diff --git a/.all-contributorsrc b/.all-contributorsrc
new file mode 100644
index 0000000000..18990490d9
--- /dev/null
+++ b/.all-contributorsrc
@@ -0,0 +1,283 @@
+{
+ "files": [
+ "README.md"
+ ],
+ "imageSize": 100,
+ "commit": false,
+ "contributors": [
+ {
+ "login": "tinosulzer",
+ "name": "Valentin Sulzer",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/20817509?v=4",
+ "profile": "https://sites.google.com/view/valentinsulzer",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "maintenance",
+ "review",
+ "test",
+ "tutorial",
+ "blog"
+ ]
+ },
+ {
+ "login": "rtimms",
+ "name": "Robert Timms",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/43040151?v=4",
+ "profile": "http://www.robertwtimms.com",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "maintenance",
+ "review",
+ "test",
+ "tutorial"
+ ]
+ },
+ {
+ "login": "Scottmar93",
+ "name": "Scott Marquis",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/22661308?v=4",
+ "profile": "https://github.com/Scottmar93",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "maintenance",
+ "review",
+ "test",
+ "tutorial"
+ ]
+ },
+ {
+ "login": "martinjrobins",
+ "name": "Martin Robinson",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/1148404?v=4",
+ "profile": "https://github.com/martinjrobins",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "review",
+ "test"
+ ]
+ },
+ {
+ "login": "ferranbrosa",
+ "name": "Ferran Brosa Planella",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/28443643?v=4",
+ "profile": "https://www.brosaplanella.com",
+ "contributions": [
+ "review",
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "maintenance",
+ "test",
+ "tutorial",
+ "blog"
+ ]
+ },
+ {
+ "login": "TomTranter",
+ "name": "Tom Tranter",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/7068741?v=4",
+ "profile": "https://github.com/TomTranter",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "review",
+ "test"
+ ]
+ },
+ {
+ "login": "tlestang",
+ "name": "Thibault Lestang",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/13448239?v=4",
+ "profile": "http://tlestang.github.io",
+ "contributions": [
+ "bug",
+ "code",
+ "doc",
+ "example",
+ "ideas",
+ "review",
+ "test",
+ "infra"
+ ]
+ },
+ {
+ "login": "dalonsoa",
+ "name": "Diego",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/6095790?v=4",
+ "profile": "https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/rcs/research-software-engineering/",
+ "contributions": [
+ "bug",
+ "review",
+ "code",
+ "infra"
+ ]
+ },
+ {
+ "login": "felipe-salinas",
+ "name": "felipe-salinas",
+ "avatar_url": "https://avatars2.githubusercontent.com/u/64426781?v=4",
+ "profile": "https://github.com/felipe-salinas",
+ "contributions": [
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "suhaklee",
+ "name": "suhaklee",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/57151989?v=4",
+ "profile": "https://github.com/suhaklee",
+ "contributions": [
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "viviantran27",
+ "name": "viviantran27",
+ "avatar_url": "https://avatars0.githubusercontent.com/u/6379429?v=4",
+ "profile": "https://github.com/viviantran27",
+ "contributions": [
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "gyouhoc",
+ "name": "gyouhoc",
+ "avatar_url": "https://avatars0.githubusercontent.com/u/60714526?v=4",
+ "profile": "https://github.com/gyouhoc",
+ "contributions": [
+ "bug",
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "YannickNoelStephanKuhn",
+ "name": "Yannick Kuhn",
+ "avatar_url": "https://avatars0.githubusercontent.com/u/62429912?v=4",
+ "profile": "https://github.com/YannickNoelStephanKuhn",
+ "contributions": [
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "jedgedrudd",
+ "name": "Jacqueline Edge",
+ "avatar_url": "https://avatars2.githubusercontent.com/u/39409226?v=4",
+ "profile": "http://batterymodel.co.uk",
+ "contributions": [
+ "ideas",
+ "eventOrganizing",
+ "fundingFinding"
+ ]
+ },
+ {
+ "login": "fcooper8472",
+ "name": "Fergus Cooper",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/3770306?v=4",
+ "profile": "https://www.rse.ox.ac.uk/",
+ "contributions": [
+ "code",
+ "test"
+ ]
+ },
+ {
+ "login": "jonchapman1",
+ "name": "jonchapman1",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/28925818?v=4",
+ "profile": "https://github.com/jonchapman1",
+ "contributions": [
+ "ideas",
+ "fundingFinding"
+ ]
+ },
+ {
+ "login": "colinplease",
+ "name": "Colin Please",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/44977104?v=4",
+ "profile": "https://github.com/colinplease",
+ "contributions": [
+ "ideas",
+ "fundingFinding"
+ ]
+ },
+ {
+ "login": "FaradayInstitution",
+ "name": "Faraday Institution",
+ "avatar_url": "https://avatars2.githubusercontent.com/u/42166506?v=4",
+ "profile": "https://faraday.ac.uk",
+ "contributions": [
+ "financial"
+ ]
+ },
+ {
+ "login": "bessman",
+ "name": "Alexander Bessman",
+ "avatar_url": "https://avatars3.githubusercontent.com/u/1999462?v=4",
+ "profile": "https://github.com/bessman",
+ "contributions": [
+ "bug",
+ "example"
+ ]
+ },
+ {
+ "login": "dalbamont",
+ "name": "dalbamont",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/19659095?v=4",
+ "profile": "https://github.com/dalbamont",
+ "contributions": [
+ "code"
+ ]
+ },
+ {
+ "login": "anandmy",
+ "name": "Anand Mohan Yadav",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/34894671?v=4",
+ "profile": "https://github.com/anandmy",
+ "contributions": [
+ "doc"
+ ]
+ },
+ {
+ "login": "weilongai",
+ "name": "WEILONG AI",
+ "avatar_url": "https://avatars1.githubusercontent.com/u/41424174?v=4",
+ "profile": "https://github.com/weilongai",
+ "contributions": [
+ "code",
+ "example",
+ "test"
+ ]
+ }
+ ],
+ "contributorsPerLine": 7,
+ "projectName": "PyBaMM",
+ "projectOwner": "pybamm-team",
+ "repoType": "github",
+ "repoHost": "https://github.com",
+ "skipCi": true
+}
diff --git a/.github/release_checklist.md b/.github/release_checklist.md
index 339237deca..434859657a 100644
--- a/.github/release_checklist.md
+++ b/.github/release_checklist.md
@@ -1,4 +1,4 @@
-- Increment version number in `version`
-- Increment version number in `docs/conf.py`
-- Update CHANGELOG.md with a summary of the release
-- Update (and pin) jax and jaxlib to latest version and fix any bugs that arise
\ No newline at end of file
+- Increment version number in `version`
+- Increment version number in `docs/conf.py`
+- Update CHANGELOG.md with a summary of the release
+- Update (and pin) jax and jaxlib to latest version and fix any bugs that arise
diff --git a/.github/workflows/build_wheels_and_publish.yml b/.github/workflows/build_wheels_and_publish.yml
index d320bcbe16..c4f04734dc 100644
--- a/.github/workflows/build_wheels_and_publish.yml
+++ b/.github/workflows/build_wheels_and_publish.yml
@@ -37,10 +37,6 @@ jobs:
- name: Install build-time deps for MacOS
if: matrix.os == 'macos-latest'
run: |
- # Temporary fix for https://github.com/actions/virtual-environments/issues/1811
- brew untap local/homebrew-openssl
- brew untap local/homebrew-python2
- # End of fix
brew update
brew install graphviz
brew install sundials
diff --git a/.github/workflows/test_on_push.yml b/.github/workflows/test_on_push.yml
index 21ee6c3bf5..7fb0962cd1 100644
--- a/.github/workflows/test_on_push.yml
+++ b/.github/workflows/test_on_push.yml
@@ -50,10 +50,6 @@ jobs:
- name: Install MacOS system dependencies
if: matrix.os == 'macos-latest'
run: |
- # Temporary fix for https://github.com/actions/virtual-environments/issues/1811
- brew untap local/homebrew-openssl
- brew untap local/homebrew-python2
- # End of fix
brew update
brew install graphviz
brew install openblas
@@ -87,8 +83,8 @@ jobs:
if: matrix.os != 'windows-latest'
run: tox -e examples
- - name: Instal and run coverage
- if: success() && (matrix.os == 'unbuntu-latest' && matrix.python-version == 3.7)
+ - name: Install and run coverage
+ if: success() && (matrix.os == 'ubuntu-latest' && matrix.python-version == 3.7)
run: tox -e coverage
- name: Upload coverage report
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 1c588edab5..0ea3d2e92f 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,3 +1,41 @@
+# [v0.3.0](https://github.com/pybamm-team/PyBaMM)
+
+This release introduces a new aging model for particle swelling and cracking, a new reduced-order model (TSPMe), and a parameter set for A123 LFP cells. Additionally, there have been several backend optimizations to speed up model creation and solving, and other minor features and bug fixes.
+
+## Features
+
+- Added a submodel for particle swelling and cracking ([#1232](https://github.com/pybamm-team/PyBaMM/pull/1232))
+- Added a notebook on how to speed up the solver and handle instabilities ([#1223](https://github.com/pybamm-team/PyBaMM/pull/1223))
+- Improve string printing of `BinaryOperator`, `Function`, and `Concatenation` objects ([#1223](https://github.com/pybamm-team/PyBaMM/pull/1223))
+- Added `Solution.integration_time`, which is the time taken just by the integration subroutine, without extra setups ([#1223](https://github.com/pybamm-team/PyBaMM/pull/1223))
+- Added parameter set for an A123 LFP cell ([#1209](https://github.com/pybamm-team/PyBaMM/pull/1209))
+- Added variables related to equivalent circuit models ([#1204](https://github.com/pybamm-team/PyBaMM/pull/1204))
+- Added the `Integrated` electrolyte conductivity submodel ([#1188](https://github.com/pybamm-team/PyBaMM/pull/1188))
+- Added an example script to check conservation of lithium ([#1186](https://github.com/pybamm-team/PyBaMM/pull/1186))
+- Added `erf` and `erfc` functions ([#1184](https://github.com/pybamm-team/PyBaMM/pull/1184))
+
+## Optimizations
+
+- Add (optional) smooth approximations for the `Minimum`, `Maximum`, `Heaviside`, and `AbsoluteValue` operators ([#1223](https://github.com/pybamm-team/PyBaMM/pull/1223))
+- Avoid unnecessary repeated computations in the solvers ([#1222](https://github.com/pybamm-team/PyBaMM/pull/1222))
+- Rewrite `Symbol.is_constant` to be more efficient ([#1222](https://github.com/pybamm-team/PyBaMM/pull/1222))
+- Cache shape and size calculations ([#1222](https://github.com/pybamm-team/PyBaMM/pull/1222))
+- Only instantiate the geometric, electrical and thermal parameter classes once ([#1222](https://github.com/pybamm-team/PyBaMM/pull/1222))
+
+## Bug fixes
+
+- Quickplot now works when timescale or lengthscale is a function of an input parameter ([#1234](https://github.com/pybamm-team/PyBaMM/pull/1234))
+- Fix bug that was slowing down creation of the EC reaction SEI submodel ([#1227](https://github.com/pybamm-team/PyBaMM/pull/1227))
+- Add missing separator thermal parameters for the Ecker parameter set ([#1226](https://github.com/pybamm-team/PyBaMM/pull/1226))
+- Make sure simulation solves when evaluated timescale is a function of an input parameter ([#1218](https://github.com/pybamm-team/PyBaMM/pull/1218))
+- Raise error if saving to MATLAB with variable names that MATLAB can't read, and give option of providing alternative variable names ([#1206](https://github.com/pybamm-team/PyBaMM/pull/1206))
+- Raise error if the boundary condition at the origin in a spherical domain is other than no-flux ([#1175](https://github.com/pybamm-team/PyBaMM/pull/1175))
+- Fix boundary conditions at r = 0 for Creating Models notebooks ([#1173](https://github.com/pybamm-team/PyBaMM/pull/1173))
+
+## Breaking changes
+
+- The parameters "Positive/Negative particle distribution in x" and "Positive/Negative surface area per unit volume distribution in x" have been deprecated. Instead, users can provide "Positive/Negative particle radius [m]" and "Positive/Negative surface area per unit volume [m-1]" directly as functions of through-cell position (x [m]) ([#1237](https://github.com/pybamm-team/PyBaMM/pull/1237))
+
# [v0.2.4](https://github.com/pybamm-team/PyBaMM/tree/v0.2.4) - 2020-09-07
This release adds new operators for more complex models, some basic sensitivity analysis, and a spectral volumes spatial method, as well as some small bug fixes.
diff --git a/MANIFEST.in b/MANIFEST.in
index c40770432c..c2f9cd7db7 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -28,6 +28,8 @@ include pybamm/input/parameters/lithium-ion/electrolytes/lipf6_Nyman2008/paramet
include pybamm/input/parameters/lithium-ion/separators/separator_Kim2011/parameters.csv
include pybamm/input/parameters/lithium-ion/separators/separator_Chen2020/parameters.csv
include pybamm/input/parameters/lithium-ion/separators/separator_Marquis2019/parameters.csv
+include pybamm/input/parameters/lithium-ion/mechanicals/lico2_graphite_Ai2020/parameters.csv
+include pybamm/input/parameters/lithium-ion/anodes/graphite_Ai2020/graphite_ocp_Enertech_Ai2020.csv
include pybamm/input/parameters/lead-acid/anodes/lead_Sulzer2019/lead_ocp_Bode1977.py
include pybamm/input/parameters/lead-acid/cathodes/lead_dioxide_Sulzer2019/lead_dioxide_ocp_Bode1977.py
include pybamm/input/parameters/lead-acid/electrolytes/sulfuric_acid_Sulzer2019/diffusivity_Gu1997.py
@@ -82,6 +84,7 @@ include pybamm/input/parameters/lithium-ion/electrolytes/lipf6_Nyman2008/README.
include pybamm/input/parameters/lithium-ion/separators/separator_Kim2011/README.md
include pybamm/input/parameters/lithium-ion/separators/separator_Chen2020/README.md
include pybamm/input/parameters/lithium-ion/separators/separator_Marquis2019/README.md
+include pybamm/input/parameters/lithium-ion/mechanicals/lico2_graphite_Ai2020/README.md
include pybamm/version
include pybamm/CITATIONS.txt
include CMakeBuild.py
\ No newline at end of file
diff --git a/README.md b/README.md
index ef339a4cee..d35b5c8291 100644
--- a/README.md
+++ b/README.md
@@ -5,6 +5,9 @@
[![codecov](https://codecov.io/gh/pybamm-team/PyBaMM/branch/master/graph/badge.svg)](https://codecov.io/gh/pybamm-team/PyBaMM)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pybamm-team/PyBaMM/blob/master/)
[![black_code_style](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
+
+[![All Contributors](https://img.shields.io/badge/all_contributors-22-orange.svg?style=flat-square)](#contributors-)
+
PyBaMM (Python Battery Mathematical Modelling) solves physics-based electrochemical DAE models by using state-of-the-art automatic differentiation and numerical solvers. The Doyle-Fuller-Newman model can be solved in under 0.1 seconds, while the reduced-order Single Particle Model and Single Particle Model with electrolyte can be solved in just a few milliseconds. Additional physics can easily be included such as thermal effects, fast particle diffusion, 3D effects, and more. All models are implemented in a flexible manner, and a wide range of models and parameter sets (NCA, NMC, LiCoO2, ...) are available. There is also functionality to simulate any set of experimental instructions, such as CCCV or GITT, or specify drive cycles.
@@ -101,3 +104,49 @@ If you'd like to help us develop PyBaMM by adding new methods, writing documenta
## Licensing
PyBaMM is fully open source. For more information about its license, see [LICENSE](./LICENSE.txt).
+
+## Contributors ✨
+
+Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
+
+
+
+
+
+
+
+
+
+
+This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
\ No newline at end of file
diff --git a/docs/conf.py b/docs/conf.py
index dc22f6d6b0..0bacae7c03 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -26,9 +26,9 @@
author = "The PyBaMM Team"
# The short X.Y version
-version = "0.2"
+version = "0.3"
# The full version, including alpha/beta/rc tags
-release = "0.2.4"
+release = "0.3.0-beta"
# -- General configuration ---------------------------------------------------
diff --git a/docs/install/install-from-source.rst b/docs/install/install-from-source.rst
index 261515c1e0..f8156a075a 100644
--- a/docs/install/install-from-source.rst
+++ b/docs/install/install-from-source.rst
@@ -128,7 +128,7 @@ Using Tox (recommended)
python -m tox -e windows-dev # (Windows)
-This creates a virtual environment ``.tox/dev`` inside the ``PyBaMM/`` directory.
+This creates a virtual environment ``.tox/dev`` (or ``windows-dev``) inside the ``PyBaMM/`` directory.
It comes ready with PyBaMM and some useful development tools like `flake8 `_ and `black `_.
You can now activate the environment with
@@ -137,7 +137,7 @@ You can now activate the environment with
source .tox/dev/bin/activate # (GNU/Linux and MacOS)
#
- .tox\dev\Scripts\activate.bat # (Windows)
+ .tox\windows-dev\Scripts\activate.bat # (Windows)
and run the tests to check your installation.
diff --git a/docs/source/expression_tree/binary_operator.rst b/docs/source/expression_tree/binary_operator.rst
index 39e819bfb0..971bdd26f4 100644
--- a/docs/source/expression_tree/binary_operator.rst
+++ b/docs/source/expression_tree/binary_operator.rst
@@ -47,4 +47,10 @@ Binary Operators
.. autofunction:: pybamm.maximum
+.. autofunction:: pybamm.softminus
+
+.. autofunction:: pybamm.softplus
+
+.. autofunction:: pybamm.sigmoid
+
.. autofunction:: pybamm.source
diff --git a/docs/source/expression_tree/unary_operator.rst b/docs/source/expression_tree/unary_operator.rst
index 3fe0627da1..d09ebd1649 100644
--- a/docs/source/expression_tree/unary_operator.rst
+++ b/docs/source/expression_tree/unary_operator.rst
@@ -87,6 +87,8 @@ Unary Operators
.. autofunction:: pybamm.boundary_value
+.. autofunction:: pybamm.smooth_absolute_value
+
.. autofunction:: pybamm.sign
.. autofunction:: pybamm.upwind
diff --git a/docs/source/models/submodels/electrolyte_conductivity/index.rst b/docs/source/models/submodels/electrolyte_conductivity/index.rst
index 8d0be2223a..a723c32aab 100644
--- a/docs/source/models/submodels/electrolyte_conductivity/index.rst
+++ b/docs/source/models/submodels/electrolyte_conductivity/index.rst
@@ -7,5 +7,6 @@ Electrolyte Conductivity
base_electrolyte_conductivity
leading_order_conductivity
composite_conductivity
+ integrated_conductivity
full_conductivity
surface_form/index
diff --git a/docs/source/models/submodels/electrolyte_conductivity/integrated_conductivity.rst b/docs/source/models/submodels/electrolyte_conductivity/integrated_conductivity.rst
new file mode 100644
index 0000000000..469e3e7dcb
--- /dev/null
+++ b/docs/source/models/submodels/electrolyte_conductivity/integrated_conductivity.rst
@@ -0,0 +1,5 @@
+Integrated Model
+================
+
+.. autoclass:: pybamm.electrolyte_conductivity.Integrated
+ :members:
diff --git a/docs/source/models/submodels/index.rst b/docs/source/models/submodels/index.rst
index a72bfa243f..c6624b516c 100644
--- a/docs/source/models/submodels/index.rst
+++ b/docs/source/models/submodels/index.rst
@@ -14,6 +14,7 @@ Submodels
interface/index
oxygen_diffusion/index
particle/index
+ particle_cracking/index
porosity/index
thermal/index
tortuosity/index
diff --git a/docs/source/models/submodels/particle_cracking/base_cracking.rst b/docs/source/models/submodels/particle_cracking/base_cracking.rst
new file mode 100644
index 0000000000..9cdc3343d6
--- /dev/null
+++ b/docs/source/models/submodels/particle_cracking/base_cracking.rst
@@ -0,0 +1,5 @@
+Base Particle Cracking Model
+============================
+
+.. autoclass:: pybamm.particle_cracking.BaseCracking
+ :members:
diff --git a/docs/source/models/submodels/particle_cracking/crack_propagation.rst b/docs/source/models/submodels/particle_cracking/crack_propagation.rst
new file mode 100644
index 0000000000..82b395df88
--- /dev/null
+++ b/docs/source/models/submodels/particle_cracking/crack_propagation.rst
@@ -0,0 +1,5 @@
+Crack Propagation Model
+=======================
+
+.. autoclass:: pybamm.particle_cracking.CrackPropagation
+ :members:
diff --git a/docs/source/models/submodels/particle_cracking/index.rst b/docs/source/models/submodels/particle_cracking/index.rst
new file mode 100644
index 0000000000..872921c628
--- /dev/null
+++ b/docs/source/models/submodels/particle_cracking/index.rst
@@ -0,0 +1,9 @@
+Particle Cracking
+=================
+
+.. toctree::
+ :maxdepth: 1
+
+ base_cracking
+ crack_propagation
+ no_cracking
diff --git a/docs/source/models/submodels/particle_cracking/no_cracking.rst b/docs/source/models/submodels/particle_cracking/no_cracking.rst
new file mode 100644
index 0000000000..171713a975
--- /dev/null
+++ b/docs/source/models/submodels/particle_cracking/no_cracking.rst
@@ -0,0 +1,5 @@
+No Cracking Model
+=================
+
+.. autoclass:: pybamm.particle_cracking.NoCracking
+ :members:
diff --git a/docs/source/spatial_methods/index.rst b/docs/source/spatial_methods/index.rst
index 8bb4f0eee0..060eb91c02 100644
--- a/docs/source/spatial_methods/index.rst
+++ b/docs/source/spatial_methods/index.rst
@@ -6,5 +6,6 @@ Discretisation and spatial methods
discretisation
spatial_method
finite_volume
+ spectral_volume
scikit_finite_element
zero_dimensional_method
diff --git a/docs/source/spatial_methods/spectral_volume.rst b/docs/source/spatial_methods/spectral_volume.rst
new file mode 100644
index 0000000000..30b7f475a3
--- /dev/null
+++ b/docs/source/spatial_methods/spectral_volume.rst
@@ -0,0 +1,5 @@
+Spectral Volume
+===============
+
+.. autoclass:: pybamm.SpectralVolume
+ :members:
diff --git a/examples/notebooks/Creating Models/2-a-pde-model.ipynb b/examples/notebooks/Creating Models/2-a-pde-model.ipynb
index 3f84c4904d..ac441e5c92 100644
--- a/examples/notebooks/Creating Models/2-a-pde-model.ipynb
+++ b/examples/notebooks/Creating Models/2-a-pde-model.ipynb
@@ -107,7 +107,7 @@
"# boundary conditions\n",
"lbc = pybamm.Scalar(0)\n",
"rbc = pybamm.Scalar(2)\n",
- "model.boundary_conditions = {c: {\"left\": (lbc, \"Dirichlet\"), \"right\": (rbc, \"Neumann\")}}"
+ "model.boundary_conditions = {c: {\"left\": (lbc, \"Neumann\"), \"right\": (rbc, \"Neumann\")}}"
]
},
{
diff --git a/examples/notebooks/Creating Models/3-negative-particle-problem.ipynb b/examples/notebooks/Creating Models/3-negative-particle-problem.ipynb
index 8c9a2f4cd9..145df5985b 100644
--- a/examples/notebooks/Creating Models/3-negative-particle-problem.ipynb
+++ b/examples/notebooks/Creating Models/3-negative-particle-problem.ipynb
@@ -105,7 +105,7 @@
"# boundary conditions \n",
"lbc = pybamm.Scalar(0)\n",
"rbc = -j / F / D\n",
- "model.boundary_conditions = {c: {\"left\": (lbc, \"Dirichlet\"), \"right\": (rbc, \"Neumann\")}}\n",
+ "model.boundary_conditions = {c: {\"left\": (lbc, \"Neumann\"), \"right\": (rbc, \"Neumann\")}}\n",
"\n",
"# initial conditions \n",
"model.initial_conditions = {c: c0}"
diff --git a/examples/notebooks/Creating Models/4-comparing-full-and-reduced-order-models.ipynb b/examples/notebooks/Creating Models/4-comparing-full-and-reduced-order-models.ipynb
index a69f26b2d1..57ba2a76e1 100644
--- a/examples/notebooks/Creating Models/4-comparing-full-and-reduced-order-models.ipynb
+++ b/examples/notebooks/Creating Models/4-comparing-full-and-reduced-order-models.ipynb
@@ -140,7 +140,7 @@
"# boundary conditions (only required for full model)\n",
"lbc = pybamm.Scalar(0)\n",
"rbc = -j / F / D\n",
- "full_model.boundary_conditions = {c: {\"left\": (lbc, \"Dirichlet\"), \"right\": (rbc, \"Neumann\")}}"
+ "full_model.boundary_conditions = {c: {\"left\": (lbc, \"Neumann\"), \"right\": (rbc, \"Neumann\")}}"
]
},
{
@@ -391,7 +391,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.8"
+ "version": "3.7.7"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/Getting Started/Tutorial 1 - How to run a model.ipynb b/examples/notebooks/Getting Started/Tutorial 1 - How to run a model.ipynb
index 38d4d4ea53..974a089de3 100644
--- a/examples/notebooks/Getting Started/Tutorial 1 - How to run a model.ipynb
+++ b/examples/notebooks/Getting Started/Tutorial 1 - How to run a model.ipynb
@@ -83,7 +83,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 4,
@@ -110,7 +110,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "06ae219fb8b94fa3aad3b8907a41ed27",
+ "model_id": "2b323f5e668d4135834681aac97571ce",
"version_major": 2,
"version_minor": 0
},
@@ -152,7 +152,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.9"
+ "version": "3.7.8"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/Getting Started/Tutorial 5 - Run experiments.ipynb b/examples/notebooks/Getting Started/Tutorial 5 - Run experiments.ipynb
index 082e9accc4..d14cac014d 100644
--- a/examples/notebooks/Getting Started/Tutorial 5 - Run experiments.ipynb
+++ b/examples/notebooks/Getting Started/Tutorial 5 - Run experiments.ipynb
@@ -206,7 +206,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.9"
+ "version": "3.7.8"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/Getting Started/Tutorial 6 - Managing simulation outputs.ipynb b/examples/notebooks/Getting Started/Tutorial 6 - Managing simulation outputs.ipynb
index 565726a863..a343548e53 100644
--- a/examples/notebooks/Getting Started/Tutorial 6 - Managing simulation outputs.ipynb
+++ b/examples/notebooks/Getting Started/Tutorial 6 - Managing simulation outputs.ipynb
@@ -22,21 +22,23 @@
"metadata": {},
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
+ "\u001b[33mWARNING: You are using pip version 20.2.1; however, version 20.2.4 is available.\n",
+ "You should consider upgrading via the '/Users/vsulzer/Documents/Energy_storage/PyBaMM/.tox/dev/bin/python -m pip install --upgrade pip' command.\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
},
{
+ "output_type": "execute_result",
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 1,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 1
}
],
"source": [
@@ -100,6 +102,7 @@
"metadata": {},
"outputs": [
{
+ "output_type": "execute_result",
"data": {
"text/plain": [
"array([3.77047806, 3.75305163, 3.74567013, 3.74038819, 3.73581198,\n",
@@ -124,9 +127,8 @@
" 3.45439366, 3.41299183, 3.35578872, 3.27680073, 3.16842637])"
]
},
- "execution_count": 4,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 4
}
],
"source": [
@@ -146,6 +148,7 @@
"metadata": {},
"outputs": [
{
+ "output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0. , 36.36363636, 72.72727273, 109.09090909,\n",
@@ -175,9 +178,8 @@
" 3490.90909091, 3527.27272727, 3563.63636364, 3600. ])"
]
},
- "execution_count": 5,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 5
}
],
"source": [
@@ -197,14 +199,14 @@
"metadata": {},
"outputs": [
{
+ "output_type": "execute_result",
"data": {
"text/plain": [
"array([3.72947891, 3.70860034, 3.67810702, 3.65400558])"
]
},
- "execution_count": 6,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 6
}
],
"source": [
@@ -263,18 +265,16 @@
"metadata": {},
"outputs": [
{
+ "output_type": "display_data",
"data": {
+ "text/plain": "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…",
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7e116fdff90e40b28b3f13b79f3e7347",
"version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…"
- ]
+ "version_minor": 0,
+ "model_id": "0b4ebac3fdd947218f9444b2b381cf04"
+ }
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {}
}
],
"source": [
@@ -311,28 +311,26 @@
"metadata": {},
"outputs": [
{
+ "output_type": "display_data",
"data": {
+ "text/plain": "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…",
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cb9640519af3475b9b921b8523c01020",
"version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "interactive(children=(FloatSlider(value=0.0, description='t', max=1.0, step=0.01), Output()), _dom_classes=('w…"
- ]
+ "version_minor": 0,
+ "model_id": "f4a1b65b2bf945099197135c5598084b"
+ }
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {}
},
{
+ "output_type": "execute_result",
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 11,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 11
}
],
"source": [
@@ -370,7 +368,9 @@
"outputs": [],
"source": [
"sol.save_data(\"sol_data.csv\", [\"Current [A]\", \"Terminal voltage [V]\"], to_format=\"csv\")\n",
- "sol.save_data(\"sol_data.mat\", [\"Current [A]\", \"Terminal voltage [V]\"], to_format=\"matlab\")"
+ "# matlab needs names without spaces\n",
+ "sol.save_data(\"sol_data.mat\", [\"Current [A]\", \"Terminal voltage [V]\"], to_format=\"matlab\",\n",
+ " short_names={\"Current [A]\": \"I\", \"Terminal voltage [V]\": \"V\"})"
]
},
{
@@ -425,9 +425,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.9"
+ "version": "3.8.5-final"
}
},
"nbformat": 4,
"nbformat_minor": 2
-}
+}
\ No newline at end of file
diff --git a/examples/notebooks/Getting Started/Tutorial 7 - Model options.ipynb b/examples/notebooks/Getting Started/Tutorial 7 - Model options.ipynb
index 9447f4838d..611aa4a0db 100644
--- a/examples/notebooks/Getting Started/Tutorial 7 - Model options.ipynb
+++ b/examples/notebooks/Getting Started/Tutorial 7 - Model options.ipynb
@@ -140,7 +140,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.9"
+ "version": "3.7.8"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/Getting Started/Tutorial 9 - Changing the mesh.ipynb b/examples/notebooks/Getting Started/Tutorial 9 - Changing the mesh.ipynb
index 3b8cacddde..bca6b8232d 100644
--- a/examples/notebooks/Getting Started/Tutorial 9 - Changing the mesh.ipynb
+++ b/examples/notebooks/Getting Started/Tutorial 9 - Changing the mesh.ipynb
@@ -288,7 +288,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.9"
+ "version": "3.7.8"
}
},
"nbformat": 4,
diff --git a/examples/notebooks/Validating_mechanical_models_Enertech_DFN.ipynb b/examples/notebooks/Validating_mechanical_models_Enertech_DFN.ipynb
new file mode 100644
index 0000000000..e08791ca8e
--- /dev/null
+++ b/examples/notebooks/Validating_mechanical_models_Enertech_DFN.ipynb
@@ -0,0 +1,322 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Test the parameter set of the Enertech cells\n",
+ "In this notebook, we show how to use pybamm to reproduce the experimental results for the Enertech cells (LCO-G). To see all of the models and submodels available in PyBaMM, please take a look at the documentation [here](https://pybamm.readthedocs.io/en/latest/source/models/index.html)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pip install pybamm -q # install PyBaMM if it is not installed\n",
+ "import pybamm\n",
+ "import os\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "os.chdir(pybamm.__path__[0]+'/..')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "When you load a model in PyBaMM it builds by default. Building the model sets all of the model variables and sets up any variables which are coupled between different submodels: this is the process which couples the submodels together and allows one submodel to access variables from another. If you would like to swap out a submodel in an exisitng battery model you need to load it without building it by passing the keyword `build=False`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = pybamm.lithium_ion.DFN(\n",
+ " options = {\n",
+ " \"particle\": \"Fickian diffusion\", \n",
+ " \"cell geometry\": \"arbitrary\", \n",
+ " \"thermal\": \"lumped\", \n",
+ " \"particle cracking\": \"no cracking\",\n",
+ " }\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can get the parameter set `Ai2020` for the model, which includes the mechanical properties required by the mechanical model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.5 C\n",
+ "1 C\n",
+ "2 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "chemistry = pybamm.parameter_sets.Ai2020\n",
+ "param = pybamm.ParameterValues(chemistry=chemistry)\n",
+ "capacity = param[\"Cell capacity [A.h]\"]\n",
+ "param.update({\n",
+ " \"Current function [A]\": capacity * pybamm.InputParameter(\"C-rate\")\n",
+ "})\n",
+ "# experiment05C = pybamm.Experiment([\"Discharge at 0.5C until 3 V\"])\n",
+ "# experiment1C = pybamm.Experiment([\"Discharge at 1C until 3 V\"])\n",
+ "# experiment2C = pybamm.Experiment([\"Discharge at 2C until 3 V\"])\n",
+ "var = pybamm.standard_spatial_vars\n",
+ "var_pts = {\n",
+ " var.x_n: 50,\n",
+ " var.x_s: 50,\n",
+ " var.x_p: 50,\n",
+ " var.r_n: 20,\n",
+ " var.r_p: 20,\n",
+ "}\n",
+ "\n",
+ "sim = pybamm.Simulation(\n",
+ " model,\n",
+ " var_pts=var_pts,\n",
+ " parameter_values=param,\n",
+ " solver=pybamm.CasadiSolver(dt_max=600)\n",
+ " )\n",
+ "Crates = [0.5, 1, 2]\n",
+ "solutions = []\n",
+ "\n",
+ "for Crate in Crates:\n",
+ " print(f\"{Crate} C\")\n",
+ " sol = sim.solve(t_eval=[0, 3600/Crate*1.05], inputs={\"C-rate\": Crate})\n",
+ " solutions.append(sol)\n",
+ "\n",
+ "\n",
+ "solution05C, solution1C, solution2C = solutions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Load experimental results of the Enertech cells, Ref. Ai et al. JES 2020\n",
+ "https://iopscience.iop.org/article/10.1149/2.0122001JES"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# load experimental results\n",
+ "import pandas as pd\n",
+ "path = \"pybamm/input/discharge_data/Enertech_cells/\"\n",
+ "data_Disp_01C=pd.read_csv (path + \"0.1C_discharge_displacement.txt\", delimiter= '\\s+',header=None)\n",
+ "data_Disp_05C=pd.read_csv (path + \"0.5C_discharge_displacement.txt\", delimiter= '\\s+',header=None)\n",
+ "data_Disp_1C=pd.read_csv (path + \"1C_discharge_displacement.txt\", delimiter= '\\s+',header=None)\n",
+ "data_Disp_2C=pd.read_csv (path + \"2C_discharge_displacement.txt\", delimiter= '\\s+',header=None)\n",
+ "data_V_01C=pd.read_csv (path + \"0.1C_discharge_U.txt\", delimiter= '\\s+',header=None)\n",
+ "data_V_05C=pd.read_csv (path + \"0.5C_discharge_U.txt\", delimiter= '\\s+',header=None)\n",
+ "data_V_1C=pd.read_csv (path + \"1C_discharge_U.txt\", delimiter= '\\s+',header=None)\n",
+ "data_V_2C=pd.read_csv (path + \"2C_discharge_U.txt\", delimiter= '\\s+',header=None)\n",
+ "data_T_05C=pd.read_csv (path + \"0.5C_discharge_T.txt\", delimiter= '\\s+',header=None)\n",
+ "data_T_1C=pd.read_csv (path + \"1C_discharge_T.txt\", delimiter= '\\s+',header=None)\n",
+ "data_T_2C=pd.read_csv (path + \"2C_discharge_T.txt\", delimiter= '\\s+',header=None)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot the results."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAEYCAYAAADPrtzUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADei0lEQVR4nOydd3hURdfAf7NJSOi9B0gUkCQgFkRUUMEGYgE/fTUqoGJ/wYoKBjWUoICA0hQUUMREXjuKSAsoRUFApEWKgFJUQOkt7Xx/zN5ks+wmm2Rblvk9zzy7Ozt37rmrnMyZOUWJCAaDwWAwGAwGg8FgMBgCiy3QAhgMBoPBYDAYDAaDwWAwBrrBYDAYDAaDwWAwGAxBgTHQDQaDwWAwGAwGg8FgCAKMgW4wGAwGg8FgMBgMBkMQYAx0g8FgMBgMBoPBYDAYgoDwQAtQXGrVqiUxMTGBFsNgMAQRq1evPiAitQMtR1nH6FeDweCM0a+lx+hWg8HgCnf6tcwZ6DExMaxatSrQYhgMhiBCKfV7oGUIBYx+NRgMzhj9WnqMbjUYDK5wp1+Ni7vBYDAYDAaDwWAwGAxBgDHQDQaDwWAwGAwGg8FgCAKMgW4wGAwGg8FgMBgMBkMQ4PMYdKVUGLAK2CMiNzl99wzwIJAN7AceEBET62QoM2RlZbF7925OnToVaFHOCqKiooiOjiYiIiLQohgMBh9j9Kt/MfrVYDg7MLrV/xRXv/ojSdyTQAZQxcV3PwNtROSEUuoxYARwpx9kMhi8wu7du6lcuTIxMTEopQItTkgjIvzzzz/s3r2b2NjYQItjMBh8jNGv/sPoV4Ph7MHoVv9SEv3qUxd3pVQ00BV419X3IrJIRE7YP/4IRPtSHoPB25w6dYqaNWsaBecHlFLUrFnT7PgaDGcJRr/6D6NfDYazB6Nb/UtJ9KuvY9DfAJ4Hcj0Y2xuY4+oLpdTDSqlVSqlV+/fv9+jGfR98j6haG1G2HKJqbaTvg+95KLLBUDyMgvMf5rc2+Jy0NGjZEsLC9GtaWqAlOqsx/+b9R1n4rZVSnZVSm5VS25RS/V18H6mUmmn/foVSKsbhuwH2/s1KqRuKmlMpFWufY5t9znJF3aO03HDzC9jqbEDZcrDV2cANN7/grakNhgKUhX/voURxf2+fGehKqZuAfSKy2oOx9wJtgJGuvheRySLSRkTa1K59Ri33M+j74Hu8/cmVDHtiE8cPn2bYE5t4+5MrjZFuMBgMBvekpUFSEowbB6dO6dekJGOkGwxBgD2n0QSgCxAPJCql4p2G9QYOikhTYAww3H5tPHAXkAB0BiYqpcKKmHM4MMY+10H73G7vUVpuuPkF5qU/gzpaB8SG7E9g3uwUKl080RvTGwyGMoQvT9CvAG5RSu0EPgI6KaVmOA9SSl0LJAG3iMhpb9z4nS8uYfgzq3nm5TuoULkCz7x8B8OfWc07X1zijekNhqAjJSWFhIQEzj//fC644AJWrFjBgw8+yKZNm7wyf0xMDAcOHCh0zLBhwwp8vvzyy71yb4PBb6SkwJQp0LEjRETo1ylTdL/hrMTo1qCiLbBNRLaLSCZ6bXmr05hbgfft7z8BrlH66OpW4CMROS0iO4Bt9vlczmm/ppN9DuxzdiviHqVi3nd9UNnlyM2sQp7jqYRxfM2j1PzPQ6Wd3mAIOox+dY/PDHQRGSAi0SISg961TBeRex3HKKUuBCahjfN93rr36X9b8OjTXQv0Pfp0V07/28JbtzAYgoYffviBr7/+mjVr1rBu3ToWLFhAo0aNePfdd4mPdz5c8B3OSm758uV+u7fB4BUyMqB9+4J97dvrfsNZh9GtQUdDYJfD5932PpdjRCQbOAzULORad/01gUP2OZzv5e4eBSh2eObRaERskFsOCANbljUT/342lr7f9C16DoOhjGD0a+H4vQ66UmqwUuoW+8eRQCXgY6XUWqXULG/cI7LGr7w9ZnaBvrfHzCayxq/emN5gCCr+/PNPatWqRWRkJAC1atWiQYMGXH311axatQqASpUq8dxzz5GQkMC1117LypUrufrqqznnnHOYNUv/s3vvvffo06dP3rw33XQTixcvPuN+3bp14+KLLyYhIYHJkycD0L9/f06ePMkFF1zAPffck3dP0Nkrn3vuOVq2bEmrVq2YOXMmAIsXL+bqq6/m9ttvp0WLFtxzzz2IiG9+JIPBE+LiYOnSgn1Ll+p+w1mH0a2G0lDc8EwAsqpAgx8AgbBTRHVN1P05UUwcbPSQIXQw+rVw/FFmDRFZDCy2v3/Zof9aX9zvoW4/8cLoK4GPefTprrw9ZjYvjL6YR2//Hh1+ZDD4gKeegrVrvTvnBRfAG28UOuT6669n8ODBNG/enGuvvZY777yTq666qsCY48eP06lTJ0aOHEn37t0ZOHAg8+fPZ9OmTfTq1YtbbrnFzexnMnXqVGrUqMHJkye55JJL+L//+z9ee+01xo8fz1oXz//ZZ5+xdu1afvnlFw4cOMAll1zClVdeCcDPP//Mxo0badCgAVdccQXLli2jvfMJpsHgL5KSoHdv7dbevr02znv3Ni7uwUAA9KvRrUHHHqCRw+doe5+rMbuVUuFAVeCfIq511f8PUE0pFW4/JXcc7+4epaJi1B6On2oIf7blEdtoJmc9yam5UyFqP5yqTe6qB2g5sSVJHZJIbJVY2tsZDBqzdg1K/er3E3R/MO7d+3j09u95cWw8FatG8uLYeB69/XvGvXtfoEUzGLxOpUqVWL16NZMnT6Z27drceeedvPfeewXGlCtXjs6dOwPQqlUrrrrqKiIiImjVqhU7d+4s1v3Gjh1L69atadeuHbt27WLr1q2Fjl+6dCmJiYmEhYVRt25drrrqKn766ScA2rZtS3R0NDabjQsuuKDYshgMXiUxURvjfftCVJR+TUnR/YazDqNbg46fgGb27Orl0OGTzp6Xs4Be9ve3o8Mrxd5/lz0DeyzQDFjpbk77NYvsc2Cf88si7lEq3nnwD/1GwpmU+xRS7ihkV4CsSkA25EQytvNYktKTSFtvElcayjZGvxaOX07QA8G4d+9jXF719QTMybnB5xSxW+hLwsLCuPrqq7n66qtp1aoV77//foHvIyIi8ko82Gy2PJcim81GdrYOsQsPDyc3N78ioqt6jYsXL2bBggX88MMPVKhQgauvvrpUdXMtOaxnsGQxGAJGYqIxyIORAOlXo1uDBxHJVkr1AeYCYcBUEdmolBoMrBKRWcAU4AOl1DbgX7TBjX3c/4BNQDbwXxHJAXA1p/2WLwAfKaWGAj/b58bdPUpL4rjLeW/8t8zjBsAGmdWAHMgpDw2Xw18X82nGp0y+eTJPffuUOUU3eAezdi02/tCvIXmCbjCcTWzevLnATuDatWtp0qRJseeJiYlh7dq15ObmsmvXLlauXHnGmMOHD1O9enUqVKjAr7/+yo8//pj3XUREBFlZWWdc06FDB2bOnElOTg779+/n+++/p23btsWWz+AapdRUpdQ+pdQGh74aSqn5Sqmt9tfqgZSxzLJpEwwdCvu8lsPUUIYwujX4EJFvRKS5iJwrIin2vpftxjkickpE7hCRpiLSVkS2O1ybYr/uPBGZU9ic9v7t9jma2uc8XdQ9SsvcGvfQinUOPTmAgj3tuLD+O0xcNZHuM7uzcf9GWk5saU7SDWUWo18LxxjoBkMZ59ixY/Tq1Yv4+HjOP/98Nm3aRHJycrHnueKKK4iNjSU+Pp4nnniCiy666IwxnTt3Jjs7m7i4OPr370+7du3yvnv44Yc5//zz8xJtWHTv3p3zzz+f1q1b06lTJ0aMGEG9evWKLZ/BLe+h6/o60h9YKCLNgIX2z4bisnQpvPQSnPZKBVBDGcPoVoPfGT+edVxAH8YTyWkgAkUuYGPt7scJe2sTx1bfRGRYJIOuHmTc3Q1lFqNfC0eVtcyebdq0ESu7n8EQaDIyMogzGZ79iqvfXCm1WkTaBEikgKOUigG+FpGW9s+bgatF5E+lVH1gsYicV9Q8Z7V+TUvT8eYZGTpre1ISrF4NEybA8eNgM/vZ/sboV/9j9KtvKJZurVRJ6xygb/RdvHX4VSKPVUfq/UKvAX/zTnJb6DSQJh2W88pVrzBi2Qg2PL6hiEkNhnyMbg0MxdGvIb/iyM4t+3FXBoPBUEzqisif9vd/AXXdDSx2rd5QJC1NG+TjxsGpU/o1KQnS06FZM2OcGwwG//HOO1ClCkREsGh3Ev1r3k/Vq/px8s8r+WrJ9/QfsY0m6yex//h+HvjyAePubjCEICG96rjzkzvp8XmPQIthMBgMAcOeXditq1SJavWGGikpurRax44QEaFfp0yBjRuhefNAS2cwGM4mEhPh7behbl0yiOOVnUvZfV4E5Rut5eQXA3k6+yA7tkZRNaoqVSOrAnDP+fcYd3eDIYQIaQO9XsV6fLrpU/YfP0tPhQwGw9nK33bXduyvJstZYWRk6Lrnjlx6KWRm6hN0g8Fg8CeJiVC1KnExJ1laqzu2v/by4vC/+TerLre/FEm5ur/xdLunqRRZiZhqMbyU/hJ3xN9BypKUouc2GAxBT0gb6A9d/BBZuVk8PfdpWk5sSdjgMOMGZDAYzgYc6/Q61u81uCIuTieEc+TTT/XreUWG7hsMBoP3ycggaXAUvTMnsuibk7xw/WW0vnwPi/ffxOmWbzNlzRReu+Y11j26jo6xHRmxfAQb9280a12DIQQI2TroAC3rtKRpjab8b+P/+Paeb+nQpANL/1hK71m9AUwNSYPBUOZRSqUBVwO1lFK7gVeA14D/KaV6A78D/wmchGWApCTo3Vu7tbdvr431557T3xkD3WAwBIK4OBKjl8AzDembPIqM2pWoW70cCkHmv86JnYOgRiUqt4Ke5/dk6R9LOZV9isfbPE63Ft146KuHALPWNRjKIiF9gg5wIusEWblZlAsvR0RYBB1jOzLllinGDchgMIQEIpIoIvVFJEJEokVkioj8IyLXiEgzEblWRP4NtJxBT1YWdOoE5cpBz55w7bW638SgGwyGQGDfOExsv4sNDW5gRtNBRB3Zx6PXbAMUh5u/xbMvnOSDD7N5efHLVIusRudzOzP+p/FM+XkKb9/0tlnrGgxllJA30P869heVIirxzpp3AEhbn0afOX1M1ktDyBAWFsYFF1yQ11577TWf3m/WrFk+v8fixYtZvny5T+9hMAD5GdynT9cx5+npOlHc3r1QowbUrBloCQ0BxOhXQ8BITNQJLO+7D/buJWXrHUyp1o83e63hvPMgcsMjRNzal57P/MrOQzsZcd0IvrnnG1675jXSNqQxfNlwMg5kBPopDAaXGN1aOCHt4g4QVyuO2Oqx/G/j/7i4/sW88eMb9GnbhylrpjCuyzjj7m7wL65qLSeW7v+98uXLs3btWu/IVwTZ2dnccsst3HLLLT69z+LFi6lUqRKXX365T+9jMBTI4A75Gdy7doVLLgmsbIbiYfSrRxj9WsaIiIAxY8h4Oo72jyQQ8cqLjLmjHjeOuJoRjd+l/wGIq51AdJVolFK80P4FdhzawaTVkwCIGx/Hy1e9bNa5hpJjdKtHeFW3ikiZahdffLEUh9R1qRI9OloqplSU8MHh8sK8FyT2jVhJXZcqIiLp29MlYUJCseY0GCw2bdrk+eDUVJHYWJH0dJHMTP0aG6v7S0HFihXP6Dt06JA0b95cfv31VxERueuuu2Ty5Ml545966imJj4+XTp06yb59+0REZNu2bXLDDTfIRRddJO3bt5eMjAwREenVq5c88sgj0rZtW3n66adl2rRp8t///jfvu0cffVQuvfRSiY2NlUWLFsn9998vLVq0kF69euXJM3fuXGnXrp1ceOGFcvvtt8vRo0dFRKRJkyby8ssvy4UXXigtW7aUjIwM2bFjh9StW1caNGggrVu3lu+//77As7n6zYFVEgT6qay34urXMk9qqgiIKCWSkJD/b/H0ad3/+OOBle8sx+hXo19DpZVYtyYk6P+Xs7MlIWyTpHccrD8nJEiXLiIVK4q0aKHXurFvxEr69nSZvna61H+9vlR/rbqEDwqXhqMaSqPRjfLWvQaD0a3+160ixdOvAVdaxW3FUXJvvSUyYYJWXOe+ea6QjNiSbTL0u6EiovvjJ8QLyUjChASjvAzFplhKzvpD64j9D21psNls0rp167z20UcfiYjIvHnzpF27dpKWliY33HBD3nhAZsyYISIigwYNylNYnTp1ki1btoiIyI8//igdO3YUEa3IunbtKtnZ2SIiZyi5O++8U3Jzc+WLL76QypUry7p16yQnJ0cuuugi+fnnn2X//v3SoUMHOXbsmIiIvPbaazJo0CAR0Upu7NixIiIyYcIE6d27t4iIvPLKKzJy5EiXz2sWkMGhX8s81qIjJkZk3ryCi460NP3nceLEQEt5VmP0q9GvodJKrFttNm0UiUhqx8kSq7ZL+uwTkqnKyXvvaTV1zTV6aOq6VEmYkCAkIzFjYiR1Xaos+2OZVH+tutR4rYac++a5JZPBEHIY3ep/3SpSPP0a0i7uX34Jf/8Nax5PJLFVIs3HNefw6cMM/n4wvx38jcU7Fxt3d4P/cFVruX173V8K3LkJXXfddXz88cf897//5Zdffsnrt9ls3HnnnQDce++93HbbbRw7dozly5dzxx135I07ffp03vs77riDsLAwl/e/+eabUUrRqlUr6tatS6tWrQBISEhg586d7N69m02bNnHFFVcAkJmZyWWXXZZ3/W233QbAxRdfzGeffVbCX8FgKCaWa/tff8Ejj+j3kybBww/DyZN6TOvWgZXR4DlGvwJGv4YcVgnIjh1J7NcQFr1I3wfGkiEniBsJnTvDvHmwbh0knq/XumGDw9jSdwsRYREADGg/gBfTX+TfU/9yzpvnkNIpxaxzDZ5jdCvgf90a0gb6eefBkiUgAkrBoKsHMWDhAJrUbcK0tdNoXbc1Y1eM5dVrXs3L7t53Tl+juAy+weEPbR5Ll+p+H5Cbm0tGRgYVKlTg4MGDREdHuxynlCI3N5dq1aq5jQeqWLGi2/tERkYCWnla763P2dnZhIWFcd1115GW5joho3VNWFgY2dnZnjyawVB6rEVHhF7E0rev7svNhdtug88/NwZ6WcLo10KvN/q1jOJYAvLKK0ksfzuJJ2ZD6iTSSGTwYK2yLr8cJk+Gu+/WuZeW/rGUjrEdSVufxlur3qL/Ff0Zvmw4u4/s5um5TwPmMMrgIUa3Fnq9r3RrSGdxP+88OH4cWrSAsDBISUzk5tOpnMg6AcAvf//C8czjNKnWBIDdR3azcf9GwgaHmQzvBu9j/aFdtEiXdFq0SH9OSvLJ7caMGUNcXBypqancf//9ZGVlAVr5ffLJJwCkpqbSvn17qlSpQmxsLB9//DGgQ18cdy5LQ7t27Vi2bBnbtm0D4Pjx42zZsqXQaypXrszRo0e9cn+DwSXWogN0spsNG2DBAkhIgOxs/QekkD/uhiDD6FfA6NeQw8rk3rcvVKkCp0/D0aOkPb+GpCePMXEijBmj17rPPGMvStEhid6zerNoxyKGLhlKn7Z9+HD9h4y/cTwX1b+Ifcf30W9+v0A/maGsYHQr4H/dGtIG+p49+vXhh+HUKRg3DmZPupyk6htIqJ3A+C7jqRxZmSunXckd/7uD5xc8T0zVGE4lnWJcl3EkpScZI93gPRz/0EZF6deUlFJnwjx58mSBUhX9+/dn8+bNvPvuu4waNYoOHTpw5ZVXMnToUEDvKK5cuZKWLVuSnp7Oyy+/DMCHH37IlClTaN26NQkJCXz55ZelfmSA2rVr895775GYmMj555/PZZddxq+//lroNTfffDOff/45F1xwAUuWLPGKHAZDAdwtOl58EVauhIsvDrSEhuJg9KvRr6FKYqLWVzExMGAAACk5/ZkS9jAd/0rjv//VB1ERETB0qD4ZT+mUQt85fdm0fxNT1kwhpVMKD1/8MAt7LuSGpjew9+hehnw3BB0CazAUgtGtgdGtrgLTg7kVJ9FG8+Y6gcaECfl9Vl4DK+PlV5u/krs/vVtIRiIGR8iYH8aIiP4+5o0Yk0DOUCjFSrQRJLjKnFmWMEmMgkO/lmlSU/UfAqVEIiMLZnHftUv/4bAngDEEDqNf/Y/Rr0GqW61EXQcPioSHi03lSOa8RXmJur7+WvIKUhS4bEKCpG/PT/CVui5VmoxpIiQjJCPXTb9OsnOySyebocxhdGtgKI5+DekT9G3boEIF2Lw5v8/Ka2DtMPZf0J+PNnwEQJgK4+VFL/PY14+RlJ7E5Jsmo1DmNN1gMBhChbQ0fRo1bpx2F50zR59MWXVdV6zQ49q2DaiYBoPBkIeVM6NaNbj6auIifmMp+Ym6brxRO/0oBf/+m3+Zo7v7B798wLPznuV09mne7/Y+dybcyfzt87l86uWczj7t+r4GgyEghLSBHhcHDRrA4sXQsqWOQ2/eXPeBNtI3PL6BnJdzSKidwNRbp3Jh/Qt5e/XbNKraiONZx4mvHZ+XQC5lSUpAn8dg8AbHjh0LtAgGQ+Cwsrd37Kh9Qjt21J9T7Pr9hx8gMhIuuCCgYhrKJka/GnyCY86MW28lKfNlet9zkkWNe5KVpde5f/2lkyIPGZJ/maO7e88vehIZFsnoG0bTs3VPPrr9Ix5r8xgr96yky4ddOHL6SEAezWDwhLNNt4a0gZ6UBLt2wcaNOonGt9/qWPTTp/UhSoGxHZJISk/ipStfQqFY+vtSbv/f7dzS/BbS1qfRZ04fNu7faJLHGc5Ae6gY/IH5rQ2lpqiSMcuWQZs22kg3BBzzb95/BPNvrZSqoZSar5Taan+t7mZcL/uYrUqpXg79Fyul1iultimlxiqlVGHzKs1Y+/h1SqmL7P0XKKV+UEpttPff6Y/nL5Azo3NnEvmIlBPP0Dd7TF5Y8MiR8NBDMH48OOaysg6jbMrGlr5b8rK3p61P47vfvwNg0c5FnP/W+fx17C+/PI4h8ATzv/dQpLi/d0gb6ImJOp9BTo6uFfn00zB6NMycmX9YkjfWvsv41LdPIQj1KtWjbqW6vLrsVR6d/Sg9z+9JfK144+5uKEBUVBT//POPUXR+QET4559/iIqKCrQohrKM40mUhVUy5uRJWL1a1ywyBByjX/1HGdCv/YGFItIMWGj/XAClVA3gFeBSoC3wioMh/xbwENDM3joXMW8Xh7EP268HOAH0FJEE+xxvKKWqee8x3WAl6urZE5o1011Z09kwYg45OboIBcB33+kiFG3anHkQZZVfA22cJ6Un0fvC3sTXimf4NcP54/AftH67Ndv+3ebzxzEEFqNb/UtJ9GtI10EHOHpUx+QkJcHgwbovKyv/sMSRxFaJJLZKzFNcE2+cyD2f3cO/p/7lpUUv8cpVr/DXsb8QhLs/u5uUJSkkdUgytSTPYqKjo9m9ezf79+8PtChnBVFRUW5rYhoMHuFYV7h9e22c9+6tF78rV+o/EFdeGWgpDRj96m+CXL/eClxtf/8+sBh4wWnMDcB8EfkXQCk1H+islFoMVBGRH+3904FuwJxC5r0VmG5P4vSjUqqaUqq+iOSdTYvIXqXUPqA2cMhrT1oYERGQnq5LQr76al5W9zQSSUrSam3ZMnjpJXj2WX2JlWzbikefcsuUvPJr41eOJ6VTComtEqkUWYkn5jzB5VMuZ849c7i4galkEaoY3ep/iqtfQ95Aj4uD8uXhgw90WdtXX9XGeUSE3l10VSXAMrj7ze/Hv6f+pXGVxhzJPMLLi1+mamRVUm9L5cbUGxnXZRy9Z/UucI3h7CIiIoLY2NhAi2EwGDzFUvp9++o/BnFx+SVjhgzRO7pXXBFYGQ2A0a+GAtQVkT/t7/8C6roY0xDY5fB5t72vof29c39h87qbyxqLUqotUA74zZXASqmH0afvNG7cuJBH8xDH/BmVK8OwYXDXXZCSQgqJeV+1awfvvAPlyhWshmWtU53Lr1kHUxN+mkCO5HDo1CGumHoFXyV+xXXnXld6uQ1Bh9GtwY/PXdyVUmFKqZ+VUl+7+C5SKTXTHuOzQikV49Wbr1xJ0h1b+P132LkTnnkGHngAGjeGfv30QYqzC5CFFbOTUDuB97q9x29P/EblcpU5eOogT897mqY1mprkcQaDwVDWSEvTq1bLOLeyt4POtNS6NVR3Gd5qMBh8iFJqgVJqg4t2q+M4+6m2131zizOvUqo+8AFwv4jkuplvsoi0EZE2tWvXLr2AjvkzLrpIZzzesgUyMgp8Vb68Pozatg02bSo4hePadvyN4wt4jVru7h/e9iG5kkuXD7uYcE6DIUD4Iwb9ScCFQzkAvYGDItIUGAMM9+qdn3uOxIUPMnq0PhTZtw+mTtWbjkOHFkzc6w7LJeiXv37haOZRXrziRbb8s4Wdh3bS6/NeJnmcwWAwlBUcS6ydOqVfrZ3aU6e0b2jHjoGW0mA4KxGRa0WkpYv2JfC33Si2jON9LqbYAzRy+Bxt79tjf+/cTyHzupsLpVQVYDaQZLnN+wXH/Bk2G9x8sy4T2aLFGak17rpLe42GhcGJE2dO5Vh+zdHdfeCVA7kj4Q4+/c+nRIZHcvdnd/Pmj2/65/kMBkMePjXQlVLRQFfgXTdDbkXH/AB8AlxjZdb0CtWqweHD3Htvflf79tooDwuDPn3O3F10xrFERa7kkrohlXFdxpFQJ4Hp66ZzOvs0zWo0M8njDAaDIdgprMTa8uW6xIcx0A2GYGQWYGVl7wV86WLMXOB6pVR1e3K464G5dhf2I0qpdvY1Zk+H693NOwvoac/m3g44LCJ/KqXKAZ+j49M/8fIzFo5jJvesLGjSRG8s3nzzGV999x0cOaITxo0adeZUjmtbZ3d3gM5NO3Mq+xTdW3TnqblPMWDBAJNQzGDwI74+QX8DeB5w6f6DQ4yPiGQDh4GaXrt71apw+DAA8fHQsKGOyxk6VOu03r0hPNy9m7uF5RKUelsqSiniasWRmZPJHfF3sP3gdv44/Acfrv8QEZ08zpymGwwGQxBSWIm1+fP1zu3VVwdENIPBUCivAdcppbYC19o/o5Rqo5R6F8CeHG4I8JO9DbYSxgGPow+LtqFjxucUNi/wDbDdPv4d+/UA/wGuBO5TSq21twt88sTOWJnc+/bVZSAHDdL9kyeTSFreV1FROtl7WJj++pVXYOJEF9O5cHe3GPTdICJsEXy5+UuqR1XntWWv0XtWb7Jzs/3woAaDwWcGulLqJmCfiKz2wlwPK6VWKaVWFSvjoIOBnpQEf/8NIvDJJ9oVaPx4eP75ot3cLZx3HDfu28gbnd/g3BrnMuXnKVSLqoZCmdN0g8FgCEYKK7E2f77OrlS5cmBkMxgMbhGRf0TkGhFpZneF/9fev0pEHnQYN1VEmtrbNIf+VXZ3+XNFpI893ryweUVE/msf30pEVtn7Z4hIhIhc4NDW+u2HSEzUC9qYGO3e3q2btsSTkkgkjQ0bYMYM7SA0fbree7TZoH9/94dRju7uWTlZDEwfyPBlw+l3eT9OJZ3ikzs+oVpUNaatnUa3j7pxIsuFz7zBYPAqvjxBvwK4RSm1E/gI6KSUmuE0Ji/GRykVDlQF/nGeqMSJNqpW1T4+ubkkJup66DVrwocfwu23azegV1+FjRuLPkW3cN5xfOLSJ1Aonrr0KTb/sxmADfs28M7N75jkcQaDwRBMOPuBLlqkP/fpo+ufd+5c9BwGg8EQSBxDdbp1gwMHCpw2OX7dogU88YQuOfzSS66nczx8ikqJ4vXlr/PCFS8wtNNQIsIi6HROJz77z2fUr1Sfb7Z+w7XTr+Xfk/+6nsxgMHgFnxnoIjJARKJFJAa4C0gXkXudhjnG/txuH+O9IJdq1SA3F44dA7Sb+4cf6rCdQ4dgzBj49lu9EVlYRndXOO44ZhzI4MZmN1KrQi1a1W3FE98+wWOzH2Pj/o2EDQ4zLu8Gg8EQaKzs7Tt3Qpcu2kW0b1/dV7GiHmMMdIPBEOw4hup07aqPyHft0v2cGcnz0ku6MMVvv2kvUldYh085L+eQlZvFK1e9kvdd2vo0+szpw5/H/iS6SjQr96yk/dT27Dq8y/VkBoOh1Pgji3sBlFKDlVK32D9OAWoqpbYBzwD9vXqzqlX1q4Ob+6OP6qQZYWEwfDg88ojO6u5JRndHnJPHPfzVwwy/djhrH1nLoxc/yrZ/twEw/JrhvNn5TePybjAYDIHCMXv76dPaNdTamU1MhK+/hnr1dOkig8FgCGYcQ3Vq1YIrrtA6Li7ujK9BG+d3363fz5lDkcTVimPpH3oC5xJs73d7nzoV67Dz0E4un3o5G/dt9OaTGQwGO34x0EVksYjcZH//sojMsr8/JSJ32GOF2orIdq/e2MlAt/Jr7NmjvRtXrYJ//4V77/Uso7szzsnj6lWqR3ZuNt/+9i21K9bmonoX8dyC5/jvN/8lKyfLJJAzGAyGQFBY9vbMTO1KZZ1EGQwGQzDjHKrTsiXs2AEPPujy60WLYPZsvQfZr58+pCp0+kJKsHWM7ciHt31Ig8oNyM7NpsO0DizftdwPD20wnF2EB1oAn7JmjX5t3VpvKSYlkZiYSEqKDtt54w0dl7N4Mfz0U34SjcTEQuZ0gZX5su+cvmQcyCBXcpnebTr3nn8vj89+nEmrJ1HOVg6AsZ3H8uBXDxa4zmAwGAw+pLDs7YsW6Vwl3boFRDSDwWAoFtYitWdP2L07v3/VqgJf9+2rVVxcnPYULV8eunfX1Ywee6yQ6R3WtK5KsLVv3J4dh3awre82bphxA9dOv5b/3fE/bmp+k9cf1WA4Wwnd44K0NPjgA/3+88+1a6M90DwpCUaMgAEDoHFjuOkmbZxnZ8P99xcvFt3CMX4noXYC0VWiUUqx5I8lpP1fGgl1EwAY+cNIhl873CSQMxgMBn9RWPb2zz7TMejXXBMY2QwGg6EkRERAerr2AjrnHF2iyL6ATUyEDRt0cuSkJO0s9H//BxUqwAsv5DmWusVdCba09Wk0H9+cXMnl5rSbefayZ0mok0C3j7ox7edphU9qMBg8JnQN9JQUvWUI+nTEwaUxMVEb46mp8Pvv+uvYWH2anplZ/IRxzjgnkKtRvgYHTx7kvtb3sXD7Qu769C427t9o3N0NBoPBH7jL3j5ggN7AvekmfbzkildfhUsugSpVoHZtuPlmvfItChF491247DJduq1KFR3jPmKE/qNjMBgMJcU5bKdHD51fw6qNbscx/capUzB6tF7r9ujh2W0c17Mf/PIBz857llNZp5jebTrjuoxj+LLhPN7mca455xoemPUAry19DW/mejYYzlZC18U9IwNuvVW//+MP/Wq5NKIzuo8bp12ArrwS3npL7yo69hfX1d3C0T3ISiA37Bq9WbBgxwIUil1HdlG3Yl0GLBxQ4BqDwWAw+ICsLOjUSb+PjtaGcr16sH+/Plpyx+LF8Pjj2kgXgZdfhmuv1UlLatRwf12PHvDpp/Dii/Dmm1Cnjq7pOX68fn/ffd58OoPBcDbhHLZz223aON+ypcAwRzsedGLkzz7TeTF37NCHU4XhuJ7duH8jMVVjGHbNsLz+KbdMoe+cvqx5ZA33f3k/AxYO4M+jfzKm8xhsKnTPAA0GXxO6/3ri4uDnn/WJx44dus9yaST/QCUjA0aOhMsvhwkT9Frt2muLVxvdFa4SyA1dMpSn2z1NuC2cO+LvYPHvi9l9ZLdJHmcwGAy+wjpCmj5du0ilp+sTJ4D//U/7fHbt6v76uXN17FPLltCqlQ6d2r8fli1zf83//qdren74oa5x1LatzhrftatOo2zi3Q0GQ2lwDttp1QoaNND6zAFX6TfeflvvNQ4Y4NmtrPWsTdnY0ndLAXf3PnP6sHH/Ri6adBE3NruRp9s9zdiVY7n707s5nX26NE9oMJzVhK6BblngNWvq4o+WS2NSEpCf0T0iQnsf7tyZn8B35syS1UZ3hWM5NsdkG91bdKd+pfo0qtIIgMZVGjNg4QBjpBsMBoM3KSyD+yefaJd1p0VtoRw9Crm5unaROz78EJo316darqhWrViPYDAYDAVwDttZvBiOH4cTJ+Cff/KGuUq/sXOnPruaOROWFyMBe2Hl18Z1GcdL6S/RpkEbRlw7gpkbZ3Jj6o0cOW3CeQyGEiEiZapdfPHF4jGpqSLly4vozUKR6Gjd5zQkNlYkJkZk/HgRm01EKd1iYvQl3iJhQoKkb08v8P7brd9KrRG1RCUrCRsUJiQjCRMSJHVdahGzGQwGC2CVBIF+KuutWPq1rGCziWRmFuzLzNT9IPL558Wb7447RC64QCQ72/2YuDiRW24ptqgGQzBi9GuQ6tbUVJGEBL1gjYzUryDy4IMFhsTGiqSna7WXnq4/T50q0qCBSNu2Ijk5Ht5uXarEvhEr6dvTJX5CvIxaPkpi34jNW6+mb0+XhAkJIiLy/tr3JWxQmFz49oXy59E/vf7oBkOo4E6/hu4JukVkpD4aP3pUuzg6HYtbJ+k7d+pa6Eppaz4pCSZP1hUsSnuKbuGcPC47N5vHZj/GXQl3Ub9yfRpUbgDAOdXP4cX0F81pusFgMJQWdxncq1TRrXNnz+d65hl97aefQliY+3FikiQZDAYfk5ioF6sxMTp05tQpqF9fe/A4ZHNPSdF5laKi9GtKio7aGTYMVq7Uwz26nRuP0MRWiQXc3VtObEmELYKvEr9i8z+buXzK5Wz7d5vvfgeDIQQJbQM9JUVb3bm52s3d0bXRgcRESEjQOm7ePF1aMiVFh7DHxJwxvMQ4KjcreVxKpxQW7VzEjO4zmHzTZGqWr8lXW75i1+FdJjbdYDCUCqXU00qpjUqpDUqpNKVUVKBl8juuMrg/8IDOeHzbbXrV6glPP60XvenpuqRRYTRvnpeQ1GAwGHyGYwhPuXI6+eTp0zB4cN4QVyXXwsJ0/qXYWB2Lfvy4Z7dzVX7Nlbt7UnoSh04dYlGvRRzNPMrlUy5n1d5VvvkNDIYQJLQN9IwMuP12/X79ev3qkMndkaQkfYqekwNjx+rQ9Rde0GXYSpswzhFXyeOs0/THv3mcxJaJ1K9Un3qV6gHQpGoTE5tuMBiKjVKqIfAE0EZEWgJhwF2BlcrPpKXlu0h16aI9qvr2he7d4eRJuPtuz+Z58sl847xFi6LH3303bN2q0yW74tAhT5/AYDAY3OOcBe6uu/Sh1ObNZwx1Lrlmve7Zo4taFAdHj9ChS4bSp20fxq8cz8ArB9IxtiNTbplCypIU2jZsy7IHllGxXEWufu9q5v02r5QPbDCcHYS2gR4Xp7PtlisHv/yi+xwyuTuSmKgr7zz8sM79c+iQ3mFs3dp7CeMK3K+Q0/QPb/uQd29+l1rlazFn2xyT6d1gMJSUcKC8UiocqADsDbA8/sNxNXr6tHYBtZT5H3/oUmdW7aHC+O9/Ydo0SE3Vfxz++ku3Y8fcX/Of/8Cdd8I998CQIfDTT3q399tvdSb3L77w1lMaDIazGVfZ3GNioHz5M4a6ypf54Yc60mfEiPyKxJ5QmLs7QPvG7ck4oA/DmtdszvIHltO0RlO6pnZlxroZpXlig+GsILQN9KQkbXGfey788MMZmdydGTFCx6A3aQLffAM33ABr1+p1lQg8/7x3xSvqNP2uljo2vXHVxgDUKF+D/gv7GyPdYDAUiYjsAV4H/gD+BA6LyBnHF0qph5VSq5RSq/bv3+9vMX2Hu+ztQ4boIsB33QXh4UXPM3GizmFyzTU6vtNqr7/u/hql9AbBm2/qe3XsqBfOAwbAVVcVXnfdYDAYPMVVNvfDh3U2d6vEsB1XJdfat8/fa3zhheLd2pW7O+gM783HNydXcvMOlupXrs93931Hh8Yd6PF5D0YuG4mYXB0Gg3tcZY4L5lbsTJipqSKVKklhmdydh1tDIyJ0Ml6bTWTsWN1XyKWlInVdqiRMSBCSkZgxMXmf07eny7xt86TOyDoSOSRSIodESvjgcLENspls7waDHUyW4TMaUB1IB2oDEcAXwL2FXRNSWdzdZW+3Mh3/+GNg5DIYyhhGv5a++VS3usvmfvvtBYYlJOgs7o6kp+v+l17Sl3z/fQlu75Ddffra6VL/9fpSb2Q9mb52uqRvTy+Q6f1U1in5z8f/EZKRJ+c8KTm5HqaQNxhCFHf6NbRP0C2sGrfffecyk7sjjgnj5s7VNSKjo+HVV6FxY+8ljDvjvoWcpj/y9SO8ccMbDLtmGApFdm42lza8lGcve5ak9CRzom4wGFxxLbBDRPaLSBbwGXB5gGXyH+6yt1eoAE2bQtu2gZHLYDAYvIlzNvfTp+H883UoTWpq3jBX+TItp9IXXtBr3Sef1LmYinV7B3f3nl/0JDIsktE3jKZH6x4F4tEBIsMjSfu/NJ669CneXPEmiZ8mcjr7tPd+C4MhRAh9Az0lBSZN0i6H333nNpO7I1bCuOxsqFgRrr4a/vxTx+d4M2GcK9zFpie2SmTqz1MZ2mkoDSs3ZPM/m3nwqwf59+S/Jj7dYDC44g+gnVKqglJKAdcAZ09q8Y4ddZySzaZ3XQcO1BmOjx/XseFKBVpCg8HgIUqpGkqp+UqprfbX6m7G9bKP2aqU6uXQf7FSar1SaptSaqxdJ7qdV2nG2sevU0pd5HSfKkqp3Uqp8b58bo9xDul5+mm9iB04MG+Ic8m1nj21oX7vvXDppTp35s8/w7vvFv/21iGTTdnY0ndLnrs7wO4ju9m4fyNhg8NoObElMzfMZPQNoxl53Uj+t/F/dP6wM4dOHfLCj2AwhA6hb6BnZOikPBddpI/EwW0mdwvHhHGRkdog79BBf1erlvcTxp1xfxen6Vk5WWQcyGD8yvGMvG4kr17zKhUiKnD49GEA7mp5lzlNNxgMeYjICuATYA2wHq3vJwdUKH+RlgazZ+vEIXFx8OuvOslIw4b6+3vuCax8BoOhuPQHFopIM2Ch/XMBlFI1gFeAS4G2wCsOhvxbwENAM3vrXMS8XRzGPmy/3pEhwPdeeTJv4Bxgfvvt+oRp584Cw6ySazNmaDt++vT8jO5ff62LVCQlwb//lkyMuFpxLP0j33MpbX0aLyx4gZiqMZxKOpVXgu2jDR/R7/J+fHjbhyz7YxkdpnVg95HdJbupwRCChL6Bbrk5Nm4My5bp1OzNm0ODBoVe5pgwbvZsePllnU/on3+0vrv/ft8a6VDwND0qJYoIWwT3nH8Pia0SGbtiLLPumsUbN7xBZFgkLy16ib+O/WVO0w0GQx4i8oqItBCRliLSQ0TODl9C6zRp6FDt9pSTozdo16yBdu2gWbNAS2gwhBxKqds8aDeWcPpbgfft798HurkYcwMwX0T+FZGDwHygs1KqPlBFRH60x3xOd7je3by3AtPtYaI/AtXs86CUuhioCwRPzTDnkJ5KleDKK/X7o0fPGO4uh2ZWFhw8CC+9VDIxHMuvZeVk8WL6i4gIw64ZRkRYxBku73e3ups598zh90O/c9mUy9iwb0PJbmwwhBihb6AnJelyN9/bNzqfeUZvF54+XaiFbbkC7dypvSTvvx+qVtXhixddBJmZvj9Jh/zT9JyXc5h26zRS16eyaMeivPj0N1e8yQMXPkCN8jXIydWBQ+2i2/Fi+ovGSDcYDGcnrtIVV66s9X6PHoGRyWAIfd4BbgJuLqSNK+HcdUXkT/v7v9AGsjMNgV0On3fb+xra3zv3Fzavy7mUUjZgFNCvKIH9WiHDCjAfOFCH9ISFwfz5Ouexi4Wqu4zuO3boypJvv63d3YuL88HSzkM7GXHdiAIu744l2ACuOecalty/hJzcHNpPbc/inYuLf2ODIcQIfQM9MVH7qVeurD9PmgSjR8PMmUVmfLMSxi1cqI3zjz/W+m/1aivPu/dLrxUqj5v49O9//55P7viE97u/T5XIKkz5eYqpnW4wGM5O0tL0kVBkJLRsmb84HT5cv955Z+BkMxhCmzki8oCI3O+uAT+4u1gptUAptcFFu9VxnP0U3Os1ujyc93HgGxEp0h9bRCaLSBsRaVO7dm2vyOiWxEQdzjlihLa+W7TQC9SICHjttTOGu8uhGRcHgwfrcM7HH4fc3BKI4nCwlFA7gegq0XnfuSrBBtC6Xmt+fPBHGlZpyA0zbjDrVsNZT+gb6AB798KWLTppxqlT0LlzkXHoFtamZEaGrof+8cdQvrz+7uGHYfdu35+iO1JYtvcXF75Iz/N7Uq9iPWqVrwVAruTS64te2AbZjLFuMBhCm7Q0rbT79dMZjR94AF58UbfPP4c2baBmzUBLaTCEJCJyb2nGiMi19nAc5/Yl8LeDi3l9YJ+LKfYAjRw+R9v79tjfO/dTyLzu5roM6KOU2gm8DvRUSp1pAQeCRYt0KE9urg7tSUmBRx/Vx+KrVhUYWlhG92rVYORI+PFHmDq1dCI5urx/8MsHPDvvWU5lnWJ6t+l58ejWurRx1cYsvX8p7aLbcfdndzN86XCrZKjBcPbhqvZaMLcS1ZK0ij8OGaIPvpUSiYnRNdE9IDVVl5YEfdl774k0aqTL7IL+zlf10QuVq5Da6XO2zJHKwyoLyUjE4AipM6KOzN02t0A9SoMhVKAM1+kFanjQqvlDljJfB92x0K9VG9hmE4mI0Mr6iy8CK5/BUAYprn4FwoBbgCeAZ6xWnDlczDkS6G9/3x8Y4WJMDWAHUN3edgA17N+tBNoBCpgD3FjYvEBX+zhlv26li/vdB4z3RH6/6FabTSQzs2Df/v1a9z3wwBnDHVVkQkLBdWxurkiHDiI1aojs21c6sVytVS3St6dLwoSEAuNPZZ2SOz++U0hGHvv6McnKySqdAAZDEONOv7o9QVdKzfKgvVeCPQH/Y8WhT5yok8O1auVRHLpFYiJMm6bfT56sq/acOqU3KZs29V88+hlyFXKa/vg3j1M1qiozus/g+nOvZ9+Jfdz3xX2cyDphXN8NhuBiL7AKWF1IWxcw6coSjoGVVrriU6f0EVHt2nBjSfNTGQyGYvAV2nitCVR2aKXhNeA6pdRW4Fr7Z5RSbZRS7wKIyL/o7Oo/2dtgex9o1/R3gW3Ab2jj2+28wDfAdvv4d+zXBzeu/NbXr4fq1fUC9eDBAl9ZKjInR69hU1J06HrLlvDRR/DWW3DkCDz3XOnEcleCLW19Gn3m9GHj/o0F1qSR4ZGk/l8qz1/+PG+teovuM7tzPPN46YQwGMoarqx2bdCzFbiqkHY1sNHd9b5qJd6FjI7Wx99K6d3EsWP1SUtCQtHXOk1hnaRff72IFY1ejAN5n+Bqh9I2yCaZ2ZmSvj1dag2vJeGDw4VkhGRk+trp5jTdEDJQtk/Qf/bGGG+0kDpBt/j8c62kn3oqICIZDGWd4upXYF1xxp8NzS+6NTVVJDZW68Dp0/MXrHXq6NfRo4u8LDNTv8bG6v4BA/SlCxeWXjzLw1NEr1lj34iVUctHSfz4eEnfnu5yTTpx5USxDbLJRZMukr1H9pZeCIMhyHCnXwtTsP9x911xxni7lVjJWa4/Y8ZInpt7fLx+9RBLidlsItOmidSvL1Khgp6uf3/9GghX9wIy2pVe+vZ0iZ8QL6OWj5LYN2IlenS0fLv1W3l41sNiG2STiMERcuk7l0q5IeXENsgmCRMSjLFuKLOUcQM9qpDvyhU1xputTBvoqal6l9TaMZ0+Xa80a9bUfb/8EmgJDYYySQkM9OHA9cW5JtSb33SrOz0YGSlSt65ITs4Zl7ja17TOr06cEDn3XJGmTfX7UonmZn1qrT1dubuLiHy9+WupmFJRGo1uJOv+Wlc6IQyGIMOdfi0sSZwopaKKOH3/n+dn9QEmLg4GDYKxY3Vq9vPO0wmEwsM99k23Sq9FROiya5GRuhTFeeflJwj2R330QmV0yPSesT+D/gv6c3eru9l7dC82ZWP+9vmM7zKeKxpdwYo9K8jMyeSNG97glvNuMcnkDIbA4LIWhFKqKvY6uyJyyq8SlTWs5HDTp+sG0LOnbhUqwMUXw/nnB1ZGg+Hs4Ufgc6XUSaXUEaXUUaXUkUALdVaQmKjLDqWn6+RwPXroIuf9+sHff8O8M0u3uyu5lpGhkyJPmgTbtukldKlEc1ifbtq/iSlrppDSKYXEVolu3d0BujbvqsuwSQ5XTL2Cudvmlk4Qg6Es4Mpq1wY9n6OzWX4A3AiEuRvrz1biXcjUVJ0oaNQokQkT9O5iw4YiSUnFcnO3pgKRefP05mSdOvpUvVo1fSBvuQYFA+6ScyRMSJBnvn1GKqRUyEskd/8X9xfqamQwBCuU7RP0eUCKU19dYC3wsj9lKbMn6O6OgM45RyvriRMDI5fBEAIUV7+ik7OdD6jiXBfKza+61VWyuGPHtC688cYzhhd2gm7Ru7dIWJjITz95R8SSuLvvOrxLWr/VWsIGhcnElUanG0IDd/rV7Qm6iHQHmgILgL7AbqXU20qpq3ywT+B7EhMhOxumTIE+fXTfnj269M6mTcWeKjpal1mzDmhuvx0OH9YR6bm5/q2PXhiuEsll5WSRcSCDzzI+452b36Fx1cbUrVSXaWunsenAJr7//XsEMcnkDAb/cAvQWik1GkAp1QxYBrwtIoMDKllZwd0R0I4dEBWllbbBYPAXu4AN9sWnwd+4Sha3cqVOlDlnjj4Od6CwkmsWr78OdetqL9HTp0svomP5taFLhtKnbR/GrxzPwCsH0jG2I1NumULKkpQC10RXiWbpA0vp0qwLj3/zOE/OeZLs3OzSC2MwBCGF1kEXkSMi8r6IdAFaAj8DY5VSu4qaWCkVpZRaqZT6RSm1USl1hnOMUqqxUmqRUupnpdQ6pZRvU+zGx0P37ro+7mWXQcOGxXZztxgxApTSGd1feQWWLNFeRaBd3v1dH70oHF2LolKiiLBFcM/593B3q7vZfWQ3m/+7macufQqFIvm7ZOpXqo9CnVGn0mAweBfR7uvdgRilVBp6U/Q5EXk7sJKVIVwtSBcs0Er6jjt0YV+DweAvtgOLlVIDlFLPWC3QQp01WBb3wIE6pDMsDG64AW66Sb+fOLHAcCt8s29fvZ/Zty907Vowq/ucOfDOOzrre2ld3aHk7u6VylXiizu/4Jl2zzB25VhuTruZw6cOl14ggyHYcHWs7tzQ9SQfAtLRO6NjPLhGAZXs7yOAFUA7pzGTgcfs7+OBnUXNWyo3IUc39+nTtbtP/folcnO3pnOsj56aKnLbbZKX2T1Q9dE9wV2yjoajGsoDXzyQ5/refkp7aTiqoZCMSSRnCFoo2y7uVp3gF4B/gC/wUu3g4rYy6+Lep4/W7Vbyz6Qkkdq1tSL+7rtAS2cwlGmKq1+BV1y14swRas3vutWVToyNFbnsMpGqVbXLuxsKy+reu7f2oF+2zHuilsTdXUTkndXvSPjgcGkxvoVsObDFewIZDH7EnX4trA56JaVUD6XUN8AmoA26vmRjEXnaA8NfROSY/WOEvTm7OwlQxf6+KroesO9wdHPv1Uv3/flnidzcrekc66NnZ8MPP+gdSAhcfXRPcJdM7s9jf3JXy7uoXaE2F9a7kGW7lvHn0T8B6BjT0SSSMxi8j1UjOAoYi/ZU8lbt4NAnLQ1mz9ZxRXFx8Ouv2sUpLEy7M3XoEGgJDYazChEZ5KoFWq6zikWLYO5cHXO5cSMMHarXvn/9peMxZ8xwe2lKih7asaNOityxo/6ckgKjR0Pjxjr33NGj3hG1JO7uAA9e9CALeixg//H9tH23LfN+OzMBnsFQZnFltWuDngPADOAmIMLduMIaEIZOdHQMGO7i+/rAemA3cBC4uKg5S70LmZCQv5N49dUitWqJjBypdxpLeNztXB/9vfd0/jmrmlswn6RbuEomlzAhQT7e8LF0S+uWVz/90smXStM3m5pEcoaggjJ8gh5MrUyeoLvKcDRlilbAr78eGJkMhhDCU/0KJHtjTCg2v+tWV4niMjN1/4UXar2Zm1vsS0VElizR73v29J64jmvQ+PHxBdaWmdmZYhtkc3vt9n+3S8uJLcU2yCYjl42UXDfPZTAEI+70a2Ex6I1E5F4R+VpEskpo/OeIyAVANNBWKdXSaUgi8J6IRKMzxX+glDpDJqXUw0qpVUqpVfv37y+JKPkkJenTlT594PHH4cABGDVKn76knLlD5wmO8egbN8LWrXqTslo1qF49uE/SLVwlk8s4kEHVqKr88vcv1K9Un27ndWPNX2vYdnAbLy16idM5p00iOYOhlCilHvbGmLOStDStdK+5RgdKWkp29Wr9anlKGQwGf/CgY8y5i/YscFeghTwrcMzLkZam9WNUlD4Sv+QSrTe/+67ISy2WLtX9oPNvDhyoK1p+8IF3xLXWoAm1Exh/43gSW+nEnmnr02g+vjm5kut2rRlbPZYfev9A9xbdeW7+c9z92d0czzzuHcEMhgChtPHu4gulJotIoYtCT8Y4jH0ZOCEirzv0bQQ6i8gu++ft6Dj1fe7madOmjaxatcqTW7rHZtOaJiNDh4uDTiCXkaHdgUpAWprObpmZCeXK6ZKTNWrAc8/pKRs10rfaVWR6vcCTtj6NlCUpbNy/kZiqMQy7Zhj3fn4vp5JO8eWvX3L/l/dzPOs4Yo9YGH39aF5d+iqR4ZHsPbqXuFpxJHVIylOwBoOvUUqtFpE2gZajJNj1Xr/ChgCDRSTB17J4Rb/6C6v2uYiOMQoP14mRXnpJZzkKD4dDhwItpcFQ5vFUvyqlXvFgumMiMsoLYpUp/K5bLf14992QmqoPpcaNg3vugQ8/hP37deK4Tz91e+mUKdoYX7pUq9aUlPyCGNnZel909WqdID4+3ktir08jKT2JKbdMYfeR3byw4AVEhBHXjSC6SjS9Z/XOSybnjIjw6tJXGZg+kJZ1WvLpfz6lWc1m3hHMYPARbvWrq2N1u9G+Dx0P6a6NA7YWcn1toJr9fXlgCXCT05g5wH3293HoGPRC62Z6xU3I0c39+utFKlcWGT68VG7uIvmJNWw2kWnTdP65mjVFwsNFmjbVHpfB7uruiLtEctGjo+XzjM/lvs/vk7BBYUIyEj44XGoNryVHTx2VpIVJEjE4QlSyMonlDH6BMuziDkzzoL3hD1nKlIu75drumNFo3jytdEHk5ZcDLaHBEBKUZf0aLC0gutXKZKyU1pfWAjQ9XYd3hoWJ7Nrl9tKEBL2ejY7WzWYrOM2ePSJ16oi0aCFy5IgXxXYRcmmRvj1dEiYUntT5263fSo3hNaTKq1Xks02feU8wg8EHuNOvhS0ae3nQ/lPI9eejkx2tAzYAL9v7BwO32N/Ho+v9/oKOVb/e3XziTSXnmM39m2/0z1CnTomzuTtP7ZzZ/bnnpExkdneFpShVspKIwRGStDBJbINsMm/bPIl9I1be+/k9aTCqgTQe3VhIRioPqyzVXqsmLy18qcgMnAaDtzALyDK8iCwpjoGSjqtJ0KtJE4doMHgFo1/LsG4tLKBcKZGBAwu9vLCM7iL6s82mKxh5W+XaBtkkMztf9tR1qRI/Id6jqkI7D+6USyZfIiQjT855Uk5nn/aucAaDlyi2gR6szWtKTqn8TG4gEhWlS6/Z3Cei8JTUVD3lvHl6yvr1dVUL61aW4V7WcLeraRtkk7lb50qTMU2k8rDKopKVqGQlJCPPzn1WYsbEmDJtBp9iFpBBpl/9gZWd0/FYZ8IErWTHjw+0dAZDyGD0axnWrY5JNB03MiMjdbK4OnVETrs3Xl3l4ExPL3iWNXq0VrvJyV4WvYTl1yxOZZ2SJ755QkhG2kxuI1v/2epdAQ0GL+BOvxaWJC60adhQB4enp8Mzz+jg8X79oEGDUk+dmAjR0fDww9CzJ0RG6pIUNWvq7/ft0znpyhquEsll5WTRuGpjen3Ri1eveZXjWcfZ3GcziS0TsSkbo34YxZHTRwC4ssmVpkybwWAoPWlpcPq0bt9+C2PGaD3+zDM6EVLPnoGW0GAwGAJPUpIOIB84UL9/4AFdJ61fP11meN8+l3HoFhkZOg7dkfbtdb/FU0/pfJzJyfDRR14UvYTl1ywiwyN5s8ubfPafz9j27zYunHQh7699H20TGQzBzdlroEN+grgePbSxfvKk16Z2zOz+yita/0VEwOWXw4kTsHu3NuKDObO7OxxrqEelRJGdk02O5FCvUj1a1GrBV1u+4ofdP1C/Un0GXT0oL0nHW6veomHlhtSrVI/O53Y2xrrBYCgZKSkwc6auwPH009C5s1awp0/DQw9BZVM+3mAIFEqp5kqphUqpDfbP5yulBgZarrOSxEStL19/HXbuhKlTYdgwXRd9xgytNydOdHt5URndQa91J02CDh20ob5kiZdEd1hrbtq/iSlrphRIELf7yG427t9I2OCwQteR3eO6s+7RdVxU/yLu+/I+7vr0Lv458Y93hDQYfIWrY3VXDajg6VhfNq+5Cdls2v88OlryfM/Dw7Xru5dwjkfv00fH7tx0k+6rUKFgLE9ZpqhY9fqv15eHZz0sLca1yKupnjAhQaJHRcsL814wSeUMpYIQcMEE6gJTgDn2z/FAb3/KUGZc3F3FVQ4cqBXrli2BkclgCFGKq1+B74C2wM8OfRuKM0eotYDrVnex6EppvbluncvLnGPQk5J0CifnvHMiIv/8oxPGVavmdroS4+juLqLXnPVfry8xY2IkMzvTI5f37JxsGfb9MIkYHCH1Xq8nX23+yrtCGgwlwJ1+LfIEXSl1uVJqE/Cr/XNrpZT77bayQlwcbN6sdw/T0+Gtt3TdiLAwrx1rJybCtGn6/eTJ+jZ9+sCKFVClij5J//tvXYqtrGO5v+e+ksv73d7ni1+/IFdyefirh0nplMLfx/9m/I3jmXDjBCJsEdwedzsHThxg99HdjFg+glZ1WxFdJZqbmt9kTtYNZyvvAXMBK85mC/BUoIQJWtLStN6OjMyvfX7qFIwfD5UqQTNTVsdgCDAVRGSlU192QCQxaKyjcKsmelgYNG8O9etrXfrWWy4vsw7g+/bVw0aM0CGap0/rqm1JSflL5ho1dMRRxYpw/fWwbZv3xHd0d8/KyeLF9BcREYZdM4yIsAiPXN7DbGEM6DCAnx76idoVanNz2s3c+9m9HDhxwHuCGgzewpXV7tiAFUAjgmQn1Gu7kI6Z3DMzRWbP1luCLVuWOpO7M1YuI9B56WrX1retUkXyDu8bNgyNk3RH3JVpU8lKMrMzZf5v8yVicIR0mdFFqr1aTUhGVLKSC9++UKJHRcucLXOk9ojaEj06WmyDbOZ03eAWQuME/Sf7688OfWv9KUPAT3mKwjrOscpkjhqllavlljRgQKAlNBhCjuLqV3QJ3XOBNfbPt2P3DDpbW8B1a2qqXnzWr68zGM+bJ1Kvnu7r0EGkUqUia6V5kjBORGTjRl3tsnFjkZ07vfgIdk9N2yCbkIxMXzu9wHeeZngX0QnkXln0ikQMjpBaI2rJ9LXTJddU/jAEAHf61RNFu0LOXDT+UtR1vmpeVXJKicTH61fLF10pr7q5i+SvKWNiRJo00WvK2rV1u/12ySu/1qRJaBrpzq7vroz1udvmSsTgCOn8QWep/lp1IRkpN6ScRA2Nklojasn+Y/tNfXWDW0LEQF8M1HRY1LYDvvOnDAFfRBaFu4zESok0amRKqxkMPqAEBvo5wALgBLAHWArEFGeOUGtBoVtdVb5ITxc55xwREJk0qdDLC6vY5syaNdrVPSbGu0a6RWkzvFus/3u9tHu3nZCMXDXtKtnw9wbvC2swFII7/epJkrhdSqnLAVFKRSil+gEZRV1UJoiPh+7dISYG5syBn3/WB9o2m1ezt1kuQtnZ8PvvMHYslCsH/fvD6tVw3XXaXej33+G++8pm4jh3uHJ9z9ifQf8F/bm71d3E1Y5j3MpxPPr1o2TnZjMrcRYzb59Jk6pNqBhRkaiwKA6cOEC9UfUY/cNobm5+M81qNKNbi27GFd4QajwDzALOVUotA6YDfQMrUpCxaZOOEwoL00o1KQm++ELr7aFDdbYig8EQUERku4hcC9QGWohIexHZWZo5lVI1lFLzlVJb7a/V3YzrZR+zVSnVy6H/YqXUeqXUNqXUWKW0snA3r9KMtY9fp5S6yGGuxkqpeUqpDKXUJqVUTGmezW/s3QtbtkBODmzYoBen7dvr5HGtW2s3d3Gf4dw5YVxamvaSz83NjzayuPBCmD8fDh2CK6+E337z7qOUNsO7Rcs6LVn2wDIm3zSZ9fvW0/rt1vT9pq9JImcIPK6sdscG1AI+BP4G9gEzgJpFXeer5tVdSEc39+nT8/3QbTa90+gDHN3d4+N14rj69UXq1hUpX173R0eH3km6M0WdrKeuSxXbIJvM2TpHYt+IlZrDa0qD1xvkJZgrN6Sc3PDBDXLOG+dI0gJzsn62QwicoOvHIBxIAFoCEf6+f1Cc8rjDOSwpPV27JjVurBN8FlLL12AwlJzi6lf0ZqNz6w1cUJx5nOYcAfS3v+8PDHcxpgaw3f5a3f6+uv27lWivJIV2we9S2LzAjfZxyn7dCof7LAaus7+vhAdJlINCtxZWE/2BB/QC9Mcf3V7umDBu+nS9dq1XT7+31LHz2nX1apEaNfTYDV4+nLbWkSQj8ePj89Z+xXV3t9h/fL88/vXjYhtkk2qvVZMRS0fIicwT3hXaYHDCnX4N+IK0uM3rSk4pHQBupVp/6inJCwz3gZXs6O4+b55+rVcv31C39gdq1/b6rYMWV8Z6ZnamxLwRI/VG1ssz1k9nnZapP0+VsEFhEj8+Ps9YDxsUJu3eaSeNRjeS5+Y9Z4z1s5BQMNCBO4DK9vcDgc+Ai/wpQ1AsIt2RkJAfe26lFO7TRyvNe+8NtHQGQ8hSAgM9FZ3kcpS9bQY+Bn4Cni/OXA5zbgbq29/XBza7GJMITHL4PMneVx/41dU4d/Na1zrfH11dY2lx5Q8K3eouh0dSko6xjIwUuf/+IqdISJC8JbPjMtlVPLqIyPr1en1bo0ah9n+J8Za7e568f6+XLjO6CMlIw1ENZdKqSXI622wAG3xDiQ10YKyLNgS4tahrfdG8ruQSErSWsXYVs7NFGjQQKVfO68niLFJTC1Z3e/jh/J3Ie+7Rh0GglVmon6Q745gEJHpUtNQeUdttkrlPNn4i4YPDpcPUDlIppVKewd70zaZSZ0Qdefirh42xfpYQIgb6Ovtre2AR0NXx1MYfLSgWka5ITZW8HCHR0brZbDqxEYgcOxZoCQ2GkKUEBvr3QCWHz5XQpdfKA5uKM5fDHIcc3ivHzw79/YCBDp9fsve1ARY49HcAvi5sXuBroL3Ddwvt83Szf/cZ8DMwEghzI/PDwCpgVePGjX3wX6YEWPV/neukpaeLVK+uXTkPHixymuLEo4uI/PabDnWvUEFkzpzSPYIz7hISp65LldR1qRLzRkyxT9NFRBbvWJwXn954TGN566e35GTWSe8KbzjrcadfPYlBjwIuALba2/lANNBbKfWGB9cHN0lJOv4mOxs++ACaNtVxOpmZOt7RByQmwq5dkJqqy1ZMnqxfb78dli/XYfFKwb//wr33wn//6xMxghIrZj3n5Rx2PbOLNzu/Sd85fV3GrT83/zlycnNY2HMhn975KRG2CP4T/x8iwiLYd2Ifk1dPpkJEBapEVuG2uNvoO6cvjcY0ImxwmIlbNwQjOfbXrsA7IjIbKBdAeYKDtDStp2NiYO5cmD5dl1lLToZjx6BOHV3Xx2AwBAt1gNMOn7OAuiJy0qm/AEqpBUqpDS7arY7j7Ita98HSJcTDecPRBn4/4BJ0Qrz73Mw3WUTaiEib2rVre1PUkpOYCFlZOvGRFYcOOhb98GE4eRI+/LDIaZzj0UF/jotzPf6cc2DZMh2zfvPN8N57pXsMRxJbJZLSKYW+c/qyaf8mpqyZQkonHX+elJ7E5Jsmo1CM6zKOpPQkj9d+V8VcxfIHlvPtPd9Sv1J9Hpv9GDFvxPDqklc5ePKg9x7AYHCFK6tdCu4A/ojD7iBaOf0AhFHCndDSNJ+c8ERHi9SqJXk+O5Mni0RF6R1GHx9hWwdD8+bpmHTrBP255yTvhF0pkXff9akYZQJPM8Knb0+XckPKyTPfPiPdPuqWd7JOMhIxOEKemvOU3PnxnXmn69Gjok0ptzIOoXGC/jXarXI7UA2IxM8VM4LyBN2Km3QMgJw3T+tom01kypRAS2gwhDTF1a/ok+s1wCv2tgp4GagIfFicuRzmDBYX9wLVNYAewISi5A8q3eqoU6049JgYvRa++GKRVq2KrIjhqI4zM7WXfETEmQfzzhw+LHLttXptO2iQ9wtvOLq7W+/Tt6dLwgTtEev4vjjk5ubKgt8WyA0f3CAkI+WHlpdHvnpE1v+93qvyG84+3OlXT5ViVYfPVR0U2M9FXe/t5hMl5y5ZHGi/cx/jmDguMlIruvR03W/FpSslMmKEz0UpMxTHWE+YkCDnvHGO3PfZfXkx6yQjtmSbRAyOkErDKkmN12rIu2veNaXcyighYqBXAG4Dmkn+YvF6f8oQVItIC0dfSscFJYjcfXdgZTMYzgJKol/Rp8tP2lub4l7vYr6RFEzmNsLFmBrADnSCuOr29zXs3zknibuxsHnRnkyOSeJW2vvDgF+A2vbP04D/FiV/UOnWwmqi9+6tdevy5R5Nk5Cg16cREXrt6pi/052Rfvq0SM+e+jb33efd/J6O7u62QTaZt21eAXf3kiSPc+aXv36R3l/2lsghkUIycsWUK2T62ulyPPO49x7EcNZQGgO9t13JTQPes5/uPGjfCR1Z1PXebj5Tcs7J4saP1xrHR8niHHFMHGezaV1p1Um/5558MUDkuut8KkqZxNOM8PO2zZOECQkSNz5Ohi8dLv3m9hOSEZWs8k7Yo4ZGyXXTr5Mmo5sUSDhnTtmDm7JsoANVJH9xeUYr5dzVgE+AX9HlMS8rbHxQLSItHDMPi4jk5Ii0aKFdjU6YDLsGg68poYEeBjQAGlutuHM4zVcTHQe+FV1j3TK82wDvOox7ANhmb/c79LcBNgC/AeMBVcS8CphgH7/ecZMBuA5YZ+9/DyhXlPxBp1vd1USPixOpWLHIZHGOOKtoEfcJ4yxyc0WSk/W6tlMnj8LePcYxu3vMmJg847y0yeOc2X98v4xcNlKajW0mJCNVXq0iD816SJb8vkRycnO890CGkKbEBrq+lvrArfbWwJNrfNV8puSck8WJiNx6q/6Jmjf3zT0dcEwcV7eu3iuw3N3vuUdvblqGesWKIu+953ORyiSeZoS3TtdJRvYd2yefbfpMSEaaj2tewGBvNLqRVEypKNVeqyZ1RtSR6Wunm1P2IKSMG+hWsqId9g3QHQ5teynnfh940P6+HFCtsPFBt4h0VIwxMdrD6cUX9edHHgm0dAbDWUFx9SvQFzgAbHQwZNcVZ45Qa0GnWwvL8vbQQzqb26FDJZoqNVWHbELh7u4iWqVHROh9gd9+K8FzFIKvksc5k5ubK4t2LJJen/eSiikV85LKvTD/BVm9d7XketuP3xBSuNOvniSJAzgF/AkcBJoqpa708Lqyg3OyuNhY+PJL/d2WLT6/vZU4rk8fnRxuzx745BO4806YNw9ycmDWLD32+HF46CEYOdLnYpU5rCRzua/k8n639/ni1y+ISokiOyebHMmhXqV6tKjVgnErx9F7Vm+iq0SzYd8GqkVVA2DDYxuYlTiLCFsE97S6hybVmnA86ziHTh1i34l93Pflfbzx4xt0adqFJlWb8Pp1r/Pkt0/mJZ9rNLqRSURnKBYicpNSSgFXicg5IhLr0M4p6bxKqarAlcAU+30yReSQd6T2A1ZyuOnTdQPo2ROGD9cJ4yZMCKh4BoPBLU8C54lIgoicLyKtROT8QAtlcMAxy1taGrRsCVFROgFn48Zw4oTOZFyCqZKSoHdviI+HceP05zQ3S6EePfQa96+/oF07+OEHLzybHV8lj3NGKcXVMVfzXrf3+KvfX8zoPoOWdVry+vLXuXjyxTQd15Tn5z/PD7t+IFdyvfeAhtDGldXu2NDu7OvRxvki4CSQXtR1vmo+3YV0ThY3fbpI27b684QJvruvE1YVDNC7kNHR+mA/PT3fC99q99/v/SQboYqr0/Xpa6dL/dfrS72R9aThqIYuY9hJRpb9sUxGLRslJCN1R9bNO2G3DbJJ+OBwqZRSSXp/2Vtqjagl9UbWMyftfoYyfIJuNWC9l+e7AB13+R66HNC7QEUX44KvFJCIa7/JO+/Uim/ZssDIZDCchRRXv9rXiuHFuSbUW9CdoBdWEz02VtdFv+ACjxaYjgnj4uP1VI4x6EW5u4uIbN4s0rSpXvt+9FHpH8+ZopLHJS1MksghkV4NY9x/fL+8s/oduf6D6yV8cLiQjNR/vb48POth+Xrz13Ii04RoGdzrVysGxy1KqfXoZB8/isgFSqkWwDARuc1bmwTFoU2bNrJq1SrfTJ6WBr16wWuvQe3a8PLL+lQdoFIlOHrUN/ctQpTnnoNvv4V77tHVMcLDoXp12LpVj23SBFasgLp1/SZemSdtfRopS1LIOJBBg0oNQMGeI3sIt4Xz/BXP8/mvn9P7wt6MXzmerNwspnfTJ3idpncic2AmszbP4pm5z3Ai+wTRlaNZ+/favLmjwqPIlVzKh5ene4vuLN+1nDsS7mDEshFk52bTsHJDULD36F7iasWR1CGJxFaJAfolQgOl1GoRaRNoOUqDUup9YLyI/OSl+dqgq3BcISIrlFJvAkdE5CV31/hUvxYXm00fzfz6q37t0UMfxeTm6mYwGPxCcfWrUmoKcB4wG4eyaiIy2gfilQmCSrdapKXB/ffrssLx8Vq/JibCokV6wfnnn/DTT9Cm6P/0aWmQkgIbN+qpBg7Mr+CWlaUP53NyCp/jwAFdZnjpUj3XgAG65LA3SFufRlJ6ElNumcK1H1zLt/d8yyNfP1LgRH3noZ2cHniapX8spfes3qR0SvHa2uzQqUPM3jKbLzd/yZxtcziWeYzy4eXpFNuJG5vdSJemXYitHuuVexnKFu70qycG+k8icolSai1wqYicVkptFJEEH8laKD5XcjYbNGigfcxjYmDwYF0Tcu5c7VL5+OO+u7cTffvCpElauTVpoj2OMjOhXDno3x9Gj4YjR/S+gc0GTzwBY8b4TbyQxDLcN+3flGesn1fzPF5Y8AIiQpgtjGcue4bxK8eT0imFez+/l2/v+Zan5z5NxoEM3rn5HX7a8xNvr36bMBVGjui/SGEqjJZ1WrLj0A7K2coRbgtnxHUj2PzP5jzDPb52vDHWS0iIGOi/Ak2B34Hj6CRFIiV0DVVK1UNvrMbYP3dAZyvu6u6aoFlEOu5Q9u0L330HXbtCWJhWhhkZgZbQYDhrKIGB/oqrfhEZ5D2pyhZBo1udCQuDU6d0TGVKitatLVro1/LltaE+ebLH07Vsqd3aO3bM7xs4EF5/Xa9l4+Ly9wFccfo0PPCA9q5/4AF4+23tde8NrPXdxv0biakaw7BrhpHYKpGWE1vywIUPMPXnqWx4fANp69N4Mf1Fdh7aSULtBK+vy05nn+a7379j9pbZfL31a7Yf3A7AeTXPo0vTLnRu2pkrm1xJ+YjyXrunIXhxq19dHas7NuBzdCbgZOB74Evgm6Ku81XzuZuQY7I4xxoSVnY2P+OYIwm0i/uoUflZ3gcMkAIu782aiezf73cxQxLLJd42yJaXxb2w5HOOblMkI0dOHZFxK8ZJ+KBwuWraVdJwVMP8bPFDoiRySKRUf6269P2mr8SNj5P07elSe0Rtky2+BBAaLu5NXLVSzrkEHQuKXYcXWnkjaNwwExLyXS3T0/PT/YaF+byqhsFgKEgo6NdAt6DRrc4469rMTL3IjIgQufJKkUqVRI4c8Xg6V/XRw8M9L8Emor3qX3pJq/xrr/U4V53nMjokj8vMzhTbINsZ2d7nbZsnKll5Jdt7YeTm5sqv+3+VMT+Mkes/uD6vdFvU0Ci5/oPrZdTyUbLh7w0m0VwI406/FnexdxVwCxBRnOu82Xyu5FJT9c8yYEDBuJzWrXX/m2/69v6FiOUcl56UpMtYNmmi+ytV0q82m8jjj5vYdF/hbLjXHlFb0renexzPPuOXGfLoV4/mGetWu+DtC6TKsCrS4PUGcjrrtIlhLwZmAelWZ1+Aji9fB3wBVC9sfNAsIq20wKmpIuecoxVblSp6s9RgMPiV4upXoDa6vvg3QLrVijNHqLWg0a3OpKZqY3zUqIIWtGW0g8g77xR7yoQErcYjI/VUjngSky4iMm2aNu5btRLZtatYIhQto8M6LnJIpCQt1EI6x6d7M9u7JxzPPC5zts6Rp+Y8JXHj4/LWhw1HNZT7v7hfPlr/kRw4fsCnMhj8izv96omL+wci0qOoPn/hFzehRo3g7791RncrLsdmg7vugmrV4OBB397fDc5x6Y0aaXegdu1g9mzdrr9ex+yIQGQkvPoqPP10QMQ9ayhNPPveZ/YyafUkxq4Yy/Gs42TmZAJQLaoa2bnZdG/RnZV7VnJ7/O3GFb4QQsHFPRgIGjdMy0+yTRu4+GI4eVKHGL34ImzYEGjpDIazihK4uM8DZgL9gEeBXsB+EXnBRyIGPUGjW13hnO8jKQluv10HjrdooXMwrVhRoqktD3rLTT0tDYYOhU2bICGhcHd3gAUL4P/+DypXhjlzoFWrEolRKO7i07s268rsrbOZdNMkbphxAy92eNHv67A/Dv/B/N/mM/e3uSzYvoCDpw5iUzbaNmxL53M706VZF9o0aINNeVqUyxBslMbFfY3T5zBgU1HX+ar5ZRfSOkWfN09nco+JkTwXd9DpJgNEnz759dBBpH9//TkpSTfruxo18sdcconI8eMBE/mspThZ46367B/88oE0GNVAqrxaJa+epuXudEvqLdL0zabmZN0FmBP0sqNfPcHyk7zmGn1qPmZM0X6RBoPBJxRXvwKr7a/rHPp+Ks4codaCRre6wrFihvPxd48eIiDyyy9emdpyTI2P98zdXUTfumFD7US1aFGJxCgSa71GMnnu7o6n6dGjoiX2jVgZtXyUxI+P97nruyuyc7Llh10/SPKiZGn3bjtRyUpIRmqPqC09PushMzfMlIMnD/pNHoN3cKdfC1OwA4CjQDZwxN6OAv8Ar7q7ztfNb0rOVck1Kw6yXTv/yOAGx7j0unX1+nXePG2cX3GFfp03T38fFSV5oZtPPGHc3gNFcePZbYNsciLzhIz9cayEDQqT2Ddi84z1iMERcv306+XcN84NyB+JYCRUDHR03Pm19vflgcr+vH9QLCKtBaJjco2EBGOcGwwBogQG+o/217lAV+BC4LfizBFqLSh0qzsKK7nWpIn2M+/Tp1RTl6YEm4jIH3/o68uVE/nkkxKJ4pm8DvHptkE2mbdtnsS+ESvRo6MLxKz72/XdFQeOH5DUdaly72f3Ss3hNYVkJHxwuFzz/jUy9sex8sehP/wuk6H4FNtAzxsQQGPcVfObknOMy3E8Ra9QQb+uWeMfOQrB8TS9SRNtqDufpjsnkatfX+SnnwItucHCXTx7/IT4M2LYP/zlQwkfHC6tJrYqEJdU7dVqAf0jEQyEgoEOPAT8ZC1kgWbAQn/KEPBFpLWae/ttvRJr08acnBsMAaYEBvpNQFWgJbom+mrgluLMEWot4Lq1KKxER0oV3BBNTxepWlWkWjWREyWr2+245xofnz91aqr+7Oke7D//iFx+uT7cnzy5RKJ4Jq+L03TbIFteLiHrNN1KJBcMXo3ZOdmy7I9l8sL8F6TF+BZ5a8S277SVkctGyu+Hfve7TAbPcKdf3cagK6UuKsxnXkTWFPa9r/BrHI+rkmuVK+tCjeefD7/84h85CiEtDZ5/Hnbv1jE+2dm6IlzXrrqtWKHLsv3+O1SposuyAVx2GXzwAZx7bmDlNxTEVZk3xxh2q07nrM2zeHDWg5zKOcWp7FMA1KtUj/3H95MruWddnHooxKDbS1m2BVaIyIX2vvUi4oOoO9cEPE6yZUtd6uepp7QyW7NGx5z37Wtizw2GABEK+jXQBFy3eoJzwDjkFzHPzdWLxnvvLfH0jiXY0tJ0/HmfPjBlCowfD717a/VfWEz6iRM6PH7OHBgxQudj8hWOsel95vRxmUuo5+c9iQiLoE/bPkxZM4Xucd2DIl/Q5gOb+SzjMz7N+JTVf64G4IpGV9Dj/B78J+E/VC9f3e8yGVxT7Bh09K6nuxawbJx+3YV0VXLNZtMNRBYu9J8sReDK7b1JE5F69US6dXN9mq6UyGOPiezeHWjpDa5wFcPueLJuuVzN3DBTqrxaRcoNKZe3a9phagep93o9mbFuRqAfwy8QGifoK+yvP9tfw3GI4fRHC/gpj80mcuONWmH9+KPuy8zU/QaDISAUV7+is7i/CEwGplqtOHOEWgu4bvWEwmLR69TRZddKQWHu7qmp+Y6qRZ2mnz4tcuedeuxLL/k2dNPVOsyd67tKVmfEqQdD6dxt/2yTod8NlfgJ8UIyEjkkUu78+E5ZuH2hKd8WBLjTr75cbEYBK4FfgI3AIDfj/gNsso9JLWpevyo5dyXX+vXT/bGxIjk5/pPHA9wlkevWrWBJttq1pYCxXqOGyIQJgZbe4A5P/0is3rNaVLKSysMq5xnrdUfWlXdWF69MSlkjRAz0EfZF7a/AdcDnQIo/ZQj4IrJqVcnbPbRWaZ4GKRoMBp9QAgN9OTDcvr77P6sVZ45QawHXrZ5QWCx69erijSTJrtzdrdvOm6dVvyfJ47KzRR54QM/z/PP+ya9UlOt75JDIM+LU679eX2LGxEhmdmYBV3grF5E/Dffc3FxZtWeV9P2mr1R/rbqQjDQb20ze/PFNOXLK81r3Bu9SYgMdiACeAD6xtz54UAcdUEAlhzlWAO2cxjQDfsZemxeoU9S8fldy0dHawlVKv4+O1juKYWH65wvC2MjinKZXrqy/twz1li1Fdu4M9BMYCsOT+KiYN2JkwIIBeUa6SlZy/fTrZcfBHYEW3yeEiIGu0HHoH9t17UOgw5D81QK6iBw0SPIyW86dq1dr9erp3cQg1LMGw9lCCQz0tcUZfza0MmGgi7iPRf/kE62fX3jBK7dxPKy33lt7sZ6epufkaC9Q0Odm/joMdkwk5ypfkFVDPWFCgszbNi/PWLdO1xuOaphXzWf62ukBiWE/kXlCPvjlA2n3bjshGanyahV5bt5zsvfIXp/f21CQ0hjo7wLvA53sbRrwblHXOc1RAVgDXOrUPwJ4sDhz+V3JuTtFf+EF3V+rlsjJk/6VyUMKK8kWE5OfpH7UKL0OLl8+f+yVVwa0mpzBA9z9kbBO060/Emv2rimQWK7qq1VlxNIRgRbfq5R1Ax1dvvLXQMsRsEXkkSNaOdWtK/LOO/mulTExerfRYDAEjBIY6EOBG4tzTai3MmOgi2jdm5lZsC8zU/JOfZy/KwGO7u42m96PjY3V69binKbn5or897+St8b1p5FeWAiidXAyb9u8PGPdOl0nGbfl2wJxyr5i9wq565O7xDbIJpFDIuWxrx+T3YdN7Ku/KI2B/osnfW6uDQPWAseA4S6+/8JupC8DfgQ6FzVnQJRcUafow4f7XyYPcVeSzdpbsCrIWXsQjm7vIJKYKLJxY6CfwuCOolzfU9el5hnyKlnJU3OekohBEXnG+rlvnhsSmd/LuoGuH4EvgcaBlCFgi8hOneQM13YRE39uMAQBnupXdCleqyRvLnDS4fMRT+YI1VamDHTrSNsxDj0mRqRmTa2nP/vMK7dxdHePicn/XNzT9NxckUce0WNSUrwiWvGew8U6zFXpXOt0nWQkMzuzgLHuHMPufMruj3j2bf9sk4dmPSThg8MlamiU9JvbT/498a9X72E4k9IY6GuAcx0+nwOsKeo6pzmqoZPLtXTq/9oeZxkBxAK7gGourn8YWAWsaty4sc9/rDNwd4rev7/kuWT+9Zf/5SoGziXZrBh0q4JcrVoFY9QrV5YChvpll5kT9WDHleu7iEjChAQZtXxUnkJvMqaJXPv+taKSlZCMVEipIEO/Gxpg6UtHiBjo39sXsguBWVbzpwwBWUQmJWklU6WK3j10PDIx8ecGQ8AJBf0a6FamDPTUVL1IrF9f62THcKNq1US6dvX67Up7mp6TI9Kjh/5TMnGiV8UrFp6UznX0crSMdecYdsdTdmvt5q949t/+/U16fNZDVLKSmsNryls/vSXZOdle+oUMzpTGQL8G+ANYDHwH7AQ6FnWdi3leBvo59b0N3O/weSFwSWHzBEzJuTtFDw/XP+ODDwZGrmLgeJpeq5Z2ALDid2rVyo9RDwvT763kcY4x6tdeK/L334F+EkNhOLq+W8lKLIPd0c3KNsgmgxYPkoopFYVkpOuHXeXHXT8GWvwSEQoLSOAqV82fMvhdv546peudN2gg8t57+au0efP0zqGpgW4wBJwSuLh3B6o6fK4GdCvOHKHWypSBLqIXizExep3rmLCzVi3dt2uXV2/njdP0rCyRm2/Wa9ZPP/WqeCXG1en69LXT807HG45q6DKG3fGU3TK8/R3P/vOfP8uV064UkpGLJl0ka/au8eIvY7AosYGuryUSON/eIj28prZ1Gg6UB5YANzmN6Qy8b39fy36CXrOweQOm5JxP0e+5J99gt6zX1asDI1sxcVSEjs2KUa9dWzsJNGwoeTHqNWrkV5dTSj++F8KQDD7CcRc3ckikJC1MEhEp4GZlKe8W41sIyUjYoDAhGek8o7Os2L0iwE9QPELBQA+G5nf9OmyYViqzZ+vPji6VQZqE02A42yiBgb7WRd/PxZnDxfU1gPnAVvtrdTfjetnHbAV6OfRfDKwHtgFjsSfgdDcvOmnnWPv4dcBFDnONQFceynCcq7BW5gx0xzh0Z70MIkN943VX2tP048dF2rXTjq0//OATEUuM8+l69OjoIsvoWmu10sazl9RYz83NlZkbZkrdkXUlbFCY9J/fX05lnfLBr3P2UpoT9HXAABzc3D1pdmP+Z/v1G4CX7f2DgVskXwGORpdZWw/cVdS8AVVy1ik65GdbmzdP14cEkWbNgq7sWlG4ilG3wo1q1y4Yow76oMt6X726yPffB/oJDEXhLplcn9l9Cijz2VtmS43hNaRSSiUhGbk59WZZ//f6QIvvEaFgoJMfv3kEOAXk4Oe4Tb/q17//1rE0UVGuT2qMa7vBEBSUwEBf56JvfXHmcHH9CKC//X1/XOc1qgFst79Wt7+3DO6VQDv7unMO0KWweYEb7eOU/boV9v7L0XmTwuztB+DqouQvcwa6Yxy6s2dTVJRe9/povevJabqIXoJHRhb80yEism+fyLnnahF//90nInqVok7Zp6+dXqp4dm8Y6/+e+Fce+OIBIRlp/VZr2bjPJKfyFqUx0JsAzwOrgZ+AfgQwkVFAlZx1it6kiVZUSUlnnqJPmxY4+UqBY4x6RIQ+IXeMUa9SRfdbCeaqVct/5Guv1UmYDcGLJxlHU9elSswbMUIyUmdkHSk/tLyoZCX3fXFf0Gf0DAUD3bHZF4XdgNf8eV+/6tcnn9S6s0YN17GO5vTcYAgKSmCgT7Ufvpxrb6OB94ozh4s5NwP17e/rA5tdjEkEJjl8nmTvq49DlQzHce7mta51vj9wmX09XB5doWgVEFeU/GXOQLcM85iYM3ODWBmFrTppPhbB+TTdsXa6Uvqg3/lEfdMmvW698EKREyd8KqZXcXXKXtp4dm8a619t/kpqj6gtUUOj5J3V7/jwlzh7KLGBXmCwrls+HcgpznXebAFXctZxs/MpumN2tX/+CayMJcTxND08XIcajRihP4eF6Ue19iScM75Xrizy3XeBfgKDJzgmk4sfH18g0/u8bfNEJStJ354uTcY0kRs/vFHKDSmXl0juZFZwlhQMNQPdapTSLbS4zW/6de9effRRrZrrbMGmtJrBEDSUwECvCLxmN15/AoYBFYszh4s5Dzm8V46fHfr7AQMdPr9k72sDLHDo7wB8Xdi86CTG7R2+Wwi0sb9/HTgEHAZSPJE/4GvXkmAdSjlX1zh0SPf36OEXEZxP00V036hRBR2tnB2vvvpKX3ffff4rv+ZLShrPXpixXpLs8H8e/VOum36dkIw8NOsh4/JeSkploDudoq8EnvXkOl+0gCu51FRtodard+YpupUwrnfvwMpYShwNdcs4t8qzRUToRHJWxnel9Om7NXbAABObXlaw4pgc31vxTiKS9/63f3+T22beJiQjsW/EyqxfZwVSbJeEgoEO3ObQbrcvcH/wpwx+06/9+mnF4q7erimtZjAEDf7Sr8ACdEikc7vV2SAHDrq4vlQGuuO87gx0oCkwG6hkbz8AHdw8T2ArEHkDdyXXKlYUKV9e5PBhv4jheJpu/YlwNNhTU0Xi4/U61HEv4aWXpCw7t7qlOPHs7ox1K+GcY3b49O3peV6VhZGdky0DFgwQkpFL37lU/j5mskeXlBIb6MAKdKm1/sA5RY33dQu4gS5S0CKNiBC54oozXd0XLQq0lF7BVYx6kyZ6fyIpSX9nKUUrf8hll5WNuJ+zHcfYdFe10+MnxAvJ5O2oLty+MK+v64ddZefBnYF+hDxCxECf5tDeAZKAOv6UwS/69fBh7XJz2WX6FN35dMbEnxsMQUUw6FeCx8X9OeAlh/6XgeeLkj8o1q4lwV3JterVRUDkHf+5OTvuEURG6jWo1W9VQI6PL+junp0tcvXVIhUqiGRk+E3UgFFUOKOjsW4lnLOyw1vXW6GOnpymf7zxYyk/tLzEvhErv+7/1R+PGHKUxkA/r6gx/mxBo+SKShhXp45OJxkiOMaoWxnfa9fOz/jumDxOKZFKlUTmzw+01IaicFU73bGEh+UCZRnumdmZMmr5KKmYUlEqDaskE1dOlJzcwCdGDIYFZGkbcIUnfb5sftGv48ZpRdGggdab1soqJib/s4k/NxiChmDQr8BICiZzG+FiTA1gBzpBXHX7+xr275yTxN1Y2LxAVwomiVtp778TfdIfDkTYT9ZvLkr+oFm7lgRXJdcWLtRW8hVXBEQkxxP1+Hj9J8TxT4fjPu+ePTrVSZs2Z5eHpye5hxyzwzuHOnoaq/7jrh+l9ojaUmN4DflhV5Clzi8DlNhAD7YWNErOMWHcgAH5xRmt2mQg8tRTgZbSqzifpjdsqJVi7do6lLRWrfxQfKuNHh0asT+hjrtM75ZCdnR9FxHZcXBHXgzS9R9cL/uP7w+U6CISHAvI0jZgjSd9vmw+16+5uXo1Vb58foIh52MRY5y75LvvdI1fazPUU5fN3Fx9yNWund44rVxZJ04aPtxv3qmGMk4w6Fegpt0Y3mo3kC3Duw3wrsO4B9Cl0bYB9zv0t0G7y/8GjCe/zJq7eRUwwT5+Pfnx52H20/UMdAWi0Z7IHzRr15JQVMm1LVsCIpZjfHp8fME/Hc6RUp98oscNHux/OYMBV8Z6ZnZmgezwjqGOziXbinJ93/bPNjn3zXOl0rBK8t1Ok5CqOBgD3Rc4BmrXqqUtVkc39xBydXfE8TQ9Lk4b6FWr6lerRuWwYfk/xaOPimRlBVpqQ1G4Sh5n9Tu7u4vo+piTVk2SyCGREj06OqA7p8GwgCxpQ2cFfhbYBTzj0JKBX/wpi8/16/LlkudmY2LPi8Xs2Xov+OOP9f6Gpwb6PffoqkiDB4usWCGyY4fI11+LdO4cenGZBt9QXP2KLl1WxeGEeT9wb3HmCLUWVGvX4uKu5FqjRlqfd+sWFOJZpKbmn5k5Rk8lJuq164YNgZEzWHCOX7eywzuGOlrZ4R1j1Ytyfd9zZI/EjY+T8kPLy7xt8wLwZGUTY6D7AusU/dprC7ppXnON5B0zN2miM16GGKmp+eGjluOAVaPSMS49LCxff58MzgTgBicck8cV5u5usXrvaol9I1bKDSknn276NCAyl3ED/SrgFeBP+6vVngGa+VMWn+vXRx7R1mVc3JklekzsucdUrOiZcT1zpta/n7r5Z3nwoDelMoQqJTDQ19pfuwNTgKr+3mwMthZUa9fiUljJtTZttNXro5roxREvPV2XBq5fX4fJT59eUNR9+/RZ2uWXB1TcoMNVqKNjrXXrNN2xyo+70/R9x/ZJ67daS9TQKFm8Y3EAnqbsUWwDnYIZhc9o7q7zdQs6Jed4Yt6woT5Gtj7XqaMt1LvuCkk/b0edbdWodIxLj4vTP0/NmvrnuO66slWP8myluO7uIiL/nPhHLnv3MrENssnUNVP9LnNZNtCtBjQJtAw+1a+nT+vEQpdfnu99FBNz5irKUCSeGui33CLSvLnPxTGEOCUw0DfYX98FOtvfGwO9LOOu5Nq0abo/wHV23ZVjEym49zt1qh4z1f/LlKDH3drPsda6dXpe2Gn6vmP7JG58nFQaVklW7F4RoKcpO5TEQJ9WSJvq7jpft6BTcgkJWmFZsee1aulmGent2unXd98NtKQ+obC4dGuvIiZGr8uVErnxxrMrSUdZxZ27u4jkuTw5c+z0sby4dH8b6SFioNdGJyz6Bki3mj9l8Kl+nT07X1FYRx2WH2J0tDHOi4GnBnpcnDbSDYbSUAID/TXgV+Bnu5t7bWBFceYItRZ0a9eS4KrkmpV46OGHAy2diJxZudO5/NqMGXqPuHZtk4PDFa5i1R1d3/vM7uPRafqeI3vknDfPkeqvVZeN+zYG6GnKBsbF3Vc41kUfMED71lStWtBIj47WQYBr1wZaWp/hGJfeoIFOGme5GM2bp/t799av998fkg4FIYmju7uFqxN0i1NZp+S66ddJxOAIWfL7En+IKCLuFVxZasA8oLc9+dBVwFRguD9l8Kl+ve8+vXqaO7dgv3FtLzaeGugtWhgD3VB6SqJf0RnVw+zvKwD1ijtHKLWgW7uWBHcl1yIjtVI6fTrQEhaIR3dXfm3oUBGrGpHBPa5c3x0TyRV1mr793+1S7/V60mRME9l7ZG8AnyS4cadfbXiAUqqrUup5pdTLVvPkurOCxER45BH46y949VXIygKlIDwcpk7VY/7+G6Ki4Lbb4N9/Ayuvjxg3Dt5/HyIjYe9eqFYNRo/WP8PDD+sxM2bon2DaNHjzzYCKa/CQpA5J9J7Vm0U7FpGVk8WiHYu485M7OXz6MGGDw2g5sSVp69PyxkeGRzLz9pnEVo/ltpm38fuh3wMofZmjpohMAbJE5DsReQDoFGihvEJ2Nnz1ld6y7Nix4Hft20NGRmDkCnGaNzc/rcH/KKXuQOuxHKXUQGAG0CDAYhlKS2KiXuRFRkLnzvD003qh98orcPw4zJ0baAlJSoLevWHRIhg6FPr0gfHjYeBA/adnyhRIS4MePWDMGNi1K9ASBy+JrRLZ8PgGUm9LRSlFvUr1yDiQQXZuNr1n9aZjTEeS0pOYfNNkFIpxXcaRlJ6UtyaMrR7L14lfs//Efm5Ku4ljmccC/ERlDFdWu2MD3gamozMMv4IuNzGlqOt81YJ2F9Ixo3tMjD5Sttw3Qe86RkToQOwQTmluhSnNm1cwWcfUqdrFPTZW5xQJCxP5/vtAS2vwBHcZP60EIq7cm37d/6tUfbWqtJncRrJzsn0uI6Fxgv6j/XUuugbvhcBv/pTBZ/r1+++1YmjUyCSH8wKenqB/9JGYJHGGUlNc/Qqss7+2Bxbb9ZlxcQ8FnH3IRUSOHdOK5t57AyOTE56UX9u5Uy/JH3oocHKWJTw5TRdx7WH59eavxTbIJrem3So5uSY7nzPu9KsnJ+iXi0hP4KCIDEKXBGruld2BUGLECIiI0Kfnr7wCn34KBw9CrVr6+/37oUMHmD8fnnhCm+0hSGIiREfrU/OePfVG6+23w+DB+bXn9u6FmBi4556QdSgIKaxd1JyXc6gaVZWZt8+kY2xHIsIi6BjbkSm3TCFlSUqBa86rdR5vdX2LVXtXMfXnqQGSvMwxVClVFV1yrR86wdLTgRXJS8yerd1punSBG24Amw0SEvSxRu/e+tjDUCjHjsHatbrl5sIff+j3f/zh/pr//AfuvFPr2iFD4Kef4Pff4dtvoWtX+OIL/8huOOvIsb92BSaLyGygXADlMXiLuDhYurRg38qV2m3yyy/h1KmAiOVIYiJs2KD/xIwfrz9bLF2qH6FJE3j0Ue3oum1b4GQtKxR1mp7UQf8N331kNxv3byzgYdm1eVfG3DCGLzd/yaDFgwL8JGUIV1a7Y8O+6wn8iHZRigS2FXWdr1pQ70L26SN5J+a1aulAbOd49Asv1K+vvx5oaX2GFfdjs+lTHseSF1Y8+tChIuHhInffHWhpDcXBKr3hiLukcbm5udJhagepPaK2HDx50KdyUcZP0IEw4OlAy+Ez/Xr++fooIzZWJClJv7fZ9BFGnz6+uWeIsWhR/p8Rx9arV+HX5eaKTJok0ratPnmvXFnkggtEhg8XOXLEH5IbyjrF1a/A18AkYDtQzb5uNFncQwHnmmaWp6i1zp01K9AS5uEoamam/tMTEZGfiH7iRJ0e6oEHAi1p2cLVabrVX//1+hIzJuYMD8vc3Fy574v7hGQCVo43WHGnXz1RtC/ZFez/AX+ha/UOKeo6X7WgV3KujHTLxxu0drj0Uv3+f/8LtLQ+w6qT7lzyIj1df05IEBk0SH//2WeBldXgOcVNGrdm7xpRyUqe/vZpn8pV1g10/QisDLQMPtGve/dKgeztjhj3doMh6CmBgV4BXZK3mf1zfeD64swRai3o167FwbF8j1Uqc+5cvenaoUOgpSuA5e6ulF5+JyVpY91KGHfDDfqwaMeOQEta9nAsy5aZnSkxb8RIvZH1CoQ8Oq4PT2adlLbvtJWKKRUlY39GoMQOOkpsoBcYrHdBqxbnGm+3MqHkiopHb9hQ5IortAW7bFmgpfUZjvHozruXoHX6BRfon8Oc5JQNnBWyuxh0Rx6a9ZCEDw6Xbf9s85lcIWKgjwHGAx2Ai6zmTxl8ol8/+ED/g3cVu2gFBBoMhqClJPoVHX9+v/19bSC2uHOEUisTa9fi4Jgu3eK663SCoSDMs+RK3PR0kebNjSNXaXDMUUQyMn3t9ALfxU+IL5DhfdfhXVJrRC1pObGlHM88HkDJgwd3+tXTLO6XK6XuBu4EblVK9fTkurOWouLR9+yBFi2gUSPo1k0HBYYgjvHokZH6Z3n+eZ3oMyZG/zTdu+ufY5AJSykTJLZKJKVTCn3n9CUqJYqen/ckKzeLez+/94yM7hbJVyeTK7lMWzstABKXKS4AEoDBwCh7ez2QAnmFRYugYkWtEyMjoWVLnUYX8gMCDQZDyKCUegV4ARhg74pAZ3I3hAoZGboChyMPPgg5OWfGqAcBrsRt317Hn999t45FNzmRio9jjqKE2glEV4kGIG19GknpSfS+sDfxteLzMrwv+X0JH3T/gI37NtL3m74Blj64KdJAV0p9gF4ktgcusbc2PparbGOVXhOB++/PL72WlZVvpE+ZApdeCpmZ2kg/cSKgIvuKESP0ozdpovNEXXON/mmGDdM/wf/+Bw88AGPHwvbtgZbW4AmWQp7RfQYRYRFM7zadU0mnziixYdGgcgNuOPcGPlj3AbmSGyCpgx8R6eiilf0ya1Z5tX799M7cAw/Aiy+aBHEGQ+jSHbgFOA4gInuBygGVyOBdHJPFpaXpjVcrG9vIkYGTyw2ucttZ+8PPPquX4G+/HRjZQgXHsrxDlwylT9s+jF85noFXDiyQULhz08682OFFpq6dyge/fBBosYMXV8fqjg3IAFRR4/zVypSbkCfx6M89p32+QzhLheXqbiXm6NNHv9psun/CBJHy5UXuuivQkhqKQ3Hi0dPWpwnJnDHeWxAaLu51gSnAHPvneKC3F+YNA34Gvi5qrNf16x9/6H/k//2v/mwFBNpsOsQn1X1ohMFgCA6Kq1+x59MA1thfK2IvvXa2tjK1dvUEKwNbUpJ+HTVKh3Kec45e2waZbndOGGfFoFtiXn+9SIMGZ0ZhGYqHYwK5+PHxBcIfHRMKZ+VkSYepHaTysMry27+/BUrcoMCdfvVE0X4M1C9qnL9amVNyRcWjR0drBQe6aG2IYsX/OCrJefP0TxEbK3Lrrfon2LAh0JIaPKU4Gd1PZJ6QKq9Wkfu+uM8nsoSIgT4H+A/2bMdAOLDeC/M+A6QGxEC3dud+/LFgv4k9NxjKDCUw0PuRn8X9IeAHoG9x5gi15vO167BhIm3a6DINtWqJ3HSTyPr1RV+Xmyvyzjsi7dqJVKqkr7/wQl3m4fDhwq+1sgFbpy+pqSJvvql1frNm3nkuL+K4PxwdrZvNpvv69dNiz5xZ9DzffSdy883aoAddrcgTSvNTlzWcD3BS16VKzBsxBeLRdx7cKVVfrSqXvXuZZOV4L2/BhJUTJOaNGIkcEikXTbpIvt/5faHjF+1YJCRzRvMkkd2iHYuk64ddpebwmhI1NErOG3ee9JndR3Yc3OGxvO70qycx6LWATUqpuUqpWVYr7kn9WUtR8ei7d+vPl14Kjz0Gf/4ZWHl9RFKS9mZ98UWYNEn3Obq6b96sw1SHDQusnAbPiasVx9I/CvqMLf1jKXG1zowpLh9Rnjvi7+CTTZ9wPPO4v0Qsa9QSkf8BuQAikk1+PeESoZSKRtcifrf04pWApUt1zfOjR8/sN7HnBkNIIiKvA58AnwLnAS+LyLjAShXiLF4Mjz8Oy5dDejqEh8O11xYdWN2jB/TtCzfeCAsXwrp1MGSIzh3y2WeFX5uYqEM3T5/WhccTE6FLF/1dEBYXt+qjz5ihl+XTp+uy7ePG6aV5nTq6bnpRHDumPfrffBPKl/f8/qX5qcsaju7uH/zyAc/Oe5ZTWaeY3m16Xjjk8l3Lefumt/lh9w8M+W6IV+47c8NMnvz2SV5s/yI/P/Izl0dfTpcPu/DH4T+KvHbj4xv589k/81qzGs0KHT9p1SSumX4NNSvU5OM7PibjvxlMuWUKuZLL0O+Hlv5hXFntjg24ylUr6jpftTJ3gi7i3tW9f39deigiQrsHRUWJ3HZboKX1GY6u7o67l/Hxuu+55/TnrVsDLanBE4qb0f27nd8JycgHv3zgdVkIjRP0xUBN8t1C2wHflXLOT4CLgatxc4IOPAysAlY1bty4VP8dzuDCC/U/dKt8Q3x8vktkkLlAGjSbNgVlEmZDAAkF/Rro5ve169GjekFVWF3ymTNFQORTN3WpDx4s+j6u0qPXq6ePh4MUdxnd69bVP8fGjZ7PVbGiZyfo3vipyxru6qWLFAyHvPezeyVsUJis3L2y1Pds+05befDLBwv0NR3bVPrP7+/2GusEff/x/R7fZ9fhXVJuSDnp+01fl98fPHnQ47nc6deAK63itjJpoIsUNNKbNBHp1q1gzbHoaO2iBCKzZwdaWp+RkJC/PrdigUaN0j/FxIki5cqJPP54oKU0eIpjiQ3LbckdObk50nhMY7k59WavyxEKC0h0WbVlwGH76xbg/FLMdxMw0f7erYHu2LyqX48d0/qtWjX9jz4+Xi8YTU2boOTYMZ0qwGbTuthgsCiufkXXQN9q12VHgKPAkeLMEWrN72vXvXtFQGTJEvdjbrlF1xkrDY6x6JaOt/R8kO70FVbxMyJC5MknPZ/LUwPdGz91WaWocMiDJw9Kw1ENJW58nJzMOlni+5zOPi1hg8Lkfxv+V6D/8a8flyunXen2OstAbzKmidR7vZ50er9TkfmSRi8fLSQje47sKbG8Fu70q1sXd6XUUvvrUaXUEYd2VCl1pGTn9Wcx48bpmmOgy6rNng1du0Ljxrpv927YtQvOOw+eekpndw9BkpK013+fPrrExdKl2qXo+edhwgTtAjRtGhw4EGhJDZ7gWGJjw+MbSGyV6HasTdnofG5nvvv9O7Jzs/0oZdlARNagPZQuBx4BEkRkXSmmvAK4RSm1E/gI6KSU8l+po9Wr9Zbk88/D0KGwcaMuwTN3rvbpM/gdK9lyWFjBanciOuRo4kTtJfuf/wRWTkOZZwRwi4hUFZEqIlJZRKoEWqiziiefhAsugMsucz9m61Zd8rc0JCbqteyIEbqWWYsWcOut2vX91VdLN7ePKCyj+223wfvvw8mT3r2nN37qsopzOGTa+jSaj29OruTScmJL5mydw5RbppBxIIOXF71c4vscOHGAHMmhbqW6BfrrVqrLX8f+cntd/Ur1eavrW3z6n0/57D+fcV7N87hm+jUs+X2J22u2/ruVKpFVaFC5QYnlLQq3BrqItLe/VrYr2CpG0ZYSKx69Xj1dcmjFCh27078/1K0L774Lt9yi/yVPnhxoaX1CYiJkZ+u486goHY+TkqLD8zMydLmLkydD9vHPejrFduLI6SOs3rs60KIEHUqpKOAJYAgwCPivva9EiMgAEYkWkRjgLiBdRO71irCe8NNP+rVnz4L97dvrf+wGv5KWpjdIx43Lj7tMStL9M2bAhx/CoEG6v2bNQEtrKOP8LSLmH3mgeOYZbXF++qnejXOH9nYoPYsW6Y3X3Fy9EfvWW7p/wgTvzO9lrJxIixbpfYRFi/Irfj70EBw6BF984d17euunLot4Eo/+78l/efiih3l9+ev8sOsHv8p3Xq3zeLTNo1zc4GIua3QZE7tOpHPTzoxc7r5coPjhP6gnSeJQSlVXSp2vlLrIar4WLCSx6qP/9ZfeWSxXDtq1g1GjYN8+rSnS0uCqq/SJU4jWRo+P16fmOTn5eUWs3cu4OF0rfdIk/b0htOgY2xGA9B3pAZYkKJkOJADjgPH292W3SOhPP+kNyS1bCvabBHF+xTo1v/tuvUj86y/9n6VjR71ROnSoTt556aX61WDwAquUUjOVUolKqdusVpoJlVI1lFLzlVJb7a/V3YzrZR+zVSnVy6H/YqXUeqXUNqXUWKWUKmxepVQLpdQPSqnTSql+TvforJTabJ+rf2mey+s8/bT+R5+eDuecU/jY5s29s1makaE3Xi3q1tULvb//Lv3cPiAxUR8M9e2bf1DUtavuu/56rR+9nbDYWz91WSSxVSIpnVLoO6cvPb/oSWRYJKNvGE2P1j0K1Ed//frXia4SzYNfPcjp7NPFvk+tCrUIU2H8fazg/3d/H/ubepXqFWuuSxteytZ/t7r9vnnN5hw5fYS9R/cWW05PKdJAV0oNAdahF42j7O11n0kU6nji6l6zplZs77wTODl9iOPu5QcfQGwsdOoEhw/rvyuPPQZ//AFz5gRaUoO3qVOxDq3qtCJ9pzHQXdBSRHqLyCJ7ewhtpJcaEVksIjd5Yy6PWbMGWrd2f1Rh8BmWUW6zQa9e0K2bfj95cv6pOeQ7M+zerRekhR22GQzFoApwArgeuNneSqt/+gMLRaQZsND+uQBKqRrAK8ClQFvgFQdD/i10ybdm9ta5iHn/RXs0FVjvKqXCgAlAFyAeSFRKxZfy2bzDk0/mG+ee+FPffbf22HSXQvzQIc/u68pn/NxztdIJ0pMWK6N7To7WibNn53sXWd+N82LdAW/91GUVKxzSpmxs6bulQDhk+8btyTiQQeXIyky6aRKb9m9i2JLi75CUCyvHxQ0uZv72+QX652+fz+XRlxdrrrV/r6V+pfpuv789/nbKhZXjtaWvufz+0KlDxbqfS1wFpjs2YDNQrqhxLq6LAlYCvwAbgUGFjP0/QIA2Rc1bZpPEOZKaqjNR1KsnMmCASP36Z2Z1j4vTieOcM1mECKmp+SXiY2JEpk/XSeNiY/X7+vV1Hj1D2cHThHFPznlSooZGyamsU167N6GRJG4G0M7h86XAdH/K4DX9eviw/sddp45OFOdcK9fgM6ycTenpOmfTqFH6c3S07ktP1/8ZRHQ+0rAwkY4dAyuzIbgprn4Farjoiy3OHC6u3wzUt7+vD2x2MSYRmOTweZK9rz7wq6txRc0LJAP9HD5fBsx1+DwAGFCU/D5fuz7+uM6cvnChyJ9/5rejR91fk5srcueduoLQ4MEiK1eK7NwpMmeOyI03el7g21HpZGbq19q19d+AVau88ni+xDmr+/bt+X++XHH0qMjPP+tWvrzIoEH6/e+/u7+Ht37qso5zfXSRghndRUR6fNZDwgeHyy9//VLs+T9a/5FEDI6Qd1a/I5v2bZInvnlCKqZUlJ0HdxaYv8dnPfI+j/lhjHye8blsObBFNvy9QfrP7y8kI59ucpNy386ElRNEJSvp+XlPWbRjkew8uFOW/7Fc+szuc0Ym+cJwp189UYqfAnWKGufiOgVUsr+PAFY4Lj4dxlUGvgd+PGsMdJGis7rXqqVfZ8wItKQ+w12pi4QEkaee0hndDx0KjGyG4lGckmtf/vqlkIws2rHIa/cPEQM9A10Dfae95dr71gPr/CGD1/Tryy9r/TVsWP6CzZRW8ympqVp3Wpueqan52YrT07WBHhsrMm+e/jOTni5Svboev2xZoKU3BDMlMNCXAVUcPscBG4ozh4s5Dzm8V46fHfr7AQMdPr9k72sDLHDo74C9qkVR87ow0G8H3nX43AMY70Zm35WwdMZaTzq3V14p/LrcXJFJk0TattUpyStXFrngApHhw0WOHPH8/pYCctyQBZFevUrzVH7BVVb3yy/X4ufmnjl+0SLXP3VRj+qtn7os47xWTFqYJBGDI0Qlq7yDnQPHD0jtEbWl7TttJTsnu9j3mLBygjQZ00TKDSknF026SL7b+V2B76+adpVcNe2qvM/Dlw6XpmObStTQKKn+WnVpP7W9zN7iWTWtBb8tkC4zukiN4TUkckikNB/XXPrM7lNgQ6AoSmOgtwH2AHOBWVYr6jqnOSoAa4BLXXz3BtAVXQP47DHQRfKPkEEb50lJevXUpInuq1dP5NJLAy2lzyis1MWPP+qf4GzZVSzreLIranHo5CGxDbLJS+kvee3+IWKgNyms+UMGr+nX+vX1P+Ddu/P7HI9uDaXGWg/bbPpPSe3a+ie22fSfEcdTc0uvpqZq4x1EzjtPpEIFfXpjMBRGCQz0rsB3QCXgYrQX5QUeXLcA2OCi3erCcD7o4vpSGeiu5i2Nge7YQmrt6g7nk/RatbQlGuQbs64Oi555RsqKA0CZw/K2VMlKIgZHSNLCpDMOdj5c96GQjIxfMT7Q4vocd/rVkyRx7wPDgdfIj0Ef5cF1KKXClFJrgX3AfBFZ4fT9RUAjEZntyXwhh3NW9w8/1BkqTpyAWrX0mBUrYO3agIrpKworddG2rY5NnzkzMLIZikfGgQzaN25foM+KK3KmalRV2jRoYxLFOSEiv6NrBlcFalpNRH63f1d2+OsvqF4dGjiUIDHZ272Gc0b28HAdP/7XX1p/hofrBHCgQ/7HjdMhqfXqgVKQmgqXXKLTArxuMsoYvIx9TTcGmAe8B3QXkbUeXHetiLR00b4E/lZK1Qewv+5zMcUeoJHD52h73x77e+d+PJzXk3sYUlK04unYMT8TZaVKuj+IcZXV3UqAP8N/hUnPGqx49Pja8cy9dy5DOw0lIiyiQMK4xJaJXHfOdQxYOMCnidiCGU8M9BMiMlZ00qLvrObJ5CKSIyIXoBVYW6VUS+s7pZQNGA08W9Q8SqmHlVKrlFKr9u/f78mtywbOWd1FdMm1sDC9ivr7b4iM1OXXQhBLKQ4cCAkJ+rFvuEHrdKV0xbnFi/UC1BDcONe5BFj6x1LiarnO1n1N7DWs2LOC45nH/SFemcAhIedYynpCzqgoaNRI/0O2MNnbvYbzOviPP2D6dN1v6dXsbNizRycn6t9f741YZS2jovTC84UXzH8Sg/dQSo2zZ0gfC3RCbzbuAPrY+0rDLMDKyt4L+NLFmLnA9fbKQ9XRSermisifwBGlVDt79vaeDtd7Mq8jPwHNlFKxSqly6BKWs0r6UCGFczb3Sy/V69gg35h1ldX91Vfhppv0IVGQ5rkr8xR2sKOUYmLXiWTmZPLkt08GSMIA4+pYXQq694wGXkUnxrjIakVd52KelynoJlQVOEB+vOUpYC9FuLmHpJtQeLhODucYu1Ovnu6/6y6RGjVETnkvoVYw0adPfuh9fLz28rdCVWfN0i5Gzq5HhuCjODHoIiJfbf5KSEaW/L7EK/cnNFzcS5SQ05vNK/o1N1frsSpVCiYNMjHopcYxzjw+Pv/nTEjQbu02W/44y5XdOS/fli36P80ll4TsnxWDl/FUv6INXLfNkzkKmbsmOsv6VrQrfA17fxsKupw/AGyzt/sd+tug3eV/Q5exVEXMWw/YjfZqOmR/X8X+3Y3AFvtcSZ7IH5JrV2ecfcWXLNFKyNfx9z7io4/MGtSXeBIaOfS7oUIy8s2Wb/wtnt9wp189UYqLXLR0D66rDVSzvy8PLAFuKmT84qKMcwlVJaeUjtWpX1+vsubN0wY7iDz/vH794otAS+kTCksUd+iQXnAOHBgY2QzFw9Ms7iIifx79U0hGRi8f7ZV7h4iBXqKEnN5sXtGvv/+udVbv3vlB0iZ7e6lxl509NVW3+vW1UV7Yfsiff+r+WrVEduwIyGMYyiDF1a9ARSDM4XMYUKE4c4RaC8m1qzPOMejffKP/FpTRkjzHj+sQ+oceCrQkoYknCeNOZZ2S88adJ+e+ea6czDoZaJF9QokMdLtSfbqwMYVcez7wM9plcwPwsr1/MHCLi/Fnr4GekKAz/MTEFDxFj4gQadhQpGZNXZ8hBCksUZyIzpF32WX+l8vge6JHR0viJ4lemStEDPRSJ+QsbfOKfn3hBf2nxRjmXsVxM9NaB48apY11q6pRdLT7n/3PP/XYChVEVqzwv/yGsksJDPQfsVfxsX+uBCwvzhyh1kJy7eoKx+yVCQkijRqJdO4caKmKheMjVK0qUqlSyFY8DjieJIxb8NsCIRlJXpQcaHF9QmlO0FcWNcafLSSVXGqq/k8xYED+qismRtdFB12ktlIlkZOht3tU2Am6iP4JwsJC8tHPerp/1F2ajW3mlblCxEDfCDwBdASuspo/ZSi1fk1N1SE5oC1C49peaty5taem6s+u3Nid2bpVpGlTfRq0aJFfxDaEECUw0Nd60nc2tZBcu7rD0cKtVk3XE3NVrywIcXYCGDJE69gXXgi0ZKFNUe7ud31yl0QOiZRt/2wLhHg+xZ1+9SRJ3DKl1HilVAel1EVW8+A6g6ckJkJ0tE6nu3MnjBmjM/xYWd7Xr4djx2DBgkBL6nVcZc/s3Vv3A7RurRN0bN4cWDkN3ueSBpew9d+tHDp1KNCiBAslTsgZNKSkQLt2ULu2ThnesaPOZhbkWXyDFcds7fHx+boxLU3/2Rg/XifY3LBBf3bFggU6V9OhQzB/Plx9tT+fwHCWctxxnaiUuhg4GUB5DP7CucREr15w9KhWVmUA5wSc/fpBhQowaVKgJQttiqoENOr6UZQLK3dWJYzzxEC/AEhAu6aX7czCwcyIEdpC7d9fa4Wnn4bGjeHZZ+HAAZ1aclboJQp1lT0zJSV/sZmQoF83bgycjAbf0KZBGwBW7V0VYEmChiVKqVeVUpeV2c3QjAw4fBjOOy+/z5RXKzGOi8WBA/Uat08fGDr0zM1MZ3JzYdgwXRmjfn348Ue47DL/ym84a3kK+FgptUQptRSYCfQJrEgGv+Bs4d51l+4vI/UcnRPRR0VB9+56gzMzM2BihTxFVQJqULkBr1z1CrO3zuarzV8FQkS/U6SBLiIdXbRO/hDurML5FH3qVL26uv56iImBcuXg6691KbYQIzFRnwBZ9SbvvRdattQbsc2b6/JrxkAPPYyBfgYXAu2AYZTVzdC4ONi0Sf/DtTDl1YpNWprWgRs3aoPcOjG31r6bNp25menInj1w3XXaeL/zTvjhBzj3XP8/h+HsRER+AloAjwGPAnEisjqwUhn8grOFe/75utzmrl2Bk6kYxMXpP1nOfaA3RQ2+IalDEr1n9WbRjkVk5WQxMH0gN8y4gU37N9FyYkvS1qfxxKVPEFcrjie/fZJT2aFffzm8qAFKqf9v777Do6rSB45/Twoh9BJ6qIIICYqAHVTAAhawYIkFFFxUJLqismhQQYmrKFgoqy6IIiZYcVHEGnRlrfwUacFGL9J7SX1/f5yZlGEmhWRyp7yf57nPzNy5c+e9hLy5595z3tMEe8LYXET6G2M6A2eJyEy/RxduJk60k9Z++qmdG/2hh2xjvUUL2L/fLsuX24QXYty9ombOtLl98WJ7dwigQwdtoIei+rH1ad+gPT9u+dHpUAKCiPR2OoYKu/deuO02iIqyPYLcv8jaxb3MiubCkSOL3yVPSrIjB5KT7UVNTyL283fdZe/2zJgBQ4cWn45eKX8xxvQRkQxjzFUeb51ojEFE3nMkMFV13C3c3q4/ZzVqQMuWsGePs3GVkXvYZdFz0Rkz7J30d96xPZJU5UvqYq80Jy9MZtWOVURFRDH6nNE8et6jLN6wmGHzbYNg6iVT6Tu7LxP/N5FHznvEyZD9z9vA9KILsBC4FvjF9ToKWF7a5/y1hHyhjfh4OwcO2EJxs2fbonHR0XbdxIlOR+gXJRWLu/pqkQ6VU0tMBZikd5Kk5eSWFd4PoVEkrgkwE1joet0ZGFaVMVQ4v/74o81TLVtqFffjVFq1dl819zZuFBkwwP7zn3mmne9cqcpQ1vwKjHc9zvKyvFKWfYTqEvLnrm6eVdYyMmx1yoYNnY6szDwL0aelidxwgz2EnBynowt9pRWMu/bta6X6hOqyds9aB6KrfL7yq88u7sYY9931OBF5C8h3NehzgbxKu0Kgips40Y7hnDQJfvvNdnufOhVGj4aYGMjIcDpCv/DsFQWFQ1cTEuDPP229ERVaTmt+Ghv3b2TbwW1OhxIIXsVOsdbc9fo37FjO4PHHH/bxo49sdceSqpcpr4rmwrJ0a8/Otn8uOne2ReCeecbe9enQwZn4VfgSkUddj7d6WYY6HZ+qAt4KC11+OezaFTR30d3DLov+CRs0yB7CV8FVtjUolVYw7pkLnyHCRHDfp/c5EV6VKWkM+g+ux0PGmIaAABhjzgT2+TuwsJWUZCu4z5xpG+T9+9tu7vPmQVYWfP217ToaYryN+3EPXe3c2RY80kruwSN9eTqJ0xOJfCyyYPyQNzoOPcQuhrob6O3aORtHEHKPO8/Pt0P4012/Mr6qtefn2y6XCQm20nCvXvb9++6zdTuUcooxJsYYc4Mx5iFjzCPuxem4VBXxbOEOGWLXL1vmbFwVcPHFtrf+u+86HUnoK61gXMu6LXmo50O8l/ken68Jvdmt3EpqoLtHrY0C5gMnGGP+B8wGkv0dWFjr3NmWjWzTBhYutA3zYcPsWdehQ/DTT05HWOlKmm6tbVu7zfr1zsaoyiZ9eTopGSlM6T+FoylHmdJ/CikZKV4b6d2adcNg+Glr6P2fLofQuRj655/QvLk9k1FlVnRmotmzbcofNQpef/3Yau0i8MEHcNppcM01tn7oggV20esiKkD8BxgI5AKHiiwqnLivOl56qX09a5az8VRAjRr2ftm8efbiqPIfz4Jxi9YuYtj8YaT0Kpyy5L6z7+OE+idw98K7yckLvZuWgO8x6MAmbON8FHA/kAKMBR4ARvn6nL+XsBjHk5Zmx5xPmlQ4hqdtW5F77rEDDJ991ukI/cLbuB8RkS1b7GFPnepsfKpsShs/5Kntc23l+neur9B3EsRj0IGfXY/dgP9hG+X/w3ZxP7kqY6lwfu3YUaRGDR1/Xk6eNTjS0mwJEij8Z8zLE3nvPZGuXe36du1EXn1VJDfXubhVeChvfgVWlGf7cFjC4ty1qKJj0bOyROrUEaldO6j/JqSl2dy7eLHTkYS+tGVpkjAtQSLGR0jCtAQZuWBksddpy9Lkg18/EMYhz/zvGafDrRBf+bWkO+iRQC2gNlATWxwuEqjhWqf8xVc3988+s+//73+Ohucv3sb9ADRpYqfTDJJZOsJeaeOHPHVq1InMHWE9T3YjY8wo4HxgHjARW5zz38AFDsZVPunptot7z562YMSUKfa2b7r34Q2qkGcNjqQkW4IkIsJO3FGjBnTrBlddBQcPwquvwurVtueodmdXAegbY0wXp4NQDio6H3q1atC9u52RKMhm9HB3AoiMhMcft4/v6VwEfpfUJYkVI1aQ90geKb1SWPD7gmN6ZR7IOsClHS5l/Ffj2Xpgq9MhV7qSGuhbReQxERnvbamyCMOVr27uxoTdZIwRETavawM9OJQ2fsjb9r/u+pW8/OAabl2JQuNi6IQJ9uraWWfZK2q9e9sTtCA7IatKvsadg63B0aoVnHEGXHEFHD5su79nZtqGeXS0Y2Er5ZUxZoUxZhnQE/jJGPOrMWaZMWa5a70KF55XHbt0gQ0b7PogUXTo0dGjMG2avdbw+ut2qJGqGqlfpzJzwEx6t+1NdGQ0vdv2ZuaAmaR+ncpz/Z4jKy+LMV+McTrMSlfSPOg6c6qTUlLsWdiTTxZOxjh1KvTpA198Adu3Q+PGTkdZZVq21AZ6sHCPH5o5YCY9W/UsmMMytY/3hlrnRp05mnuUdXvXcUKDE6o42oCwVUQeczqIClu92j66i0ZA4VQM6hhF5zvftAn+8Q877jw31y533QVHjthrHjNnwuDBdnp5pQJYC6Cr00GoAOA5H3qXLvYq44knOhtXORTtBAD2ccQIO2vGL79A166Ohhc2SuqV2b5Be+476z7+ufif3N79ds5uebZDUVa+ku6g962yKNSxinZzd09VkZoKDz5o318SXlWvW7a0J7Eq8CV1SSK1TyrJC5Opnlqd5IXJpPZJJamL9+m23HfWfXWBDwOhcTG0ZUv7WLSB7p6KQQHFu0veeivccIM96bv5ZnvSV62abYgPdU1I9fTTtqv70KHaOFdBYa2IrPe1OB2cqkKelX+zsuz6yy93Nq5y8Db977332kft5l51SuuVmdIrhfg68dz10V0h1RPTZwNdRHZXZSDKi86d7V3zOXPs65tuKjxz+/ln5+JygLuBrtUzg0PR8UMrRqzw2TgHOwYdCOdx6KFxMfTCC+3j5s3HTsWgjukumZMDb7xh1+fm2imCDxyw2955p+0Nev/99vqsUkGisTFmlK/F6eBUFfKcD33aNLu+QQNn4yoHb9P//vabrQkyb54zMYUjz6ruYzPGcvGci1m1YxWJ0xOZ/+t8Jl00iaV/LeXFJS86HW6lKekOunJaSgpcd52d2PbZZ+HjjyE72w7K/uADp6Pzi6J3mBITC8dktmxpT2i3b3c2PlX56lWvR9NaTVm1c5XToTgiZC6GNm1qa2Skphbv9ZPk++JMOCnaXTI62p78JSfDQw/Z+kl33QWtW8MJJ8D06RAX53TESpVb0Xoa3hYVTopW/l21yia4lSudjqrMfE3/e/XV9rD++MPpCMND0V6ZMRNimPi/iYw+ZzRZY7MKCsbl5ufSp20fxi4ay45DO5wOuVJop7lAlpQEo0fbvo39+tkzusmT7dnbDz+U/vkgU3RMpnvY/bBh9j1379mNG207QIWWTnFhX8k9+G3YAPHx9sxFFUhPt43zlSth5EgYO9am9mHD7PPDh+1567hx8NprWlNPBbXQqKeh/CMhIaj+PrivLScn2+7unTrZ/Hz22bZQ3Lx58MADzsYYLpK6JJHUJYnE6YlM6T+F3m1tYQB3wbjkhcm8fc3bnPziyYz5fAwzB850OOKK0zvogW7LFtunpujcY7172zvpR444HV2l8rzDVLQIdNEGugo9nRt1JnNnpnsOXRWMNmywZcdVgaLd2jt3to3yBx+0M2f+4x/2rkxkpM1rb7+tHQ5U0AuNehrKPxITbTHR3FynIykzb9P/tm5tez29+67T0YWfkgrGdWrUiXvPvJdXlr7CNxu/cSjCyqMN9EDnHgRTtO/3i64xFr/+6mxslcxbQQ53Eej4ePtaC8WFpk5xndiftZ8tB7Y4HYo6XtpAP0bRi473329novvrLzta6cILoVkzeyem6Mmf8p/pP06n7fNtqT6hOt1f7s7X678ucfsv132JGW+OWVbvXF3qd3257ksuS7uMuIlxxKbGctLUk0j+KJl1e9dV0tEEJL/V0zDGNDDGfGaM+d31WN/HdkNc2/xujBlSZH1313RvfxhjXjDGmJL2a4w5yRjzrTEmyxhzf5H9tDTGLDLGrDLGrDTG3OOvYw4Z7vPXp5+2N5eef97piCrsqqvg++9tyRVVdUorGPfIeY8QXyeeOxfcSW5+8FwI8kYb6IHO2zh0913Gf//b2dgqmbeCHO4i0A0b2msTOgY9NBUUigvfSu7BLT/f3gZ2d3UJc+7z0ZUr7bQ8N91k75jv2WMrtQOsX29n0dRGedV4c8Wb3PPxPTzU8yF+vv1nzo4/m/5v9GfDvg2lfnbliJVsvW9rwdKhQYcSt39pyUv0nd2XhjUa8vY1b5N5VyYzB8wkX/KZ8N8JlXVIAcfP9TTGAF+ISAfgC9frYowxDYBHgTOA04FHizTk/wX8DejgWvqVst/dwN3AMx5fkwvcJyKdgTOBu4wxnSvlCENR0W5E335r102cWFhgKEhdeaV9fP99R8MIO54F4xatXcSw+cNI6WWL0daqVovn+z3Psm3LmPL9FIejrSARCaqle/fuEnbi40XatBGJiBBJSBCZPds+j4tzOrJKlZYm0ratSEaGSHa2fWzb1q4XEWnaVOS225yNUfnHlv1bhHHIC9+9cFyfB5ZIAOSnYF+OO79u2yYCIi8c388vlLjz2IcfijRpIlKzpv2nSUwU+fZbm9cSEpyOMvyc/u/T5bb/FP8D0v6F9jLmszE+P7No7SJhHLLj0I4yf8/GfRul2uPVJPmjZK/v7zmyp8z7ChSBkF+BX4FmrufNgF+9bJMEvFTk9Uuudc2A1d62K22/wDjg/hLi+g9wYWnxh+W5q4hNdhkZ9vmhQyLGiNxyS1AmwbQ0G7b7VLx5c5HevZ2OKvykLUuThGkJEjE+QuInxUv85HiJGB8hCdMSJG1ZmuTn58slb1witZ6oJRv3bXQ63FL5yq96Bz0YeI5Dv/lmaNcOdu50OrJK5Tkrh2cR6CZNYNs2Z2NU/tG0VlPqxtRl1Y7wrOQe9NxjT9xjUcKQ+675DTfArl1w7bU2X+Xn2+Jw+fm2bIjOPFf1svOy+b8t/8dFJ1xUbP1F7S7im02lj1Xs8XIPmk1qRt/ZfVm0dlGJ27698m2y87IZ0/OYG7yAnbVCHZcmIrLV9fwvoImXbVoARSvVbHKta+F67rm+rPv1yhjTBjgV+N7H+8ONMUuMMUt27AiNytLlVnTsYo0a0LatnU8yM7h6y3lOkzllii3w+eWXIXcqHvDc0/jOuXIO0ZHRzL5iNkdTjhZUdJ+7Yi5T+k8hNz+Xuxfe7XS4x00b6J7++U847TSoUwcaNYLLLy9b1UkRmDEDzjoLate2n+/WzXbl2b+/YjF56/vdsGFITpDrrSCHW3ka6P/9LwwYAC1a2JmfXn21bJ/z54/RH0JlTKUxpqBQnApCaWn2cdCg4vMjhom0NDsKyT3DhDtXPPaYHYOekWFnGdKZ55yx8/BO8iSPJrWKt72a1GrCXwf/8vm5ZrWa8a9L/8W7177Le9e+R8eGHek7u2+Jefb33b9TJ6YOzWs3r7T4w4Ux5nNjzAovy8Ci27nuOlV6RdHy7NcYUwt4F/i7iHg9OxCRl0Wkh4j0aNSoUSVGGkQ8z18TE2HJErs+iHgrYvzkk/ac8T//cTq68JT6dSozB8ykd9veREdGF1R0T/06lXb12/HoeY8yb/U83l/9vtOhHhdtoHv68ks7aPCbb+xZVVQUXHAB7C5laNXNN9uzr0sugS++gGXL4PHH7cSJ771XsZi8TcaYmWkzg4RP1evyNNAPHrR/B55/HmJjy/4d/vwxVrZQG1N5UtxJ/LortAofhoX09MIrYGvW2FsLKSlh0Uh//nmbl268EbZutX82GjSwhd8+/BDefNM2xqdOLZxhSBvnwaNjXEfu6HEH3Zt356yWZzH90un0a9+Pp7952udnJIz+Jlc2EblARBK9LP8BthljmgG4Hr1VpNkMFC2EEe9at9n13HM9ZdxvMcaYaGzj/A0RCbAzgwDjef5aq5YtwDF6tNORlYu3Isa33moftZq7M0qq6A5w31n3cXKTkxn50Uj2ZwXgHbbSeOv3HshLlY/jOXDADjiZP9/3Nm++aZvK777r/f09eyoeR1qaHYvubpbXq2cfN2+u+L6DxP33i1SvLpKfX77P1awpMmtW6dtVxY+xMoXamMpxi8YJ45CjOUfL/VkCYIxkoC3YE9VFwCpgJXBPaZ85rvyakCBy440ikZEiubl2XYgOtM7PF5k4UaRx48JU7F5GjbKlQkaOtGPQP/3UDrf0rKWhql5WbpZEjo+Ut1a8VWz9iA9HyLmzzi3XvsYtGicnTT3J5/uTv5ksjEM27w+dv82BkF+Bp4ExrudjgIletmkArAXqu5a1QAPXez9gi7oZYCFwSVn2i8cYdNfnZwPPlSf+sB2DLlJ88Lb7PHbZMqejKpeiQ+ndMjJEGjYUiY4OvPPDcJAwLUEy1hT/oWSsyZCEaYXnHt9v+l7MOCMjPhxR1eGVma/8qnfQS3PggB08WN/rjB7WG2/AiSfaeRe8qVevcmKJjrZ39bOzYYxrfNvLL1fOvoNAkyZ27M+BA/7Zf1X9GCtDKI6pbF2vNQCb9utcepWkaqoNZ2bankZNm9qpFqBwfsQQsH073HOPvTMeEWFv/GzfbkcYXXaZLVwfH2+fv/KKvVGUmgrDh9umu3Zrd161yGp0b96dz9Z8Vmz9Z2s+4+z4s8u1r6XbltKsVjOf7w/qPIhqkdV4cvGTXt/fe3Rvub5PFXgSuNAY8ztwges1xpgexpgZUFBF/nHgR9fymBRWlh8BzAD+AP7ENtJL2m9TY8wmYBQw1hizyRhTBzgHuBnoY4xZ6lou8fOxB7eiYxcXLLDryjJ0NIB468g6bBjcfbd9/cEHTkcYfjwruo/NGMvFcy5m1Y5VJE5PJH15Oqe3OJ3k05OZvmR6qUNAA02U0wEEvHvuga5d7aBkX37/HU46yb9xFB0AA3DFFbaRPmMGjBvn3+8OEI0b28dt2+zY8MpWFT/GylLSmMrP137u83PuMZWnNT+N7LxsXl/2On1n9+WrW76iV+teXj9TVWMqW9W1c2iv37eeExqc4NfvCgdiCx9tdT0/YIzJxBZGqtxKfJ062fnEmhVptLjnRwwy+/fb88aXX7bjCvfuLXwvNtbWpbj4YvjhBzur3Hvv2UMdPNierL30kh1r3rSprX2RlqYN80Ax6sxR3DzvZk5vcTrntDyHF5e8yJYDW7ijxx0F2wyeNxiA2VfOBuC5756jTb02JDRKIDsvmznL5vD+6vd591rffVpb1m3Jsxc/y8iPRrIvax+3dr2VtvXasuXAFtKWp3E09yj/HhBaU6RWBRHZhZd51kVkCXBbkdevAK/42C6xHPv9i+Ld4t0WY++iq+PRsaO9kBtkDXR3Hk9OtteeO3Wyp+XXXWdnPH77bTtEUlWdpC72h5K8MJlVO1YRFRHF6HNG8+h5j7J4w2KGzR8GQGrfVOb/Np9h84ex9I6l1Iiu4WTYZaYN9JKMGmXPvhYvLrwz5I1UwZgzzwEwre3dRrZs8f93B4gmrrbotm3QoeQh08elKn6MTusY15GOcR0LXp/V8izW7V3H09887bOBLhX8h0lfnk7q16lk7sykU1wnUnqlFCTWotwN9LKMoVflU1K1YWPMcGA4QKtWrcq/85QUuOUW6N7d3kpYvNi2VlNTKxSzv+zbB+vW2eHya9fCn3/aSTJ++ql4qZHYWFuL4ttv7Z3z556DIUNso3vxYujf3z727GnT8Jw5etc8kF2XeB27juxiwn8nsPXgVhIbJ/LRjR8V9NyBY3NPdl42D3z2AJv2byI2KpaExgksuGEBl3Qo+YbpiNNG0LFhRyZ9O4mr37qaQ9mHaF2vNRe1u4ix5471y/EpFRRiYmwjfflypyMpt6Qk7zl90CCYPt3+balbt+rjCmdJXZJI6pJE4vREpvSfQu+29iamu2Bc8sJkkrokMePyGVzw+gU8uuhRnr7Idw2RQOK3BroxpjrwXyDG9T3viMijHtuMwl75zAV2AENFZL2/YiqXe++FuXNtP5Z27Ure9sQT/d+d010J030HvXp1W8k9L8+/3xtAijbQ/aEqfoyVJa5GHJEmkm0Hi/9jbDu4jaa1mpZrX2e0OIO5K+f6fP/EhieyP2s/Ww5sKfdd9PTl6aRkpDBzwEx6tupZ7KqmZyO9ZR1b20cb6JWrtGrDIvIy8DJAjx49yn81JikJbr8dVq+2ecl9a8HB1mlWlr2TvXKlDev3321DfM0a2LOn+LZ169pUmp1tryt8+qm93jBnDtx0E3z8sV3uvbcwDffsWbj9yJG2543eNQ98I04bwYjTRvh8/8tbviz2evQ5oxl9zvEVs+rbri992x1zY1Yp1aULfO91ZrqgdO219gLu/Pl6F90ppRWM69uuL8O7DWfyd5O5uvPVnBl/phNhlos/x6BnAX1E5BSgK9DPGOP5L/Iz0ENETgbeASb6MZ6yu+ceW4E4I6NsfZ5vuMGeAfoq8120n+Tx8jYA5uDB4t1KQ5y/G+hV8WOsLMEyprKkaTA8xUTF0LRWU9bvDYxrdKGgSqoNZ2fbwhD33ON9fsQqsHYtvPaavU5w6qm2UHC3bvZk6ckn7d3xuDi4/np46il46y348UfblT0+3jbc4+Kgb1/YvBkeftiOKEpNLeypn5lZmIanTLHrb7jBjjTKzNS75kop5VN6up1aJzLSnr+uWxeYc9cehzPOgFat7Kwdyhmd4jqxeEPx6agXb1hMp7jCoXZPX/Q08XXiGfL+EA7nHK7qEMvNb3fQXZXpDrpeRrsW8dimaHWq74Cb/BVPmd11l50j5/33bWG4v1xzpNaqZRdvrr0W5s2zc+089BD062cHTGdm2jO5a66xt2QqwtsAmG7dbLWiMNGokb1DVZYG+sGD8Mcf9nl+PmzYAEuX2kJPvnrxVsWPsTIFw5jK0q5qempdtzUb9usd9MpgjDHATCBTRCb77Yvcv5BVeLHw4EH4/HNYuNDe8V63zq6vWxdOPx0eeMCWDklMhPbt7TQ4qanw2WfQ3NUJZPNmW9tu9Gj7O/7yy7aB37x54V3yzEx7J33IEJs3Bg2yd+XHjIHcXJuPXntNG+VKKeVTerq9ujlzpk2sTz9tX0+eHBI1lCIi7Pnj88/bYVINGjgdUfhxF4zz7K2Z2qfwZlCdmDrMGjiLvrP78uDnD/J8/+cdjLgMvJV2r6wFiASWYhvqT5Wy7VRgbGn79PtUFZ5z57iXRx8t+XP5+SIvvSRy+ul2Xq/atUW6dhV56imR/fv9E+sDD4jExJR/3rEgUHRWjoSEwimK4uJEbr+99M8vWuT9xzhkSMmfc+LHWBHTfpgmrZ9tLdUerybdXuomX637qtj75806T86bdV7B66cWPyXtX2gv1SdUl/pP1peer/SUBb8tKNN3ff7n59J/Tn9p8FQDiXk8Rk6ccqKMXDBS1u1Z5/MzZZkGo6hr3rpGTpxyYpniKYoAmAYo0BagJ/ai6DJXHl6Ka2ohX8tx5dfvv7e/XCVNRVkJ9uwRefVVkcsus2kP7O/nwIEiU6bYWXvy8gq3d+cQY+w0OCkpIrNnizRrJtK0qUiLFiKTJtkp0OLj7ZQ5GRn2edu29r3One26Ro3ses98pFQ40Pxa8SWsp1nznKNswwabwJs1cy6mCvI8R50wwR7SjBlORxa+0palScK0BIkYHyHxk+IlfnK8RIyPkIRpCZK2rPCPdvJHycI45Is1XzgYbSFf+bWqThTrYefjTfTx/k3YO+gxPt4fDiwBlrRq1cp//0rBoGhWaNrU/gh3lH1O62CQlmZPkDMyRLKzi88j3LGjyDXXOB2hKqu0ZWnS9rm2krEmQ7JzsyVjTYa0fa5tsWRZ1H2f3CfVJ1SX/HJedNITSAdPIufPt3no++/L/9lSHDokkp4uMmCASLVq9mtatRK55x6RL76w+cHNc6rdRo1s7ujc2XtDHArzi7tR7p67PCXFNuqN0Qa5UppfHcqtoSIioniyzs8XqVfPJtgg5OsctWlTkT59nI5OlXbeeSj7kJw45URpObml7D682+FofefXKktOwCPA/V7WXwBkAo3Lsp+wTnKeWWHcOPsjfOIJpyOrVJ4XW0Xs64QEkbPOErngAmfiUsen6FVNzyuZnl747gVhHLLt4LZyfYeeQDp4Evnvf9s8tH59+T/rRX6+yFdfidx6q0itWnbXLVqIjBplrwF4u3bjmRrbtLEnS2lpheeGRRvl2dn2uXv7iAi7bZs2dr02ypUqpPnVodwaKryd1J16qkj16s7EU0G+zlEbNbLXHDZtciYuZZWl5+YPm36QqMei5Nq3ry33DaHK5iu/+q1InDGmkTGmnut5LHAhsNpjm1OBl4ABIhI+g6mPV9G50KOj7SBpgBdfdDauSuY5oxwUjgetX7/4VEgq8CV1SWLFiBXkPZLHihErvE6x5qZTrQUhd52Oxo0rtJtdu+CZZ+wMPOedB++8Y8f1ZWTYGhKTJtnx5XPnFtYaatnSLjfcYAex/PWXTY0bNsDs2YVF3txjyqFw5sz4+MKCb55V2B2oc6fUcUlfnk7i9EQiH4skcXoi6cvTnQ5JqeK8FTles8YW8sjJcTq6cvN1jrprl/07NNf3pDiqCpSl9tFpLU5j/PnjeWvlW7y+7PWqDrFM/DkPejPgNWNMJLZa/Fsi8qEx5jHs1YL5wNNALeBtW8+IDSIywI8xBTfPrOCudrRxozPx+InnjHJgX3fqZItvrFrlXGzKv9xzEq/fu54ezXs4HI0qk6+/tlVyata0v6QpKeVq3f7xh22Yv/YaHD0K55wDY8fC1VfbXYKtMZSaan/33YXd/vEPu4jYhrW7yBsUr7w+Z07hdGgtWtgikCIwcSL8+mthwTetwq6Cja9pLPce3UuEieCD3z5gyZYl5ImdjrVd/XZ0bdKVHs178Lfuf3M4ehU2vBU5vvlmmDrVVt3s2tXR8MqrpHPUGjVsnen77nMuvnDnrujunhMdjq3oDvCPc/7BJ39+wl0f3cXZLc+mfYP2VR1qybzdVg/kRbsJFem2ceiQCIg0aeJcTH5Q0hj05GSRunWdjlD5y67Du4RxyORvJpfrc2gXTGfya1qaraYYH3/sL2spNmwQueUW2708JkbktttEfvml+K49i7z5Gk8eE1P43N09vVkz22U9O7v4mPL4eC34pkKDZ1fOnYd2yjVvXSNmnBHGIW2fayu3vn+r3PnhnXL7B7dLn9f6SP0n6/ss0umL5lcHcmuo+/13EbBDpIJMSeeoU6bYw1q61Okow1d5ah+t37te6j9ZX0598VQ5mnPUgWh951fHk1Z5l7BOcp5Z4Ysv7I/wssucjqzS+ari/uij9pBzcx0NT/lJfn6+1EytKX9f+PdyfU5PIB3KrwkJIiefLNKrV+E6dyvZh6wsW/E2NtY2rO+9V2TrVvteaY1yY7yPJzemeJE3rbyuQomvOh4R4yMkOzdbjuYclYmLJ0rdf9YVxiFmnJHl25Z7HVuZn59f7sJIml8dyK2hyPPErkYNkeHDnY7quPg6R9250/7tuvdeZ+MLd2Wt6C4i8p/V/xHGISMXjHQkVl/51Z9d3FVl89ZNqF69Co/9DERJSd67mrrnl9y7Fxo2rNKQVBUwxtC6XmvW71vvdCiqLDIzoUMHaNKkcJ27YIQXv/4KF18M610/3hNPtEMQL7igePd1EdstfepUO8d5cjKceir073/seHKAzp1tz/rhw+1nk5PtnLTaXV0FovTl6aR+nUrmzkw6xXUipVcKSV2SvK4HvHZjB9uV87GvHiNtRRpr9qzh0g6XclWnq5j87WQSGyd6/W5jDPVj61fZsSoFHDsX+uLFcNllsHp16Z8NQL7OURs2hMsvhzfegCefhGrVqj42ZWsfuXOqr/zproc0oOMA7j3zXp797lnOb3M+V3e+2snQC3lrtQfyolchPXTpInLFFU5HUWVmzxYBkd9+czoS5S/95vST7i+V7/ccvcPjTH5NSLCTkY8YUbjOxx30Dz6wd8wjIkQee6yw63lUVMl3yt3d14veKZ80yVZ2d89pPnt2uXrXK1Vuvu5ilzRLhbf3fHW/HLlgpNf18ZPjj6lI/H7m+9LsmWbS+OnGwjikzXNtZMFvC0qdxvJ4aX51ILeGGm+lz7/4osTeVsFqwQIREHnnHacjUWWp6C4ikpWbJWf8+wyp/URtWb1jdVWGqF3cQ9Z55xXvXhriPvxQ/DXlsgoQw+cPl0YTG5XrM3oC6VB+dV8xGzy4xDHor75qG+bVq4u8+Wbh+oQE29h2dxUsrVHeubOOJ1dVr7yN6pIa4t4a3BlrMiTm8Riv6xmHZOdmy+b9m+XVn1+VgekDJWp8lDAOOXPGmTLq41FlnsbyeGl+dSC3hhrPudBFCue4DDG5uSItW4pcfLHTkSj3MKCisnOzJWL8sf/vNuzdIHET46TztM5yIOtAVYWoXdxDVsOGQdtF6HjUd/XM06nWQlfreq3ZcXgHh3MOUyO6htPhqJJceKF9/OwzqF7dDrvxKIWelga33GIrsh86BOPHQ16e3SQzE+64Ax54oPh0aNnZhZXXO3WCK68srLZujK34rt3XlT9462ae+nUqMwfMLKgK3Lttb2YOmEn/N/qz8MaFx6xPXpgM4PUzfWb38ToFUFZeVsH6rNwsVu1Yxe+7fwegw5QOBcN+mtduzhUnXcHPf/3MN0O/wRjDJCb5/x9GqYooqfR5iImMhKFD4bHHYO1aaNvW6YjCV1krugO0rNuSuVfP5aI5FzFs/jDmXj0X1wxjjtAGerBr0CCsWqvuMehhdMhhxz0X+sZ9G+kY19HhaFSJtm+3jy+8AIMGHfP2V1/B4MG27f7uuzBqlG14p9ihtXTqBC++WDg7mzbKlZN8jVdct3ddqY3qouvd8+16ew/sCWL35t3ZuG8jG/dv5JM/PiHSRHL+a+ez+8huft/1e8HUaAbD9kPbGd5tOH/r9jf2Z+3ntg9uI7VPqqMnj0qVizvBFx2DPmyYvaAbgm67DSZMsH/fnnrK6WjCV0qvFIbNH1Ysp1/3znXERMUQ+VhksRogAH3b9eWJPk8w5osxdG3SlQd7PehY7NpAD3Zh1kB330Hfs8fZOJT/tK5r50LfsG+DNtAD3Y4d9rFRo2Pe2rYNrr/e3k14801bHG7sWHueNnKkPXm58srC+cwHDbJT4mqjXPmbryJtJd0p93YXJiYyxufdmey8bF744QXqV6/Phn0b2LhvI79s+4UoE0Xf2X0RpFhMBsOPm3/kjBZnMPCsgVSLqsaspbN48oIniSCC1K9TmfHzDDrFdSK1T2rBCaVSQcFbkWOP3lbBKj3dHor7sFJS7GFdcYW9HjFuHMTGOh1leHLnyeSFyWTuzKR5reYAzL5its+icaPPGc0v234hJSOFhMYJDOg4wJHYtYEe7GrXtv1Bs7PDolykdnEPfZ0adeLZi5+lQ8MOToeiSuO+g+7RQBeBfv1sI10EHnzQdm93n4tNmGCrthtju7i//z7885/25EYb5cqfSqrqm7kz0+td7+y87GPuwgybP4zrEq7jhvduYFCnQeRLPj9s+YGlfy0lX/LJl3zu//T+gv00qN6AQzmHOLXZqTSIbcDSv5ay/dB22tRrw/1n388dPe7gzRVvkvp1Kk9/+zSd4jox8YKJBSeN2iBXQc9X6fMg5q04/TCbTrjrLttzbO5cuPVWZ+MMZ+6K7gCJ0xOZ0n+K12FJ7m2MMcwcMJPfd//Oje/dyDdDv6FLky5VHrc20INR0ct17inWDh0KiwZ6tWp2LKveQQ9dcTXi+PuZf3c6DFUW7jvoHlM9/v3vsHQpjBgBX35ZvFt7UhI0bWpvpKxYUZXBqnBTnvHkyQuTjxmveDjnMG+tfItWdVtxfpvzuebta9h1ZBcxkTHk5ucye9lsAKb+OBWA6lHV6dG8B33a9KFd/Xas3buWt1a+xZ97/qRZ7WbFulJ6U/REUhVnjGkAvAm0AdYB14rIMWcCxpghwFjXywki8pprfXfgVSAW+Ai4R0TE136NMScBs4BuQIqIPOPxPZHAEmCziFxWmceqgkdqqm2cu4fW9+5tXycnw/LlkJhoR4Ddcou9IK2c5esirHtYkltsdCzvX/c+p884ncvSL+O7Yd/RrHazqgxVG+hBx/Ny3ZgxMHmynXRx5Eino6sSYdarX6nAtXOnPetwd23BXiucPt1Oj/7CC/DWW8W7tTdtGtJDD5UDyjN/uHs8eVZuFlsObGHT/k1s3L+RVTtWcWG7C7ks/TJa1G7B7iO72XVkV8F3zFo6i9ioWBIbJ9K+QXs6NOhAhwYd6BjXkQ4NOtC0VlOvY8In9JlQZf8OIW4M8IWIPGmMGeN6/Y+iG7ga248CPQAB/s8YM9/VkP8X8Dfge2wDvR+wsIT97gbuBq7wEc89QCZQpzIPUgWXzEx7Kl5Uz552vTFw990wfDh8/TWce64zMapC5Ska16JOCz5I+oBzZ53L5emX89UtX1GzWs0qi1Ub6MHG83Jdjx728fnnw6aBXr++3kFXKiDs3GlnkoiMLFg1daodQ/7yy3a1Z7f25OSQGXqoqpCvceO+uqxn5WYx9tyx7D6ymyk/TGHDvg20qN2CdXvX0fiZxuw9uveY7/h+8/c0iG3A1oNbOZR9iMY1GzOo0yBuPPlG2tZr67MRrqrEQOB81/PXgC/xaKADFwOfichuAGPMZ0A/Y8yXQB0R+c61fja24b3Q135FZDuw3RhzqWcgxph44FIgFRhVCcemglRpxelvvNHeR5s6VRvogcBb0bhh84eR2sf7HYNuzboxd9BcBs4dyI3v3ci7175LZESk120rmzbQg43n5bpatezjmjXOxOMAvYOuVIDYuRPi4gpe7ttnK9bWqmXHnrtpt3ZVEd4a4UPnD2XDvg1M/3E6l554Ke9lvsekbyexbu86th7YytG8o4z4aETBPmpVq0XLOi0RhLz8PIacPISzW53N3qN7mfLDFMafP56hpw518ChVKZqIyFbX87+AJl62aQFsLPJ6k2tdC9dzz/Vl3a+n54DRQO2SNjLGDAeGA7Rq1aoMu1XBprTi9DVq2PHnzz8PW7dCs6rtJa08eC0aZ+CmeTeR+nWq12FIl514Gc9d/Bx3f3w3D3z2AJMvnlwlsUZUybeoyuO+XOdW09XdIoySv95BVypA7NhRrEDcyJH2d/PQocKq7Tk5sGhR8XHoSvmSvjydxOmJRD4WyYlTTuShLx7i/s/u56z4s3j5p5fpNasX171zHev2rmPMF2PYsH8D/1ryL1775TU27d9E+wbt+Vu3vwHw+PmP8/PtP7N79G72j9nPtEumkdAogZcue4klW5dw54I7mf3LbCZeMFEb5wHAGPO5MWaFl2Vg0e1ERMCjDH4lKMt+jTGXAdtF5P/KsL+XRaSHiPRo5GWmCxX8kpJsYzw52U4n6q2H2O23215lM2c6F6cqlNQliRUjVjDnyjlER0Yz+4rZHE05ypT+U0jJSCF9efoxn0k+I5nk05N59rtnmf7j9CqJU++gBxvPy3WrV9v111zjbFxVaMYMiI52Ogqlwlx6Onz7LWRlQWIib5z3MnPnnk1iIvz0E4wfDxMnwhNPQOfO2q1dFTqae5StB7ay+cBmNu/fzOYDm9m4byPfbPqGX/76hRrRNciXfH7f/Tv/XPxPAOaumEvreq1pV78dAzsOpE29Njy86GHa1m/L5IsmM6DjgILu54vWLmLe6nm8svQVzml1DgmNEvhy3ZcFXRm1GFtgEpELfL1njNlmjGkmIluNMc2A7V4220xhd3WAeGyX9c2u50XXb3Y9L8t+izoHGGCMuQSoDtQxxswRkZtK+ZwKUaUVp+/QAS64wJ62p6RosbhAUVLBUG9/H569+FnW7l1L8sJkOjTowIUnXOjX+LSBHmw855Js186+7t7duZiqWIMGTkegVJhzF6usUQNuugluvJGHLmxNbp6d8zU62o4579tXu7WHAxHhcM5hdhzewY5DO9hxeAfbD21n+6HtbDu4jW2HtvHXwb/YenArWw9sZc/RY7tA1YiuQW5+LgmNEji16am0qtuKNvXasPvIbsZ8MYYFNyzggnaF7bdFaxfRuVFnUnqlcO8n91Inpk6xMYUTL5wIFHZl1PnDg958YAjwpOvxP162+QR4whjjrlp5EfCgiOw2xuw3xpyJLRI3GJhSjv0WEJEHgQcBjDHnA/dr41yVZvBgu/zvf8cWlVPOKGtFd7fIiEjSr07nzBlncv271/Pj336kXf12fotPG+jBqOjluvXroU0b26dUKaWqQmqq7cpy8cV2irXevdmQJzSO3MnAgYVj0t3VbFVgysvP43DOYY7kHuFwzmEO5xzmUPYhDuUc4mD2wYLlQNYB9mXtY3/WfvYe3cueo3vYc2QPe47uYdfhXWw/tJ2c/Byv31EjugZNazWlSc0mdGzYkfNan0eL2i3YsG8Dn/z5CRv3b+TEhify8LkPc/O8m/n+tu+JjizsIpWTl8N9n97H8A+Gey3s4zmm0LMhrg3ykPEk8JYxZhiwHrgWwBjTA7hDRG5zNcQfB350feYxd8E4YASF06wtdC0l7bcpdhq1OkC+MebvQGcR2e/Xo1Qh6cor7fXs11/XBnqgKE9Fd7da1Wrx/vXvc9q/T+OKuVfw7bBv/VbZXRvowc5dJO7gQWfjUEqFj8xMOPlkO7AuLq6gaOO5eYuIiiocblO0mq2C7LzsgkbvoexDBY3iI7lHOJp7tGDJys0iOy+7YMnJz7GPeTnk5OeQm59LTp7rMd+uc7+Xk5dT7LNZeVlk5WaRlZdV7DuO5Bzx2aj2pVa1WtSrXo/61etTr3o92tVvR/3q9TmYfZDrEq6jW7Nu7Dy8k+lLpvPA2Q9QN6Yuk76dRObOTGKjYkk+Pbmg8vrMn2cya+CsYg3u5rWbez1hct8pL6kRrg3x0CYiu4C+XtYvAW4r8voV4BUf2yWWY79/UbxbvLeYvsR2oVeqRLVqwVVX2WlHn3/ejldXzipvRXe39g3ak351Ope8cQl3LLiD16983S/xaQM92LmLxGkDXSlVVTp1go8/ts8bNuTNNwEM30ady6JF3qvZhoqs3Cx2HdnFzsM72XV4V8F82buP7Gb3kd0Fd5b3HN3DvqP72Ht0L/uz9rM/az9ZeVkV+u7oiGiiI6OJjogmKiKK6EjXY5H11SKrER1pH6tHVad2TG2qR1UnJjKG6lHViY2KJSYqhtioWGKjY6kRXYMa0TWIjYqlZrWa/Lj5R97JfIcN+zbQrn477jn9Hm465SZqV6vtdXqZxOmJzLtuXrFG9dktz2bwvMFER0Yfc/IDvsf+DZ432OcJkzbClVKBLj3d/s3LzLR/JlNSCju83n+/nXZNaygFhuOp6O7Wr30/HjnvEcZ/NZ7+7ftzQ5cbKj0+baAHu5gYO9mwdnFXSlWVlBR7tgGkL0vggel5QASmTi0GD4YtW+zJiT8Kw/maD7u8RISD2QcLGti7Drsa3a7nu47sKtYQd793MNv3xdCYyBjqx9anfvX61I+tT5NaTYiJimH3kd1k52XTuGZj+p3Qj3Nbn0vNajVZsmUJ7656lw37N9CmXhvu6HEHV510FQv/WMi0H6bx2+7f6NiwIw/1eogbu9zI3BVzfR67+9/ll22/0CmuE3/v9feCu9W+5g/3XJ+Xn8e7me/yyoBXijWQG9Zo6PMzvsbxbTqwiYzBGV4L8Pj6zJaDW5hz5RwdN66UCjru0iyeU66B/Tt4yil2UYHDfeHX21Se7gvKvv7+jD13LJ/++Sl3LriTs1ueTZt6bSo1Nm2gBztjbN8ZvYOulKoqSUnw88+kP72RByfHcQQYfdkq+o1KYNgwmDOn4g1zb41BwOt82HuO7uFQziH+9eO/WL9vPc1qNaNv2760q9+O3Ud289PWn/hl2y8cyD5ATGQMMVExHM45TG5+rs/vjzAR5Es+sVGxdIzryLmtz2Xn4Z18t+k7hpwyhDPiz2Dzgc08++2zjOk5hlrVavHMN8+QuTOThrENGXnayIJ437323WJ/9Pu174eI8F7me7wysHhjeMPeDSz4fcExJwrfb/re63o3bycX32z8xutnfK3Pyc9h9hWzvTaqfX2Hr27pgM8CPCWN/dM75UqpYJSaahvnvV1prXdv+zo5WWcwCXTlregOEBURxRtXvcEpL57CzfNu5qtbviLCVOLs5SISVEv37t1FeXjkEZH33nM6Cr9ISxNJSBCJiLCPaWlOR6QCEbBEAiA/BftSrvw6e7YksFwevGOXgMh339nVGRn2d/V4HMo+JH/s+kPGLRonTZ5uIqM+HiWPf/m4XPPWNVLriVpSfUJ1SZyeKJ2ndZZmzzST6hOqC+MocYmdECtR46Ok/fPt5fxXz5der/SS2k/Ulm4vdpMGTzWQBz59QN5e+bY89+1zEj85Xoa+P1TaPtdWMtZkSHZutmSsyZC2z7WVtGVpkjAtQTLWZBSLOWNNhsRPivf6mfjJ8V63T5iW4HNfMY/HlGt9Ze6LcUh2bnax9dm52RIxPqJSjz1tWZrPf2MVeDS/VnFuVUEpIkIku3j6lOxsu14FtojxET7/9pVm1s+zhHHIy0tePq7v9pVf9Q56KBg/3ukI/KK07kJKKQft2kUmnei4KY9mzeC00+zq0iq378/az7Jty1i5fSWrd67mvxv+y8rtK72Oz5783WSAgvHROw/vpGFsQxrWaEiD6g2oH1ufOtXq8PCXD/Nwr4fp2bpnQffyFdtXMDZjLABT+k8pdrd20dpF9H+jPwtvXFhs/clNTj5mfVm6Zvvqzt1ndp8Sp3Hx9l5WXla51lfmvgCfd7bL2y0dKHE8OegUaEqp0NGpkz1P7V2YPrVQapA4norubkNOGcKrS1/lH5//gytOuoJGNRtVSkzaQFcBS7sLKRXAdu6kE5l8siiB66+HCFfPLs8TkqO5R8lYm8GHv33I4g2LWbF9BYIAUC2yGiJCj+Y9OLnxyeRKLvN/nc/Owzv59rZvaV6rOXE14oiNjiUnL4dqE6rx6HmPHtPYBnj4vIeLTc/Vum5rrn7raqDyGsK+/oj7+g73+77+6Ht7LyYyplzrK3Nf8bXjfTaqU79OPa5u6Vp5XSkVDlJS7E0kz5tKoVYoNRQdb0V3AGMM0y+dzikvnsKYz8cwc+DMygnK2231QF60m1D40O5CqqzQLphVn1/vuEMei00VEHn4Yfu7mZEh0ratHYryy1+/yND3h0rN1JrCOCRifIQwDmk0sZE88MkDsnbP2nJ3zXa6K7mvrtm+vt9XvGnL0nzua+SCkeVa7499JUxLKOjW7u52rt3Sw5fm1yrOrSpo6bDM4FX0b1/8pHiJnxx/zN/Bkoz+dLQwDlm8fnG5vtdXfnU8aZV30SQXPhIS7Al/URUZ36pCl55AOpBfBw2S1LjJAiInnWRPSOJP2CNNh/y9YPx3tcerSe9ZvaXpM03l498/PqZh52vclxlnytWALKnxWJmNVxE5ru/31uD1ta/jWV/Z+/LleD6jgp/m1yrOrUopxxzvxegDWQfk5H+dLG+vfLtc36cNdBV00tLs3biMjGPvzqng5K8TfD2BdCC/9u4t59f5P+na1b6cvXS21HuynkQ9FiV1nqgjt/3nNmn9bOvjurvt/r9Rnv8r2nhVyj80v1ZxblVKOaak85LS5OXnlfv7tIGugpJ2Fwod/uwiqyeQVZ9fDyeeJtUisuW++0T2Hd1X0JX9+neul60HtopI6ZXBtdu0UoFP82vV5lallHMqUtH9ePjKr34rEmeMqQ78F4jBFqN7R0Qe9dgmBpgNdAd2AdeJyDp/xaSCT1KSFoQLFcczz6QKXD/81Yrs/Gi6nL6Lc2f15VDOIWZcPoNh3Qrn5i6tUJpW81ZKKaVUoKhIRffKVIkzqh8jC+gjIqcAXYF+xpgzPbYZBuwRkfbAs8BTfoxHKeUgX9M0uaeJUpXPGNPPGPOrMeYPY8yYytpvevI3XLtzGiD87c4drP7iFFrXbU27+u2KbVe0MviitYvIycth0dpFDJs/jJReKYCt5r1ixAryHsljxYgV2jhXSimllCPcFd19nbNUFb810F137g+6Xka7FvHYbCDwmuv5O0BfY4zxV0whJT0dEhMhMtI+pqc7HZFSJXJflSzKiauS4cIYEwlMA/oDnYEkY0zniu43Pfkb7pnRnP1xG6HxL+RcfiexH43n8hXjvP5Rm3jhRFL7pJK8MJnqqdVJXpisd8mVUkopFXCSuiQVO2cZPG8wOfk53DTvJhKnJ5K+vGraW36dB911gvh/QHtgmoh877FJC2AjgIjkGmP2AQ2Bnf6MK+ilp9sJFz0nWwTtD64CVkXmmVTH5XTgDxFZA2CMmYu9KLqqIjsd/WpDIq5/gJzXX4XuMxlz05m8Wu1+3k9PZeI9qSXOe62UUkopFciSuiSR1CWJ9OXppGSkHHPe6t7Gn/zaQBeRPKCrMaYeMM8YkygiK8q7H2PMcGA4QKtWrSo3yGCUmmob571d4yN697avk5O1ga4Clo43rnIFF0BdNgFneG5U3vy66VB7ktv2YkpeTa7sksU/L/gnfZp/zkUz2pPUpaP+PJVSSikV9JysneTXBrqbiOw1xiwC+gFFG+ibgZbAJmNMFFAXWyzO8/MvAy8D9OjRw7ObfPjJzLR3zovq2dOuVyqAua9KqsBR7vwal0n/iNNoP+ktbr5yqF23sB7EZQKJ/gtUKaWUUqqKOFk7yW9j0I0xjVx3zjHGxAIXAqs9NpsPDHE9HwRkuErOq5J06mS7tRe1eLFdr5RSlvsCqFu8a12FxPd5kWETmtOFDtRqUodFk39mSEoj4vu8WNFdK6WUUkoFBCdrJ/mzinszYJExZhnwI/CZiHxojHnMGDPAtc1MoKEx5g9gFFBpVYZDWkqKHXO+aBHk5NjHYcPseqWUsn4EOhhj2hpjqgHXYy+KVsjElHPIHfgEQx+uQfWaEQx9uAa5A59gYso5FQ5YKaWUUioQOFnR3W9d3EVkGXCql/WPFHl+FLjGXzGELPc48+Rk2629Uyc7Ll3HnyulXFyFN0cCnwCRwCsisrKi+03qkgRjIfW8q2FnJjXjOvFErxQduqCUUkqpkOFk7SQTbD3Ke/ToIUuWLHE6DKVUADHG/J+I9HA6jmCn+VUp5SkQ8qsxpgHwJtAGWAdcKyJ7vGw3BBjrejlBRF5zre8OvArEAh8B94iI+NqvMeYkYBbQDUgRkWeKfEc9YAa26IYAQ0Xk25Li19yqlPLGV371Zxd3pZRSSimlKmoM8IWIdAC+wMuQSFdj+1HsbBWnA48aY+q73v4X8Degg2vpV8p+dwN3AwUN8yKeBz4WkZOAUwCt0KuUqlTaQFdKKaWUUoFsIPCa6/lrwBVetrkYW+9ot+vu+mdAP2NMM6COiHznKkQ8u8jnve5XRLaLyI9ATtEvMMbUBc7F1lBCRLJFZG8lHJ9SShXQBrpSSimllApkTURkq+v5X0ATL9u0ADYWeb3Jta6F67nn+rLut6i2wA5gljHmZ2PMDGNMTW8bGmOGG2OWGGOW7Nixo5TdKqVUIW2gK6WUUkopRxljPjfGrPCyDCy6nesueKUXUCrjfqOw49L/JSKnAofwMQORiLwsIj1EpEejRo0qN1ilVEjzWxV3pZRSSimlykJELvD1njFmmzGmmYhsdXVZ3+5ls83A+UVexwNfutbHe6zf7Hpelv0WtQnYJCLfu16/g04RrJSqZHoHXSmllFJKBbL5wBDX8yHAf7xs8wlwkTGmvqs43EXAJ64u7PuNMWcaYwwwuMjny7LfAiLyF7DRGNPRtaovsOo4j0kppbwKumnWjDE7gPXl+EgcsNNP4QQKPcbgF+rHB/49xtYion0IK0jz6zFC/fhAjzFUhHR+NcY0BN4CWmFz1LUistsY0wO4Q0Ruc203FHjI9bFUEZnlWt+DwmnWFgLJrmnWfO23KbAEqAPkAweBziKy3xjTFTvNWjVgDXCrtynfPOLX3HosPcbQEOrH6O/j85pfg66BXl7GmCVOz9/pb3qMwS/Ujw/C4xjDTaj/TEP9+ECPMVSEwzGGk3D4eeoxhoZQP0anjk+7uCullFJKKaWUUgFAG+hKKaWUUkoppVQACIcG+stOB1AF9BiDX6gfH4THMYabUP+ZhvrxgR5jqAiHYwwn4fDz1GMMDaF+jI4cX8iPQVdKKaWUUkoppYJBONxBV0oppZRSSimlAp420JVSSimllFJKqQAQMg10Y0w/Y8yvxpg/jDFjvLwfY4x50/X+98aYNg6EedzKcHy3GGN2GGOWupbbnIizIowxrxhjthtjVvh43xhjXnD9GywzxnSr6hgrqgzHeL4xZl+Rn+MjVR1jRRhjWhpjFhljVhljVhpj7vGyTdD/HMNJqOdWCP38qrk1+HMraH4NRZpfNb8Gg1DPrwGZW0Uk6BcgEvgTaAdUA34BOntsMwJ40fX8euBNp+Ou5OO7BZjqdKwVPM5zgW7ACh/vXwIsBAxwJvC90zH74RjPBz50Os4KHF8zoJvreW3gNy//V4P+5xguS6jn1nIcY1DnV82twZ9bXceg+TWEFs2vBdtofg3wJdTzayDm1lC5g3468IeIrBGRbGAuMNBjm4HAa67n7wB9jTGmCmOsiLIcX9ATkf8Cu0vYZCAwW6zvgHrGmGZVE13lKMMxBjUR2SoiP7meHwAygRYemwX9zzGMhHpuhTDIr5pbQ4Pm15Cj+TUEaH4NfoGYW0Olgd4C2Fjk9SaO/Yct2EZEcoF9QMMqia7iynJ8AFe7ul28Y4xpWTWhVamy/jsEu7OMMb8YYxYaYxKcDuZ4ubrinQp87/FWuPwcQ0Go51bQ/Arh8zsZErkVNL+GCM2vhTS/Br+QyK+BkltDpYGu4AOgjYicDHxG4RVXFVx+AlqLyCnAFOB9Z8M5PsaYWsC7wN9FZL/T8ShVQZpfg19I5FbQ/KpCjubX4BcS+TWQcmuoNNA3A0WvuMW71nndxhgTBdQFdlVJdBVX6vGJyC4RyXK9nAF0r6LYqlJZfs5BTUT2i8hB1/OPgGhjTJzDYZWLMSYam+DeEJH3vGwS8j/HEBLquRU0v0IY/E6GQm4Fza8hRvMrml9DQSjk10DLraHSQP8R6GCMaWuMqYYtpDHfY5v5wBDX80FAhrhG/QeBUo/PYxzEAOz4iVAzHxjsqqR4JrBPRLY6HVRlMsY0dY8vM8acjv0dDZo/xq7YZwKZIjLZx2Yh/3MMIaGeW0HzK4TB72Sw51bQ/BqCNL+i+TUUBHt+DcTcGuWvHVclEck1xowEPsFWjHxFRFYaYx4DlojIfOw//OvGmD+whQ6udy7i8inj8d1tjBkA5GKP7xbHAj5Oxph0bCXIOGPMJuBRIBpARF4EPsJWUfwDOAzc6kykx68MxzgIuNMYkwscAa4Psj/G5wA3A8uNMUtd6x4CWkHo/BzDRajnVgiP/Kq5NSRyK2h+DSmaXzW/BoswyK8Bl1tNcP37KaWUUkoppZRSoSlUurgrpZRSSimllFJBTRvoSimllFJKKaVUANAGulJKKaWUUkopFQC0ga6UUkoppZRSSgUAbaArpZRSSimllFIBQBvoSimllFJKKaVUANAGuqoSxpiGxpilruUvY8xm1/ODxpjpfvi+V40xa40xdxR5PcjLdie446jsGJRSqipoflVKqcqnuVU5JcrpAFR4EJFdQFcAY8w44KCIPOPnr31ARN4pJa4/ga6a5JRSwUrzq1JKVT7NrcopegddOcoYc74x5kPX83HGmNeMMV8bY9YbY64yxkw0xiw3xnxsjIl2bdfdGPOVMeb/jDGfGGOalfHrzjXGfGOMWePtiqRSSoUSza9KKVX5NLcqf9MGugo0JwB9gAHAHGCRiHQBjgCXuhLdFGCQiHQHXgFSy7jvZkBP4DLgycoOXCmlApzmV6WUqnyaW1Wl0i7uKtAsFJEcY8xyIBL42LV+OdAG6AgkAp8ZY3Bts7WM+35fRPKBVcaYJpUatVJKBT7Nr0opVfk0t6pKpQ10FWiyAEQk3xiTIyLiWp+P/f9qgJUictbx7tvFVCxMpZQKOppflVKq8mluVZVKu7irYPMr0MgYcxaAMSbaGJPgcExKKRUKNL8qpVTl09yqykUb6CqoiEg2MAh4yhjzC7AUONvRoJRSKgRoflVKqcqnuVWVlynshaFU6DDGvAp8WNpUFUW2PygitfwblVJKBT/Nr0opVfk0tyo3vYOuQtU+4HFjzB0lbWSMOcEYsxTYViVRKaVU8NP8qpRSlU9zqwL0DrpSSimllFJKKRUQ9A66UkoppZRSSikVALSBrpRSSimllFJKBQBtoCullFJKKaWUUgFAG+hKKaWUUkoppVQA+H/mtl12+hOGYgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "