-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
ember-compatibility-functions.cpp
819 lines (744 loc) · 36.1 KB
/
ember-compatibility-functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Contains the functions for compatibility with ember ZCL inner state
* when calling ember callbacks.
*/
#include <access/AccessControl.h>
#include <app/ClusterInfo.h>
#include <app/Command.h>
#include <app/ConcreteAttributePath.h>
#include <app/InteractionModelEngine.h>
#include <app/reporting/Engine.h>
#include <app/reporting/reporting.h>
#include <app/util/af.h>
#include <app/util/attribute-storage-null-handling.h>
#include <app/util/attribute-storage.h>
#include <app/util/attribute-table.h>
#include <app/util/ember-compatibility-functions.h>
#include <app/util/error-mapping.h>
#include <app/util/odd-sized-integers.h>
#include <app/util/util.h>
#include <lib/core/CHIPCore.h>
#include <lib/core/CHIPTLV.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/TypeTraits.h>
#include <protocols/interaction_model/Constants.h>
#include <app-common/zap-generated/att-storage.h>
#include <app-common/zap-generated/attribute-type.h>
#include <zap-generated/endpoint_config.h>
#include <limits>
using namespace chip;
using namespace chip::app;
using namespace chip::app::Compatibility;
namespace chip {
namespace app {
namespace Compatibility {
namespace {
constexpr uint32_t kTemporaryDataVersion = 0;
// On some apps, ATTRIBUTE_LARGEST can as small as 3, making compiler unhappy since data[kAttributeReadBufferSize] cannot hold
// uint64_t. Make kAttributeReadBufferSize at least 8 so it can fit all basic types.
constexpr size_t kAttributeReadBufferSize = (ATTRIBUTE_LARGEST >= 8 ? ATTRIBUTE_LARGEST : 8);
EmberAfClusterCommand imCompatibilityEmberAfCluster;
EmberApsFrame imCompatibilityEmberApsFrame;
EmberAfInterpanHeader imCompatibilityInterpanHeader;
Command * currentCommandObject;
// BasicType maps the type to basic int(8|16|32|64)(s|u) types.
EmberAfAttributeType BaseType(EmberAfAttributeType type)
{
switch (type)
{
case ZCL_ACTION_ID_ATTRIBUTE_TYPE: // Action Id
case ZCL_FABRIC_IDX_ATTRIBUTE_TYPE: // Fabric Index
case ZCL_BITMAP8_ATTRIBUTE_TYPE: // 8-bit bitmap
case ZCL_ENUM8_ATTRIBUTE_TYPE: // 8-bit enumeration
return ZCL_INT8U_ATTRIBUTE_TYPE;
case ZCL_ENDPOINT_NO_ATTRIBUTE_TYPE: // Endpoint Number
case ZCL_GROUP_ID_ATTRIBUTE_TYPE: // Group Id
case ZCL_VENDOR_ID_ATTRIBUTE_TYPE: // Vendor Id
case ZCL_ENUM16_ATTRIBUTE_TYPE: // 16-bit enumeration
case ZCL_BITMAP16_ATTRIBUTE_TYPE: // 16-bit bitmap
case ZCL_STATUS_ATTRIBUTE_TYPE: // Status Code
static_assert(std::is_same<chip::EndpointId, uint16_t>::value,
"chip::EndpointId is expected to be uint8_t, change this when necessary");
static_assert(std::is_same<chip::GroupId, uint16_t>::value,
"chip::GroupId is expected to be uint16_t, change this when necessary");
return ZCL_INT16U_ATTRIBUTE_TYPE;
case ZCL_CLUSTER_ID_ATTRIBUTE_TYPE: // Cluster Id
case ZCL_ATTRIB_ID_ATTRIBUTE_TYPE: // Attribute Id
case ZCL_FIELD_ID_ATTRIBUTE_TYPE: // Field Id
case ZCL_EVENT_ID_ATTRIBUTE_TYPE: // Event Id
case ZCL_COMMAND_ID_ATTRIBUTE_TYPE: // Command Id
case ZCL_TRANS_ID_ATTRIBUTE_TYPE: // Transaction Id
case ZCL_DEVTYPE_ID_ATTRIBUTE_TYPE: // Device Type Id
case ZCL_DATA_VER_ATTRIBUTE_TYPE: // Data Version
case ZCL_BITMAP32_ATTRIBUTE_TYPE: // 32-bit bitmap
case ZCL_EPOCH_S_ATTRIBUTE_TYPE: // Epoch Seconds
static_assert(std::is_same<chip::ClusterId, uint32_t>::value,
"chip::Cluster is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::AttributeId, uint32_t>::value,
"chip::AttributeId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::AttributeId, uint32_t>::value,
"chip::AttributeId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::EventId, uint32_t>::value,
"chip::EventId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::CommandId, uint32_t>::value,
"chip::CommandId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::TransactionId, uint32_t>::value,
"chip::TransactionId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::DeviceTypeId, uint32_t>::value,
"chip::DeviceTypeId is expected to be uint32_t, change this when necessary");
static_assert(std::is_same<chip::DataVersion, uint32_t>::value,
"chip::DataVersion is expected to be uint32_t, change this when necessary");
return ZCL_INT32U_ATTRIBUTE_TYPE;
case ZCL_EVENT_NO_ATTRIBUTE_TYPE: // Event Number
case ZCL_FABRIC_ID_ATTRIBUTE_TYPE: // Fabric Id
case ZCL_NODE_ID_ATTRIBUTE_TYPE: // Node Id
case ZCL_BITMAP64_ATTRIBUTE_TYPE: // 64-bit bitmap
case ZCL_EPOCH_US_ATTRIBUTE_TYPE: // Epoch Microseconds
static_assert(std::is_same<chip::EventNumber, uint64_t>::value,
"chip::EventNumber is expected to be uint64_t, change this when necessary");
static_assert(std::is_same<chip::FabricId, uint64_t>::value,
"chip::FabricId is expected to be uint64_t, change this when necessary");
static_assert(std::is_same<chip::NodeId, uint64_t>::value,
"chip::NodeId is expected to be uint64_t, change this when necessary");
return ZCL_INT64U_ATTRIBUTE_TYPE;
default:
return type;
}
}
} // namespace
void SetupEmberAfObjects(Command * command, const ConcreteCommandPath & commandPath)
{
Messaging::ExchangeContext * commandExchangeCtx = command->GetExchangeContext();
imCompatibilityEmberApsFrame.clusterId = commandPath.mClusterId;
imCompatibilityEmberApsFrame.destinationEndpoint = commandPath.mEndpointId;
imCompatibilityEmberApsFrame.sourceEndpoint = 1; // source endpoint is fixed to 1 for now.
imCompatibilityEmberApsFrame.sequence =
(commandExchangeCtx != nullptr ? static_cast<uint8_t>(commandExchangeCtx->GetExchangeId() & 0xFF) : 0);
if (commandExchangeCtx->IsGroupExchangeContext())
{
imCompatibilityEmberAfCluster.type = EMBER_INCOMING_MULTICAST;
}
imCompatibilityEmberAfCluster.commandId = commandPath.mCommandId;
imCompatibilityEmberAfCluster.apsFrame = &imCompatibilityEmberApsFrame;
imCompatibilityEmberAfCluster.interPanHeader = &imCompatibilityInterpanHeader;
imCompatibilityEmberAfCluster.source = commandExchangeCtx;
emAfCurrentCommand = &imCompatibilityEmberAfCluster;
currentCommandObject = command;
}
bool IMEmberAfSendDefaultResponseWithCallback(EmberAfStatus status)
{
if (currentCommandObject == nullptr)
{
// If this command is not handled by IM, then let ember send response.
return false;
}
chip::app::ConcreteCommandPath commandPath(imCompatibilityEmberApsFrame.destinationEndpoint,
imCompatibilityEmberApsFrame.clusterId, imCompatibilityEmberAfCluster.commandId);
CHIP_ERROR err = currentCommandObject->AddStatus(commandPath, ToInteractionModelStatus(status));
return CHIP_NO_ERROR == err;
}
void ResetEmberAfObjects()
{
emAfCurrentCommand = nullptr;
currentCommandObject = nullptr;
}
} // namespace Compatibility
namespace {
// Common buffer for ReadSingleClusterData & WriteSingleClusterData
uint8_t attributeData[kAttributeReadBufferSize];
template <typename T>
CHIP_ERROR attributeBufferToNumericTlvData(TLV::TLVWriter & writer, bool isNullable)
{
typename NumericAttributeTraits<T>::StorageType value;
memcpy(&value, attributeData, sizeof(value));
TLV::Tag tag = TLV::ContextTag(to_underlying(AttributeDataIB::Tag::kData));
if (isNullable && NumericAttributeTraits<T>::IsNullValue(value))
{
return writer.PutNull(tag);
}
if (!NumericAttributeTraits<T>::CanRepresentValue(isNullable, value))
{
return CHIP_ERROR_INCORRECT_STATE;
}
return NumericAttributeTraits<T>::Encode(writer, tag, value);
}
} // anonymous namespace
bool ServerClusterCommandExists(const ConcreteCommandPath & aCommandPath)
{
// TODO: Currently, we are using cluster catalog from the ember library, this should be modified or replaced after several
// updates to Commands.
return emberAfContainsServer(aCommandPath.mEndpointId, aCommandPath.mClusterId);
}
namespace {
CHIP_ERROR SendSuccessStatus(AttributeReportIB::Builder & aAttributeReport, AttributeDataIB::Builder & aAttributeDataIBBuilder)
{
ReturnErrorOnFailure(aAttributeDataIBBuilder.EndOfAttributeDataIB().GetError());
return aAttributeReport.EndOfAttributeReportIB().GetError();
}
CHIP_ERROR SendFailureStatus(const ConcreteAttributePath & aPath, AttributeReportIB::Builder & aAttributeReport,
Protocols::InteractionModel::Status aStatus, TLV::TLVWriter * aReportCheckpoint)
{
if (aReportCheckpoint != nullptr)
{
aAttributeReport.Rollback(*aReportCheckpoint);
}
AttributeStatusIB::Builder & attributeStatusIBBuilder = aAttributeReport.CreateAttributeStatus();
ReturnErrorOnFailure(aAttributeReport.GetError());
AttributePathIB::Builder & attributePathIBBuilder = attributeStatusIBBuilder.CreatePath();
ReturnErrorOnFailure(attributeStatusIBBuilder.GetError());
attributePathIBBuilder.Endpoint(aPath.mEndpointId)
.Cluster(aPath.mClusterId)
.Attribute(aPath.mAttributeId)
.EndOfAttributePathIB();
ReturnErrorOnFailure(attributePathIBBuilder.GetError());
StatusIB::Builder & statusIBBuilder = attributeStatusIBBuilder.CreateErrorStatus();
ReturnErrorOnFailure(attributeStatusIBBuilder.GetError());
statusIBBuilder.EncodeStatusIB(StatusIB(aStatus));
ReturnErrorOnFailure(statusIBBuilder.GetError());
ReturnErrorOnFailure(attributeStatusIBBuilder.EndOfAttributeStatusIB().GetError());
return aAttributeReport.EndOfAttributeReportIB().GetError();
}
} // anonymous namespace
CHIP_ERROR ReadSingleClusterData(FabricIndex aAccessingFabricIndex, const ConcreteReadAttributePath & aPath,
AttributeReportIBs::Builder & aAttributeReports,
AttributeValueEncoder::AttributeEncodeState * apEncoderState)
{
ChipLogDetail(DataManagement,
"Reading attribute: Cluster=" ChipLogFormatMEI " Endpoint=%" PRIx16 " AttributeId=" ChipLogFormatMEI,
ChipLogValueMEI(aPath.mClusterId), aPath.mEndpointId, ChipLogValueMEI(aPath.mAttributeId));
EmberAfAttributeMetadata * attributeMetadata =
emberAfLocateAttributeMetadata(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId, CLUSTER_MASK_SERVER, 0);
if (attributeMetadata == nullptr)
{
AttributeReportIB::Builder attributeReport = aAttributeReports.CreateAttributeReport();
ReturnErrorOnFailure(aAttributeReports.GetError());
// This path is not actually supported.
return SendFailureStatus(aPath, attributeReport, Protocols::InteractionModel::Status::UnsupportedAttribute, nullptr);
}
{
Access::SubjectDescriptor subjectDescriptor; // TODO: get actual subject descriptor
Access::RequestPath requestPath{ .cluster = aPath.mClusterId, .endpoint = aPath.mEndpointId };
Access::Privilege requestPrivilege = Access::Privilege::kView; // TODO: get actual request privilege
CHIP_ERROR err = Access::GetAccessControl().Check(subjectDescriptor, requestPath, requestPrivilege);
if (err != CHIP_NO_ERROR)
{
AttributeReportIB::Builder attributeReport = aAttributeReports.CreateAttributeReport();
ReturnErrorOnFailure(aAttributeReports.GetError());
TLV::TLVWriter backup;
attributeReport.Checkpoint(backup);
auto status = (err == CHIP_ERROR_ACCESS_DENIED) ? Protocols::InteractionModel::Status::UnsupportedAccess
: Protocols::InteractionModel::Status::Failure;
return SendFailureStatus(aPath, attributeReport, status, &backup);
}
}
AttributeAccessInterface * attrOverride = findAttributeAccessOverride(aPath.mEndpointId, aPath.mClusterId);
// Value encoder will encode the whole AttributeReport, including the path, value and the version.
// The AttributeValueEncoder may encode more than one AttributeReportIB for the list chunking feature.
if (attrOverride != nullptr)
{
// TODO: We should probably clone the writer and convert failures here
// into status responses, unless our caller already does that.
AttributeValueEncoder::AttributeEncodeState state =
(apEncoderState == nullptr ? AttributeValueEncoder::AttributeEncodeState() : *apEncoderState);
AttributeValueEncoder valueEncoder(aAttributeReports, aAccessingFabricIndex,
ConcreteAttributePath(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId),
kTemporaryDataVersion, state);
CHIP_ERROR err = attrOverride->Read(aPath, valueEncoder);
if (err != CHIP_NO_ERROR)
{
// If the err is not CHIP_NO_ERROR, means the encoding was aborted, then the valueEncoder may save its state.
// The state is used by list chunking feature for now.
if (apEncoderState != nullptr)
{
*apEncoderState = valueEncoder.GetState();
}
return err;
}
if (valueEncoder.TriedEncode())
{
return CHIP_NO_ERROR;
}
}
AttributeReportIB::Builder attributeReport = aAttributeReports.CreateAttributeReport();
ReturnErrorOnFailure(aAttributeReports.GetError());
TLV::TLVWriter backup;
attributeReport.Checkpoint(backup);
// We have verified that the attribute exists.
AttributeDataIB::Builder & attributeDataIBBuilder = attributeReport.CreateAttributeData();
ReturnErrorOnFailure(attributeDataIBBuilder.GetError());
attributeDataIBBuilder.DataVersion(kTemporaryDataVersion);
ReturnErrorOnFailure(attributeDataIBBuilder.GetError());
AttributePathIB::Builder & attributePathIBBuilder = attributeDataIBBuilder.CreatePath();
ReturnErrorOnFailure(attributeDataIBBuilder.GetError());
attributePathIBBuilder.Endpoint(aPath.mEndpointId)
.Cluster(aPath.mClusterId)
.Attribute(aPath.mAttributeId)
.EndOfAttributePathIB();
ReturnErrorOnFailure(attributePathIBBuilder.GetError());
EmberAfAttributeSearchRecord record;
record.endpoint = aPath.mEndpointId;
record.clusterId = aPath.mClusterId;
record.clusterMask = CLUSTER_MASK_SERVER;
record.attributeId = aPath.mAttributeId;
record.manufacturerCode = EMBER_AF_NULL_MANUFACTURER_CODE;
EmberAfStatus emberStatus = emAfReadOrWriteAttribute(&record, &attributeMetadata, attributeData, sizeof(attributeData),
/* write = */ false);
if (emberStatus == EMBER_ZCL_STATUS_SUCCESS)
{
EmberAfAttributeType attributeType = attributeMetadata->attributeType;
bool isNullable = attributeMetadata->IsNullable();
TLV::TLVWriter * writer = attributeDataIBBuilder.GetWriter();
VerifyOrReturnError(writer != nullptr, CHIP_NO_ERROR);
TLV::Tag tag = TLV::ContextTag(to_underlying(AttributeDataIB::Tag::kData));
switch (BaseType(attributeType))
{
case ZCL_NO_DATA_ATTRIBUTE_TYPE: // No data
ReturnErrorOnFailure(writer->PutNull(tag));
break;
case ZCL_BOOLEAN_ATTRIBUTE_TYPE: // Boolean
ReturnErrorOnFailure(attributeBufferToNumericTlvData<bool>(*writer, isNullable));
break;
case ZCL_INT8U_ATTRIBUTE_TYPE: // Unsigned 8-bit integer
ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint8_t>(*writer, isNullable));
break;
case ZCL_INT16U_ATTRIBUTE_TYPE: // Unsigned 16-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint16_t>(*writer, isNullable));
break;
}
case ZCL_INT24U_ATTRIBUTE_TYPE: // Unsigned 24-bit integer
{
using IntType = OddSizedInteger<3, false>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT32U_ATTRIBUTE_TYPE: // Unsigned 32-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint32_t>(*writer, isNullable));
break;
}
case ZCL_INT40U_ATTRIBUTE_TYPE: // Unsigned 40-bit integer
{
using IntType = OddSizedInteger<5, false>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT48U_ATTRIBUTE_TYPE: // Unsigned 48-bit integer
{
using IntType = OddSizedInteger<6, false>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT56U_ATTRIBUTE_TYPE: // Unsigned 56-bit integer
{
using IntType = OddSizedInteger<7, false>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT64U_ATTRIBUTE_TYPE: // Unsigned 64-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<uint64_t>(*writer, isNullable));
break;
}
case ZCL_INT8S_ATTRIBUTE_TYPE: // Signed 8-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<int8_t>(*writer, isNullable));
break;
}
case ZCL_INT16S_ATTRIBUTE_TYPE: // Signed 16-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<int16_t>(*writer, isNullable));
break;
}
case ZCL_INT24S_ATTRIBUTE_TYPE: // Signed 24-bit integer
{
using IntType = OddSizedInteger<3, true>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT32S_ATTRIBUTE_TYPE: // Signed 32-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<int32_t>(*writer, isNullable));
break;
}
case ZCL_INT40S_ATTRIBUTE_TYPE: // Signed 40-bit integer
{
using IntType = OddSizedInteger<5, true>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT48S_ATTRIBUTE_TYPE: // Signed 48-bit integer
{
using IntType = OddSizedInteger<6, true>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT56S_ATTRIBUTE_TYPE: // Signed 56-bit integer
{
using IntType = OddSizedInteger<7, true>;
ReturnErrorOnFailure(attributeBufferToNumericTlvData<IntType>(*writer, isNullable));
break;
}
case ZCL_INT64S_ATTRIBUTE_TYPE: // Signed 64-bit integer
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<int64_t>(*writer, isNullable));
break;
}
case ZCL_SINGLE_ATTRIBUTE_TYPE: // 32-bit float
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<float>(*writer, isNullable));
break;
}
case ZCL_DOUBLE_ATTRIBUTE_TYPE: // 64-bit float
{
ReturnErrorOnFailure(attributeBufferToNumericTlvData<double>(*writer, isNullable));
break;
}
case ZCL_CHAR_STRING_ATTRIBUTE_TYPE: // Char string
{
char * actualData = reinterpret_cast<char *>(attributeData + 1);
uint8_t dataLength = attributeData[0];
if (dataLength == 0xFF)
{
if (isNullable)
{
ReturnErrorOnFailure(writer->PutNull(tag));
}
else
{
return CHIP_ERROR_INCORRECT_STATE;
}
}
else
{
ReturnErrorOnFailure(writer->PutString(tag, actualData, dataLength));
}
break;
}
case ZCL_LONG_CHAR_STRING_ATTRIBUTE_TYPE: {
char * actualData = reinterpret_cast<char *>(attributeData + 2); // The pascal string contains 2 bytes length
uint16_t dataLength;
memcpy(&dataLength, attributeData, sizeof(dataLength));
if (dataLength == 0xFFFF)
{
if (isNullable)
{
ReturnErrorOnFailure(writer->PutNull(tag));
}
else
{
return CHIP_ERROR_INCORRECT_STATE;
}
}
else
{
ReturnErrorOnFailure(writer->PutString(tag, actualData, dataLength));
}
break;
}
case ZCL_OCTET_STRING_ATTRIBUTE_TYPE: // Octet string
{
uint8_t * actualData = attributeData + 1;
uint8_t dataLength = attributeData[0];
if (dataLength == 0xFF)
{
if (isNullable)
{
ReturnErrorOnFailure(writer->PutNull(tag));
}
else
{
return CHIP_ERROR_INCORRECT_STATE;
}
}
else
{
ReturnErrorOnFailure(writer->Put(tag, chip::ByteSpan(actualData, dataLength)));
}
break;
}
case ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE: {
uint8_t * actualData = attributeData + 2; // The pascal string contains 2 bytes length
uint16_t dataLength;
memcpy(&dataLength, attributeData, sizeof(dataLength));
if (dataLength == 0xFFFF)
{
if (isNullable)
{
ReturnErrorOnFailure(writer->PutNull(tag));
}
else
{
return CHIP_ERROR_INCORRECT_STATE;
}
}
else
{
ReturnErrorOnFailure(writer->Put(tag, chip::ByteSpan(actualData, dataLength)));
}
break;
}
case ZCL_ARRAY_ATTRIBUTE_TYPE: {
// We only get here for attributes of list type that have no override
// registered. There should not be any nonempty lists like that.
uint16_t size = emberAfAttributeValueSize(aPath.mClusterId, aPath.mAttributeId, attributeType, attributeData);
if (size != 2)
{
// The value returned by emberAfAttributeValueSize for a list
// includes the space needed to store the list length (2 bytes) plus
// the space needed to store the actual list items. We expect it to
// return 2 here, indicating a zero-length list. If it doesn't,
// something has gone wrong.
return CHIP_ERROR_INCORRECT_STATE;
}
// Just encode an empty array.
TLV::TLVType containerType;
ReturnErrorOnFailure(writer->StartContainer(tag, TLV::kTLVType_Array, containerType));
ReturnErrorOnFailure(writer->EndContainer(containerType));
break;
}
default:
ChipLogError(DataManagement, "Attribute type 0x%x not handled", static_cast<int>(attributeType));
emberStatus = EMBER_ZCL_STATUS_WRITE_ONLY;
}
}
Protocols::InteractionModel::Status imStatus = ToInteractionModelStatus(emberStatus);
if (imStatus == Protocols::InteractionModel::Status::Success)
{
return SendSuccessStatus(attributeReport, attributeDataIBBuilder);
}
return SendFailureStatus(aPath, attributeReport, imStatus, &backup);
}
namespace {
template <typename T>
CHIP_ERROR numericTlvDataToAttributeBuffer(TLV::TLVReader & aReader, bool isNullable, uint16_t & dataLen)
{
typename NumericAttributeTraits<T>::StorageType value;
static_assert(sizeof(value) <= sizeof(attributeData), "Value cannot fit into attribute data");
if (isNullable && aReader.GetType() == TLV::kTLVType_Null)
{
NumericAttributeTraits<T>::SetNull(value);
}
else
{
typename NumericAttributeTraits<T>::WorkingType val;
ReturnErrorOnFailure(aReader.Get(val));
VerifyOrReturnError(NumericAttributeTraits<T>::CanRepresentValue(isNullable, val), CHIP_ERROR_INVALID_ARGUMENT);
NumericAttributeTraits<T>::WorkingToStorage(val, value);
}
dataLen = sizeof(value);
memcpy(attributeData, &value, sizeof(value));
return CHIP_NO_ERROR;
}
template <typename T>
CHIP_ERROR stringTlvDataToAttributeBuffer(TLV::TLVReader & aReader, bool isOctetString, bool isNullable, uint16_t & dataLen)
{
const uint8_t * data = nullptr;
T len;
if (isNullable && aReader.GetType() == TLV::kTLVType_Null)
{
// Null is represented by an 0xFF or 0xFFFF length, respectively.
len = std::numeric_limits<T>::max();
memcpy(&attributeData[0], &len, sizeof(len));
dataLen = sizeof(len);
}
else
{
VerifyOrReturnError((isOctetString && aReader.GetType() == TLV::TLVType::kTLVType_ByteString) ||
(!isOctetString && aReader.GetType() == TLV::TLVType::kTLVType_UTF8String),
CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(CanCastTo<T>(aReader.GetLength()), CHIP_ERROR_MESSAGE_TOO_LONG);
ReturnErrorOnFailure(aReader.GetDataPtr(data));
len = static_cast<T>(aReader.GetLength());
VerifyOrReturnError(len != std::numeric_limits<T>::max(), CHIP_ERROR_MESSAGE_TOO_LONG);
VerifyOrReturnError(len + sizeof(len) /* length at the beginning of data */ <= sizeof(attributeData),
CHIP_ERROR_MESSAGE_TOO_LONG);
memcpy(&attributeData[0], &len, sizeof(len));
memcpy(&attributeData[sizeof(len)], data, len);
dataLen = static_cast<uint16_t>(len + sizeof(len));
}
return CHIP_NO_ERROR;
}
CHIP_ERROR prepareWriteData(const EmberAfAttributeMetadata * attributeMetadata, TLV::TLVReader & aReader, uint16_t & dataLen)
{
EmberAfAttributeType expectedType = BaseType(attributeMetadata->attributeType);
bool isNullable = attributeMetadata->IsNullable();
switch (expectedType)
{
case ZCL_BOOLEAN_ATTRIBUTE_TYPE: // Boolean
return numericTlvDataToAttributeBuffer<bool>(aReader, isNullable, dataLen);
case ZCL_INT8U_ATTRIBUTE_TYPE: // Unsigned 8-bit integer
return numericTlvDataToAttributeBuffer<uint8_t>(aReader, isNullable, dataLen);
case ZCL_INT16U_ATTRIBUTE_TYPE: // Unsigned 16-bit integer
return numericTlvDataToAttributeBuffer<uint16_t>(aReader, isNullable, dataLen);
case ZCL_INT24U_ATTRIBUTE_TYPE: // Unsigned 24-bit integer
{
using IntType = OddSizedInteger<3, false>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT32U_ATTRIBUTE_TYPE: // Unsigned 32-bit integer
return numericTlvDataToAttributeBuffer<uint32_t>(aReader, isNullable, dataLen);
case ZCL_INT40U_ATTRIBUTE_TYPE: // Unsigned 40-bit integer
{
using IntType = OddSizedInteger<5, false>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT48U_ATTRIBUTE_TYPE: // Unsigned 48-bit integer
{
using IntType = OddSizedInteger<6, false>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT56U_ATTRIBUTE_TYPE: // Unsigned 56-bit integer
{
using IntType = OddSizedInteger<7, false>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT64U_ATTRIBUTE_TYPE: // Unsigned 64-bit integer
return numericTlvDataToAttributeBuffer<uint64_t>(aReader, isNullable, dataLen);
case ZCL_INT8S_ATTRIBUTE_TYPE: // Signed 8-bit integer
return numericTlvDataToAttributeBuffer<int8_t>(aReader, isNullable, dataLen);
case ZCL_INT16S_ATTRIBUTE_TYPE: // Signed 16-bit integer
return numericTlvDataToAttributeBuffer<int16_t>(aReader, isNullable, dataLen);
case ZCL_INT24S_ATTRIBUTE_TYPE: // Signed 24-bit integer
{
using IntType = OddSizedInteger<3, true>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT32S_ATTRIBUTE_TYPE: // Signed 32-bit integer
return numericTlvDataToAttributeBuffer<int32_t>(aReader, isNullable, dataLen);
case ZCL_INT40S_ATTRIBUTE_TYPE: // Signed 40-bit integer
{
using IntType = OddSizedInteger<5, true>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT48S_ATTRIBUTE_TYPE: // Signed 48-bit integer
{
using IntType = OddSizedInteger<6, true>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT56S_ATTRIBUTE_TYPE: // Signed 56-bit integer
{
using IntType = OddSizedInteger<7, true>;
return numericTlvDataToAttributeBuffer<IntType>(aReader, isNullable, dataLen);
}
case ZCL_INT64S_ATTRIBUTE_TYPE: // Signed 64-bit integer
return numericTlvDataToAttributeBuffer<int64_t>(aReader, isNullable, dataLen);
case ZCL_SINGLE_ATTRIBUTE_TYPE: // 32-bit float
return numericTlvDataToAttributeBuffer<float>(aReader, isNullable, dataLen);
case ZCL_DOUBLE_ATTRIBUTE_TYPE: // 64-bit float
return numericTlvDataToAttributeBuffer<double>(aReader, isNullable, dataLen);
case ZCL_OCTET_STRING_ATTRIBUTE_TYPE: // Octet string
case ZCL_CHAR_STRING_ATTRIBUTE_TYPE: // Char string
return stringTlvDataToAttributeBuffer<uint8_t>(aReader, expectedType == ZCL_OCTET_STRING_ATTRIBUTE_TYPE, isNullable,
dataLen);
case ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE: // Long octet string
case ZCL_LONG_CHAR_STRING_ATTRIBUTE_TYPE: // Long char string
return stringTlvDataToAttributeBuffer<uint16_t>(aReader, expectedType == ZCL_LONG_OCTET_STRING_ATTRIBUTE_TYPE, isNullable,
dataLen);
default:
ChipLogError(DataManagement, "Attribute type %x not handled", static_cast<int>(expectedType));
return CHIP_ERROR_INVALID_DATA_LIST;
}
}
} // namespace
// TODO: Refactor WriteSingleClusterData and all dependent functions to take ConcreteAttributePath instead of ClusterInfo
// as the input argument.
CHIP_ERROR WriteSingleClusterData(ClusterInfo & aClusterInfo, TLV::TLVReader & aReader, WriteHandler * apWriteHandler)
{
// Named aPath for now to reduce the amount of code change that needs to
// happen when the above TODO is resolved.
ConcreteDataAttributePath aPath(aClusterInfo.mEndpointId, aClusterInfo.mClusterId, aClusterInfo.mAttributeId);
const EmberAfAttributeMetadata * attributeMetadata =
emberAfLocateAttributeMetadata(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId, CLUSTER_MASK_SERVER, 0);
AttributePathParams attributePathParams(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId);
if (attributeMetadata == nullptr)
{
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::UnsupportedAttribute);
}
if (attributeMetadata->IsReadOnly())
{
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::UnsupportedWrite);
}
if (attributeMetadata->MustUseTimedWrite() && !apWriteHandler->IsTimedWrite())
{
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::NeedsTimedInteraction);
}
{
Access::SubjectDescriptor subjectDescriptor; // TODO: get actual subject descriptor
Access::RequestPath requestPath{ .cluster = aPath.mClusterId, .endpoint = aPath.mEndpointId };
Access::Privilege requestPrivilege = Access::Privilege::kOperate; // TODO: get actual request privilege
CHIP_ERROR err = Access::GetAccessControl().Check(subjectDescriptor, requestPath, requestPrivilege);
if (err != CHIP_NO_ERROR)
{
auto status = (err == CHIP_ERROR_ACCESS_DENIED) ? Protocols::InteractionModel::Status::UnsupportedAccess
: Protocols::InteractionModel::Status::Failure;
return apWriteHandler->AddStatus(attributePathParams, status);
}
}
if (auto * attrOverride = findAttributeAccessOverride(aClusterInfo.mEndpointId, aClusterInfo.mClusterId))
{
AttributeValueDecoder valueDecoder(aReader, apWriteHandler->GetAccessingFabricIndex());
ReturnErrorOnFailure(attrOverride->Write(aPath, valueDecoder));
if (valueDecoder.TriedDecode())
{
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::Success);
}
}
CHIP_ERROR preparationError = CHIP_NO_ERROR;
uint16_t dataLen = 0;
if ((preparationError = prepareWriteData(attributeMetadata, aReader, dataLen)) != CHIP_NO_ERROR)
{
ChipLogDetail(Zcl, "Failed to prepare data to write: %s", ErrorStr(preparationError));
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::InvalidValue);
}
if (dataLen > attributeMetadata->size)
{
ChipLogDetail(Zcl, "Data to write exceedes the attribute size claimed.");
return apWriteHandler->AddStatus(attributePathParams, Protocols::InteractionModel::Status::InvalidValue);
}
auto status = ToInteractionModelStatus(emberAfWriteAttributeExternal(aPath.mEndpointId, aPath.mClusterId, aPath.mAttributeId,
CLUSTER_MASK_SERVER, 0, attributeData,
attributeMetadata->attributeType));
return apWriteHandler->AddStatus(attributePathParams, status);
}
} // namespace app
} // namespace chip
void MatterReportingAttributeChangeCallback(EndpointId endpoint, ClusterId clusterId, AttributeId attributeId, uint8_t mask,
uint16_t manufacturerCode, EmberAfAttributeType type, uint8_t * data)
{
IgnoreUnusedVariable(manufacturerCode);
IgnoreUnusedVariable(type);
IgnoreUnusedVariable(data);
IgnoreUnusedVariable(mask);
MatterReportingAttributeChangeCallback(endpoint, clusterId, attributeId);
}
void MatterReportingAttributeChangeCallback(EndpointId endpoint, ClusterId clusterId, AttributeId attributeId)
{
ClusterInfo info;
info.mClusterId = clusterId;
info.mAttributeId = attributeId;
info.mEndpointId = endpoint;
InteractionModelEngine::GetInstance()->GetReportingEngine().SetDirty(info);
// Schedule work to run asynchronously on the CHIP thread. The scheduled work won't execute until the current execution context
// has completed. This ensures that we can 'gather up' multiple attribute changes that have occurred in the same execution
// context without requiring any explicit 'start' or 'end' change calls into the engine to book-end the change.
InteractionModelEngine::GetInstance()->GetReportingEngine().ScheduleRun();
}