-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluation_stats_NPM3D.py
305 lines (269 loc) · 13.2 KB
/
evaluation_stats_NPM3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from pathlib import Path
import glob
from collections import defaultdict
from plyfile import PlyData, PlyElement
import numpy as np
from scipy import stats
from torch_points3d.modules.KPConv.plyutils import read_ply
#This file produces stats about the total average F1 score, the average F1 score per forest region, and packs all F1 score within a forest region together
#and save these stats in a file called "Eval_F1_per_region"
if __name__ == '__main__':
#initialization
NUM_CLASSES = 10
NUM_CLASSES_count = 9
# class index for instance segmenatation
ins_classcount = [3,4,5,7,8,9]
# class index for stuff segmentation
stuff_classcount = [1,2,6]
# class index for semantic segmenatation
sem_classcount = [1,2,3,4,5,6,7,8,9]
#class index for semantic classes with gt points
sem_classcount_have = []
# Initialize...
LOG_FOUT = open('/path/to/your/output/folder/evaluation_total.txt', 'a') # save evaluation file with name output_file_name
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
# acc and macc
true_positive_classes = np.zeros(NUM_CLASSES)
positive_classes = np.zeros(NUM_CLASSES)
gt_classes = np.zeros(NUM_CLASSES)
# precision & recall
total_gt_ins = np.zeros(NUM_CLASSES)
at = 0.5
tpsins = [[] for itmp in range(NUM_CLASSES)]
fpsins = [[] for itmp in range(NUM_CLASSES)]
IoU_Tp = np.zeros(NUM_CLASSES)
IoU_Mc = np.zeros(NUM_CLASSES)
# mucov and mwcov
all_mean_cov = [[] for itmp in range(NUM_CLASSES)]
all_mean_weighted_cov = [[] for itmp in range(NUM_CLASSES)]
#TO ADAPT: test_sem_list is the list of semantic prediction files
test_sem_path = '/path/to/project/PanopticSegForLargeScalePointCloud/outputs/your_output_folder/your_output_folder-PointGroup-PAPER-20230307_152720/eval/2023-03-14_09-35-55'
test_sem_list = sorted(glob.glob(test_sem_path + '/Semantic_results_forEval*.ply', recursive=False), key=lambda name:int(name[26+len(test_sem_path):-4]))
#TO ADAPT: test_ins_list is the list of instance prediction files
test_ins_list = sorted(glob.glob(test_sem_path + '/Instance_results_forEval*.ply', recursive=False), key=lambda name:int(name[26+len(test_sem_path):-4]))
#glob.glob(test_sem_path + '/Instance_Embed_results_forEval*.ply', recursive=False)
for test_sem_i, test_ins_i in zip(test_sem_list, test_ins_list):
sem_data = PlyData(text=True).read(test_sem_i)
ins_data = PlyData(text=True).read(test_ins_i)
sem_pre_i = sem_data._get_elements()[0]._get_data()["preds"]+1
sem_gt_i = sem_data._get_elements()[0]._get_data()["gt"]+1
ins_pre_i_ori = ins_data._get_elements()[0]._get_data()["preds"]
ins_gt_i_ori = ins_data._get_elements()[0]._get_data()["gt"]
pred_sem_complete = sem_pre_i
gt_sem_complete = sem_gt_i
pred_ins_complete = ins_pre_i_ori
gt_ins_complete = ins_gt_i_ori
idxc = ((gt_sem_complete!=0) & (gt_sem_complete!=1) & (gt_sem_complete!=2) & (gt_sem_complete!=6)) | ((pred_sem_complete!=0) & (pred_sem_complete!=1) & (pred_sem_complete!=2) & (pred_sem_complete!=6))
pred_ins = pred_ins_complete[idxc]
gt_ins = gt_ins_complete[idxc]
pred_sem = pred_sem_complete[idxc]
gt_sem = gt_sem_complete[idxc]
# pn semantic mIoU
for j in range(gt_sem_complete.shape[0]):
gt_l = int(gt_sem_complete[j])
pred_l = int(pred_sem_complete[j])
gt_classes[gt_l] += 1
positive_classes[pred_l] += 1
true_positive_classes[gt_l] += int(gt_l == pred_l)
# instance
un = np.unique(pred_ins)
pts_in_pred = [[] for itmp in range(NUM_CLASSES)]
for ig, g in enumerate(un): # each object in prediction
if g == -1:
continue
tmp = (pred_ins == g)
sem_seg_i = int(stats.mode(pred_sem[tmp])[0])
pts_in_pred[sem_seg_i] += [tmp]
un = np.unique(gt_ins)
pts_in_gt = [[] for itmp in range(NUM_CLASSES)]
for ig, g in enumerate(un):
if g == -1:
continue
tmp = (gt_ins == g)
sem_seg_i = int(stats.mode(gt_sem[tmp])[0])
pts_in_gt[sem_seg_i] += [tmp]
# instance mucov & mwcov
for i_sem in range(NUM_CLASSES):
sum_cov = 0
mean_cov = 0
mean_weighted_cov = 0
num_gt_point = 0
if not pts_in_gt[i_sem] or not pts_in_pred[i_sem]:
all_mean_cov[i_sem].append(0)
all_mean_weighted_cov[i_sem].append(0)
continue
for ig, ins_gt in enumerate(pts_in_gt[i_sem]):
ovmax = 0.
num_ins_gt_point = np.sum(ins_gt)
num_gt_point += num_ins_gt_point
for ip, ins_pred in enumerate(pts_in_pred[i_sem]):
union = (ins_pred | ins_gt)
intersect = (ins_pred & ins_gt)
iou = float(np.sum(intersect)) / np.sum(union)
if iou > ovmax:
ovmax = iou
ipmax = ip
sum_cov += ovmax
mean_weighted_cov += ovmax * num_ins_gt_point
if len(pts_in_gt[i_sem]) != 0:
mean_cov = sum_cov / len(pts_in_gt[i_sem])
all_mean_cov[i_sem].append(mean_cov)
mean_weighted_cov /= num_gt_point
all_mean_weighted_cov[i_sem].append(mean_weighted_cov)
# instance precision & recall
for i_sem in range(NUM_CLASSES):
if not pts_in_pred[i_sem]:
continue
IoU_Tp_per = 0
IoU_Mc_per = 0
tp = [0.] * len(pts_in_pred[i_sem])
fp = [0.] * len(pts_in_pred[i_sem])
if pts_in_gt[i_sem]:
total_gt_ins[i_sem] += len(pts_in_gt[i_sem])
#gtflag = np.zeros(len(pts_in_gt[i_sem]))
#total_gt_ins[i_sem] += len(pts_in_gt[i_sem])
for ip, ins_pred in enumerate(pts_in_pred[i_sem]):
ovmax = -1.
if not pts_in_gt[i_sem]:
fp[ip] = 1
continue
for ig, ins_gt in enumerate(pts_in_gt[i_sem]):
union = (ins_pred | ins_gt)
intersect = (ins_pred & ins_gt)
iou = float(np.sum(intersect)) / np.sum(union)
if iou > ovmax:
ovmax = iou
#igmax = ig
if ovmax > 0:
IoU_Mc_per += ovmax
if ovmax >= at:
tp[ip] = 1 # true
IoU_Tp_per += ovmax
else:
fp[ip] = 1 # false positive
tpsins[i_sem] += tp
fpsins[i_sem] += fp
IoU_Tp[i_sem] += IoU_Tp_per
IoU_Mc[i_sem] += IoU_Mc_per
# semantic results
iou_list = []
for i in range(NUM_CLASSES):
if gt_classes[i] > 0:
sem_classcount_have.append(i)
iou = true_positive_classes[i] / float(gt_classes[i] + positive_classes[i] - true_positive_classes[i])
else:
iou = 0.0
iou_list.append(iou)
set1 = set(sem_classcount)
set2 = set(sem_classcount_have)
set3 = set1 & set2
sem_classcount_final = list(set3)
set1 = set(stuff_classcount)
set2 = set(sem_classcount_have)
set3 = set1 & set2
stuff_classcount_final = list(set3)
log_string('Semantic Segmentation oAcc: {}'.format(sum(true_positive_classes)/float(sum(positive_classes))))
#log_string('Semantic Segmentation Acc: {}'.format(true_positive_classes / gt_classes))
log_string('Semantic Segmentation mAcc: {}'.format(np.mean(true_positive_classes[sem_classcount_final] / gt_classes[sem_classcount_final])))
log_string('Semantic Segmentation IoU: {}'.format(iou_list))
log_string('Semantic Segmentation mIoU: {}'.format(1.*sum(iou_list)/len(sem_classcount_final)))
log_string(' ')
MUCov = np.zeros(NUM_CLASSES)
MWCov = np.zeros(NUM_CLASSES)
for i_sem in range(NUM_CLASSES):
MUCov[i_sem] = np.mean(all_mean_cov[i_sem])
MWCov[i_sem] = np.mean(all_mean_weighted_cov[i_sem])
precision = np.zeros(NUM_CLASSES)
recall = np.zeros(NUM_CLASSES)
RQ = np.zeros(NUM_CLASSES)
SQ = np.zeros(NUM_CLASSES)
PQ = np.zeros(NUM_CLASSES)
PQStar = np.zeros(NUM_CLASSES)
set1 = set(ins_classcount)
set2 = set(sem_classcount_have)
set3 = set1 & set2
ins_classcount_final = list(set3)
################################################################
###### recall, precision, RQ, SQ, PQ, PQ_star for things ######
################################################################
for i_sem in ins_classcount:
###### metrics for offset ######
if not tpsins[i_sem] or not fpsins[i_sem]:
continue
tp = np.asarray(tpsins[i_sem]).astype(np.float)
fp = np.asarray(fpsins[i_sem]).astype(np.float)
tp = np.sum(tp)
fp = np.sum(fp)
# recall and precision
if (total_gt_ins[i_sem])==0:
rec = 0
else:
rec = tp / total_gt_ins[i_sem]
if (tp + fp) == 0:
prec = 0
else:
prec = tp / (tp + fp)
precision[i_sem] = prec
recall[i_sem] = rec
# RQ, SQ, PQ and PQ_star
if (prec + rec) == 0:
RQ[i_sem] = 0
else:
RQ[i_sem] = 2 * prec * rec / (prec + rec)
if tp == 0:
SQ[i_sem] = 0
else:
SQ[i_sem] = IoU_Tp[i_sem] / tp
PQ[i_sem] = SQ[i_sem] * RQ[i_sem]
# PQStar[i_sem] = IoU_Mc[i_sem]/total_gt_ins[i_sem]
PQStar[i_sem] = PQ[i_sem]
############################################
###### RQ, SQ, PQ, PQ_star for stuff ######
############################################
for i_sem in stuff_classcount:
if iou_list[i_sem] >= 0.5:
RQ[i_sem] = 1
SQ[i_sem] = iou_list[i_sem]
else:
RQ[i_sem] = 0
SQ[i_sem] = 0
PQ[i_sem] = SQ[i_sem] * RQ[i_sem]
PQStar[i_sem] = iou_list[i_sem]
if np.mean(precision[ins_classcount_final])+np.mean(recall[ins_classcount_final])==0:
F1_score = 0.0
else:
F1_score = (2*np.mean(precision[ins_classcount_final])*np.mean(recall[ins_classcount_final]))/(np.mean(precision[ins_classcount_final])+np.mean(recall[ins_classcount_final]))
# instance results
log_string('Instance Segmentation:')
log_string('Instance Segmentation MUCov: {}'.format(MUCov[ins_classcount]))
log_string('Instance Segmentation mMUCov: {}'.format(np.mean(MUCov[ins_classcount_final])))
log_string('Instance Segmentation MWCov: {}'.format(MWCov[ins_classcount]))
log_string('Instance Segmentation mMWCov: {}'.format(np.mean(MWCov[ins_classcount_final])))
log_string('Instance Segmentation Precision: {}'.format(precision[ins_classcount]))
log_string('Instance Segmentation mPrecision: {}'.format(np.mean(precision[ins_classcount_final])))
log_string('Instance Segmentation Recall: {}'.format(recall[ins_classcount]))
log_string('Instance Segmentation mRecall: {}'.format(np.mean(recall[ins_classcount_final])))
log_string('Instance Segmentation F1 score: {}'.format(F1_score))
log_string('Instance Segmentation RQ: {}'.format(RQ[sem_classcount]))
log_string('Instance Segmentation meanRQ: {}'.format(np.mean(RQ[sem_classcount_final])))
log_string('Instance Segmentation SQ: {}'.format(SQ[sem_classcount]))
log_string('Instance Segmentation meanSQ: {}'.format(np.mean(SQ[sem_classcount_final])))
log_string('Instance Segmentation PQ: {}'.format(PQ[sem_classcount]))
log_string('Instance Segmentation meanPQ: {}'.format(np.mean(PQ[sem_classcount_final])))
log_string('Instance Segmentation PQ star: {}'.format(PQStar[sem_classcount]))
log_string('Instance Segmentation mean PQ star: {}'.format(np.mean(PQStar[sem_classcount_final])))
log_string('Instance Segmentation RQ (things): {}'.format(RQ[ins_classcount]))
log_string('Instance Segmentation meanRQ (things): {}'.format(np.mean(RQ[ins_classcount_final])))
log_string('Instance Segmentation SQ (things): {}'.format(SQ[ins_classcount]))
log_string('Instance Segmentation meanSQ (things): {}'.format(np.mean(SQ[ins_classcount_final])))
log_string('Instance Segmentation PQ (things): {}'.format(PQ[ins_classcount]))
log_string('Instance Segmentation meanPQ (things): {}'.format(np.mean(PQ[ins_classcount_final])))
log_string('Instance Segmentation RQ (stuff): {}'.format(RQ[stuff_classcount]))
log_string('Instance Segmentation meanRQ (stuff): {}'.format(np.mean(RQ[stuff_classcount_final])))
log_string('Instance Segmentation SQ (stuff): {}'.format(SQ[stuff_classcount]))
log_string('Instance Segmentation meanSQ (stuff): {}'.format(np.mean(SQ[stuff_classcount_final])))
log_string('Instance Segmentation PQ (stuff): {}'.format(PQ[stuff_classcount]))
log_string('Instance Segmentation meanPQ (stuff): {}'.format(np.mean(PQ[stuff_classcount_final])))