZQqVYpSpUp5/DgoKIgyZcoQHByc8TPrEhgY6OL/GuOD3sV5q5eIXIfjNq2hQGvgPRxFSQZfyFeqegF40IV27+F4D7Rr187tYZytz4sxxt+5Wrzc6O4Lq2o5d/cpKVSV5ORkEhISLlqOHz/OyJEj6dq1Kw899BDx8fGXtMm8JCYmkpSURHJyMklJSRc9zm5bbs+nFySpqYV2t0K+pP8BnPkP4ZzWs3tORDJ+pm/P/DjretbH6a+Z3R/nuW1ztQ2Q509X26TLrvBxZz1roeXp46yFZHJy8kWFqSuP039mLaALc9jXoKBCdVwFAAAOmUlEQVSgjEImpwInfSlbtixhYWEZS7ly5fJcDw0NJSjI3XmCjYsCM11duQN4T1XnA/NFZFPWxoWUrw4DkZnWI5zbvGrjxo2cOXPG22EYY4zHXMqcuVxid4mIVAIakGmUF1XN8bK4L0lISODMmTOcP3+euLg4zp8/f9Hi7ra4uDgSEhJyPVv+6aefZszhkpPSpUtftJQqVSrHx2FhYdk+n/Vn+lltV5f0M9iZl8DAwIyfuS2utElfMv+Bb0xmma8UZi7CXXmcmJhIYmJiticFcjtpkLnN6dOniY+PJz4+nnPnznH+/HkSEhJcjj84OPiS4qZXr148//zzhfiplQiBmYY4vpE/+7xAHnmvAPPVOqCBiNTFUbT0B+7y4HUKVPpJGWOM8VeFftpPRB4ChuE467QJ6AT8BNxQ2McuCOPGjWP8+PEutQ0LCyM0NPSiM6wVK1YkIiIiY3vZsmUJCQnJOGO7bt06FixYwPjx46lTp85FZ3Mzt8u8lClTxpKPMTiuOKUXzr4ybHhKSgpxcXEZxUzmxZVt9n+7QMwBVojICSAe+AFAROoDOV528DRficgcoDMQ7ux4P1pVp4nIYzj6zAQC01XV651NmjVrxm+//ebtMIwxxmNFcc/CMKA98LOqdhGRxsBLRXDcAtGrVy8uv/zyiwqSrAVKWFgYISEhLv3RkZKSwpQpU6hbty49e/YkJSWFU6dOUa1atSJ4N8aYwhYUFESFChWoUMGms/IWVR0vIt8BNYCl+uel7gAcfV9y4lG+UtU7c9j+JfClW8EXMuvzYozxd0VRvCSoaoLz1p8yqrpTRBoVwXELRKdOnejUqVOBvua7775Lx44d6dmzJ0FBQVa4GGNMAVPVn7PZtjuP3fw6X7li48aNnDhxwtthGGOMx4qieIkRkYrAAuAbEYkFStQ16zNnzvD6668zcuRIypQpw/Lly6lcubK3wzLGGHOxYp+vSpUqZSPpGWP8WqEXL6p6m/PhGBFZBlQAvi7s4/qSn376iZdeeolrrrmG7t27U6VKFW+HZIwxJouSkK8aN25sV16MMX6tSMfpVNUVRXk8bzp58iS//PILXbt25aabbmLPnj3UrVvX22EZY4xxQXHNV9bnxRjj7+wbrJAMHTqUfv36cf78eQArXIwxxnjdxo0bOXLkiLfDMMYYj1nxUoCOHj1KbGwsAC+//DLLly8nLCzMy1EZY4wxDsHBwZQuXdrbYRhjjMdseucCcv78eVq3bs3NN9/MtGnTqF27trdDMsYYYy7SoEED4uPjvR2GMcZ4zIqXfIqLi8uY92X8+PFceeWV3g7JGGOMyVZaWhoi4u0wjDHGY3bbWD6sXLmS2rVrs379egAeeOABmjRp4uWojDHGmOxt3LiRQ4cOeTsMY4zxmBUvHkifrLlly5bceOONVKpUycsRGWOMMXkLDQ0lODjY22EYY4zHrHhx0/Tp0+nTpw+qSsWKFfn444+pV6+et8Myxhhj8hQVFUXNmjW9HYYxxnjMihc3paSkEB8fz9mzZ70dijHGGOMW6/NijPF3VrzkITU1lTfeeIPFixcDMGjQIJYsWUKFChW8HJkxxhjjnk2bNhEdHe3tMIwxxmNWvOQhNTWVGTNmsHDhQgBExM5aGWOM8UthYWGEhoZ6OwxjjPGYDZWch9KlS7N8+XLrlG+MMcbvTZw4kYSEBG+HYYwxHrPixQWVK1f2dgjGGGNMvnXt2tXbIRhjTL7YbWPGGGOMMcYYv2DFizHGGGOMMcYvWPFijDHGGGOM8QuSPlt8SSAix4HfsmwOB054IRxPWbyFy+ItfP4Ws7/EW1tVq3o7CFN0cshprvCX3+ns+HPs4N/xW+ze4c+xg+fx55jTSlTxkh0RWa+q7bwdh6ss3sJl8RY+f4vZ3+I1Ji/+/Dvtz7GDf8dvsXuHP8cOhRO/3TZmjDHGGGOM8QtWvBhjjDHGGGP8ghUv8J63A3CTxVu4LN7C528x+1u8xuTFn3+n/Tl28O/4LXbv8OfYoRDiL/F9XowxxhhjjDH+wa68GGOMMcYYY/xCiS1eROQmEdklIntFZLi348lKRCJFZJmI7BCR7SIyzLm9soh8IyJ7nD8reTvWzEQkUER+EZHFzvW6IrLG+Tl/LCKlvR1jZiJSUUTmichOEflVRK705c9YRJ50/j5sE5E5IhLsS5+xiEwXkWMisi3Ttmw/T3GY6Ix7i4i08ZF4Jzh/H7aIyP9EpGKm50Y4490lIn8p6niNya/ilvt84XskK1fzoIiUca7vdT5fx8txu5wPfe1zdyc3+sLnXlC5UkTudbbfIyL3ejF2t/Nmfr6LSmTxIiKBwGSgB9AUuFNEmno3qkukAE+ralOgE/CoM8bhwHeq2gD4zrnuS4YBv2ZafxX4t6rWB2KBB70SVc7eAr5W1cZAKxyx++RnLCI1gceBdqraHAgE+uNbn/EM4KYs23L6PHsADZzLw8A7RRRjZjO4NN5vgOaq2hLYDYwAcP7/6w80c+7ztvO7xBi/UExzny98j2Tlah58EIh1bv+3s503uZMPfeZz9yA3+sLnPoN85koRqQyMBjoCHYDRUjQnW2eQz7yZ3++iElm84PhH3quq0aqaBMwFbvVyTBdR1SOqutH5+ByOL5GaOOKc6Ww2E+jjnQgvJSIRQE/gv851AW4A5jmb+Fq8FYDrgGkAqpqkqqfx4c8YCAJCRCQIKAscwYc+Y1VdCZzKsjmnz/NWYJY6/AxUFJEaRROpQ3bxqupSVU1xrv4MRDgf3wrMVdVEVd0P7MXxXWKMvyiOuc/r3yOZuZkHM7+necCNzvZFzoN86FOfO+7lRq9/7gWUK/8CfKOqp1Q1FkcBkbWoKJLYPcib+fouKqnFS03gUKb1GOc2n+S8pHkFsAaorqpHnE/9AVT3UljZeRN4FkhzrlcBTmf6hfa1z7kucBx433mJ/78iEoqPfsaqehj4F3AQxxfzGWADvv0ZQ86fpz/8P3wA+Mr52B/iNSY3fvU77GLu87X35E4ezIjd+fwZZ3tvcDcf+szn7kFu9KXPPTN3P2uf+TfIwpW8ma/YS2rx4jdEJAyYDzyhqmczP6eOoeJ8Yrg4EekFHFPVDd6OxQ1BQBvgHVW9Aogjyy1iPvYZV8JxZqIucDkQShGcZSlIvvR55kVERuK4hWW2t2MxpqTxl9yXmZ/mwXR+lQ8zKw65MStf/azzUlR5s6QWL4eByEzrEc5tPkVESuH48p6tqp85Nx9NvzTr/HnMW/FlcTXQW0QO4Lj8dwOO+2crOi/jgu99zjHw/+3dT4hd5RnH8e8PtGqLiOKqRJgGxVIqDUUkSASpVlRCSyG1xYBNsSvBXTcaUAQ3LnStC7GligttqUMsLVTd6KLaRXTUpjoxhRYRbMWI+C+ap4vzRm+nmUzuv9xznO8HDsy95/De5z5z5zzznPecc/lXVf2lPX6cbufd1xxfDRyqqrer6gjwO7q89znHsH4+e/t3mGQPsBPYXV/cT7638UonaRCf4TFrX5/e07h18PPY2/pzgP+cyoBHjFsP+5T3cWtjn/I+atxc9+l3MG7dnCr2zdq8vABc1O5E8RW6i4mWFxzT/2jnXz4I/K2q7htZtQwcu6PEz4AnTnVsx1NVt1XVlqpaosvn01W1G3gG2NU26028AFX1FvDPJBe3p64CXqWnOaabEt+e5Kvt83Es3t7muFkvn8vATe1OKtuBwyNT5guT5Fq60z5+UFUfjKxaBn6a7k4136C7ePL5RcQoTejLWPt6sx+ZoA6OvqddbfuFHG2foB72Ju+MXxt7k/c1xs31n4BrkpzbZp+uac+dchPUzen2RVW1KRfgero7IhwE9i46nuPEt4NuyvAlYH9brqc7L/Mp4HXgz8B5i471OLFfCexrP29tH9RV4DHgjEXHtybWbcBfW55/D5zb5xwDdwEHgJeB3wBn9CnHwKN05xwfoTuSd/N6+QRCd7eRg8AK3Z1i+hDvKt25uMf+7u4f2X5vi/fvwHWL/jy4uIy7fNlqXx/2I+u8jw3rIHBme7za1m9dcMwnXQ/7lvdxamMf8j6rWkl3fclqW36+wNjHrpvT7IvSBpAkSZKkXtusp41JkiRJGhibF0mSJEmDYPMiSZIkaRBsXiRJkiQNgs2LJEmSpEGweZEkSZI0CDYvkiRJkgbB5kXaQJJvJdmT5IIkZy86HkmS5sF6pyGweZE2djpwK/Aj4P21K5MsJfkwyf5Zv3CSs5LsT/JJkvNnPb4kaXNKsiXJT9Y8PXW9s25p3mxepI1dADwErALrHYk6WFXbZv3CVfVhG/fNWY8tSdrUrgK+u+a5qeuddUvzZvMiNUmebkeL9if5KMkNAFW1D3i8qv5QVe+dxDhLSQ4k+VWS15I8kuTqJM8leT3JZeNsJ0nSLCXZAdwH7Go1bytMVO++luTJJC8mefk4MznSzNm8SE1Vfa8dLXoAWAZ+O7LurTGHuxC4F/hmW24EdgC/BG6fYDtJkmaiqp4FXgB+WFXbquqNkXXj1LtrgTer6jtV9W3gjzMOVfo/Ni/SiCQ3AdcBu6vqsymGOlRVK1V1FHgFeKqqClgBlibYTpKkWboYODDlGCvA95Pck+SKqjo8g7ikE7J5kZokPwZ2AzdU1ZEph/t45OejI4+PAqdNsJ0kSTPRLqQ/XFWfTjNOVb1Gd93MCnB3kjtmEZ90Iv5zJAFJdgK3ADur6qNFxyNJ0hwtMYML6pN8HXinqh5O8i7wi2nHlDbizIvU+TWwBXiuXbx486IDkiRpTg4A57eL7C+fYpxLgOfbrZPvBO6eSXTSCaQ7vV7SpJIsAfvaxYrzeo1/AJdW1b/n9RqSJJ3IOPXOuqV5ceZFmt5nwDnz/JJKui8OOzrr8SVJGsOG9c66pXlz5kWSJEnSIDjzIkmSJGkQbF4kSZIkDYLNiyRJkqRBsHmRJEmSNAg2L5IkSZIGweZFkiRJ0iDYvEiSJEkaBJsXSZIkSYNg8yJJkiRpEP4LKRfhd9qasb4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -811,7 +811,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index 3f4d58d0f1..ee5db3b837 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -556,7 +556,7 @@ def new_copy(self, build=True): # create without building # 'build' is not a keyword argument for the BaseBatteryModel class, but it # should be for all of the subclasses - new_model = self.__class__(name=self.name, build=False) + new_model = self.__class__(options=self.options, name=self.name, build=False) # update submodels new_model.submodels = self.submodels # now build From f6fa982073cf0e8c28e0e8defe114ba5d6babf8a Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Mon, 29 Jun 2020 19:22:13 -0400 Subject: [PATCH 06/11] #1011 debugging --- examples/scripts/cycling_ageing_yang.py | 2 +- pybamm/discretisations/discretisation.py | 7 +++- pybamm/models/base_model.py | 33 +++++++++++++++---- .../full_battery_models/base_battery_model.py | 9 +++-- tests/unit/test_models/test_base_model.py | 18 ++++++++++ 5 files changed, 58 insertions(+), 11 deletions(-) diff --git a/examples/scripts/cycling_ageing_yang.py b/examples/scripts/cycling_ageing_yang.py index e82d3f4e38..7a1b81bbb8 100644 --- a/examples/scripts/cycling_ageing_yang.py +++ b/examples/scripts/cycling_ageing_yang.py @@ -1,6 +1,6 @@ import pybamm as pb -pb.set_logging_level("INFO") +pb.set_logging_level("DEBUG") options = {"sei": "ec reaction limited", "sei porosity change": True} param = pb.ParameterValues(chemistry=pb.parameter_sets.Ramadass2004) model = pb.lithium_ion.DFN(options) diff --git a/pybamm/discretisations/discretisation.py b/pybamm/discretisations/discretisation.py index 1e6de70f92..8b7810e14a 100644 --- a/pybamm/discretisations/discretisation.py +++ b/pybamm/discretisations/discretisation.py @@ -252,6 +252,8 @@ def set_variable_slices(self, variables): upper_bounds = [] # Iterate through unpacked variables, adding appropriate slices to y_slices for variable in variables: + if variable.name == "Total negative electrode interfacial current density": + n = 1 # Add up the size of all the domains in variable.domain if isinstance(variable, pybamm.Concatenation): spatial_method = self.spatial_methods[variable.domain[0]] @@ -805,7 +807,10 @@ def process_symbol(self, symbol): except KeyError: discretised_symbol = self._process_symbol(symbol) self._discretised_symbols[symbol.id] = discretised_symbol - discretised_symbol.test_shape() + try: + discretised_symbol.test_shape() + except: + self._process_symbol(symbol.left.child) # Assign mesh as an attribute to the processed variable if symbol.domain != []: discretised_symbol.mesh = self.mesh.combine_submeshes(*symbol.domain) diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index 560e1c0ec6..9f47422fac 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -101,12 +101,12 @@ def __init__(self, name="Unnamed model"): self.options = {} # Initialise empty model - self.rhs = {} - self.algebraic = {} - self.initial_conditions = {} - self.boundary_conditions = {} - self.variables = {} - self.events = [] + self._rhs = {} + self._algebraic = {} + self._initial_conditions = {} + self._boundary_conditions = {} + self._variables = {} + self._events = [] self._concatenated_rhs = None self._concatenated_algebraic = None self._concatenated_initial_conditions = None @@ -145,6 +145,8 @@ def rhs(self): @rhs.setter def rhs(self, rhs): self._rhs = EquationDict("rhs", rhs) + # Make sure there are no repeated keys (including algebraic) + self.check_no_repeated_keys() @property def algebraic(self): @@ -153,6 +155,8 @@ def algebraic(self): @algebraic.setter def algebraic(self, algebraic): self._algebraic = EquationDict("algebraic", algebraic) + # Make sure there are no repeated keys (including algebraic) + self.check_no_repeated_keys() @property def initial_conditions(self): @@ -347,7 +351,6 @@ def update(self, *submodels): The submodels from which to create new model """ for submodel in submodels: - # check and then update dicts self.check_and_combine_dict(self._rhs, submodel.rhs) self.check_and_combine_dict(self._algebraic, submodel.algebraic) @@ -392,6 +395,7 @@ def check_well_posedness(self, post_discretisation=False): self.check_algebraic_equations(post_discretisation) self.check_ics_bcs() self.check_default_variables_dictionaries() + self.check_no_repeated_keys() # Can't check variables after discretising, since Variable objects get replaced # by StateVector objects # Checking variables is slow, so only do it in debug mode @@ -620,6 +624,21 @@ def check_variables(self): ) ) + def check_no_repeated_keys(self): + "Check that no equation keys are repeated" + rhs_alg = {**self.rhs, **self.algebraic} + rhs_alg_keys = [] + + for var in rhs_alg.keys(): + # Check the variable has not already been defined + if var.id in rhs_alg_keys: + raise pybamm.ModelError( + "Multiple equations specified for variable {!r}".format(var) + ) + # Update list of variables + else: + rhs_alg_keys.append(var.id) + def info(self, symbol_name): """ Provides helpful summary information for a symbol. diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index ee5db3b837..c98d948b13 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -479,6 +479,8 @@ def build_model_equations(self): # Set model equations for submodel_name, submodel in self.submodels.items(): if submodel.external is False: + if submodel_name == "negative interface": + n = 1 pybamm.logger.debug( "Setting rhs for {} submodel ({})".format(submodel_name, self.name) ) @@ -489,12 +491,14 @@ def build_model_equations(self): submodel_name, self.name ) ) + submodel.set_algebraic(self.variables) pybamm.logger.debug( "Setting boundary conditions for {} submodel ({})".format( submodel_name, self.name ) ) + submodel.set_boundary_conditions(self.variables) pybamm.logger.debug( "Setting initial conditions for {} submodel ({})".format( @@ -507,8 +511,9 @@ def build_model_equations(self): "Updating {} submodel ({})".format(submodel_name, self.name) ) self.update(submodel) + self.check_no_repeated_keys() - def build_model(self, build_equations=True): + def build_model(self): # Check if already built if self._built: @@ -524,7 +529,7 @@ def build_model(self, build_equations=True): self.build_coupled_variables() - if build_equations: + if self._built: self.build_model_equations() else: self.update(*self.submodels.values()) diff --git a/tests/unit/test_models/test_base_model.py b/tests/unit/test_models/test_base_model.py index 7f0edc3006..de41f240f8 100644 --- a/tests/unit/test_models/test_base_model.py +++ b/tests/unit/test_models/test_base_model.py @@ -251,6 +251,24 @@ def test_new_copy(self): self.assertEqual(new_model.convert_to_format, model.convert_to_format) self.assertEqual(new_model.timescale, model.timescale) + def test_check_no_repeated_keys(self): + model = pybamm.BaseModel() + + # rhs twice + var = pybamm.Variable("var") + model.rhs = {var: -1} + var = pybamm.Variable("var") + model.rhs.update({var: -1}) + with self.assertRaisesRegex(pybamm.ModelError, "Multiple equations specified"): + model.check_no_repeated_keys() + + # rhs and algebraic + model.rhs = {var: -1} + var = pybamm.Variable("var") + model.algebraic.update({var: var}) + with self.assertRaisesRegex(pybamm.ModelError, "Multiple equations specified"): + model.check_no_repeated_keys() + def test_check_well_posedness_variables(self): # Well-posed ODE model model = pybamm.BaseModel() From d10bfa5233bd8013c9a5f2cc178bb6e911bd7a92 Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Mon, 29 Jun 2020 19:59:25 -0400 Subject: [PATCH 07/11] #1011 fix example again --- examples/scripts/cycling_ageing_yang.py | 2 +- pybamm/discretisations/discretisation.py | 7 +------ .../full_battery_models/base_battery_model.py | 21 ++++++++++--------- 3 files changed, 13 insertions(+), 17 deletions(-) diff --git a/examples/scripts/cycling_ageing_yang.py b/examples/scripts/cycling_ageing_yang.py index 7a1b81bbb8..e82d3f4e38 100644 --- a/examples/scripts/cycling_ageing_yang.py +++ b/examples/scripts/cycling_ageing_yang.py @@ -1,6 +1,6 @@ import pybamm as pb -pb.set_logging_level("DEBUG") +pb.set_logging_level("INFO") options = {"sei": "ec reaction limited", "sei porosity change": True} param = pb.ParameterValues(chemistry=pb.parameter_sets.Ramadass2004) model = pb.lithium_ion.DFN(options) diff --git a/pybamm/discretisations/discretisation.py b/pybamm/discretisations/discretisation.py index 8b7810e14a..1e6de70f92 100644 --- a/pybamm/discretisations/discretisation.py +++ b/pybamm/discretisations/discretisation.py @@ -252,8 +252,6 @@ def set_variable_slices(self, variables): upper_bounds = [] # Iterate through unpacked variables, adding appropriate slices to y_slices for variable in variables: - if variable.name == "Total negative electrode interfacial current density": - n = 1 # Add up the size of all the domains in variable.domain if isinstance(variable, pybamm.Concatenation): spatial_method = self.spatial_methods[variable.domain[0]] @@ -807,10 +805,7 @@ def process_symbol(self, symbol): except KeyError: discretised_symbol = self._process_symbol(symbol) self._discretised_symbols[symbol.id] = discretised_symbol - try: - discretised_symbol.test_shape() - except: - self._process_symbol(symbol.left.child) + discretised_symbol.test_shape() # Assign mesh as an attribute to the processed variable if symbol.domain != []: discretised_symbol.mesh = self.mesh.combine_submeshes(*symbol.domain) diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index c98d948b13..5460417252 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -479,8 +479,6 @@ def build_model_equations(self): # Set model equations for submodel_name, submodel in self.submodels.items(): if submodel.external is False: - if submodel_name == "negative interface": - n = 1 pybamm.logger.debug( "Setting rhs for {} submodel ({})".format(submodel_name, self.name) ) @@ -529,10 +527,7 @@ def build_model(self): self.build_coupled_variables() - if self._built: - self.build_model_equations() - else: - self.update(*self.submodels.values()) + self.build_model_equations() pybamm.logger.debug("Setting voltage variables ({})".format(self.name)) self.set_voltage_variables() @@ -564,12 +559,18 @@ def new_copy(self, build=True): new_model = self.__class__(options=self.options, name=self.name, build=False) # update submodels new_model.submodels = self.submodels + # clear submodel equations to avoid weird conflicts + for submodel in self.submodels.values(): + submodel._rhs = {} + submodel._algebraic = {} + submodel._initial_conditions = {} + submodel._boundary_conditions = {} + submodel._variables = {} + submodel._events = [] + # now build if build: - if self._built is True: - new_model.build_model(build_equations=False) - else: - new_model.build_model(build_equations=True) + new_model.build_model() new_model.use_jacobian = self.use_jacobian new_model.use_simplify = self.use_simplify new_model.convert_to_format = self.convert_to_format From 0f0bbaa1df08b25d89bd57123e7e327bfb0c50a9 Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 30 Jun 2020 10:02:47 -0400 Subject: [PATCH 08/11] #1011 add tests for deprecations and colab --- examples/notebooks/change-input-current.ipynb | 2 +- pybamm/simulation.py | 13 ---- run-tests.py | 12 ++++ tests/unit/test_simulation.py | 60 ++----------------- 4 files changed, 19 insertions(+), 68 deletions(-) diff --git a/examples/notebooks/change-input-current.ipynb b/examples/notebooks/change-input-current.ipynb index 569afb2456..3bc1a17255 100644 --- a/examples/notebooks/change-input-current.ipynb +++ b/examples/notebooks/change-input-current.ipynb @@ -338,7 +338,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/pybamm/simulation.py b/pybamm/simulation.py index 51726be33d..ee666aff5a 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -229,19 +229,6 @@ def set_up_experiment(self, model, experiment): dt = 7 * 24 * 3600 self._experiment_times.append(dt) - def set_defaults(self): - """ - A method to set all the simulation specs to default values for the - supplied model. - """ - self.geometry = self._model.default_geometry - self.parameter_values = self._model.default_parameter_values - self.submesh_types = self._model.default_submesh_types - self.var_pts = self._model.default_var_pts - self.spatial_methods = self._model.default_spatial_methods - self.solver = self._model.default_solver - self.quick_plot_vars = None - def set_parameters(self): """ A method to set the parameters in the model and the associated geometry. diff --git a/run-tests.py b/run-tests.py index d06a88c0c1..28505962ca 100755 --- a/run-tests.py +++ b/run-tests.py @@ -177,6 +177,18 @@ def test_notebook(path, executable="python"): print("Test " + path + " ... ", end="") sys.stdout.flush() + # Make sure the notebook has a "%pip install pybamm -q" command, for using Google + # Colab + with open(path, "r") as f: + if "%pip install pybamm -q" not in f.read(): + # print error and exit + print("\n" + "-" * 70) + print("ERROR") + print("-" * 70) + print("Installation command '%pip install pybamm -q' not found in notebook") + print("-" * 70) + return False + # Load notebook, convert to python e = nbconvert.exporters.PythonExporter() code, __ = e.from_filename(path) diff --git a/tests/unit/test_simulation.py b/tests/unit/test_simulation.py index 834f81484f..151af2305c 100644 --- a/tests/unit/test_simulation.py +++ b/tests/unit/test_simulation.py @@ -41,6 +41,12 @@ def test_basic_ops(self): if val.size > 1: self.assertTrue(val.has_symbol_of_classes(pybamm.Matrix)) + def test_specs_deprecated(self): + model = pybamm.lithium_ion.SPM() + sim = pybamm.Simulation(model) + with self.assertRaisesRegex(NotImplementedError, "specs"): + sim.specs() + def test_solve(self): sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) @@ -123,28 +129,6 @@ def test_set_crate(self): self.assertEqual(sim.parameter_values["Current function [A]"], 2 * current_1C) self.assertEqual(sim.C_rate, 2) - def test_set_defaults(self): - - submesh_types = { - "Negative particle": pybamm.MeshGenerator(pybamm.Exponential1DSubMesh) - } - solver = pybamm.BaseSolver() - quick_plot_vars = ["Negative particle surface concentration"] - sim = pybamm.Simulation( - pybamm.lithium_ion.SPM(), - submesh_types=submesh_types, - solver=solver, - quick_plot_vars=quick_plot_vars, - ) - - sim.set_defaults() - - self.assertEqual( - sim.submesh_types["negative particle"].submesh_type, pybamm.Uniform1DSubMesh - ) - self.assertEqual(sim.quick_plot_vars, None) - self.assertIsInstance(sim.solver, pybamm.ScipySolver) - def test_get_variable_array(self): sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) @@ -301,38 +285,6 @@ def test_save_load_dae(self): sim_load = pybamm.load_sim("test.pickle") self.assertEqual(sim.model.name, sim_load.model.name) - def test_set_defaults2(self): - model = pybamm.lithium_ion.SPM() - - # make simulation with silly options (should this be allowed?) - sim = pybamm.Simulation( - model, - geometry={}, - parameter_values={}, - submesh_types={}, - var_pts={}, - spatial_methods={}, - solver={}, - quick_plot_vars=[], - ) - - # reset and check - sim.set_defaults() - # Not sure of best way to test nested dicts? - self.assertEqual( - sim._parameter_values._dict_items, - model.default_parameter_values._dict_items, - ) - for domain, submesh in model.default_submesh_types.items(): - self.assertEqual( - sim._submesh_types[domain].submesh_type, submesh.submesh_type - ) - self.assertEqual(sim._var_pts, model.default_var_pts) - for domain, method in model.default_spatial_methods.items(): - self.assertIsInstance(sim._spatial_methods[domain], type(method)) - self.assertIsInstance(sim._solver, type(model.default_solver)) - self.assertEqual(sim._quick_plot_vars, None) - def test_plot(self): sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) From fcbbd78d43354aad1267d0002e1bd3e17eda334c Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 30 Jun 2020 10:10:49 -0400 Subject: [PATCH 09/11] #1011 changelog --- CHANGELOG.md | 4 ++++ pybamm/models/base_model.py | 4 ---- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 76f645cea6..f14c7e0e72 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,8 @@ ## Bug fixes +- Fixed `Simulation` to keep different copies of the model so that parameters can be changed between simulations ([#1090](https://github.com/pybamm-team/PyBaMM/pull/1090)) +- Fixed `model.new_copy()` to keep custom submodels ([#1090](https://github.com/pybamm-team/PyBaMM/pull/1090)) - 2D processed variables can now be evaluated at the domain boundaries ([#1088](https://github.com/pybamm-team/PyBaMM/pull/1088)) - Update the default variable points to better capture behaviour in the solid particles in li-ion models ([#1081](https://github.com/pybamm-team/PyBaMM/pull/1081)) - Fix `QuickPlot` to display variables discretised by FEM (in y-z) properly ([#1078](https://github.com/pybamm-team/PyBaMM/pull/1078)) @@ -24,6 +26,8 @@ ## Breaking changes +- `Simulation.specs` and `Simulation.set_defaults` have been deprecated. Users should create a new `Simulation` object for each different case instead ([#1090](https://github.com/pybamm-team/PyBaMM/pull/1090)) + # [v0.2.2](https://github.com/pybamm-team/PyBaMM/tree/v0.2.2) - 2020-06-01 New SEI models, simplification of submodel structure, as well as optimisations and general bug fixes. diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index 9f47422fac..ed551699e7 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -145,8 +145,6 @@ def rhs(self): @rhs.setter def rhs(self, rhs): self._rhs = EquationDict("rhs", rhs) - # Make sure there are no repeated keys (including algebraic) - self.check_no_repeated_keys() @property def algebraic(self): @@ -155,8 +153,6 @@ def algebraic(self): @algebraic.setter def algebraic(self, algebraic): self._algebraic = EquationDict("algebraic", algebraic) - # Make sure there are no repeated keys (including algebraic) - self.check_no_repeated_keys() @property def initial_conditions(self): From 874b3f76be5c9473aa6b99ba062f43e8aed830ed Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 30 Jun 2020 15:29:57 -0400 Subject: [PATCH 10/11] #1011 coverage --- .../test_lead_acid/test_basic_models.py | 3 +++ .../test_lithium_ion/test_basic_models.py | 6 ++++++ 2 files changed, 9 insertions(+) diff --git a/tests/unit/test_models/test_full_battery_models/test_lead_acid/test_basic_models.py b/tests/unit/test_models/test_full_battery_models/test_lead_acid/test_basic_models.py index 260df1b254..22886b67f3 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lead_acid/test_basic_models.py +++ b/tests/unit/test_models/test_full_battery_models/test_lead_acid/test_basic_models.py @@ -10,6 +10,9 @@ def test_basic_full_lead_acid_well_posed(self): model = pybamm.lead_acid.BasicFull() model.check_well_posedness() + copy = model.new_copy() + copy.check_well_posedness() + if __name__ == "__main__": print("Add -v for more debug output") diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_basic_models.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_basic_models.py index b7754dfcb2..97998b066e 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_basic_models.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_basic_models.py @@ -10,10 +10,16 @@ def test_dfn_well_posed(self): model = pybamm.lithium_ion.BasicDFN() model.check_well_posedness() + copy = model.new_copy() + copy.check_well_posedness() + def test_spm_well_posed(self): model = pybamm.lithium_ion.BasicSPM() model.check_well_posedness() + copy = model.new_copy() + copy.check_well_posedness() + if __name__ == "__main__": print("Add -v for more debug output") From 61da8c7e79be3b233c66524e933f7ec461831a1b Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Tue, 30 Jun 2020 21:48:41 -0400 Subject: [PATCH 11/11] #1011 merge develop --- CHANGELOG.md | 1 + ...utorial 2 - Setting Parameter Values.ipynb | 420 ------------------ .../Tutorial 3 - Basic plotting.ipynb | 64 +-- pybamm/models/base_model.py | 7 +- pybamm/simulation.py | 2 + tests/unit/test_simulation.py | 2 +- 6 files changed, 10 insertions(+), 486 deletions(-) delete mode 100644 examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb diff --git a/CHANGELOG.md b/CHANGELOG.md index b1ba72fffe..2f224f71bd 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -28,6 +28,7 @@ ## Breaking changes +- `Simulation.specs` and `Simulation.set_defaults` have been deprecated. Users should create a new `Simulation` object for each different case instead ([#1090](https://github.com/pybamm-team/PyBaMM/pull/1090)) - The solution times `t_eval` must now be provided to `Simulation.solve()` when not using an experiment or prescribing the current using drive cycle data ([#1086](https://github.com/pybamm-team/PyBaMM/pull/1086)) # [v0.2.2](https://github.com/pybamm-team/PyBaMM/tree/v0.2.2) - 2020-06-01 diff --git a/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb b/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb deleted file mode 100644 index daa4af9763..0000000000 --- a/examples/notebooks/Getting Started/Tutorial 2 - Setting Parameter Values.ipynb +++ /dev/null @@ -1,420 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial 2 - Setting Parameter Values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In [Tutorial 1](./Tutorial%201%20-%20How%20to%20run%20a%20model.ipynb), we saw how to run a PyBaMM model with all the default settings. However, PyBaMM also allows you to tweak these settings for your application. In this tutorial, we will see how to build a parameter set in PyBaMM and also how parameter values can be quickly changed temporarily." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install pybamm -q # install PyBaMM if it is not installed\n", - "import pybamm" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Build a parameter set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PyBaMM allows you to build a full battery parameter set from parameter values for each component of the battery: anode, cathode, etc. The parameters for each component of the cell are stored within `input/parameters/lithium_ion/anode`, `input/parameters/lithium_ion/cathode`, etc. Each component consists of folders of parameter values (e.g. graphite_mcmb2528_Marquis2019). For information on how to add your own folder of parameter values see [Additional Information](#adding_parameters). We select the parameter set to use for each component by creating the following python dictionary:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "parameter_options = {\n", - " \"chemistry\": \"lithium-ion\",\n", - " \"cell\": \"kokam_Marquis2019\",\n", - " \"anode\": \"graphite_mcmb2528_Marquis2019\",\n", - " \"separator\": \"separator_Marquis2019\",\n", - " \"cathode\": \"lico2_Marquis2019\",\n", - " \"electrolyte\": \"lipf6_Marquis2019\",\n", - " \"experiment\": \"1C_discharge_from_full_Marquis2019\",\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "where the keys (i.e. left of the ':') are the various cell components and the values (i.e. right of the ':') correspond to the parameter sets in each component." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now pass this set of options into a `ParameterValues` object, which builds the full parameter set:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "parameter_values = pybamm.ParameterValues(chemistry=parameter_options)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now perform the same process as in Tutorial 1 but this time we also pass our parameter values when we create the `Simulation`:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bebc7473326423bb8b033cfc7d55be8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model = pybamm.lithium_ion.SPMe()\n", - "sim = pybamm.Simulation(model, parameter_values=parameter_values)\n", - "sim.solve([0, 3600])\n", - "sim.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tweak a parameter value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We often want to quickly change a small number of parameter values to investigate how the behaviour or the battery changes. In such cases, creating and building a full parameter set is not ideal. However, PyBaMM also makes it easy to change parameter values without having to leave the notebook or script you are working in. \n", - "\n", - "We begin by creating a `ParameterValues` class" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "parameter_values2 = pybamm.ParameterValues(chemistry=parameter_options)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The values of the parameters are stored within a python dictionary where the keys correspond to that parameter name (e.g. 'Typical current [A]') and the values correspond to the parameter value (e.g. 0.68). For how to to view the full list of parameters and their values, please see [Additional Information](#viewing_values). In this notebook, we will just tweak the typical current from it's default 1C value (0.68 A) to a 2C rate (1.36 A):" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "parameter_values2.update({\"Current function [A]\": 1.36})" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now load a new model and the updated parameter values into a simulation:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "model2 = pybamm.lithium_ion.SPMe()\n", - "sim2 = pybamm.Simulation(model, parameter_values=parameter_values2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And then we can solve and plot our model as before." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "890d90e230da4d1da847eb66d6df3e29", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=1763.6363636363637, step=17.636363636363637)…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sim2.solve([0, 1800])\n", - "sim2.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we have seen how to set the parameter values by cell component and how to tweak individual parameter values.\n", - "\n", - "In [Tutorial 3](./Tutorial%203%20-%20Basic%20Plotting.ipynb) we introduce some basic plotting functionalities." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Additional Information\n", - "### Adding your own parameter sets \n", - "The parameters for each component of the cell are stored within `input/parameters/lithium_ion/anode`, `input/parameters/lithium_ion/cathode`, etc. Each component consists of folders of parameter sets (e.g. `graphite_mcmb2528_Marquis2019`) within which there are python functions for any functional dependancies (e.g. the open-circuit potential is a function of lithium concentration) as well as a `.csv` file containing all other parameters. If you wish to add your own parameter values for a particular component of the cell, simply create a new folder (e.g. `my_anode_params`) within the component folder (e.g. `input/parameters/lithium_ion/anode`) and then input the parameter values in the same format as the inbuilt parameter sets (it is probably easiest to just copy across the contents of `graphite_mcmb2528_Marquis2019` into `my_anode_params` and modify the values as you wish). \n", - "\n", - "More information on how to add parameter values is provided in our [online documentation](https://pybamm.readthedocs.io/en/latest/tutorials/add-parameter-values.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Viewing and searching the list of parameters " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To view the full list of parameters and their associated values, simply type: " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'1 + dlnf/dlnc': 1.0,\n", - " 'Ambient temperature [K]': 298.15,\n", - " 'Cation transference number': 0.4,\n", - " 'Cell capacity [A.h]': 0.680616,\n", - " 'Cell cooling surface area [m2]': 0.0569,\n", - " 'Cell volume [m3]': 7.8e-06,\n", - " 'Current function [A]': 1.36,\n", - " 'Edge heat transfer coefficient [W.m-2.K-1]': 0.3,\n", - " 'Electrode height [m]': 0.13699999999999998,\n", - " 'Electrode width [m]': 0.207,\n", - " 'Electrolyte conductivity [S.m-1]': ,\n", - " 'Electrolyte diffusivity [m2.s-1]': ,\n", - " 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n", - " 'Initial concentration in negative electrode [mol.m-3]': 19986.609595075,\n", - " 'Initial concentration in positive electrode [mol.m-3]': 30730.755438556498,\n", - " 'Initial temperature [K]': 298.15,\n", - " 'Lower voltage cut-off [V]': 3.105,\n", - " 'Maximum concentration in negative electrode [mol.m-3]': 24983.2619938437,\n", - " 'Maximum concentration in positive electrode [mol.m-3]': 51217.9257309275,\n", - " 'Negative current collector conductivity [S.m-1]': 59600000.0,\n", - " 'Negative current collector density [kg.m-3]': 8954.0,\n", - " 'Negative current collector specific heat capacity [J.kg-1.K-1]': 385.0,\n", - " 'Negative current collector surface heat transfer coefficient [W.m-2.K-1]': 0.0,\n", - " 'Negative current collector thermal conductivity [W.m-1.K-1]': 401.0,\n", - " 'Negative current collector thickness [m]': 2.5e-05,\n", - " 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Negative electrode OCP [V]': ,\n", - " 'Negative electrode OCP entropic change [V.K-1]': ,\n", - " 'Negative electrode active material volume fraction': 0.7,\n", - " 'Negative electrode cation signed stoichiometry': -1.0,\n", - " 'Negative electrode charge transfer coefficient': 0.5,\n", - " 'Negative electrode conductivity [S.m-1]': 100.0,\n", - " 'Negative electrode density [kg.m-3]': 1657.0,\n", - " 'Negative electrode diffusivity [m2.s-1]': ,\n", - " 'Negative electrode double-layer capacity [F.m-2]': 0.2,\n", - " 'Negative electrode electrons in reaction': 1.0,\n", - " 'Negative electrode exchange-current density [A.m-2]': ,\n", - " 'Negative electrode porosity': 0.3,\n", - " 'Negative electrode specific heat capacity [J.kg-1.K-1]': 700.0,\n", - " 'Negative electrode surface area to volume ratio [m-1]': 180000.0,\n", - " 'Negative electrode thermal conductivity [W.m-1.K-1]': 1.7,\n", - " 'Negative electrode thickness [m]': 0.0001,\n", - " 'Negative particle distribution in x': 1.0,\n", - " 'Negative particle radius [m]': 1e-05,\n", - " 'Negative tab centre y-coordinate [m]': 0.06,\n", - " 'Negative tab centre z-coordinate [m]': 0.13699999999999998,\n", - " 'Negative tab heat transfer coefficient [W.m-2.K-1]': 10.0,\n", - " 'Negative tab width [m]': 0.04,\n", - " 'Number of cells connected in series to make a battery': 1.0,\n", - " 'Number of electrodes connected in parallel to make a cell': 1.0,\n", - " 'Positive current collector conductivity [S.m-1]': 35500000.0,\n", - " 'Positive current collector density [kg.m-3]': 2707.0,\n", - " 'Positive current collector specific heat capacity [J.kg-1.K-1]': 897.0,\n", - " 'Positive current collector surface heat transfer coefficient [W.m-2.K-1]': 0.0,\n", - " 'Positive current collector thermal conductivity [W.m-1.K-1]': 237.0,\n", - " 'Positive current collector thickness [m]': 2.5e-05,\n", - " 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Positive electrode OCP [V]': ,\n", - " 'Positive electrode OCP entropic change [V.K-1]': ,\n", - " 'Positive electrode active material volume fraction': 0.7,\n", - " 'Positive electrode cation signed stoichiometry': -1.0,\n", - " 'Positive electrode charge transfer coefficient': 0.5,\n", - " 'Positive electrode conductivity [S.m-1]': 10.0,\n", - " 'Positive electrode density [kg.m-3]': 3262.0,\n", - " 'Positive electrode diffusivity [m2.s-1]': ,\n", - " 'Positive electrode double-layer capacity [F.m-2]': 0.2,\n", - " 'Positive electrode electrons in reaction': 1.0,\n", - " 'Positive electrode exchange-current density [A.m-2]': ,\n", - " 'Positive electrode porosity': 0.3,\n", - " 'Positive electrode specific heat capacity [J.kg-1.K-1]': 700.0,\n", - " 'Positive electrode surface area to volume ratio [m-1]': 150000.0,\n", - " 'Positive electrode thermal conductivity [W.m-1.K-1]': 2.1,\n", - " 'Positive electrode thickness [m]': 0.0001,\n", - " 'Positive particle distribution in x': 1.0,\n", - " 'Positive particle radius [m]': 1e-05,\n", - " 'Positive tab centre y-coordinate [m]': 0.147,\n", - " 'Positive tab centre z-coordinate [m]': 0.13699999999999998,\n", - " 'Positive tab heat transfer coefficient [W.m-2.K-1]': 10.0,\n", - " 'Positive tab width [m]': 0.04,\n", - " 'Reference OCP vs SHE in the negative electrode [V]': nan,\n", - " 'Reference OCP vs SHE in the positive electrode [V]': nan,\n", - " 'Reference temperature [K]': 298.15,\n", - " 'Separator Bruggeman coefficient (electrode)': 1.5,\n", - " 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Separator density [kg.m-3]': 397.0,\n", - " 'Separator porosity': 1.0,\n", - " 'Separator specific heat capacity [J.kg-1.K-1]': 700.0,\n", - " 'Separator thermal conductivity [W.m-1.K-1]': 0.16,\n", - " 'Separator thickness [m]': 2.5e-05,\n", - " 'Total heat transfer coefficient [W.m-2.K-1]': 10.0,\n", - " 'Typical current [A]': 0.680616,\n", - " 'Typical electrolyte concentration [mol.m-3]': 1000.0,\n", - " 'Upper voltage cut-off [V]': 4.7}" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "parameter_values2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also search the list of parameters for a particular string, e.g. \"electrolyte\"" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Electrolyte conductivity [S.m-1]\t\n", - "Electrolyte diffusivity [m2.s-1]\t\n", - "Initial concentration in electrolyte [mol.m-3]\t1000.0\n", - "Negative electrode Bruggeman coefficient (electrolyte)\t1.5\n", - "Positive electrode Bruggeman coefficient (electrolyte)\t1.5\n", - "Separator Bruggeman coefficient (electrolyte)\t1.5\n", - "Typical electrolyte concentration [mol.m-3]\t1000.0\n" - ] - } - ], - "source": [ - "parameter_values2.search(\"electrolyte\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/examples/notebooks/Getting Started/Tutorial 3 - Basic plotting.ipynb b/examples/notebooks/Getting Started/Tutorial 3 - Basic plotting.ipynb index a93ef8cc64..b2d6f6691b 100644 --- a/examples/notebooks/Getting Started/Tutorial 3 - Basic plotting.ipynb +++ b/examples/notebooks/Getting Started/Tutorial 3 - Basic plotting.ipynb @@ -746,68 +746,6 @@ "sim.plot([[\"Electrode current density\", \"Electrolyte current density\"], \"Terminal voltage [V]\"])" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Overwriting default plot variables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you plan on plotting a specific set of variables repeatedly you can also overwrite the default set of quick plot variables in the simulation class. Currently, if we run `plot` with no arguments, we produces the standard plot we observed in previous tutorials:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "eb778fbfe8b8428d8bf63ce3142d36f0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sim.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But, if we set:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "quick_plot_vars = [\"Electrolyte concentration [mol.m-3]\", \"Terminal voltage [V]\"]\n", - "sim.specs(quick_plot_vars=quick_plot_vars)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "then running `plot` will automatically produce a plot using your plot variables:" - ] - }, { "cell_type": "code", "execution_count": 9, @@ -858,7 +796,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index ed551699e7..d9d636073c 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -327,8 +327,11 @@ def _find_input_parameters(self): def __getitem__(self, key): return self.rhs[key] - def new_copy(self): - "Create an empty copy with identical options, or new options if specified" + def new_copy(self, build=False): + """ + Create an empty copy with identical options, or new options if specified. + The 'build' parameter is included for compatibility with subclasses, but unused. + """ new_model = self.__class__(name=self.name) new_model.use_jacobian = self.use_jacobian new_model.use_simplify = self.use_simplify diff --git a/pybamm/simulation.py b/pybamm/simulation.py index 12011c855d..557ef558eb 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -101,6 +101,8 @@ def __init__( * self._parameter_values["Cell capacity [A.h]"] } ) + + self._unprocessed_model = model self.model = model else: self.set_up_experiment(model, experiment) diff --git a/tests/unit/test_simulation.py b/tests/unit/test_simulation.py index ff0edaf833..ac8fa907d6 100644 --- a/tests/unit/test_simulation.py +++ b/tests/unit/test_simulation.py @@ -59,7 +59,7 @@ def test_solve(self): self.assertTrue(val.has_symbol_of_classes(pybamm.Matrix)) # test solve without check - sim.reset() + sim = pybamm.Simulation(pybamm.lithium_ion.SPM()) sim.solve(t_eval=[0, 600], check_model=False) for val in list(sim.built_model.rhs.values()): self.assertFalse(val.has_symbol_of_classes(pybamm.Parameter))