-
in
topology.v
:- lemma
ball_subspace_ball
- lemma
-
in
classical_sets.v
:- lemma
setDU
- lemma
-
in
measure.v
:- definition
completed_measure_extension
- lemma
completed_measure_extension_sigma_finite
- definition
-
in
lebesgue_stieltjes_measure.v
:- definition
completed_lebesgue_stieltjes_measure
- definition
-
in
lebesgue_measure.v
:- definition
completed_lebesgue_measure
- lemma
completed_lebesgue_measure_is_complete
- definition
completed_algebra_gen
- lemmas
g_sigma_completed_algebra_genE
,negligible_sub_caratheodory
,completed_caratheodory_measurable
- definition
-
in
ftc.v
:- lemma
FTC1
(specialization of the previousFTC1
lemma, now renamed toFTC1_lebesgue_pt
) - lemma
FTC1Ny
- lemma
- in
topology.v
:- lemmas
subspace_pm_ball_center
,subspace_pm_ball_sym
,subspace_pm_ball_triangle
,subspace_pm_entourage
turned into localLet
's
- lemmas
-
in
constructive_ereal.v
:lte_pdivr_mull
->lte_pdivrMl
lte_pdivr_mulr
->lte_pdivrMr
lte_pdivl_mull
->lte_pdivlMl
lte_pdivl_mulr
->lte_pdivlMr
lte_ndivl_mulr
->lte_ndivlMr
lte_ndivl_mull
->lte_ndivlMl
lte_ndivr_mull
->lte_ndivrMl
lte_ndivr_mulr
->lte_ndivrMr
lee_pdivr_mull
->lee_pdivrMl
lee_pdivr_mulr
->lee_pdivrMr
lee_pdivl_mull
->lee_pdivlMl
lee_pdivl_mulr
->lee_pdivlMr
lee_ndivl_mulr
->lee_ndivlMr
lee_ndivl_mull
->lee_ndivlMl
lee_ndivr_mull
->lee_ndivrMl
lee_ndivr_mulr
->lee_ndivrMr
eqe_pdivr_mull
->eqe_pdivrMl
-
in
ftc.v
:FTC1
->FTC1_lebesgue_pt