forked from yinghanlong/action-recognition-video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm-cor-ucf.py
721 lines (630 loc) · 30.7 KB
/
lstm-cor-ucf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# -*- coding: utf-8 -*-
#LSTM for action recognition
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
torch.manual_seed(1)
#from matplotlib import pyplot as plt
import pickle
import numpy as np
from utils import *
import dataloader
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import torchvision.models as models
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.lr_scheduler import MultiStepLR
from utils import *
from network import *
from PIL import Image
import time
import tqdm
import shutil
from random import randint
import argparse
import random
from apmeter import APMeter
#Set GPU Device number
os.environ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
parser = argparse.ArgumentParser(description='UCF101 motion stream on resnet101')
parser.add_argument('--epochs', default=50, type=int, metavar='N', help='number of total epochs')
parser.add_argument('--lr', default=1e-2, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--top5enhance', dest='top5enhance', action='store_true', help='enhance the result by top5 from previous frames')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
#Multi-InOut LSTM
parser.add_argument('--multi', default=1, type=int, metavar='MultiN', help='Use Multi-LSTM')
parser.add_argument('--split', default='01', type=str, metavar='split_list', help='choose train/test list')
parser.add_argument('--dataset', default='ucf', type=str, metavar='dataset', help='Dataset')
#frame resized to 224*224
#Input to CNN: video clips size = (8,20,224,224) =(batch_size,num_frames,height,width)
#Original setting: for spatial cnn(rgb), num_frames=3,channel=3; for motion cnn(flow), channel=20
#Current setting: for spatial cnn(rgb), num_frames=10; for motion cnn(flow), num_clips=10,channel=20
#Output = 10 * 101 (num_clips * num_classes)
######################################################################
# Create the model:
class LSTM_model(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layer,num_classes,batch=1,enhance=0):
super(LSTM_model, self).__init__()
self.num_classes = num_classes
self.hidden_dim = hidden_dim
self.input_dim = input_dim
self.num_layer = num_layer
self.batch = batch
self.enhance = enhance
#build lstm model
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layer).cuda()
# The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, num_classes).cuda()#Output layer
self.outmap = nn.Linear(5, num_classes,bias=False).cuda()
#self.updatez = nn.Linear(num_classes, num_classes,bias=False).cuda()# z_i = g(f(y_i-1),z_i-1)
self.updatez = nn.Linear(input_dim, input_dim,bias=False).cuda()
self.updatex1 = nn.Linear(input_dim, input_dim,bias=False).cuda()
self.updatex2 = nn.Linear(input_dim, input_dim,bias=False).cuda()
#self.combine = nn.Linear(input_dim, input_dim,bias=False).cuda()
self.combine = nn.Linear(2*num_classes, num_classes).cuda()
self.hidden = self.init_hidden() #hidden states
self.init_weight()
def init_weight(self):
#initialize weights to zero
torch.nn.init.constant_(self.updatez.weight.data,0)
#torch.nn.init.constant_(self.combine.weight.data,0)
torch.nn.init.constant_(self.outmap.weight.data,0)
#self.updatef1 = nn.Linear(input_dim, 1,bias=False).cuda()
#self.updatef2 = nn.Linear(input_dim, 1,bias=False).cuda()
#torch.nn.init.constant_(self.updatex1.weight.data,0.1)
#torch.nn.init.constant_(self.updatex2.weight.data,0.1)
#torch.nn.init.eye_(self.updatex1.weight.data)
#torch.nn.init.eye_(self.updatex2.weight.data)
#print('Initial weights:',self.outmap.weight.data)
def init_hidden(self):#h0, c0 = h0.cuda(), c0.cuda()
# (h0,c0)
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(self.num_layer, self.batch, self.hidden_dim).cuda(),
torch.zeros(self.num_layer, self.batch, self.hidden_dim).cuda())
def forward(self, video):#
#input dimension: clip_idx,batch_size,input_dim
length = video.shape[0]
#adaptive length
enhance_capa =10 #(int(length/10)+1)*5 #TODO: Multithumos=20, UCF=10
enhance_cnt = 0
TOPK = 2 #TODO: define significant as topk change. Multithumos=2, UCF=5
#initialize
if self.enhance:
enhance_array= torch.zeros(enhance_capa,dtype=torch.int16)#index of x_significant
wxk = []#torch.zeros(len(video), self.input_dim, dtype=torch.float32,requires_grad=True).cuda()
wxk.append(torch.zeros(self.input_dim).cuda())# input 0
input_lstm = [] #torch.zeros(len(video),self.batch,self.input_dim).cuda()
#lstm_out = {}#torch.zeros(len(video),self.batch,self.hidden_dim).cuda()
tag_space = torch.zeros(len(video),self.num_classes).cuda()
tag_scores = torch.zeros(len(video),self.num_classes).cuda()
#24 stand, 25 run, 26 jump, 36 throw, 44 squat, 63 talktocamera
general_list = [23,24,25,43,62]
#init hidden state
self.hidden2 = self.init_hidden()
for i in range(len(video)):
#generate inputs
if self.enhance and enhance_cnt>=enhance_capa:
#if self.enhance and enhance_cnt>4: #UCF101
wx =self.updatex1(video[i,:,:].view(self.input_dim)).tanh()#video[i,:,:].view(self.input_dim)
f= torch.zeros([enhance_capa],dtype=torch.float32,requires_grad=True).cuda()
for j in range(0,enhance_capa):
f[j]=torch.dot(wx,wxk[enhance_array[j]]) # (wxi)T(wxk): dot-product similarity scalar
#score=F.softmax(f)
C= torch.sum(f)#.abs()
#print("correlation",f)
if C==0:
C= 1 #Avoid divide by zero
zi = torch.mul(video[enhance_array[0],:,:].view(self.input_dim),f[0])
for j in range(1,enhance_capa):
zi = zi + torch.mul(video[enhance_array[j],:,:].view(self.input_dim),f[j])
#input_xp = video[i,:,:].view(self.input_dim) +self.combine(zi)
input_xp = video[i,:,:].view(self.input_dim) + self.updatez(zi/C).tanh()
#Concatenation:
#input_xp=torch.cat((video[i,:,:].view(video.shape[2]),zi),0)
input_lstm.append(input_xp.cuda())
else:
input_lstm.append( video[i,:,:].cuda())
#LSTM
lstm_out, self.hidden = self.lstm(input_lstm[i].view(1, 1, -1), self.hidden)
output= self.hidden2tag(lstm_out.view(1,-1))
tag_space[i,:]= output
#TODO: hierarchical classifier
'''
if i>=5:#self.enhance and enhance_cnt>=enhance_capa:
#avg_out = torch.mul(tag_space[i-20,:],1.0).view(1,-1)
#for j in range(1,enhance_capa):
# avg_out = avg_out + torch.mul(tag_space[i-20+j,:],f[j]/C).view(1,-1)
avg_out= torch.mean(tag_space[i-5:i,:],dim=0,keepdim=True).cuda()
general_out = torch.cat((avg_out[:,23:26].view(-1),avg_out[:,43],avg_out[:,62]))#torch.zeros((6)).cuda()
#24 stand, 25 run, 26 jump, 36 throw, 44 squat, 63 talktocamera
aux_out=self.outmap(general_out.view(1,-1).tanh())
tag_space[i,:]= tag_space[i,:] + aux_out
'''
#print tag_space[i,:].size()
tag_scores[i,:] = F.softmax(output,dim=1)
if self.enhance:
pred_value, pred_idx = tag_scores[i,:].data.topk(TOPK, 0, True, True)#tag_scores[i,:].data.topk(5, 0, True, True)
if i>0:
#update the enhance_array if the prediction changed with the last input
if (torch.all(torch.eq(prev_pred,pred_idx))!=1):
for j in range(0,enhance_capa-1):
enhance_array[j] = enhance_array[j+1] #shift to left
enhance_array[enhance_capa-1] = i
enhance_cnt+=1
wxk.append(self.updatex2(video[i,:,:].view(self.input_dim)).tanh())#non-linear
#print("Idx:",enhance_array)
else:
wxk.append(torch.zeros(self.input_dim).cuda())
prev_pred = pred_idx #keep the previous prediction result for comparison
'''
lstm_out, self.hidden = self.lstm(video, self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(video), -1))
#***NOTE: CrossentropyLoss= log_softmax+nllloss
#tag_scores = F.log_softmax(tag_space, dim=1)
#tag_scores = tag_scores.view(self.batch,len(video), -1)
#lstm_out.size(), tag_scores.size()
'''
tag_space =tag_space.t()
tag_space =tag_space.view(1,self.num_classes,-1)
return tag_space #(batch_size, num_classes,seq_length)
class LSTM():
def __init__(self, nb_epochs, lr, input_dim, hidden_dim, num_layer,num_classes,multi,evaluate,enhance,
train_data,train_labels,validation_data,validation_labels,resume,batch=1,dataset='ucf'):
self.multi=multi
self.hidden_dim = hidden_dim
self.nb_epochs=nb_epochs
self.lr=lr
self.evaluate=evaluate
self.train_data=train_data
self.train_labels=train_labels
self.validation_data=validation_data
self.validation_labels=validation_labels
self.best_prec1=0
self.num_classes = num_classes
self.batch = batch
self.resume =resume
#init model
self.enhance = enhance
self.model = LSTM_model(input_dim, hidden_dim, num_layer,num_classes,batch,enhance)
self.dataset = dataset
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9)
if dataset=='ucf':
self.criterion = nn.CrossEntropyLoss().cuda()
self.scheduler = MultiStepLR(self.optimizer, [20])
#lr_patience = 2
#self.scheduler = ReduceLROnPlateau(self.optimizer, 'min', patience=lr_patience,verbose=True)
else:
self.criterion = nn.BCEWithLogitsLoss().cuda()
lr_patience = 10
self.scheduler = MultiStepLR(self.optimizer, [40])
# Combines sigmoid with F.binary_cross_entropy_with_logits().cuda()
def run(self):
#self.build_model()
self.enhance_array = {}
self.resume_and_evaluate()
cudnn.benchmark = True
for self.epoch in range(self.nb_epochs):
self.train_1epoch()
prec1, val_loss = self.validate_1epoch()
is_best = prec1 > self.best_prec1
#lr_scheduler
if self.dataset=='ucf':
self.scheduler.step(val_loss)
else:
self.scheduler.step()
# save model
if is_best:
self.best_prec1 = prec1
#with open('record/lstm/lstm_video_preds.pickle','wb') as f:
# pickle.dump(self.dic_video_level_preds,f)
#f.close()
if self.enhance:
save_checkpoint({
'epoch': self.epoch,
'state_dict': self.model.state_dict(),
'best_prec1': self.best_prec1,
'optimizer' : self.optimizer.state_dict()
},is_best,'record/checkpoint.pth.tar','record/'+self.dataset+'_cor_2.pth.tar')
else:
save_checkpoint({
'epoch': self.epoch,
'state_dict': self.model.state_dict(),
'best_prec1': self.best_prec1,
'optimizer' : self.optimizer.state_dict()
},is_best,'record/checkpoint.pth.tar','record/'+self.dataset+'_best.pth.tar')
def resume_and_evaluate(self):
if self.resume:
if os.path.isfile(self.resume):
print("==> loading checkpoint '{}'".format(self.resume))
checkpoint = torch.load(self.resume)
self.start_epoch = checkpoint['epoch']
self.best_prec1 = checkpoint['best_prec1']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("==> loaded checkpoint '{}' (epoch {}) (best_prec1 {})"
.format(self.resume, checkpoint['epoch'], self.best_prec1))
#manually set learning rate if the stored lr is too small
for g in self.optimizer.param_groups:
g['lr'] = self.lr
else:
print("==> no checkpoint found at '{}'".format(self.resume))
if self.evaluate:
self.nb_epochs = 0
self.epoch = 0
prec1, val_loss = self.validate_1epoch()
return
def train_1epoch(self):
print('==> Epoch:[{0}/{1}][training stage]'.format(self.epoch, self.nb_epochs))
print('Num of training examples:',len(self.train_data))
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
self.dic_video_level_preds={}
apm = APMeter()
#switch to train mode
self.model.train()
end = time.time()
#if self.epoch ==0:
#self.model.init_weight()#initialize enhance weights to zero
#random shuffle the dataset
print("Shuffling dataset")
keys= list(self.train_data.keys())
random.shuffle(keys)
for name in keys:#self.train_data.keys():
# clear out the hidden state of the LSTM
data_time.update(time.time() - end)
self.model.zero_grad()
self.model.hidden = self.model.init_hidden()
#if self.enhance:
# data = torch.cat((self.train_data[name],self.enhance_array[name]),2)
#else:
data = self.train_data[name]
# Forward propagation for all frames in the video
cnn_out = Variable(data).cuda()
targets = Variable(self.train_labels[name]).cuda()
# Step 3. Run our forward pass.
tag_scores = self.model(cnn_out)
# Step 4. Compute the loss
# tag_scores=(batch_size,num_classes,seq_length), target=(batch_size,seq_length)
loss = self.criterion(tag_scores, targets)
# measure accuracy and record loss
losses.update(loss.data, self.train_data[name].size(0))
# compute gradient and do SGD step
#Backpropagation through time after all frames are forward propagated
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
#Calculate video level prediction
preds = tag_scores.data.cpu().numpy()
preds = preds.reshape((self.num_classes,-1))
preds = np.array(np.transpose(preds))
output=torch.from_numpy(preds).float()#sequence_length x num_classes
if self.dataset=='multithumos':
output = torch.sigmoid(output)
#Average precision meter
labels = self.train_labels[name].view(self.num_classes,-1)
labels = labels.t()#shape=(seq_length,num_classes)
apm.add(output, labels)
topn=10
else:
output = F.softmax(output, dim=1)#F.log_softmax(output, dim=1)
preds = output.numpy()
prec1, prec5 = accuracy(output, targets.cpu(), topk=(1, 5))
top1.update(prec1, self.train_data[name].size(0))
top5.update(prec5, self.train_data[name].size(0))
topn=5
self.dic_video_level_preds[name] = np.average(preds,axis=0)
#video_top1, video_top5, video_loss = self.frame2_video_level_accuracy(preds.shape[0],loss)
if self.dataset=='ucf':
info = {'Epoch':[self.epoch],
'Batch Time':[round(batch_time.avg,3)],
'Data Time':[round(data_time.avg,3)],
'Loss':[round(losses.avg,5)],
'Prec@1':[round(top1.avg,4)],
'Prec@5':[round(top5.avg,4)],
'lr': self.optimizer.param_groups[0]['lr']
}
record_info(info, 'record/'+self.dataset+'opf_train.csv','train')
else:
#accuracy
print 'MAP:', apm.value().mean()
print 'loss:',round(losses.avg,5)# loss.data.cpu()
print 'Learning Rate:',self.optimizer.param_groups[0]['lr']
# Evaluate
def validate_1epoch(self):
print('==> Epoch:[{0}/{1}][validation stage]'.format(self.epoch, self.nb_epochs))
print('Num of validation examples:',len(self.validation_data))
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
self.model.eval()
self.dic_video_level_preds={}
apm = APMeter()
end = time.time()
correct = {}
with torch.no_grad():
for name in self.validation_data.keys():
self.model.hidden = self.model.init_hidden()
#data = data.sub_(127.353346189).div_(14.971742063)
#label = self.labels[name].cuda(async=True)
#if self.enhance:
# data = torch.cat((self.validation_data[name],self.enhance_array[name]),2)
#else:
data = self.validation_data[name]
data_var = Variable(data).cuda(async=True)
label_var = Variable(self.validation_labels[name]).cuda(async=True)
# compute output (batch_size,num_classes,seq_length)
output = self.model(data_var)
#Calculate video level prediction
preds = output.data.cpu().numpy()
preds = preds.reshape((self.num_classes,-1))
preds = np.transpose(preds)
results=torch.from_numpy(preds).float() #[seq_length,num_class]
if self.dataset=='multithumos':
results = torch.sigmoid(results)
#Average precision meter
labels = self.validation_labels[name].view(self.num_classes,-1)
labels = labels.t()
apm.add(results, labels)
topn=10
else:
results = F.softmax(results, dim=1)#F.log_softmax(results, dim=1)
preds = results.numpy()
prec1, prec5 = accuracy(results, label_var.cpu(), topk=(1, 5))
top1.update(prec1, self.validation_data[name].size(0))
top5.update(prec5, self.validation_data[name].size(0))
topn=5
#print 'prediction shape:',preds.shape#= sequence_length * num_classes
'''
correct[name]=0
if self.dataset=='multithumos':
for i in range(preds.shape[0]):
if self.validation_labels[name][0,np.argmax(results[i,:].numpy()),i]==1:
#print name,np.argmax(results[i,:].numpy())
correct[name]+=1
'''
batch_time.update(time.time() - end)
# measure accuracy and record loss
# tag_scores=(batch_size,num_classes,seq_length), target=(batch_size,seq_length)
loss = self.criterion(output, label_var)
losses.update(loss.data, self.validation_data[name].size(0))
#video level predicts
self.dic_video_level_preds[name] = np.average(preds,axis=0)#np.sum(preds,axis=1)
#print correct
'''
with open('record/lstm/lstm_video_preds.pickle','wb') as f:
pickle.dump(self.dic_video_level_preds,f)
f.close()
'''
#Frame to video level accuracy
if self.dataset =='ucf':
video_top1, video_top5, video_loss = self.frame2_video_level_accuracy(preds.shape[0])
info = {'Epoch':[self.epoch],
'Batch Time':[round(batch_time.avg,3)],
'Loss':[round(losses.avg,5)],
'Prec@1':[round(video_top1,3)],
'Prec@5':[round(video_top5,3)]
}
record_info(info, 'record/'+self.dataset+'opf_test.csv','test')
return video_top1, video_loss
else:
#print average precision
precision=np.zeros(6)
precision[0]= apm.value()[1]
precision[1:6]=apm.value()[44:49]
#print 'AP of class basketball', ':', apm.value()[1],';', apm.value()[44],';', apm.value()[45],';', apm.value()[46],';', apm.value()[47],';', apm.value()[48],';'
#print 'AP of class run/walk', ':', apm.value()[20],';', apm.value()[24]
print 'average=',np.average(precision)
print 'mAP=',apm.value().mean()
print 'AP=',apm.value()
print 'loss=',round(losses.avg,5)#loss.data.cpu()
return apm.value().mean(), losses.avg#loss
def frame2_video_level_accuracy(self,clip_num,loss=0):
correct = 0
video_level_preds = np.zeros((len(self.dic_video_level_preds),101))
video_level_labels = np.zeros(len(self.dic_video_level_preds))
ii=0
for key in sorted(self.dic_video_level_preds.keys()):
name = key.split('-',1)[0]
preds = self.dic_video_level_preds[name]
label = self.validation_labels[name]#int(self.test_video[name])-1
video_level_preds[ii,:] = preds
video_level_labels[ii] = label[0,0]#batch,seq_length
ii+=1
#print name,', ',np.argmax(preds),' ',np.amax(preds),' ?=',label[0]
if np.argmax(preds) == (label[0,0]):
correct+=1
#else:
#print name,', ',np.amax(preds),' ',np.argmax(preds),'!=',label[0,0]
#print 'correct num=',correct
#top1 top5
video_level_labels = torch.from_numpy(video_level_labels).long()
video_level_preds = torch.from_numpy(video_level_preds).float()
if loss==0: #validation
loss = self.criterion(Variable(video_level_preds).cuda(), Variable(video_level_labels).cuda())
loss = loss.data.cpu().numpy()
top1,top5 = accuracy(video_level_preds, video_level_labels, topk=(1,5))
top1 = float(top1.numpy())
top5 = float(top5.numpy())
return top1,top5,loss
#May use a confusion matrix to illustrate the results
#Load output of 2-stream CNN, size = 101
if __name__ == '__main__':
global arg
arg = parser.parse_args()
print arg
#training data - load features
if arg.evaluate == False:
rgb_preds='spatial/spatial_video_train.pickle'
opf_preds = 'motion/motion_train.pickle'
if arg.split!='01':
rgb_preds='spatial/spatial_video_train'+arg.split+'.pickle'
opf_preds = 'motion/motion_train'+arg.split+'.pickle'
if arg.dataset!='ucf':
rgb_preds='spatial/multithumos_validation.pickle'
opf_preds = 'motion/multithumos_validation.pickle'
with open(rgb_preds,'rb') as f:
rgb =pickle.load(f)
f.close()
with open(opf_preds,'rb') as f:
opf =pickle.load(f)
f.close()
#validation data - load features
rgb_valid='spatial/spatial_video_test.pickle'
opf_valid = 'motion/motion_test.pickle'
if arg.split!='01':
rgb_valid='record/spatial/spatial_video_test'+arg.split+'.pickle'
opf_valid = 'record/motion/motion_test'+arg.split+'.pickle'
if arg.dataset!='ucf':
rgb_valid='spatial/multithumos_test.pickle'
opf_valid = 'motion/multithumos_test.pickle'
with open(rgb_valid,'rb') as f:
rgb_v =pickle.load(f)
f.close()
with open(opf_valid,'rb') as f:
opf_v =pickle.load(f)
f.close()
if arg.dataset=='ucf':
data_path='/home/yinghan/Documents/two-stream/jpegs_256/'
list_path ='UCF_list/'#'/home/yinghan/Documents/two-stream/UCF_list/'
else:
data_path='/home/yinghan/Downloads/TH14_validation_set/rgb/'
list_path ='multithumos.json'
#only need the labels
dataloader = dataloader.spatial_dataloader(BATCH_SIZE=1, num_workers=1,
path=data_path,
ucf_list=list_path,
ucf_split=arg.split,
dataset=arg.dataset)
train_loader,val_loader,test_video,train_video,frame_count = dataloader.run()
######################################################################
# Train the model:
if arg.dataset=='ucf':
num_classes = 101
MAX_CLIP = 40
else:#multithumos
num_classes = 65
MAX_CLIP = 300 #not used
BATCH_SIZE =1
#Training data frame_to_video
video_preds ={}
video_labels ={}
countLen =[0,0,0,0,0,0,0]#0-5, 5-10, 10-15, 15-20, 20-25, 25-30,>30 #0-20,20-40,40-60,60-80,80-100,100-120,120+
#print len(rgb),' ',len(opf)
if arg.evaluate == False:
for name in sorted(opf.keys()):
r = rgb[name]
o = opf[name]
videoName, clip_idx = name.split('-')
clip_idx = int(clip_idx)
if arg.dataset=='ucf':
label = int(train_video[videoName]-1)
else:
label = torch.from_numpy(train_video[videoName][0]).float()#label[frame_idx,num_classes]
if clip_idx<MAX_CLIP or arg.dataset!='ucf':
#initialize
if videoName not in video_preds.keys():
nb_frame = frame_count[videoName]-10+1
sample_num = int(nb_frame/10)
if sample_num> MAX_CLIP and arg.dataset=='ucf':
sample_num= MAX_CLIP
#count num of samples at a specific length
if sample_num<=600:
countLen[sample_num/100]+=1
else:
countLen[6]+=1
video_preds[videoName] = torch.zeros((sample_num,BATCH_SIZE, 2*len(r))).cuda()#preds[j,:]
if arg.dataset=='ucf':
video_labels[videoName] = torch.zeros((BATCH_SIZE,sample_num),dtype=torch.long)#preds[j,:]
else:
video_labels[videoName] = torch.zeros((BATCH_SIZE,num_classes,sample_num),dtype=torch.float)
#set input to lstm and labels
video_preds[videoName][clip_idx,0,0:len(r)] = torch.squeeze(torch.from_numpy(r)).cuda()
video_preds[videoName][clip_idx,0,len(r):2*len(r)] = torch.squeeze(torch.from_numpy(o)).cuda() #[clip_idx,batch,input_dim]
if arg.dataset=='ucf':
video_labels[videoName][:,clip_idx] = label
else:
frame_idx=clip_idx*5
video_labels[videoName][0,:,clip_idx] = label[frame_idx,:]
#print('check label length:', frame_idx, clip_idx)
print("Training length count:", countLen)
#multi input
if arg.multi!=1:
for videoName in video_preds.keys():
for i in range(video_preds[videoName].shape[0]-arg.multi):
video_preds[videoName][i,0,:] = torch.mean(video_preds[videoName][i:i+arg.multi,0,:],0,True)
#validation
validation_preds ={}
validation_labels ={}
countLen =[0,0,0,0,0,0,0]#0-5, 5-10, 10-15, 15-20, 20-25, 25-30,>30
print len(rgb_v),' ',len(opf_v)
for name in sorted(opf_v.keys()):
r = rgb_v[name]
o = opf_v[name]
videoName, clip_idx = name.split('-')
clip_idx = int(clip_idx)
if arg.dataset=='ucf':
label = int(test_video[videoName]-1)
else:
label = torch.from_numpy(test_video[videoName][0]).float()#label[frame_idx,num_classes]
if videoName not in validation_preds.keys():
nb_frame = frame_count[videoName]-10+1
sample_num = int(nb_frame/10)
validation_preds[videoName] = torch.zeros((sample_num,BATCH_SIZE, 2*len(r))).cuda()#preds[j,:]
if arg.dataset=='ucf':
validation_labels[videoName] = torch.zeros((BATCH_SIZE,sample_num),dtype=torch.long)
else:
validation_labels[videoName] = torch.zeros((BATCH_SIZE,num_classes,sample_num),dtype=torch.float)
#set validation set inputs and labels
validation_preds[videoName][clip_idx,0,0:len(r)] = torch.squeeze(torch.from_numpy(r)).cuda()
validation_preds[videoName][clip_idx,0,len(r):2*len(r)] = torch.squeeze(torch.from_numpy(o)).cuda()
if arg.dataset=='ucf':
validation_labels[videoName][:,clip_idx] = label
else:
frame_idx=clip_idx*5
validation_labels[videoName][0,:,clip_idx] = label[frame_idx,:]
#print("Testing length count:", countLen)
#multi input
if arg.multi!=1:
for videoName in validation_preds.keys():
for i in range(validation_preds[videoName].shape[0]-arg.multi):
validation_preds[videoName][i,0,:] = torch.mean(validation_preds[videoName][i:i+arg.multi,0,:],0,True)
HIDDEN_DIM = 512 # num of memory units
NUM_LAYER = 1 # stacked layers: didn't improve performance if set to 5
if arg.top5enhance:
INPUT_DIM = 2*len(r) # dimension of input from CNN
else:
INPUT_DIM = 2*len(r)
print 'INPUT DIMEMSION=', INPUT_DIM
model = LSTM(input_dim=INPUT_DIM,
hidden_dim=HIDDEN_DIM,
num_layer=NUM_LAYER,
num_classes=num_classes,
resume=arg.resume,
# Data
train_data=video_preds,
train_labels=video_labels,
validation_data=validation_preds,
validation_labels=validation_labels,
multi = arg.multi,
evaluate=arg.evaluate,
enhance = arg.top5enhance,
# Hyper-parameter
nb_epochs=arg.epochs,
lr=arg.lr,
batch = BATCH_SIZE,
dataset = arg.dataset
)
model.run()