-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathphi_depth_integrals_accel_bias.py
74 lines (58 loc) · 2.59 KB
/
phi_depth_integrals_accel_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
###############################################################################
#
# File: phi_depth_integrals_accel_bias.py
# Available under MIT license
#
# Estimate distance using the Phi constraint in the presence of
# a constant acceleration bias
#
# History:
# 09-26-22 - Levi Burner - Open source release
#
###############################################################################
import numpy as np
import numba as nb
def cumulative_int(dt, x):
return dt * np.cumsum(x)
def accel_z_phi_constraint(times, z_over_z0, accel_z):
z_over_z0 = z_over_z0 / z_over_z0[0]
# TODO all times are needed but they are assumed to be evenly spaced
dt = times[1] - times[0]
int_accel = cumulative_int(dt, accel_z)
iint_accel = cumulative_int(dt, int_accel)
E = z_over_z0 - 1
R = -(times - times[0])
D1 = 0.5 * np.square(R)
Da = iint_accel
A = np.stack((E, R, D1), axis=1)
b = Da.reshape((A.shape[0], 1))
z, res, rank, s = np.linalg.lstsq(A, b, rcond=-1)
return z.reshape((3,)), res
def accel_z_phi_constraint_tf(times, z_over_z0, accel_z):
z_star, res = accel_z_phi_constraint(np.flip(times), np.flip(z_over_z0), np.flip(accel_z))
return z_star, res
def accel_x_phi_constraint(times, x_over_z, z_over_z0, accel_x):
dx_over_z0 = x_over_z * (z_over_z0 / z_over_z0[0])
dx_over_z0 -= dx_over_z0[0]
# TODO all times are needed but they are assumed to be evenly spaced
dt = times[1] - times[0]
int_accel = cumulative_int(dt, accel_x)
iint_accel = cumulative_int(dt, int_accel)
P = dx_over_z0
R = -(times - times[0])
D1 = 0.5 * np.square(R)
Da = iint_accel
A = np.stack((P, R, D1), axis=1)
b = Da.reshape((A.shape[0], 1))
x, res, rank, s = np.linalg.lstsq(A, b, rcond=-1)
return x.reshape((3,)), res
def accel_x_phi_constraint_tf(times, x_over_z, z_over_z0, accel_x):
x_star, res = accel_x_phi_constraint(np.flip(times), np.flip(x_over_z), np.flip(z_over_z0), np.flip(accel_x))
return x_star, res
# Setup numba
# TODO No fast math because lots of the values are super tiny and might be sub-normal (not sure)
cumulative_int = nb.jit(nopython = True, cache = True, fastmath=False)(cumulative_int)
accel_z_phi_constraint = nb.jit(nopython = True, cache = True, fastmath=False)(accel_z_phi_constraint)
accel_z_phi_constraint_tf = nb.jit(nopython = True, cache = True, fastmath=False)(accel_z_phi_constraint_tf)
accel_x_phi_constraint = nb.jit(nopython = True, cache = True, fastmath=False)(accel_x_phi_constraint)
accel_x_phi_constraint_tf = nb.jit(nopython = True, cache = True, fastmath=False)(accel_x_phi_constraint_tf)