This repository has been archived by the owner on Apr 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
test.py
139 lines (105 loc) · 3.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# import required packages
import cv2
import argparse
import numpy as np
import os
import time
# use gpu
# os.environ["OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES"] = "1"
# handle command line arguments
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True,
help='path to input image')
ap.add_argument('-c', '--config', required=True,
help='path to yolo config file')
ap.add_argument('-w', '--weights', required=True,
help='path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,
help='path to text file containing class names')
args = ap.parse_args()
# read class names from text file
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# generate different colors for different classes
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
# function to get the output layer names
# in the architecture
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1]
for i in net.getUnconnectedOutLayers()]
return output_layers
# function to draw bounding box on the detected object with class name
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x-10, y-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
def detect_and_draw(image, net):
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
# create input blob
blob = cv2.dnn.blobFromImage(
image, scale, (416, 416), (0, 0, 0), True, crop=False)
# set input blob for the network
net.setInput(blob)
# run inference through the network
# and gather predictions from output layers
outs = net.forward(get_output_layers(net))
# initialization
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
# for each detetion from each output layer
# get the confidence, class id, bounding box params
# and ignore weak detections (confidence < 0.5)
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# apply non-max suppression
indices = cv2.dnn.NMSBoxes(
boxes, confidences, conf_threshold, nms_threshold)
# go through the detections remaining
# after nms and draw bounding box
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_bounding_box(image, class_ids[i], confidences[i], round(
x), round(y), round(x+w), round(y+h))
# read pre-trained model and config file
net = cv2.dnn.readNet(args.weights, args.config)
# read input image
image = cv2.imread(args.image)
start_time = time.time()
detect_and_draw(image, net)
use_time = time.time()-start_time
print('cost %f seconds' % use_time)
# display output image
# cv2.imshow("object detection", image)
# wait until any key is pressed
# cv2.waitKey()
# save output image to disk
cv2.imwrite("output.jpg", image)
# release resources
cv2.destroyAllWindows()