diff --git a/docs/changelog.qmd b/docs/changelog.qmd index 677eb421..7ee61d22 100644 --- a/docs/changelog.qmd +++ b/docs/changelog.qmd @@ -8,6 +8,8 @@ are dropped as a dependencies. - Fixes a bug in the `wildboottest` method, which incorrectly used to run a regression on the demeaned dependend variable in case it was applied after a fixed effects regression. My apologies for that! +- Fixes a bug in the `ritest` method, which would use randomization inference coefficients instead of t-statistics, leading to incorrect results. + This has consequences for the rwolf() function, which, in case of running ri-inference, would default to run the randomization-t. My apolgies! ## PyFixest 0.22.0 - 0.25.4 diff --git a/pyfixest/estimation/feols_.py b/pyfixest/estimation/feols_.py index 6689c552..90d30914 100644 --- a/pyfixest/estimation/feols_.py +++ b/pyfixest/estimation/feols_.py @@ -2239,15 +2239,8 @@ def ritest( if cluster is not None and cluster not in _data: raise ValueError(f"The variable {cluster} is not found in the data.") - sample_coef = np.array(self.coef().xs(resampvar_)) - sample_tstat = np.array(self.tstat().xs(resampvar_)) - clustervar_arr = _data[cluster].to_numpy().reshape(-1, 1) if cluster else None - rng = np.random.default_rng() if rng is None else rng - - sample_stat = sample_tstat if type == "randomization-t" else sample_coef - if clustervar_arr is not None and np.any(np.isnan(clustervar_arr)): raise ValueError( """ @@ -2256,9 +2249,25 @@ def ritest( """ ) + # update vcov if cluster provided but not in model + if cluster is not None and not self._is_clustered: + warnings.warn( + "The initial model was not clustered. CRV1 inference is computed and stored in the model object." + ) + self.vcov({"CRV1": cluster}) + + rng = np.random.default_rng() if rng is None else rng + + sample_coef = np.array(self.coef().xs(resampvar_)) + sample_tstat = np.array(self.tstat().xs(resampvar_)) + sample_stat = sample_tstat if type == "randomization-t" else sample_coef + if type not in ["randomization-t", "randomization-c"]: raise ValueError("type must be 'randomization-t' or 'randomization-c.") + # always run slow algorithm for randomization-t + choose_algorithm = "slow" if type == "randomization-t" else choose_algorithm + assert isinstance(reps, int) and reps > 0, "reps must be a positive integer." if self._has_weights: diff --git a/pyfixest/estimation/multcomp.py b/pyfixest/estimation/multcomp.py index 09aa88e3..a5f2de37 100644 --- a/pyfixest/estimation/multcomp.py +++ b/pyfixest/estimation/multcomp.py @@ -117,8 +117,8 @@ def rwolf( fit2 = pf.feols("Y ~ X1 + X2", data=data) rwolf_df = pf.rwolf([fit1, fit2], "X1", reps=9999, seed=123) - # use randomization inference - rwolf_df = pf.rwolf([fit1, fit2], "X1", reps=9999, seed=123, sampling_method = "ri") + # use randomization inference - dontrun as too slow + # rwolf_df = pf.rwolf([fit1, fit2], "X1", reps=9999, seed=123, sampling_method = "ri") rwolf_df ``` diff --git a/tests/test_ritest.py b/tests/test_ritest.py index 1d7b0538..e084a536 100644 --- a/tests/test_ritest.py +++ b/tests/test_ritest.py @@ -47,40 +47,41 @@ def test_algos_internally(data, fml, resampvar, reps, cluster): @pytest.mark.extended -@pytest.mark.parametrize("fml", ["Y~X1+f3", "Y~X1+f3|f1", "Y~X1+f3|f1+f2"]) -@pytest.mark.parametrize("resampvar", ["X1", "f3"]) -@pytest.mark.parametrize("reps", [1000]) +@pytest.mark.parametrize("fml", ["Y~X1+f3", "Y~X1+f3|f1"]) +@pytest.mark.parametrize("resampvar", ["X1"]) @pytest.mark.parametrize("cluster", [None, "group_id"]) -def test_randomization_t_vs_c(data, fml, resampvar, reps, cluster): - fit = pf.feols(fml, data=data) - - rng1 = np.random.default_rng(1234) - rng2 = np.random.default_rng(1234) - - kwargs = { - "resampvar": resampvar, - "reps": reps, - "store_ritest_statistics": True, - "cluster": cluster, - } - - kwargs1 = kwargs.copy() - kwargs2 = kwargs.copy() - - kwargs1["type"] = "randomization-c" - kwargs1["rng"] = rng1 - kwargs2["choose_algorithm"] = "randomization-t" - kwargs2["rng"] = rng2 - - res1 = fit.ritest(**kwargs1) - ritest_stats1 = fit._ritest_statistics.copy() - - res2 = fit.ritest(**kwargs2) - ritest_stats2 = fit._ritest_statistics.copy() +def test_randomization_t_vs_c(fml, resampvar, cluster): + data = pf.get_data(N=300) + + fit1 = pf.feols(fml, data=data) + fit2 = pf.feols(fml, data=data) + + rng1 = np.random.default_rng(12354) + rng2 = np.random.default_rng(12354) + + fit1.ritest( + resampvar="X1", + type="randomization-c", + rng=rng1, + cluster=cluster, + store_ritest_statistics=True, + reps=100, + ) + fit2.ritest( + resampvar="X1", + type="randomization-t", + rng=rng2, + cluster=cluster, + store_ritest_statistics=True, + reps=100, + ) - assert np.allclose(res1.Estimate, res2.Estimate, atol=1e-8, rtol=1e-8) - assert np.allclose(res1["Pr(>|t|)"], res2["Pr(>|t|)"], atol=1e-2, rtol=1e-2) - assert np.allclose(ritest_stats1, ritest_stats2, atol=1e-2, rtol=1e-2) + # just weak test that both are somewhat close + assert ( + np.abs(fit1._ritest_pvalue - fit2._ritest_pvalue) < 0.03 + if cluster is None + else 0.06 + ), f"P-values are too different for randomization-c and randomization-t tests for {fml} and {resampvar} and {cluster}." @pytest.fixture @@ -160,29 +161,3 @@ def test_fepois_ritest(): @pytest.fixture def data_r_vs_t(): return pf.get_data(N=5000, seed=2999) - - -@pytest.mark.extended -@pytest.mark.parametrize("fml", ["Y~X1+f3", "Y~X1+f3|f1", "Y~X1+f3|f1+f2"]) -@pytest.mark.parametrize("resampvar", ["X1", "f3"]) -@pytest.mark.parametrize("cluster", [None, "group_id"]) -@pytest.mark.skip(reason="This feature is not yet fully implemented.") -def test_randomisation_c_vs_t(data_r_vs_t, fml, resampvar, cluster): - """Test that the randomization-c and randomization-t tests give similar results.""" - reps = 1000 - fit = pf.feols(fml, data=data_r_vs_t) - - rng = np.random.default_rng(1234) - - ri1 = fit.ritest( - resampvar=resampvar, reps=reps, type="randomization-c", rng=rng, cluster=cluster - ) - ri2 = fit.ritest( - resampvar=resampvar, reps=reps, type="randomization-t", rng=rng, cluster=cluster - ) - - assert np.allclose(ri1.Estimate, ri2.Estimate, rtol=0.01, atol=0.01) - assert np.allclose(ri1["Pr(>|t|)"], ri2["Pr(>|t|)"], rtol=0.01, atol=0.01) - assert np.allclose( - ri1["Std. Error (Pr(>|t|))"], ri2["Std. Error (Pr(>|t|))"], rtol=0.01, atol=0.01 - )