-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper_resolve.py
executable file
·86 lines (65 loc) · 3.01 KB
/
super_resolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
from argparse import ArgumentParser, Namespace
import pickle
import jax
from jax import jit
import jax.numpy as jnp
from jax.image import resize
import numpy as np
from PIL import Image
from model import build_thera
from utils import make_grid
MEAN = jnp.array([.4488, .4371, .4040])
VAR = jnp.array([.25, .25, .25])
PATCH_SIZE = 256
def process(source, model, params, scale, do_ensemble=True):
target_shape = (
round(source.shape[0] * scale),
round(source.shape[1] * scale),
source.shape[2])
source_up = resize(source, target_shape, 'nearest')[None]
source = jax.nn.standardize(source, mean=MEAN, variance=VAR)[None]
t = jnp.float32((target_shape[0] / source.shape[1])**-2)[None]
apply_encoder = jit(model.apply_encoder)
apply_decoder = jit(model.apply_decoder)
outs = []
for i_rot in range(4 if do_ensemble else 1):
source_ = jnp.rot90(source, k=i_rot, axes=(-3, -2))
source_up_ = jnp.rot90(source_up, k=i_rot, axes=(-3, -2))
encoding = apply_encoder(params, source_)
coords = jnp.asarray(make_grid(source_up_.shape[1:3])[None]) # global target coords
out = jnp.full_like(source_up_, jnp.nan, dtype=jnp.float32)
for h_min in range(0, coords.shape[1], PATCH_SIZE):
h_max = min(h_min + PATCH_SIZE, coords.shape[1])
for w_min in range(0, coords.shape[2], PATCH_SIZE):
w_max = min(w_min + PATCH_SIZE, coords.shape[2])
# apply decoder with one patch of coordinates
coords_patch = coords[:, h_min:h_max, w_min:w_max]
out_patch = apply_decoder(params, encoding, coords_patch, t)
out = out.at[:, h_min:h_max, w_min:w_max].set(out_patch)
out = out * jnp.sqrt(VAR)[None, None, None] + MEAN[None, None, None]
out += source_up_
outs.append(jnp.rot90(out, k=i_rot, axes=(-2, -3)))
out = jnp.stack(outs).mean(0).clip(0., 1.)
return jnp.rint(out[0] * 255).astype(jnp.uint8)
def main(args: Namespace):
source = np.asarray(Image.open(args.in_file)) / 255.
model = build_thera(3, args.backbone, args.model_size)
with open(args.checkpoint, 'rb') as fh:
params = pickle.load(fh)['model']
out = process(source, model, params, args.scale, args.ensemble)
Image.fromarray(np.asarray(out)).save(args.out_file)
def parse_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument('in_file')
parser.add_argument('out_file')
parser.add_argument('--scale', type=float, help='Scale factor for super-resolution')
parser.add_argument('--checkpoint', help='Path to checkpoint file')
parser.add_argument('--backbone', default='edsr-baseline',
choices=['edsr-baseline', 'rdn', 'swin-ir'])
parser.add_argument('--model-size', default='M', choices=['S', 'M', 'L'])
parser.add_argument('--ensemble', action='store_true', help='Enable geo-ensemble')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
main(args)