-
Notifications
You must be signed in to change notification settings - Fork 4
/
layers.py
1259 lines (981 loc) · 34 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from act_tensor.functions import *
import tensorflow as tf
import numpy as np
from keras import backend
from keras.backend import *
from tensorflow.keras import backend as K
class SoftShrink(tf.keras.layers.Layer):
def __init__(self, lamd=1.0, trainable=False, **kwargs):
"""
Soft Shrinkage (Softshrink) Activation Layer
Parameters
----------
lamd : int, float
trainable : default=False
lamd factor.
"""
super(SoftShrink, self).__init__(**kwargs)
self.supports_masking = True
self.lamd = lamd
self.trainable = trainable
def build(self, input_shape):
self.lambda_factor = K.variable(self.lamd,
dtype=K.floatx(),
name='lambda_factor')
if self.trainable:
self._trainable_weights.append(self.lambda_factor)
super(SoftShrink, self).build(input_shape)
def call(self, inputs, mask=None):
return softSHRINK(inputs, self.lambda_factor)
def get_config(self):
config = {'lambda': self.get_weights()[0] if self.trainable else self.lamd,
'trainable': self.trainable}
base_config = super(SoftShrink, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
class HardShrink(tf.keras.layers.Layer):
def __init__(self, lamd=1.0, trainable=False, **kwargs):
"""
Hard Shrinkage (Hardshrink) Activation Layer
Parameters
----------
lamd : int, float
trainable : default=False
lamd factor.
"""
super(HardShrink, self).__init__(**kwargs)
self.supports_masking = True
self.lamd = lamd
self.trainable = trainable
def build(self, input_shape):
self.lambda_factor = K.variable(self.lamd,
dtype=K.floatx(),
name='lambda_factor')
if self.trainable:
self._trainable_weights.append(self.lambda_factor)
super(HardShrink, self).build(input_shape)
def call(self, inputs, mask=None):
return hard_shrink(inputs, self.lambda_factor)
def get_config(self):
config = {'lambda': self.get_weights()[0] if self.trainable else self.lamd,
'trainable': self.trainable}
base_config = super(HardShrink, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
class GLU(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
GLU Activation Layer
"""
super(GLU, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
gate = tf.sigmoid(gate)
x = tf.multiply(out, gate)
return x
class Bilinear(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
Bilinear Activation Layer
"""
super(Bilinear, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
x = tf.multiply(out, gate)
return x
class ReGLU(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
ReGLU Activation Layer
"""
super(ReGLU, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
gate = tf.nn.relu(gate)
x = tf.multiply(out, gate)
return x
class GeGLU(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
GeGLU Activation Layer
"""
super(GeGLU, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
gate = tf.keras.activations.gelu(gate)
x = tf.multiply(out, gate)
return x
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
SwiGLU Activation Layer
"""
super(SwiGLU, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
gate = tf.keras.activations.swish(gate)
x = tf.multiply(out, gate)
return x
class SeGLU(tf.keras.layers.Layer):
def __init__(self, bias=True, dim=-1, **kwargs):
"""
SeGLU Activation Layer
"""
super(SeGLU, self).__init__(**kwargs)
self.bias = bias
self.dim = dim
self.dense = tf.keras.layers.Dense(2, use_bias=bias)
def call(self, x):
out, gate = tf.split(x, num_split=2, axis=self.dim)
gate = tf.keras.activations.selu(gate)
x = tf.multiply(out, gate)
return x
class ReLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Rectified Linear Unit Activation Layer
"""
super(ReLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(ReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return relu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Identity(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Linear Activation Layer f(x)=x
"""
super(Identity, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Identity, self).build(input_shape)
def call(self, inputs, mask=None):
return identity(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Step(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Binary Step Activation Layer
"""
super(Step, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Step, self).build(input_shape)
def call(self, inputs, mask=None):
return step(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Sigmoid(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Sigmoid Activation Layer
"""
super(Sigmoid, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Sigmoid, self).build(input_shape)
def call(self, inputs, mask=None):
return sigmoid(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class HardSigmoid(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Hard Sigmoid Activation Layer
"""
super(HardSigmoid, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(HardSigmoid, self).build(input_shape)
def call(self, inputs, mask=None):
return hard_sigmoid(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class LogSigmoid(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
LogSigmoid Activation Layer
"""
super(LogSigmoid, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(LogSigmoid, self).build(input_shape)
def call(self, inputs, mask=None):
return log_sigmoid(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class SiLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Sigmoid Linear Unit Activation Layer
"""
super(SiLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(SiLU, self).build(input_shape)
def call(self, inputs, mask=None):
return silu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ParametricLinear(tf.keras.layers.Layer):
def __init__(self, alpha=1., **kwargs):
"""
Linear Activation Layer with parameter alpha
Parameters
----------
alpha : int, float default=1.0
"""
super(ParametricLinear, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
def build(self, input_shape):
super(ParametricLinear, self).build(input_shape)
def call(self, inputs, mask=None):
return parametric_linear(inputs, self.alpha)
def compute_output_shape(self, input_shape):
return input_shape
class PiecewiseLinear(tf.keras.layers.Layer):
def __init__(self, xmin, xmax, **kwargs):
"""
Piecewise Linear Activation Layer
Parameters
----------
xmin : int, float
min range.
xmax : int, float
max range.
"""
super(PiecewiseLinear, self).__init__(**kwargs)
self.supports_masking = True
self.xmin = xmin
self.xmax = xmax
def build(self, input_shape):
super(PiecewiseLinear, self).build(input_shape)
def call(self, inputs, mask=None):
return piecewise_linear(inputs, self.xmin, self.xmax)
def compute_output_shape(self, input_shape):
return input_shape
class CLL(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Complementary Log-Log Activation Layer
"""
super(CLL, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(CLL, self).build(input_shape)
def call(self, inputs, mask=None):
return cll(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Bipolar(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Bipolar Activation Layer
"""
super(Bipolar, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Bipolar, self).build(input_shape)
def call(self, inputs, mask=None):
return bipolar(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class BipolarSigmoid(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Bipolar Sigmoid Activation Layer
"""
super(BipolarSigmoid, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(BipolarSigmoid, self).build(input_shape)
def call(self, inputs, mask=None):
return bipolar_sigmoid(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Tanh(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Hyperbolic Tangent Activation Layer
"""
super(Tanh, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Tanh, self).build(input_shape)
def call(self, inputs, mask=None):
return tanh(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class TanhShrink(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
TanhShrink Activation Layer
"""
super(TanhShrink, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(TanhShrink, self).build(input_shape)
def call(self, inputs, mask=None):
return tanhshrink(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class LeCunTanh(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
LeCun's Tanh Activation Layer
"""
super(LeCunTanh, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(LeCunTanh, self).build(input_shape)
def call(self, inputs, mask=None):
return leCun_tanh(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class HardTanh(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Hard Tanh Activation Layer
"""
super(HardTanh, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(HardTanh, self).build(input_shape)
def call(self, inputs, mask=None):
return hard_tanh(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class TanhExp(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Tanh Exponential Activation Layer
"""
super(TanhExp, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(TanhExp, self).build(input_shape)
def call(self, inputs, mask=None):
return tanh_exp(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ABS(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Absolute Activation Layer
"""
super(ABS, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(ABS, self).build(input_shape)
def call(self, inputs, mask=None):
return Abs(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class SquaredReLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Squared Rectified Linear Unit Activation Layer
"""
super(SquaredReLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(SquaredReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return squared_relu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ParametricReLU(tf.keras.layers.Layer):
def __init__(self, alpha=0.001, **kwargs):
"""
Parametric Rectified Linear Unit Activation Layer
Parameters
----------
alpha : int, float default=0.001
"""
super(ParametricReLU, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
def build(self, input_shape):
super(ParametricReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return Parametric_ReLU(inputs, self.alpha)
def compute_output_shape(self, input_shape):
return input_shape
class RandomizedReLU(tf.keras.layers.Layer):
def __init__(self, lower=0., upper=1., **kwargs):
"""
Randomized Leaky Rectified Linear Unit Activation Layer
Parameters
----------
lower : int, float default=0
lower range for random.uniform.
upper : int, float default=1
upper range for random.uniform.
"""
super(RandomizedReLU, self).__init__(**kwargs)
self.supports_masking = True
self.lower = lower
self.upper = upper
def build(self, input_shape):
super(RandomizedReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return Randomized_ReLU(inputs, self.lower, self.upper)
def compute_output_shape(self, input_shape):
return input_shape
class LeakyReLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Leaky Rectified Linear Unit Activation Layer
"""
super(LeakyReLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(LeakyReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return leaky_ReLU(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ReLU6(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
ReLU6 Activation Layer
"""
super(ReLU6, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(ReLU6, self).build(input_shape)
def call(self, inputs, mask=None):
return relu6(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ModReLU(tf.keras.layers.Layer):
def __init__(self, bias, **kwargs):
"""
Mod Rectified Linear Unit Activation Layer
Parameters
----------
bias : int, float
"""
super(ModReLU, self).__init__(**kwargs)
self.supports_masking = True
self.bias = bias
def build(self, input_shape):
super(ModReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return Mod_ReLU(inputs, self.bias)
def compute_output_shape(self, input_shape):
return input_shape
class CosReLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Cosine ReLU Activation Layer
a = σ(z) = max(0, z) + cos(z)
"""
super(CosReLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(CosReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return Cos_ReLU(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class SinReLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Sin ReLU Activation Layer
a = σ(z) = max(0, z) + sin(z)
"""
super(SinReLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(SinReLU, self).build(input_shape)
def call(self, inputs, mask=None):
return Sin_ReLU(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Probit(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Probit Activation Layer also known as Cumulative distribution function (CDF)
"""
super(Probit, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Probit, self).build(input_shape)
def call(self, inputs, mask=None):
return probit(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Cos(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Cos Activation Layer
"""
super(Cos, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Cos, self).build(input_shape)
def call(self, inputs, mask=None):
return Cosine(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Gaussian(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Gaussian Activation Layer
"""
super(Gaussian, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Gaussian, self).build(input_shape)
def call(self, inputs, mask=None):
return gaussian(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Multiquadratic(tf.keras.layers.Layer):
def __init__(self, px, py, **kwargs):
"""
Multiquadratic Activation Layer
Parameters
----------
px: float
x dimension of chosen point
py: float
y dimension of chosen point
notes
-----
px and py must be float otherwise it will get an error.
"""
super(Multiquadratic, self).__init__(**kwargs)
self.supports_masking = True
self.px = px
self.py = py
def build(self, input_shape):
super(Multiquadratic, self).build(input_shape)
def call(self, inputs, mask=None):
return Multi_quadratic(inputs, self.px, self.py)
def compute_output_shape(self, input_shape):
return input_shape
class InvMultiquadratic(tf.keras.layers.Layer):
def __init__(self, px, py, **kwargs):
"""
Inverse Multiquadratic Activation Layer
Parameters
----------
px: float
x dimension of chosen point
py: float
y dimension of chosen point
notes
-----
px and py must be float otherwise it will get an error.
"""
super(InvMultiquadratic, self).__init__(**kwargs)
self.supports_masking = True
self.px = px
self.py = py
def build(self, input_shape):
super(InvMultiquadratic, self).build(input_shape)
def call(self, inputs, mask=None):
return Inv_Multi_quadratic(inputs, self.px, self.py)
def compute_output_shape(self, input_shape):
return input_shape
class SoftPlus(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Softplus or Smooth ReLU Activation Layer
"""
super(SoftPlus, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(SoftPlus, self).build(input_shape)
def call(self, inputs, mask=None):
return softPlus(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Mish(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Mish Activation Layer
"""
super(Mish, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Mish, self).build(input_shape)
def call(self, inputs, mask=None):
return mish(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class Smish(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Mish Activation Layer
"""
super(Smish, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(Smish, self).build(input_shape)
def call(self, inputs, mask=None):
return smish(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class ParametricSmish(tf.keras.layers.Layer):
def __init__(self, alpha = 1., beta = 1., **kwargs):
"""
Parametric Smish Activation Layer
Parameters
----------
alpha : float, default=1.
alpha weight.
beta : float, default=1.
beta weight.
notes
-----
alpha and beta must be float otherwise it will get an error.
"""
super(ParametricSmish, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
self.beta = beta
def build(self, input_shape):
super(ParametricSmish, self).build(input_shape)
def call(self, inputs, mask=None):
return Parametric_Smish(inputs, self.alpha, self.beta)
def compute_output_shape(self, input_shape):
return input_shape
class Swish(tf.keras.layers.Layer):
def __init__(self, beta = 1., **kwargs):
"""
Swish Activation Layer
Parameters
----------
beta : int, float default=1.
"""
super(Swish, self).__init__(**kwargs)
self.supports_masking = True
self.beta = beta
def build(self, input_shape):
super(Swish, self).build(input_shape)
def call(self, inputs, mask=None):
return swish(inputs, self.beta)
def compute_output_shape(self, input_shape):
return input_shape
class ESwish(tf.keras.layers.Layer):
def __init__(self, beta = 1., **kwargs):
"""
E-Swish Activation Layer
Parameters
----------
beta : int, float default=1.
"""
super(ESwish, self).__init__(**kwargs)
self.supports_masking = True
self.beta = beta
def build(self, input_shape):
super(ESwish, self).build(input_shape)
def call(self, inputs, mask=None):
return eswish(inputs, self.beta)
def compute_output_shape(self, input_shape):
return input_shape
class HardSwish(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Hard Swish Activation Layer
"""
super(HardSwish, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(HardSwish, self).build(input_shape)
def call(self, inputs, mask=None):
return hardSwish(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class GCU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Growing Cosine Unit Activation Layer
"""
super(GCU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(GCU, self).build(input_shape)
def call(self, inputs, mask=None):
return gcu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class CoLU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
Collapsing Linear Unit Activation Layer
"""
super(CoLU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(CoLU, self).build(input_shape)
def call(self, inputs, mask=None):
return colu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class PELU(tf.keras.layers.Layer):
def __init__(self, c, b, alpha, **kwargs):
"""
Parametric Exponential Linear Unit Activation Layer
Parameters
----------
alpha : int, float
c : int, float
b : int, float
"""
super(PELU, self).__init__(**kwargs)
self.supports_masking = True
self.alpha = alpha
self.b = b
self.c = c
def build(self, input_shape):
super(PELU, self).build(input_shape)
def call(self, inputs, mask=None):
return pelu(inputs, self.c, self.b,self.alpha)
def compute_output_shape(self, input_shape):
return input_shape
class SELU(tf.keras.layers.Layer):
def __init__(self, **kwargs):
"""
SELU Activation Layer
"""
super(SELU, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
super(SELU, self).build(input_shape)
def call(self, inputs, mask=None):
return selu(inputs)
def compute_output_shape(self, input_shape):
return input_shape
class CELU(tf.keras.layers.Layer):
def __init__(self, alpha=1.0, **kwargs):
"""
CELU Activation Layer
Parameters
----------
alpha : int, float, default=1.0
"""
super(CELU, self).__init__(**kwargs)