Skip to content

Latest commit

 

History

History
168 lines (132 loc) · 8.16 KB

README.md

File metadata and controls

168 lines (132 loc) · 8.16 KB

Functional tests

Writing Functional Tests

Example test

The example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • Avoid wildcard imports where possible
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramwork, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel or on Travis).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to control whether or not to use the cached data directories. The cached data directories contain a 200-block pre-mined blockchain and wallets for four nodes. Each node has 25 mature blocks (25x50=1250 BTC) in its wallet.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • mininode.py contains all the definitions for objects that pass over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the chauchad(s) being tested (using python's asyncore package); the other implements the test logic.

  • P2PConnection is the class used to connect to a chauchad. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Chauchera node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

  • Call network_thread_start() after all P2PInterface objects are created to start the networking thread. (Continue with the test logic in your existing thread.)

  • Can be used to write tests where specific P2P protocol behavior is tested. Examples tests are p2p_unrequested_blocks.py, p2p_compactblocks.py.

Comptool

  • Comptool is a Testing framework for writing tests that compare the block/tx acceptance behavior of a chauchad against 1 or more other chauchad instances. It should not be used to write static tests with known outcomes, since that type of test is easier to write and maintain using the standard BitcoinTestFramework.

  • Set the num_nodes variable (defined in ComparisonTestFramework) to start up 1 or more nodes. If using 1 node, then --testbinary can be used as a command line option to change the chauchad binary used by the test. If using 2 or more nodes, then --refbinary can be optionally used to change the chauchad that will be used on nodes 2 and up.

  • Implement a (generator) function called get_tests() which yields TestInstances. Each TestInstance consists of:

    • A list of [object, outcome, hash] entries
      • object is a CBlock, CTransaction, or CBlockHeader. CBlock's and CTransaction's are tested for acceptance. CBlockHeaders can be used so that the test runner can deliver complete headers-chains when requested from the chauchad, to allow writing tests where blocks can be delivered out of order but still processed by headers-first chauchad's.
      • outcome is True, False, or None. If True or False, the tip is compared with the expected tip -- either the block passed in, or the hash specified as the optional 3rd entry. If None is specified, then the test will compare all the chauchad's being tested to see if they all agree on what the best tip is.
      • hash is the block hash of the tip to compare against. Optional to specify; if left out then the hash of the block passed in will be used as the expected tip. This allows for specifying an expected tip while testing the handling of either invalid blocks or blocks delivered out of order, which complete a longer chain.
    • sync_every_block: True/False. If False, then all blocks are inv'ed together, and the test runner waits until the node receives the last one, and tests only the last block for tip acceptance using the outcome and specified tip. If True, then each block is tested in sequence and synced (this is slower when processing many blocks).
    • sync_every_transaction: True/False. Analogous to sync_every_block, except if the outcome on the last tx is "None", then the contents of the entire mempool are compared across all chauchad connections. If True or False, then only the last tx's acceptance is tested against the given outcome.
  • For examples of tests written in this framework, see p2p_invalid_block.py and feature_block.py.

test-framework modules

Taken from the python-bitcoinrpc repository.

Base class for functional tests.

Generally useful functions.

Basic code to support P2P connectivity to a chauchad.

Framework for comparison-tool style, P2P tests.

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

Implements disk-backed block and tx storage.

Wrapper around OpenSSL EC_Key (originally from python-bitcoinlib)

Helpers for script.py

Helper functions for creating blocks and transactions.