forked from mingcv/Bread
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_CAN.py
276 lines (219 loc) · 11.3 KB
/
train_CAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import datetime
import os
import traceback
import kornia
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
import models
from datasets import LowLightFDataset, LowLightFDatasetEval
from models import PSNR, SSIM, CosineLR
from tools import SingleSummaryWriter
from tools import saver, mutils
def get_args():
parser = argparse.ArgumentParser('Breaking Downing the Darkness')
parser.add_argument('--num_gpus', type=int, default=1, help='number of gpus being used')
parser.add_argument('--num_workers', type=int, default=12, help='num_workers of dataloader')
parser.add_argument('--batch_size', type=int, default=1, help='The number of images per batch among all devices')
parser.add_argument('-m1', '--model1', type=str, default='INet',
help='Model Name')
parser.add_argument('-m3', '--model3', type=str, default='INet',
help='Model Name')
parser.add_argument('-m1w', '--model1_weight', type=str, default=None,
help='Model Name')
parser.add_argument('-m3w', '--model3_weight', type=str, default=None,
help='Model Name')
parser.add_argument('-ts', '--targets_split', type=str, default='targets',
help='dir of targets')
parser.add_argument('--comment', type=str, default='default',
help='Project comment')
parser.add_argument('--graph', action='store_true')
parser.add_argument('--scratch', action='store_true')
parser.add_argument('--sampling', action='store_true')
parser.add_argument('--test_on_start', action='store_true')
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--no_sche', action='store_true')
parser.add_argument('--optim', type=str, default='adam', help='select optimizer for training, '
'suggest using \'admaw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases')
parser.add_argument('--save_interval', type=int, default=500, help='Number of steps between saving')
parser.add_argument('--data_path', type=str, default='./data/LOL',
help='the root folder of dataset')
parser.add_argument('--log_path', type=str, default='logs/')
parser.add_argument('--saved_path', type=str, default='logs/')
args = parser.parse_args()
return args
def compute_gradient(img):
gradx = img[..., 1:, :] - img[..., :-1, :]
grady = img[..., 1:] - img[..., :-1]
return gradx, grady
class ModelCANet(nn.Module):
def __init__(self, model1, model3):
super().__init__()
self.color_loss = models.L1Loss()
self.restor_loss = models.MSSSIML1Loss(channels=3)
self.model_ianet = model1(in_channels=1, out_channels=1)
self.model_canet = model3(in_channels=6, out_channels=2)
self.eps = 1e-2
self.load_weight(self.model_ianet, opt.model1_weight)
if opt.model3_weight is not None:
self.load_weight(self.model_canet, opt.model3_weight)
self.model_ianet.eval()
def load_weight(self, model, weight_pth):
state_dict = torch.load(weight_pth)
ret = model.load_state_dict(state_dict, strict=True)
print(ret)
def forward(self, image, image_gt, training=True):
if training:
image = image.squeeze(0)
image_gt = image_gt.repeat(8, 1, 1, 1)
texture_in, cb_in, cr_in = torch.split(kornia.color.rgb_to_ycbcr(image), 1, dim=1)
texture_in_down = F.interpolate(texture_in, scale_factor=0.5, mode='bicubic', align_corners=True)
texture_illumi = self.model_ianet(texture_in_down)
texture_illumi = F.interpolate(texture_illumi, scale_factor=2, mode='bicubic', align_corners=True)
texture_en, cb_en, cr_en = torch.split(kornia.color.rgb_to_ycbcr(image / torch.clamp_min(texture_illumi, self.eps)),
1, dim=1)
texture_gt, cb_gt, cr_gt = torch.split(kornia.color.rgb_to_ycbcr(image_gt), 1, dim=1)
colors = self.model_canet(torch.cat([texture_in, cb_in, cr_in, texture_gt, cb_en, cr_en], dim=1))
cb, cr = torch.split(colors, 1, dim=1)
color_loss1 = self.color_loss(cb, cb_gt)
color_loss2 = self.color_loss(cr, cr_gt)
image_out = kornia.color.ycbcr_to_rgb(torch.cat([texture_gt, cb, cr], dim=1))
restor_loss = self.restor_loss(image_out, image_gt) * 1.0
psnr = PSNR(image_out, image_gt)
ssim = SSIM(image_out, image_gt).item()
return image_out, color_loss1, color_loss2, restor_loss, psnr, ssim
def train(opt):
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
timestamp = mutils.get_formatted_time()
opt.saved_path = opt.saved_path + f'/{opt.comment}/{timestamp}'
opt.log_path = opt.log_path + f'/{opt.comment}/{timestamp}/tensorboard/'
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
training_params = {'batch_size': opt.batch_size,
'shuffle': True,
'drop_last': True,
'num_workers': opt.num_workers}
val_params = {'batch_size': 1,
'shuffle': False,
'drop_last': False,
'num_workers': opt.num_workers}
training_set = LowLightFDataset(os.path.join(opt.data_path, 'train'), targets_split=opt.targets_split,
training=True)
training_generator = DataLoader(training_set, **training_params)
val_set = LowLightFDatasetEval(os.path.join(opt.data_path, 'eval'), training=False)
val_generator = DataLoader(val_set, **val_params)
model1 = getattr(models, opt.model1)
model3 = getattr(models, opt.model3)
model = ModelCANet(model1, model3)
print(model)
writer = SingleSummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
if opt.num_gpus > 0:
model = model.cuda()
if opt.num_gpus > 1:
model = nn.DataParallel(model)
if opt.optim == 'adam':
optimizer = torch.optim.Adam(model.model_canet.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(model.model_canet.parameters(), opt.lr, momentum=0.9, nesterov=True)
scheduler = CosineLR(optimizer, opt.lr, opt.num_epochs)
epoch = 0
step = 0
model.model_canet.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
if not opt.sampling and not opt.test_on_start:
for iter, (data, target, name) in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
if opt.num_gpus == 1:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
image_out, color_loss1, color_loss2, \
restor_loss, psnr, ssim = model(data, target, training=True)
loss = color_loss1 + color_loss2 + restor_loss
loss.backward()
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. color_loss1: {:1.5f}, color_loss2: {:1.5f}, restor_loss: {:1.5f}, psnr: {:.5f}, ssim: {:.5f}'.format(
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch,
color_loss1.item(), color_loss2.item(),
restor_loss.item(), psnr, ssim))
writer.add_scalar('Loss/train', loss, step)
writer.add_scalar('PSNR/train', psnr, step)
writer.add_scalar('SSIM/train', ssim, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
# scheduler.step(np.mean(epoch_loss))
if opt.no_sche:
scheduler.step()
saver.base_url = os.path.join(opt.saved_path, 'results', '%03d' % epoch)
if epoch % opt.val_interval == 0:
model.model_canet.eval()
loss_ls = []
psnrs = []
ssims = []
for iter, (data, target, name) in enumerate(val_generator):
with torch.no_grad():
if opt.num_gpus == 1:
data = data.squeeze(0).cuda()
target = target.cuda()
image_out, color_loss1, color_loss2, restor_loss, \
psnr, ssim = model(data, target, training=False)
saver.save_image(image_out, name=os.path.splitext(name[0])[0] + '_out')
saver.save_image(data, name=os.path.splitext(name[0])[0] + '_in')
saver.save_image(target, name=os.path.splitext(name[0])[0] + '_gt')
loss = restor_loss + color_loss1 + color_loss2
loss_ls.append(loss.item())
psnrs.append(psnr)
ssims.append(ssim)
loss = np.mean(np.array(loss_ls))
psnr = np.mean(np.array(psnrs))
ssim = np.mean(np.array(ssims))
print(
'Val. Epoch: {}/{}. Loss: {:1.5f}, psnr: {:.5f}, ssim: {:.5f}'.format(
epoch, opt.num_epochs, loss, psnr, ssim))
writer.add_scalar('Loss/val', loss, step)
writer.add_scalar('PSNR/val', psnr, step)
writer.add_scalar('SSIM/val', ssim, step)
save_checkpoint(model, f'{opt.model3}_{"%03d" % epoch}_{psnr}_{ssim}_{step}.pth')
model.model_canet.train()
opt.test_on_start = False
if opt.sampling:
exit(0)
except KeyboardInterrupt:
save_checkpoint(model, f'{opt.model3}_{epoch}_{step}_keyboardInterrupt.pth')
writer.close()
writer.close()
def save_checkpoint(model, name):
if isinstance(model, nn.DataParallel):
torch.save(model.module.model_canet.state_dict(), os.path.join(opt.saved_path, name))
else:
torch.save(model.model_canet.state_dict(), os.path.join(opt.saved_path, name))
if __name__ == '__main__':
opt = get_args()
train(opt)