-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.py
233 lines (158 loc) · 7.94 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#read in sound file
#read in textgrid segmentation tier for
#inspu=iration: http://homepage.univie.ac.at/christian.herbst/python/#wavDemo
import praatTextGrid
from pydub import AudioSegment
import os
import sys
import numpy as np
from scipy.io import wavfile
#import praatUtil
import scipy.io.wavfile as wav
X_SIZE = 16000
IMG_SIZE = 64
AudioSegment.ffmpeg = "/opt/local/var/macports/sources/rsync.macports.org/macports/release/tarballs/ports/multimedia/ffmpeg"
def process_textgrid_and_wav(textgrids_dir, wavs_dir, test_wavs_storage_dir=None, train_wavs_storage_dir=None,
wavs_exist=True):
"""
Extracts labels from textgrid, extracts timestamps for each labeled phoneme, calls method to create create sound file for each segment in larger file
:returns list of train labels, list of test labels
"""
try:
all_train_labels = []
all_test_labels = []
for f_name in os.listdir(textgrids_dir):
# silly mac makes hidden configuration files that need to be ignored
if not f_name.startswith('.'):
print(textgrids_dir + f_name)
all_times_of_test_clips = []
all_times_of_train_clips = []
labels_for_train = []
labels_for_test = []
# instantiate a new TextGrid object
textGrid = praatTextGrid.PraatTextGrid(0, 0)
arrTiers = textGrid.readFromFile(textgrids_dir + f_name)
numTiers = len(arrTiers)
print(numTiers)
if numTiers != 2:
raise Exception("we expect two tiers in this file")
# use segments tier, the second tier in our textgrid file
tier = arrTiers[1]
for i in range(tier.getSize()):
# interval is list of start time, end time, segment annotation, in that order
interval = tier.get(i)
if tier.getSize() <= 1:
# ADD this later
interval[2] = "NONE"
# get_sound_clips(wav_path,interval[0],interval[1])
label = interval[2]
test = False
if label.startswith('ASF'):
test = True
# test_clip_start_and_end = []
labels_for_test.append(label)
all_times_of_test_clips.append(interval[0] * 10000)
# test_clip_start_and_end.append(interval[1]*10000)
else:
label = SampaMapping.sampa_correction_map[label]
labels_for_train.append(label)
all_times_of_train_clips.append(interval[0] * 10000)
all_test_labels.append(labels_for_test)
all_train_labels.append(labels_for_train)
file_name_without_extension = os.path.splitext(os.path.basename(f_name))[0]
# check if filtering through code also creates this _band extension
wav_path = wavs_dir + file_name_without_extension + "_band.wav"
# print(wav_path)
if not wavs_exist:
get_sound_clips(wav_path, all_times_of_test_clips, test_wavs_storage_dir)
if all_times_of_train_clips:
get_sound_clips(wav_path, all_times_of_train_clips, train_wavs_storage_dir)
except OSError:
# If directory has already been created or is inaccessible
if not os.path.exists(textgrids_dir):
sys.exit("Error opening given textgrid file path")
return (all_train_labels, all_times_of_train_clips), (all_test_labels, all_times_of_test_clips)
def get_sound_clips(wav_path, clip_times, wavs_storage_dir, already_filtered=True):
"""
Breaks existing sound files into many small wave files, one for each segment
:returns nothing
"""
try:
song = AudioSegment.from_wav(wav_path)
wav_name_without_extension = os.path.splitext(os.path.basename(wav_path))[0]
# if not already_filtered:
# praatUtil.applyBandPassFilter(wav_path, 50,20000,20)
for clip_time in clip_times:
start = clip_time[0]
end = clip_time[1]
duration = end - start
#reject clips equal to or over 2 seconds long
if duration < 2:
start_time_in_ms = start * 1000
end_time_in_ms = end * 1000
phoneme_segment = song[start_time_in_ms:end_time_in_ms]
wav_name = wav_name_without_extension + str(start) + ".wav"
phoneme_segment.export(wavs_storage_dir + wav_name, format="wav")
except OSError:
# If directory has already been created or is inaccessible
if not os.path.exists(wav_path):
sys.exit("Error opening wave file given path. Check whether all necessary files are in that directory")
if not os.path.exists(wavs_storage_dir):
sys.exit("The wav file storage directory does not exist in your file system. The wave files will not be saved.")
return
#source: https://github.com/microic/niy/tree/master/examples/speech_commands_spectrogram
def spectrogram(wav_dir):
list_of_specs = []
for wav_file in os.listdir(wav_dir):
framerate, wav_data = wavfile.read(wav_dir + wav_file)
window_length = 512
window_shift = 121
if len(wav_data) > X_SIZE:
wav_data = wav_data[:X_SIZE]
X = np.zeros(X_SIZE).astype('float32')
X[:len(wav_data)] += wav_data
spec = np.zeros((IMG_SIZE, IMG_SIZE)).astype('float32')
for i in range(IMG_SIZE):
start = i * window_shift
end = start + window_length
sig = np.abs(np.fft.rfft(X[start:end] * np.hanning(window_length)))
spec[:,i] = (sig[1:IMG_SIZE + 1])[::-1]
spec = (spec-spec.min())/(spec.max()-spec.min())
spec = np.log10((spec * 100 + 0.01))
spec = (spec-spec.min())/(spec.max()-spec.min())
list_of_specs.append(spec)
return list_of_specs
def mfcc_batch_maker(wavs_storage_dir, labels):
#number the labels
#padded/zeroed np arrays
#leave one-hotting to ryan
# mfcc's of each segment
#librosa or the other one?
#make sure everything matches up!
return
# if '__main__' == __name__:
# # MAKE SURE TO ADD DEFAULT FILTERED
# try:
# textgrids_dir, wavs_dir, train_wavs_storage_dir, test_wavs_storage_dir = sys.argv[1:]
# except ValueError:
# sys.exit("{} textgrids_dir, wavs_dir, train_wavs_storage_dir, test_wavs_storage_dir; Make sure the slashes are in this format (slash on end as well): '/Users/samski/Documents/Wavs_for_Model/'".format(sys.argv[0]))
# '''
# The way it's set up is that you have one directory with textgrids and one directory with wave files of the exact same name that have been filtered beforehand in Praat,
# and thus have '_band' appended to the base name
# Make sure the slashes are in this format (slash on end as well): '/Users/samski/Documents/Wavs_for_Model/'
# '''
# # #remove hardcoded paths later
# # textgrids_dir = '/Users/samski/Documents/Textgrids_for_Model/'
# # wavs_dir = '/Users/samski/Documents/Wavs_for_Model/'
# # #add error handing os.exist for this! must exist!
# # train_wavs_storage_dir = "/Users/samski/Documents/Train_Wavs/"
# # test_wavs_storage_dir = "/Users/samski/Documents/Test_Wavs/"
# labels = process_textgrid_and_wav(textgrids_dir, wavs_dir, train_wavs_storage_dir, test_wavs_storage_dir)
# train_labels = labels[0]
# test_labels = labels[1]
# # print(train_labels)
# # print(test_labels)
# # train_mfccs = mfcc_batch_maker(train_wavs_storage_dir, train_labels)
# # test_mfccs = mfcc_batch_maker(test_wavs_storage_dir, test_labels)
# all_specs = spectrogram(test_wavs_storage_dir)
# # print(all_specs)