-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathphi_pose_observer.py
153 lines (124 loc) · 5.22 KB
/
phi_pose_observer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
###############################################################################
#
# File: phi_pose_observer.py
# Available under MIT license
#
# Position observer from phi and acceleration
#
# History:
# 08-18-22 - Levi Burner - Created file
# 09-26-22 - Levi Burner - Open source release
#
###############################################################################
import numpy as np
from phi_depth_integrals_accel_bias import accel_x_phi_constraint_tf, accel_z_phi_constraint_tf
def feedback_good(accel_power, accel_z, max_z, accel_power_thresh):
return (accel_z != np.NAN and accel_power > accel_power_thresh and accel_z < max_z)
class PhiPoseObserver(object):
def __init__(self,
z_0=None,
z_0_dot=0.0,
dt=0.005,
max_z=-0.1,
z_hat_gain=2.0,
seconds_to_keep = 1.0,
accel_power_thresh = 2.0):
self._dt = dt
self._z_0 = None
self._z_hat = self._z_0
self._max_z = max_z
self._min_initial_z = -7.5
self._seconds_to_keep = seconds_to_keep
self._num_samples_to_keep = int(self._seconds_to_keep / self._dt)
self._t_list = []
self._phi_list = []
self._a_fc_list = []
self._A = np.array(((0, 1), (0, 0)))
self._B = np.array((0, 1))
self._L = np.array(((2, 0), (0, 20)))
self._accel_power_thresh = accel_power_thresh
def reset_ic(self):
self._z_hat = self._z_0
def update(self, t, phi, a_fc):
self._t_list.append(t)
self._phi_list.append(phi.tolist())
self._a_fc_list.append(a_fc.tolist())
accel_z_bias = None
if len(self._t_list) == self._num_samples_to_keep:
self._t_list = self._t_list[1:]
self._phi_list = self._phi_list[1:]
self._a_fc_list = self._a_fc_list[1:]
# TODO NO!
t = np.array(self._t_list)
phis = np.array(self._phi_list)
phis_x = phis[:, 0]
phis_y = phis[:, 1]
phis_z = phis[:, 2]
a_fc = np.array(self._a_fc_list)
a_x = a_fc[:, 0]
a_y = a_fc[:, 1]
a_z = a_fc[:, 2]
(accel_x_z_tf, accel_x_dz_tf, accel_x_bias), x_res = accel_x_phi_constraint_tf(t, phis_x, phis_z, a_x)
if accel_x_z_tf != np.NAN:
a_x_power = np.linalg.norm(a_x-accel_x_bias) / np.sqrt(self._num_samples_to_keep)
else:
a_x_power = 0.0
print('x singular')
(accel_y_z_tf, accel_y_dz_tf, accel_y_bias), y_res = accel_x_phi_constraint_tf(t, phis_y, phis_z, a_y)
if accel_y_z_tf != np.NAN:
a_y_power = np.linalg.norm(a_y-accel_y_bias) / np.sqrt(self._num_samples_to_keep)
else:
a_y_power = 0.0
print('y singular')
(accel_z_z_tf, accel_z_dz_tf, accel_z_bias), z_res = accel_z_phi_constraint_tf(t, phis_z, a_z)
if accel_z_z_tf != np.NAN:
a_z_power = np.linalg.norm(a_z-accel_z_bias) / np.sqrt(self._num_samples_to_keep)
else:
a_z_power = 0.0
print('z singular')
else:
return None
accel_z_hat = 0.0
accel_z_dot_hat = 0.0
num_feedback = 0
if feedback_good(a_x_power, accel_x_z_tf, self._max_z, self._accel_power_thresh):
accel_z_hat += accel_x_z_tf
accel_z_dot_hat += accel_x_dz_tf
num_feedback += 1
else:
accel_x_z_tf = 0.0
if feedback_good(a_y_power, accel_y_z_tf, self._max_z, self._accel_power_thresh):
accel_z_hat += accel_y_z_tf
accel_z_dot_hat += accel_y_dz_tf
num_feedback += 1
else:
accel_y_z_tf = 0.0
if feedback_good(a_z_power, accel_z_z_tf, self._max_z, self._accel_power_thresh):
accel_z_hat += accel_z_z_tf
accel_z_dot_hat += accel_z_dz_tf
num_feedback += 1
else:
accel_z_z_tf = 0.0
if num_feedback > 0 and accel_z_bias is not None and self._z_hat is not None:
accel_z_hat /= num_feedback
accel_z_dot_hat /= num_feedback
e = np.array((accel_z_hat, accel_z_dot_hat)) - self._z_hat
z_hat_dot = self._A @ self._z_hat + self._B * (a_z[-1]-accel_z_bias) + self._L @ e
self._z_hat = self._z_hat + z_hat_dot * self._dt
elif num_feedback > 0 and self._z_hat is None:
accel_z_hat /= num_feedback
accel_z_dot_hat /= num_feedback
# _min_initial_z is to filter an insane spike at the beginning of one sequence
if accel_z_hat > self._min_initial_z:
self._z_hat = np.array((accel_z_hat, accel_z_dot_hat))
else:
return None
elif self._z_hat is not None:
new_z = self._z_hat[0] * phi[2] / phis[-2, 2]
new_dz = (new_z - self._z_hat[0]) / self._dt
self._z_hat = np.array((new_z, new_dz))
else:
return None
if self._z_hat[0] > self._max_z:
self._z_hat[0] = self._max_z
return self._z_hat[0], accel_x_z_tf, accel_y_z_tf, accel_z_z_tf