forked from yinghanlong/action-recognition-video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apmeter.py
150 lines (134 loc) · 6.22 KB
/
apmeter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import math
import meter
import numpy as np
import torch
class APMeter(meter.Meter):
"""
The APMeter measures the average precision per class.
The APMeter is designed to operate on `NxK` Tensors `output` and
`target`, and optionally a `Nx1` Tensor weight where (1) the `output`
contains model output scores for `N` examples and `K` classes that ought to
be higher when the model is more convinced that the example should be
positively labeled, and smaller when the model believes the example should
be negatively labeled (for instance, the output of a sigmoid function); (2)
the `target` contains only values 0 (for negative examples) and 1
(for positive examples); and (3) the `weight` ( > 0) represents weight for
each sample.
"""
def __init__(self):
super(APMeter, self).__init__()
self.reset()
def reset(self):
"""Resets the meter with empty member variables"""
self.scores = torch.FloatTensor(torch.FloatStorage())
self.targets = torch.LongTensor(torch.LongStorage())
self.weights = torch.FloatTensor(torch.FloatStorage())
def add(self, output, target, weight=None):
"""
Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
"""
if not torch.is_tensor(output):
output = torch.from_numpy(output)
if not torch.is_tensor(target):
target = torch.from_numpy(target)
if weight is not None:
if not torch.is_tensor(weight):
weight = torch.from_numpy(weight)
weight = weight.squeeze()
if output.dim() == 1:
output = output.view(-1, 1)
else:
assert output.dim() == 2, \
'wrong output size (should be 1D or 2D with one column \
per class)'
if target.dim() == 1:
target = target.view(-1, 1)
else:
assert target.dim() == 2, \
'wrong target size (should be 1D or 2D with one column \
per class)'
if weight is not None:
assert weight.dim() == 1, 'Weight dimension should be 1'
assert weight.numel() == target.size(0), \
'Weight dimension 1 should be the same as that of target'
assert torch.min(weight) >= 0, 'Weight should be non-negative only'
assert torch.equal(target**2, target), \
'targets should be binary (0 or 1)'
if self.scores.numel() > 0:
assert target.size(1) == self.targets.size(1), \
'dimensions for output should match previously added examples.'
# make sure storage is of sufficient size
if self.scores.storage().size() < self.scores.numel() + output.numel():
new_size = math.ceil(self.scores.storage().size() * 1.5)
new_weight_size = math.ceil(self.weights.storage().size() * 1.5)
self.scores.storage().resize_(int(new_size + output.numel()))
self.targets.storage().resize_(int(new_size + output.numel()))
if weight is not None:
self.weights.storage().resize_(int(new_weight_size
+ output.size(0)))
# store scores and targets
offset = self.scores.size(0) if self.scores.dim() > 0 else 0
self.scores.resize_(offset + output.size(0), output.size(1))
self.targets.resize_(offset + target.size(0), target.size(1))
self.scores.narrow(0, offset, output.size(0)).copy_(output)
self.targets.narrow(0, offset, target.size(0)).copy_(target)
if weight is not None:
self.weights.resize_(offset + weight.size(0))
self.weights.narrow(0, offset, weight.size(0)).copy_(weight)
def value(self):
"""Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
"""
if self.scores.numel() == 0:
return 0
ap = torch.zeros(self.scores.size(1))
rg = torch.range(1, self.scores.size(0)).float()
if self.weights.numel() > 0:
weight = self.weights.new(self.weights.size())
weighted_truth = self.weights.new(self.weights.size())
# compute average precision for each class
for k in range(self.scores.size(1)):
# sort scores
scores = self.scores[:, k]
targets = self.targets[:, k]
sort_scores, sortind = torch.sort(scores, 0, True)
truth = targets[sortind]
truthsum = truth.float().cumsum(0)
#True positive
tp = (sort_scores>=0.05)&(truth==1.0)
fp = (sort_scores>=0.05)&(truth==0.0)
#print(tp)
tp_cum = tp.float().cumsum(0)
fp_cum = fp.float().cumsum(0)
precision = tp_cum.div(tp_cum+fp_cum)
tot_tp = max(tp.float().sum(),1)
#print(k,tp.float().sum(), fp.float().sum())
ap[k] = precision[tp.float().byte()].sum() / tot_tp
'''
if self.weights.numel() > 0:
weight = self.weights[sortind]
weighted_truth = truth.float() * weight
rg = weight.cumsum(0)
# compute true positive sums
if self.weights.numel() > 0:
tp = weighted_truth.cumsum(0)
else:
tp = truth.float().cumsum(0)
# compute precision curve
precision = tp.div(rg)
#print k,precision
# compute average precision
ap[k] = precision[truth.float().byte()].sum() / max(truth.float().sum(), 1)
'''
return ap