Skip to content

Latest commit

 

History

History
143 lines (117 loc) · 5.16 KB

README.md

File metadata and controls

143 lines (117 loc) · 5.16 KB

TurboTV Artifact

This is the artifact of the paper "Translation Validation for JIT Compiler in the V8 JavaScript Engine" to appear in ICSE 2024. The paper presents TurboTV, the first SMT-based translation validation tool for the TurboFan engine of V8.

System requirements

To run the experiments in the paper, we used a 64-core (Intel Xeon Processor Gold 6226R, 2.90 GHz) machine with 512 GB of RAM and Ubuntu 22.04. We recommend running the experiments with at least a 16-core machine with 32 GB of RAM.

Loading Docker image

We provide the artifact as a Docker image. To launch the Turbo-TV Docker image, run the following commands:

docker pull prosyslab/turbo-tv
docker run -it --privileged prosyslab/turbo-tv

The artifact implementation is at /home/user/turbo-tv-exp.

Notice

Most of the experiments take a long time. For convenience, all the data obtained from the instructions below are already shipped in the Docker image.

Directory Structure

├─ README.md                    <- This file
├─ turbo-tv                     <- Main implementation
├─ exp                          <- Script for experiments
├─ benchmarks                   <- Benchmarks
│  ├─ unit-js
│  ├─ corpus
│  ├─ unit-llvm
│  └─ ...
├─ fuzzilli                     <- Validation corpus generator implemented on Fuzzilli
├─ d8s                          <- d8 builds for each TurboFan bugs
│  ├─ 1126249
│  ├─ 1198705
│  └─ ...
├─ eval                         <- Evaluation results. Counterexamples list in here.
├─ workbenchs                   <- Workbenchs for reproduced evaluation. All the data is already in here.
│  ├─ workbench-corpus
│  ├─ workbench-unitjs
│  └─ ...
├─ issues                       <- Build configuration and PoC for each TurboFan bugs

Usage

We provide a script for easy use of Turbo-TV. The script helps Turbo-TV to receive the js files and perform Translation Validation. The script works in a pyenv environment.

$ pyenv activate turbo-tv
(turbo-tv) $./exp v8 --select --issue 1199345                   # switch v8 for issue #1199345
(turbo-tv) $./exp turbo-tv --check-ub issues/1199345/1199345.js # Check UB
(turbo-tv) $./exp turbo-tv --check-eq issues/1199345/1199345.js # Check EQ

The EQ check output would be as follows:

====================[Check EQ of js(s) in target dir]====================
[1] Emit reductions
100%|██████████████████████████████████████████████| 1/1 [00:00<00:00,  4.40it/s]
[2] Check EQ
/home/user/turbo-tv-exp/workbench/1199345/1: O
/home/user/turbo-tv-exp/workbench/1199345/3: O
/home/user/turbo-tv-exp/workbench/1199345/4: O
/home/user/turbo-tv-exp/workbench/1199345/5: O
/home/user/turbo-tv-exp/workbench/1199345/8: O
/home/user/turbo-tv-exp/workbench/1199345/9: O
/home/user/turbo-tv-exp/workbench/1199345/10: O
/home/user/turbo-tv-exp/workbench/1199345/6: O
/home/user/turbo-tv-exp/workbench/1199345/7: O
/home/user/turbo-tv-exp/workbench/1199345/2: X
c.e. => /home/user/turbo-tv-exp/workbench/1199345/2.ce
100%|██████████████████████████████████████████████| 10/10 [00:01<00:00,  6.50it/s]
EQ check done. Elapsed(s): 1.5940730571746826
               Avg Elapsed(s): 0.15940730571746825

c.e. => /home/user/turbo-tv-exp/workbench/1199345/2.ce indicates that the counter-example is saved at /home/user/turbo-tv-exp/workbench/1199345/2.ce. You can find the following counter-example there.

Result: Not Verified
CounterExample:
Parameters:
Parameter[0]: TaggedSigned(0)
Parameter[1]: TaggedSigned(865386496)

State of src
#0:NumberConstant(0) [Range (0.000000, 0.000000)] =>
  Value: TaggedSigned(0)
  ControlToken: false
  UB: false
  Deopt: false
#1:NumberConstant(-0) [MinusZero] =>
  Value: Float64(-0.0)
  ControlToken: false
  UB: false
  Deopt: false
#2:Start() [Internal] =>
  Value: empty
  ControlToken: true
  UB: false
  Deopt: false
...

Reproduce Evaluation

The following commands run Turbo-TV to reproduce experiments in the paper.

RQ1. Precision and Scalability of TurboTV

Precision: Effectiveness of TurboTV in discovering known bugs. (Table 1)

(turbo-tv) $./exp eval --precision

Scalability: Effectiveness of TurboTV for a large set of JS programs. (Table 2)

(turbo-tv) $./exp eval --scalability

RQ2. Effectiveness of Cross-Language TV

Effectiveness of cross-language TV for unit tests in LLVM. (Table 2)

(turbo-tv) $./exp eval --cross-validation

RQ3. Fuzzer Overhead The following command will augment and validate the corpus already been created.

./exp eval --overhead --corpus benchmarks/corpus-overhead/

For convenience, we provide a command to generate a corpus from scratch. For example, the following command generates random JS files for 10 seconds and measures overhead on the generated corpus

./exp eval --overhead --timeout 10