-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathalphas191.py
1242 lines (995 loc) · 65.6 KB
/
alphas191.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from numpy import log
from scipy.stats import rankdata
from alphas import Alphas
from datas import *
def Log(sr):
#自然对数函数
return np.log(sr)
def Rank(sr):
#列-升序排序并转化成百分比
return sr.rank(axis=1, method='min', pct=True)
def Delta(sr,period):
#period日差分
return sr.diff(period)
def Delay(sr,period):
#period阶滞后项
return sr.shift(period)
def Corr(x,y,window):
#window日滚动相关系数
#当一个变量值为常量,另一个变量值可变化时,此时无法计算相关度,使用0 进行填充
r = x.rolling(window).corr(y).fillna(0)
#同时将起始 window-1 个窗口赋值为空
r.iloc[:(window-1), :] = None
return r
def Cov(x,y,window):
#window日滚动协方差
return x.rolling(window).cov(y)
def Sum(sr,window):
#window日滚动求和
return sr.rolling(window).sum()
def Prod(sr,window):
#window日滚动求乘积
return sr.rolling(window).apply(lambda x: np.prod(x))
def Mean(sr,window):
#window日滚动求均值
return sr.rolling(window).mean()
def Std(sr,window):
#window日滚动求标准差
return sr.rolling(window).std()
def Tsrank(sr, window):
#window日序列末尾值的顺位
return sr.rolling(window).apply(lambda x: rankdata(x)[-1])
def Tsmax(sr, window):
#window日滚动求最大值
return sr.rolling(window).max()
def Tsmin(sr, window):
#window日滚动求最小值
return sr.rolling(window).min()
def Sign(sr):
#符号函数
return np.sign(sr)
def Max(sr1,sr2):
return np.maximum(sr1, sr2)
def Min(sr1,sr2):
return np.minimum(sr1, sr2)
def Rowmax(sr):
return sr.max(axis=1)
def Rowmin(sr):
return sr.min(axis=1)
def Sma(sr,n,m):
#sma均值
return sr.ewm(alpha=m/n, adjust=False).mean()
def Abs(sr):
#求绝对值
return sr.abs()
def Sequence(n):
#生成 1~n 的等差序列
return np.arange(1,n+1)
def Regbeta(sr,x):
window = len(x)
return sr.rolling(window).apply(lambda y: np.polyfit(x, y, deg=1)[0])
def Decaylinear(sr, window):
weights = np.array(range(1, window+1))
sum_weights = np.sum(weights)
return sr.rolling(window).apply(lambda x: np.sum(weights*x) / sum_weights)
def Lowday(sr,window):
return sr.rolling(window).apply(lambda x: len(x) - x.values.argmin())
def Highday(sr,window):
return sr.rolling(window).apply(lambda x: len(x) - x.values.argmax())
def Wma(sr,window):
weights = np.array(range(window-1,-1, -1))
weights = np.power(0.9,weights)
sum_weights = np.sum(weights)
return sr.rolling(window).apply(lambda x: np.sum(weights*x) / sum_weights)
def Count(cond,window):
return cond.rolling(window).apply(lambda x: x.sum())
def Sumif(sr,window,cond):
sr[~cond] = 0
return sr.rolling(window).sum()
def Returns(df):
return df.rolling(2).apply(lambda x: x.iloc[-1] / x.iloc[0]) - 1
class Alphas191(Alphas):
def __init__(self, df_data):
self.open = df_data['open'] # 开盘价
self.high = df_data['high'] # 最高价
self.low = df_data['low'] # 最低价
self.close = df_data['close'] # 收盘价
self.volume = df_data['volume'] # 成交量
self.returns = Returns(df_data['close']) # 日收益率
self.vwap = df_data['vwap'] # 成交均价
self.close_prev = df_data['close'].shift(1)#前一天收盘价
self.amount = df_data['amount']#交易额
self.benchmark_open = df_data['benchmark_open']#指数开盘价series
self.benchmark_close = df_data['benchmark_close']#指数收盘价series
# self.value = df_data['value']#公司总市值
def alpha001(self): #平均1751个数据
##### (-1 * CORR(RANK(DELTA(LOG(VOLUME), 1)), RANK(((CLOSE - OPEN) / OPEN)), 6))####
return (-1 * Corr(Rank(Delta(log(self.volume), 1)), Rank(((self.close - self.open) / self.open)), 6))
def alpha002(self): #1783
##### -1 * delta((((close-low)-(high-close))/(high-low)),1))####
return -1*Delta((((self.close-self.low)-(self.high-self.close))/(self.high-self.low)),1)
def alpha003(self):
##### SUM((CLOSE=DELAY(CLOSE,1)?0:CLOSE-(CLOSE>DELAY(CLOSE,1)?MIN(LOW,DELAY(CLOSE,1)):MAX(HIGH,DELAY(CLOSE,1)))),6) ####
cond1 = (self.close == Delay(self.close,1))
cond2 = (self.close > Delay(self.close,1))
cond3 = (self.close < Delay(self.close,1))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = 0
part[cond2] = self.close - Min(self.low,Delay(self.close,1))
part[cond3] = self.close - Max(self.high,Delay(self.close,1))
return Sum(part, 6)
def alpha004(self):
#####((((SUM(CLOSE, 8) / 8) + STD(CLOSE, 8)) < (SUM(CLOSE, 2) / 2)) ? (-1 * 1) : (((SUM(CLOSE, 2) / 2) <((SUM(CLOSE, 8) / 8) - STD(CLOSE, 8))) ? 1 : (((1 < (VOLUME / MEAN(VOLUME,20))) || ((VOLUME /MEAN(VOLUME,20)) == 1)) ? 1 : (-1 * 1))))
cond1 = ((Sum(self.close, 8)/8 + Std(self.close, 8)) < Sum(self.close, 2)/2)
cond2 = ((Sum(self.close, 8)/8 + Std(self.close, 8)) > Sum(self.close, 2)/2)
cond3 = ((Sum(self.close, 8)/8 + Std(self.close, 8)) == Sum(self.close, 2)/2)
cond4 = (self.volume/Mean(self.volume, 20) >= 1)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = -1
part[cond2] = 1
part[cond3] = -1
part[cond3 & cond4] = 1
return part
def alpha005(self): #1447
####(-1 * TSMAX(CORR(TSRANK(VOLUME, 5), TSRANK(HIGH, 5), 5), 3))###
return -1*Tsmax(Corr(Tsrank(self.volume, 5),Tsrank(self.high, 5),5), 3)
def alpha006(self): #1779
####(RANK(SIGN(DELTA((((OPEN * 0.85) + (HIGH * 0.15))), 4)))* -1)###
return -1*Rank(Sign(Delta(((self.open * 0.85) + (self.high * 0.15)), 4)))
def alpha007(self): #1782
####((RANK(MAX((VWAP - CLOSE), 3)) + RANK(MIN((VWAP - CLOSE), 3))) * RANK(DELTA(VOLUME, 3)))###
return ((Rank(Tsmax((self.vwap - self.close), 3)) + Rank(Tsmin((self.vwap - self.close), 3))) * Rank(Delta(self.volume, 3)))
def alpha008(self): #1779
####RANK(DELTA(((((HIGH + LOW) / 2) * 0.2) + (VWAP * 0.8)), 4) * -1)###
return Rank(Delta(((((self.high + self.low) / 2) * 0.2) + (self.vwap * 0.8)), 4) * -1)
def alpha009(self): #1790
####SMA(((HIGH+LOW)/2-(DELAY(HIGH,1)+DELAY(LOW,1))/2)*(HIGH-LOW)/VOLUME,7,2)###
return Sma(((self.high+self.low)/2-(Delay(self.high,1)+Delay(self.low,1))/2)*(self.high-self.low)/self.volume,7,2)
def alpha010(self):
####(RANK(MAX(((RET < 0) ? STD(RET, 20) : CLOSE)^2),5))###
cond = (self.returns < 0)
part = self.returns.copy(deep=True)
part.loc[:, :] = None
part[cond] = Std(self.returns, 20)
part[~cond] = self.close
part = part**2
return Rank(Tsmax(part, 5))
def alpha011(self): #1782
####SUM(((CLOSE-LOW)-(HIGH-CLOSE))/(HIGH-LOW)*VOLUME,6)###
return Sum(((self.close-self.low)-(self.high-self.close))/(self.high-self.low)*self.volume,6)
def alpha012(self): #1779
####(RANK((OPEN - (SUM(VWAP, 10) / 10)))) * (-1 * (RANK(ABS((CLOSE - VWAP)))))###
return (Rank((self.open - (Sum(self.vwap, 10) / 10)))) * (-1 * (Rank(Abs((self.close - self.vwap)))))
def alpha013(self): #1790
####(((HIGH * LOW)^0.5) - VWAP)###
return (((self.high * self.low)**0.5) - self.vwap)
def alpha014(self): #1776
####CLOSE-DELAY(CLOSE,5)###
return self.close-Delay(self.close,5)
def alpha015(self): #1790
####OPEN/DELAY(CLOSE,1)-1###
return self.open/Delay(self.close,1)-1
def alpha016(self): #1736
####(-1 * TSMAX(RANK(CORR(RANK(VOLUME), RANK(VWAP), 5)), 5))###
return (-1 * Tsmax(Rank(Corr(Rank(self.volume), Rank(self.vwap), 5)), 5))
def alpha017(self): #1776
####RANK((VWAP - MAX(VWAP, 15)))^DELTA(CLOSE, 5)###
return Rank((self.vwap - Tsmax(self.vwap, 15)))**Delta(self.close, 5)
def alpha018(self): #1776
####CLOSE/DELAY(CLOSE,5)###
return self.close/Delay(self.close,5)
def alpha019(self):
####(CLOSE<DELAY(CLOSE,5)?(CLOSE-DELAY(CLOSE,5))/DELAY(CLOSE,5):(CLOSE=DELAY(CLOSE,5)?0:(CLOSE-DELAY(CLOSE,5))/CLOSE))###
cond1 = (self.close < Delay(self.close,5))
cond2 = (self.close == Delay(self.close,5))
cond3 = (self.close > Delay(self.close,5))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = (self.close-Delay(self.close,5))/Delay(self.close,5)
part[cond2] = 0
part[cond3] = (self.close-Delay(self.close,5))/self.close
return part
def alpha020(self): #1773
####(CLOSE-DELAY(CLOSE,6))/DELAY(CLOSE,6)*100###
return (self.close-Delay(self.close,6))/Delay(self.close,6)*100
def alpha021(self): #reg?
####REGBETA(MEAN(CLOSE,6),SEQUENCE(6))###
return Regbeta(Mean(self.close,6), Sequence(6))
def alpha022(self): #1736
####SMA(((CLOSE-MEAN(CLOSE,6))/MEAN(CLOSE,6)-DELAY((CLOSE-MEAN(CLOSE,6))/MEAN(CLOSE,6),3)),12,1)###
return Sma(((self.close-Mean(self.close,6))/Mean(self.close,6)-Delay((self.close-Mean(self.close,6))/Mean(self.close,6),3)),12,1)
def alpha023(self):
####SMA((CLOSE>DELAY(CLOSE,1)?STD(CLOSE,20):0),20,1) / (SMA((CLOSE>DELAY(CLOSE,1)?STD(CLOSE,20):0),20,1) + SMA((CLOSE<=DELAY(CLOSE,1)?STD(CLOSE,20):0),20,1))*100###
cond = (self.close > Delay(self.close,1))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = Std(self.close,20)
part1[~cond] = 0
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = Std(self.close,20)
part2[cond] = 0
return 100*Sma(part1,20,1)/(Sma(part1,20,1) + Sma(part2,20,1))
def alpha024(self): #1776
####SMA(CLOSE-DELAY(CLOSE,5),5,1)###
return Sma(self.close-Delay(self.close,5),5,1)
def alpha025(self): #886
####((-1 * RANK((DELTA(CLOSE, 7) * (1 - RANK(DECAYLINEAR((VOLUME / MEAN(VOLUME,20)), 9)))))) * (1 + RANK(SUM(RET, 250))))###
return ((-1 * Rank((Delta(self.close, 7) * (1 - Rank(Decaylinear((self.volume / Mean(self.volume,20)), 9)))))) * (1 + Rank(Sum(self.returns, 250))))
def alpha026(self):
####((((SUM(CLOSE, 7) / 7) - CLOSE)) + ((CORR(VWAP, DELAY(CLOSE, 5), 230))))###
return ((((Sum(self.close, 7) / 7) - self.close)) + ((Corr(self.vwap, Delay(self.close, 5), 230))))
def alpha027(self):
####WMA((CLOSE-DELAY(CLOSE,3))/DELAY(CLOSE,3)*100+(CLOSE-DELAY(CLOSE,6))/DELAY(CLOSE,6)*100,12)###
A = (self.close-Delay(self.close,3))/Delay(self.close,3)*100+(self.close-Delay(self.close,6))/Delay(self.close,6)*100
return Wma(A, 12)
def alpha028(self): #1728
####3*SMA((CLOSE-TSMIN(LOW,9))/(TSMAX(HIGH,9)-TSMIN(LOW,9))*100,3,1)-2*SMA(SMA((CLOSE-TSMIN(LOW,9))/(MAX(HIGH,9)-TSMAX(LOW,9))*100,3,1),3,1)###
return 3*Sma((self.close-Tsmin(self.low,9))/(Tsmax(self.high,9)-Tsmin(self.low,9))*100,3,1)-2*Sma(Sma((self.close-Tsmin(self.low,9))/(Tsmax(self.high,9)-Tsmax(self.low,9))*100,3,1),3,1)
def alpha029(self): #1773
####(CLOSE-DELAY(CLOSE,6))/DELAY(CLOSE,6)*VOLUME###
return (self.close-Delay(self.close,6))/Delay(self.close,6)*self.volume
def alpha030(self): #reg?
####WMA((REGRESI(CLOSE/DELAY(CLOSE)-1,MKT,SMB,HML, 60))^2,20)###
return 0
def alpha031(self): #1714
####(CLOSE-MEAN(CLOSE,12))/MEAN(CLOSE,12)*100###
return (self.close-Mean(self.close,12))/Mean(self.close,12)*100
def alpha032(self): #1505
####(-1 * SUM(RANK(CORR(RANK(HIGH), RANK(VOLUME), 3)), 3))###
return (-1 * Sum(Rank(Corr(Rank(self.high), Rank(self.volume), 3)), 3))
def alpha033(self): #904 数据量较少
####((((-1 * TSMIN(LOW, 5)) + DELAY(TSMIN(LOW, 5), 5)) * RANK(((SUM(RET, 240) - SUM(RET, 20)) / 220))) *TSRANK(VOLUME, 5))###
return ((((-1 * Tsmin(self.low, 5)) + Delay(Tsmin(self.low, 5), 5)) * Rank(((Sum(self.returns, 240) - Sum(self.returns, 20)) / 220))) *Tsrank(self.volume, 5))
def alpha034(self): #1714
####MEAN(CLOSE,12)/CLOSE###
return Mean(self.close,12)/self.close
def alpha035(self): #1790 (OPEN * 0.65) +(OPEN *0.35)有问题
####(MIN(RANK(DECAYLINEAR(DELTA(OPEN, 1), 15)), RANK(DECAYLINEAR(CORR((VOLUME), ((OPEN * 0.65) +(OPEN *0.35)), 17),7))) * -1)###
return (Min(Rank(Decaylinear(Delta(self.open, 1), 15)), Rank(Decaylinear(Corr((self.volume), ((self.open * 0.65) +(self.open *0.35)), 17),7))) * -1)
def alpha036(self): #1714
####RANK(SUM(CORR(RANK(VOLUME), RANK(VWAP),6), 2))###
return Rank(Sum(Corr(Rank(self.volume), Rank(self.vwap),6 ), 2))
def alpha037(self): #1713
####(-1 * RANK(((SUM(OPEN, 5) * SUM(RET, 5)) - DELAY((SUM(OPEN, 5) * SUM(RET, 5)), 10))))###
return (-1 * Rank(((Sum(self.open, 5) * Sum(self.returns, 5)) - Delay((Sum(self.open, 5) * Sum(self.returns, 5)), 10))))
def alpha038(self):
####(((SUM(HIGH, 20) / 20) < HIGH) ? (-1 * DELTA(HIGH, 2)) : 0)
cond = ((Sum(self.high, 20) / 20) < self.high)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = -1 * Delta(self.high, 2)
part[~cond] = 0
return part
def alpha039(self): #1666
####((RANK(DECAYLINEAR(DELTA((CLOSE), 2),8)) - RANK(DECAYLINEAR(CORR(((VWAP * 0.3) + (OPEN * 0.7)),SUM(MEAN(VOLUME,180), 37), 14), 12))) * -1)###
return ((Rank(Decaylinear(Delta((self.close), 2),8)) - Rank(Decaylinear(Corr(((self.vwap * 0.3) + (self.open * 0.7)),Sum(Mean(self.volume,180), 37), 14), 12))) * -1)
def alpha040(self):
####SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:0),26)/SUM((CLOSE<=DELAY(CLOSE,1)?VOLUME:0),26)*100###
cond = (self.close > Delay(self.close,1))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = self.volume
part1[~cond] = 0
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = self.volume
part2[cond] = 0
return Sum(part1,26)/Sum(part2,26)*100
def alpha041(self): #1782
####(RANK(MAX(DELTA((VWAP), 3), 5))* -1)###
return (Rank(Tsmax(Delta((self.vwap), 3), 5))* -1)
def alpha042(self): #1399 数据量较少
####((-1 * RANK(STD(HIGH, 10))) * CORR(HIGH, VOLUME, 10))###
return ((-1 * Rank(Std(self.high, 10))) * Corr(self.high, self.volume, 10))
def alpha043(self):
####SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:(CLOSE<DELAY(CLOSE,1)?-VOLUME:0)),6)###
cond1 = (self.close > Delay(self.close,1))
cond2 = (self.close < Delay(self.close,1))
cond3 = (self.close == Delay(self.close,1))
part = self.close.copy(deep=True) # pd.Series(np.zeros(self.close.shape))
part.loc[:, :] = None
part[cond1] = self.volume
part[cond2] = -self.volume
part[cond3] = 0
return Sum(part,6)
def alpha044(self): #1748
####(TSRANK(DECAYLINEAR(CORR(((LOW )), MEAN(VOLUME,10), 7), 6),4) + TSRANK(DECAYLINEAR(DELTA((VWAP),3), 10), 15))###
return (Tsrank(Decaylinear(Corr(((self.low)), Mean(self.volume,10), 7), 6),4) + Tsrank(Decaylinear(Delta((self.vwap),3), 10), 15))
def alpha045(self): #1070 数据量较少
####(RANK(DELTA((((CLOSE * 0.6) + (OPEN *0.4))), 1)) * RANK(CORR(VWAP, MEAN(VOLUME,150), 15)))###
return (Rank(Delta((((self.close * 0.6) + (self.open *0.4))), 1)) * Rank(Corr(self.vwap, Mean(self.volume,150), 15)))
def alpha046(self): #1630
####(MEAN(CLOSE,3)+MEAN(CLOSE,6)+MEAN(CLOSE,12)+MEAN(CLOSE,24))/(4*CLOSE)###
return (Mean(self.close,3)+Mean(self.close,6)+Mean(self.close,12)+Mean(self.close,24))/(4*self.close)
def alpha047(self): #1759
####SMA((TSMAX(HIGH,6)-CLOSE)/(TSMAX(HIGH,6)-TSMIN(LOW,6))*100,9,1)###
return Sma((Tsmax(self.high,6)-self.close)/(Tsmax(self.high,6)-Tsmin(self.low,6))*100,9,1)
def alpha048(self): #1657
####(-1*((RANK(((SIGN((CLOSE - DELAY(CLOSE, 1))) + SIGN((DELAY(CLOSE, 1) - DELAY(CLOSE, 2)))) + SIGN((DELAY(CLOSE, 2) - DELAY(CLOSE, 3)))))) * SUM(VOLUME, 5)) / SUM(VOLUME, 20))###
return (-1*((Rank(((Sign((self.close - Delay(self.close, 1))) + Sign((Delay(self.close, 1) - Delay(self.close, 2)))) + Sign((Delay(self.close, 2) - Delay(self.close, 3)))))) * Sum(self.volume, 5)) / Sum(self.volume, 20))
def alpha049(self):
####SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12) / (SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12) + SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12))
cond = ((self.high + self.low) > (Delay(self.high,1) + Delay(self.low,1)))
part1 = self.close.copy(deep=True) # pd.Series(np.zeros(self.close.shape))
part1.loc[:, :] = None
part1[cond] = 0
part1[~cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = 0
part2[cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
return Sum(part1, 12) / (Sum(part1, 12) + Sum(part2, 12))
def alpha050(self):
####SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12)/(SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12)+SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12))-SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12)/(SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12)+SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12))###
cond = ((self.high + self.low) <= (Delay(self.high,1) + Delay(self.low,1)))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = 0
part1[~cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = 0
part2[cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
return (Sum(part1, 12) - Sum(part2, 12)) / (Sum(part1, 12) + Sum(part2, 12))
def alpha051(self):
####SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12) / (SUM(((HIGH+LOW)<=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12)+SUM(((HIGH+LOW)>=(DELAY(HIGH,1)+DELAY(LOW,1))?0:MAX(ABS(HIGH-DELAY(HIGH,1)),ABS(LOW-DELAY(LOW,1)))),12))###
cond = ((self.high + self.low) <= (Delay(self.high,1) + Delay(self.low,1)))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = 0
part1[~cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = 0
part2[cond] = Max(Abs(self.high - Delay(self.high,1)), Abs(self.low - Delay(self.low,1)))
return Sum(part1, 12) / (Sum(part1, 12) + Sum(part2, 12))
def alpha052(self): #1611
####SUM(MAX(0,HIGH-DELAY((HIGH+LOW+CLOSE)/3,1)),26)/SUM(MAX(0,DELAY((HIGH+LOW+CLOSE)/3,1)-L),26)*100###
return Sum(Max(self.high-Delay((self.high+self.low+self.close)/3,1),0),26)/Sum(Max(Delay((self.high+self.low+self.close)/3,1)-self.low, 0),26)*100
def alpha053(self):
####COUNT(CLOSE>DELAY(CLOSE,1),12)/12*100###
cond = (self.close > Delay(self.close,1))
return Count(cond, 12) / 12 * 100
def alpha054(self): #1729
####(-1 * RANK((STD(ABS(CLOSE - OPEN)) + (CLOSE - OPEN)) + CORR(CLOSE, OPEN,10)))###
return (-1 * Rank(((Abs(self.close - self.open)).std() + (self.close - self.open)) + Corr(self.close, self.open,10)))
def alpha055(self): #公式有问题
###SUM(16*(CLOSE-DELAY(CLOSE,1)+(CLOSE-OPEN)/2+DELAY(CLOSE,1)-DELAY(OPEN,1))/((ABS(HIGH-DELAY(CLOSE,1))>ABS(LOW-DELAY(CLOSE,1)) & ABS(HIGH-DELAY(CLOSE,1))>ABS(HIGH-DELAY(LOW,1))?ABS(HIGH-DELAY(CLOSE,1))+ABS(LOW-DELAY(CLOSE,1))/2 + ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4:(ABS(LOW-DELAY(CLOSE,1))>ABS(HIGH-DELAY(LOW,1)) & ABS(LOW-DELAY(CLOSE,1))>ABS(HIGH-DELAY(CLOSE,1))?ABS(LOW-DELAY(CLOSE,1))+ABS(HIGH-DELAY(CLOSE,1))/2+ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4:ABS(HIGH-DELAY(LOW,1))+ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4)))*MAX(ABS(HIGH-DELAY(CLOSE,1)),ABS(LOW-DELAY(CLOSE,1))),20)
A = Abs(self.high - Delay(self.close, 1))
B = Abs(self.low - Delay(self.close, 1))
C = Abs(self.high - Delay(self.low, 1))
cond1 = ((A > B) & (A > C))
cond2 = ((B > C) & (B > A))
cond3 = ((C >= A) & (C >= B))
part0 = 16*(self.close + (self.close - self.open)/2 - Delay(self.open,1))
part1 = self.close.copy(deep=True)
part1.loc[:,:] = 0
part1[cond1] = Abs(self.high - Delay(self.close, 1)) + Abs(self.low - Delay(self.close, 1))/2 + Abs(Delay(self.close, 1)-Delay(self.open, 1))/4
part1[cond2] = Abs(self.low - Delay(self.close, 1)) + Abs(self.high - Delay(self.close, 1))/2 + Abs(Delay(self.close, 1)-Delay(self.open, 1))/4
part1[cond3] = Abs(self.high - Delay(self.low, 1)) + Abs(Delay(self.close, 1)-Delay(self.open, 1))/4
part2=Max(Abs(self.high-Delay(self.close,1)),Abs(self.low-Delay(self.close,1)))
return Sum(part0/part1*part2,20)
def alpha056(self):
####(RANK((OPEN - TSMIN(OPEN, 12))) < RANK((RANK(CORR(SUM(((HIGH + LOW) / 2), 19),SUM(MEAN(VOLUME,40), 19), 13))^5)))###
A = Rank((self.open - Tsmin(self.open, 12)))
B = Rank((Rank(Corr(Sum(((self.high + self.low) / 2), 19),Sum(Mean(self.volume,40), 19), 13))**5))
cond = (A < B)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = 1
part[~cond] = 0
return part
def alpha057(self): #1736
####SMA((CLOSE-TSMIN(LOW,9))/(TSMAX(HIGH,9)-TSMIN(LOW,9))*100,3,1)###
return Sma((self.close-Tsmin(self.low,9))/(Tsmax(self.high,9)-Tsmin(self.low,9))*100,3,1)
def alpha058(self):
####COUNT(CLOSE>DELAY(CLOSE,1),20)/20*100###
cond = (self.close > Delay(self.close,1))
return Count(cond,20)/20*100
def alpha059(self):
####SUM((CLOSE=DELAY(CLOSE,1)?0:CLOSE-(CLOSE>DELAY(CLOSE,1)?MIN(LOW,DELAY(CLOSE,1)):MAX(HIGH,DELAY(CLOSE,1)))),20)###
cond1 = (self.close == Delay(self.close,1))
cond2 = (self.close > Delay(self.close,1))
cond3 = (self.close < Delay(self.close,1))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = 0
part[cond2] = self.close - Min(self.low,Delay(self.close,1))
part[cond3] = self.close - Max(self.low,Delay(self.close,1))
return Sum(part, 20)
def alpha060(self): #1635
####SUM(((CLOSE-LOW)-(HIGH-CLOSE))/(HIGH-LOW)*VOLUME,20)###
return Sum(((self.close-self.low)-(self.high-self.close))/(self.high-self.low)*self.volume,20)
def alpha061(self): #1790
####(MAX(RANK(DECAYLINEAR(DELTA(VWAP, 1), 12)),RANK(DECAYLINEAR(RANK(CORR((LOW),MEAN(VOLUME,80), 8)), 17))) * -1)###
return (Max(Rank(Decaylinear(Delta(self.vwap, 1), 12)),Rank(Decaylinear(Rank(Corr((self.low),Mean(self.volume,80), 8)), 17))) * -1)
def alpha062(self): #1479
####(-1 * CORR(HIGH, RANK(VOLUME), 5))###
return (-1 * Corr(self.high, Rank(self.volume), 5))
def alpha063(self): #1789
####SMA(MAX(CLOSE-DELAY(CLOSE,1),0),6,1)/SMA(ABS(CLOSE-DELAY(CLOSE,1)),6,1)*100###
return Sma(Max(self.close-Delay(self.close,1),0),6,1)/Sma(Abs(self.close-Delay(self.close,1)),6,1)*100
def alpha064(self): #1774
####(MAX(RANK(DECAYLINEAR(CORR(RANK(VWAP), RANK(VOLUME), 4), 4)),RANK(DECAYLINEAR(MAX(CORR(RANK(CLOSE), RANK(MEAN(VOLUME,60)), 4), 13), 14))) * -1)###
return (Max(Rank(Decaylinear(Corr(Rank(self.vwap), Rank(self.volume), 4), 4)),Rank(Decaylinear(Tsmax(Corr(Rank(self.close), Rank(Mean(self.volume,60)), 4), 13), 14))) * -1)
def alpha065(self): #1759
####MEAN(CLOSE,6)/CLOSE###
return Mean(self.close,6)/self.close
def alpha066(self): #1759
####(CLOSE-MEAN(CLOSE,6))/MEAN(CLOSE,6)*100###
return (self.close-Mean(self.close,6))/Mean(self.close,6)*100
def alpha067(self): #1759
####SMA(MAX(CLOSE-DELAY(CLOSE,1),0),24,1)/SMA(ABS(CLOSE-DELAY(CLOSE,1)),24,1)*100###
a1 = Sma(Max(self.close-Delay(self.close,1),0),24,1)
a2 = Sma(Abs(self.close-Delay(self.close,1)),24,1)
return a1/a2*100
def alpha068(self): #1790
####SMA(((HIGH+LOW)/2-(DELAY(HIGH,1)+DELAY(LOW,1))/2)*(HIGH-LOW)/VOLUME,15,2)###
return Sma(((self.high+self.low)/2-(Delay(self.high,1)+Delay(self.low,1))/2)*(self.high-self.low)/self.volume,15,2)
def alpha069(self):
####(SUM(DTM,20)>SUM(DBM,20)? (SUM(DTM,20)-SUM(DBM,20))/SUM(DTM,20): (SUM(DTM,20)=SUM(DBM,20)?0: (SUM(DTM,20)-SUM(DBM,20))/SUM(DBM,20)))###
####DTM (OPEN<=DELAY(OPEN,1)?0:MAX((HIGH-OPEN),(OPEN-DELAY(OPEN,1))))
####DBM (OPEN>=DELAY(OPEN,1)?0:MAX((OPEN-LOW),(OPEN-DELAY(OPEN,1))))
cond1 = (self.open <= Delay(self.open,1))
cond2 = (self.open >= Delay(self.open,1))
DTM = self.close.copy(deep=True)
DTM.loc[:, :] = None
DTM[cond1] = 0
DTM[~cond1] = Max((self.high-self.open),(self.open-Delay(self.open,1)))
DBM = self.close.copy(deep=True)
DBM.loc[:, :] = None
DBM[cond2] = 0
DBM[~cond2] = Max((self.open-self.low),(self.open-Delay(self.open,1)))
cond3 = (Sum(DTM,20) > Sum(DBM,20))
cond4 = (Sum(DTM,20)== Sum(DBM,20))
cond5 = (Sum(DTM,20) < Sum(DBM,20))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond3] = (Sum(DTM,20)-Sum(DBM,20))/Sum(DTM,20)
part[cond4] = 0
part[cond5] = (Sum(DTM,20)-Sum(DBM,20))/Sum(DBM,20)
return part
def alpha070(self): #1759
####STD(AMOUNT,6)###
return Std(self.amount,6)
def alpha071(self): #1630
####(CLOSE-MEAN(CLOSE,24))/MEAN(CLOSE,24)*100###
return (self.close-Mean(self.close,24))/Mean(self.close,24)*100
def alpha072(self): #1759
####SMA((TSMAX(HIGH,6)-CLOSE)/(TSMAX(HIGH,6)-TSMIN(LOW,6))*100,15,1)###
return Sma((Tsmax(self.high,6)-self.close)/(Tsmax(self.high,6)-Tsmin(self.low,6))*100,15,1)
def alpha073(self): #1729
####((TSRANK(DECAYLINEAR(DECAYLINEAR(CORR((CLOSE), VOLUME, 10), 16), 4), 5) - RANK(DECAYLINEAR(CORR(VWAP, MEAN(VOLUME,30), 4),3))) * -1)###
return ((Tsrank(Decaylinear(Decaylinear(Corr((self.close), self.volume, 10), 16), 4), 5) - Rank(Decaylinear(Corr(self.vwap, Mean(self.volume,30), 4),3))) * -1)
def alpha074(self): #1402
####(RANK(CORR(SUM(((LOW * 0.35) + (VWAP * 0.65)), 20), SUM(MEAN(VOLUME,40), 20), 7)) + RANK(CORR(RANK(VWAP), RANK(VOLUME), 6)))###
return (Rank(Corr(Sum(((self.low * 0.35) + (self.vwap * 0.65)), 20), Sum(Mean(self.volume,40), 20), 7)) + Rank(Corr(Rank(self.vwap), Rank(self.volume), 6)))
def alpha075(self):
####COUNT(CLOSE>OPEN & BANCHMARKINDEXCLOSE<BANCHMARKINDEXOPEN,50)/COUNT(BANCHMARKINDEXCLOSE<BANCHMARKINDEXOPEN,50)###
return Count(((self.close>self.open)&(self.benchmark_close<self.benchmark_open)),50)/Count((self.benchmark_close<self.benchmark_open),50)
def alpha076(self): #1650
####STD(ABS((CLOSE/DELAY(CLOSE,1)-1))/VOLUME,20)/MEAN(ABS((CLOSE/DELAY(CLOSE,1)-1))/VOLUME,20)###
return Std(Abs((self.close/Delay(self.close,1)-1))/self.volume,20)/Mean(Abs((self.close/Delay(self.close,1)-1))/self.volume,20)
def alpha077(self): #1797
#### MIN(RANK(DECAYLINEAR(((((HIGH + LOW) / 2) + HIGH) - (VWAP + HIGH)), 20)),RANK(DECAYLINEAR(CORR(((HIGH + LOW) / 2), MEAN(VOLUME,40), 3), 6)))###
return Min(Rank(Decaylinear(((((self.high + self.low) / 2) + self.high) - (self.vwap + self.high)), 20)),Rank(Decaylinear(Corr(((self.high + self.low) / 2), Mean(self.volume,40), 3), 6)))
def alpha078(self): #1637
####((HIGH+LOW+CLOSE)/3-MA((HIGH+LOW+CLOSE)/3,12))/(0.015*MEAN(ABS(CLOSE-MEAN((HIGH+LOW+CLOSE)/3,12)),12))###
return ((self.high+self.low+self.close)/3-Mean((self.high+self.low+self.close)/3,12))/(0.015*Mean(Abs(self.close-Mean((self.high+self.low+self.close)/3,12)),12))
def alpha079(self): #1789
####SMA(MAX(CLOSE-DELAY(CLOSE,1),0),12,1)/SMA(ABS(CLOSE-DELAY(CLOSE,1)),12,1)*100###
return Sma(Max(self.close-Delay(self.close,1),0),12,1)/Sma(Abs(self.close-Delay(self.close,1)),12,1)*100
def alpha080(self): #1776
####(VOLUME-DELAY(VOLUME,5))/DELAY(VOLUME,5)*100###
return (self.volume-Delay(self.volume,5))/Delay(self.volume,5)*100
def alpha081(self): #1797
####SMA(VOLUME,21,2)###
return Sma(self.volume,21,2)
def alpha082(self): #1759
####SMA((TSMAX(HIGH,6)-CLOSE)/(TSMAX(HIGH,6)-TSMIN(LOW,6))*100,20,1)###
return Sma((Tsmax(self.high,6)-self.close)/(Tsmax(self.high,6)-Tsmin(self.low,6))*100,20,1)
def alpha083(self): #1766
####(-1 * RANK(COVIANCE(RANK(HIGH), RANK(VOLUME), 5)))###
return (-1 * Rank(Cov(Rank(self.high), Rank(self.volume), 5)))
def alpha084(self):
####SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:(CLOSE<DELAY(CLOSE,1)?-VOLUME:0)),20)###
cond1 = (self.close > Delay(self.close,1))
cond2 = (self.close < Delay(self.close,1))
cond3 = (self.close == Delay(self.close,1))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = self.volume
part[cond2] = 0
part[cond3] = -self.volume
return Sum(part, 20)
def alpha085(self): #1657
####(TSRANK((VOLUME / MEAN(VOLUME,20)), 20) * TSRANK((-1 * DELTA(CLOSE, 7)), 8))###
return (Tsrank((self.volume / Mean(self.volume,20)), 20) * Tsrank((-1 * Delta(self.close, 7)), 8))
def alpha086(self):
####((0.25 < (((DELAY(CLOSE, 20) - DELAY(CLOSE, 10)) / 10) - ((DELAY(CLOSE, 10) - CLOSE) / 10))) ? (-1 * 1) :(((((DELAY(CLOSE, 20) - DELAY(CLOSE, 10)) / 10) - ((DELAY(CLOSE, 10) - CLOSE) / 10)) < 0) ?1 : ((-1 * 1) *(CLOSE - DELAY(CLOSE, 1)))))
A = (((Delay(self.close, 20) - Delay(self.close, 10)) / 10) - ((Delay(self.close, 10) - self.close) / 10))
cond1 = (A > 0.25)
cond2 = (A < 0.0)
cond3 = ((0 <= A) & (A <= 0.25))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = -1
part[cond2] = 1
part[cond3] = -1*(self.close - Delay(self.close, 1))
return part
def alpha087(self): #1741
####((RANK(DECAYLINEAR(DELTA(VWAP, 4), 7)) + TSRANK(DECAYLINEAR(((((LOW * 0.9) + (LOW * 0.1)) - VWAP) /(OPEN - ((HIGH + LOW) / 2))), 11), 7)) * -1)###
return ((Rank(Decaylinear(Delta(self.vwap, 4), 7)) + Tsrank(Decaylinear(((((self.low * 0.9) + (self.low * 0.1)) - self.vwap) /(self.open - ((self.high + self.low) / 2))), 11), 7)) * -1)
def alpha088(self): #1745
####(CLOSE-DELAY(CLOSE,20))/DELAY(CLOSE,20)*100###
return (self.close-Delay(self.close,20))/Delay(self.close,20)*100
def alpha089(self): #1797
####2*(SMA(CLOSE,13,2)-SMA(CLOSE,27,2)-SMA(SMA(CLOSE,13,2)-SMA(CLOSE,27,2),10,2))###
return 2*(Sma(self.close,13,2)-Sma(self.close,27,2)-Sma(Sma(self.close,13,2)-Sma(self.close,27,2),10,2))
def alpha090(self): #1745
####(RANK(CORR(RANK(VWAP), RANK(VOLUME), 5)) * -1)###
return (Rank(Corr(Rank(self.vwap), Rank(self.volume), 5)) * -1)
def alpha091(self): #1745
####((RANK((CLOSE - MAX(CLOSE, 5)))*RANK(CORR((MEAN(VOLUME,40)), LOW, 5))) * -1)###
return ((Rank((self.close - Tsmax(self.close, 5)))*Rank(Corr((Mean(self.volume,40)), self.low, 5))) * -1)
def alpha092(self): #1786
####(MAX(RANK(DECAYLINEAR(DELTA(((CLOSE * 0.35) + (VWAP *0.65)), 2), 3)),TSRANK(DECAYLINEAR(ABS(CORR((MEAN(VOLUME,180)), CLOSE, 13)), 5), 15)) * -1)###
return (Max(Rank(Decaylinear(Delta(((self.close * 0.35) + (self.vwap *0.65)), 2), 3)),Tsrank(Decaylinear(Abs(Corr((Mean(self.volume,180)), self.close, 13)), 5), 15)) * -1)
def alpha093(self):
####SUM((OPEN>=DELAY(OPEN,1)?0:MAX((OPEN-LOW),(OPEN-DELAY(OPEN,1)))),20)###
cond = (self.open >= Delay(self.open,1))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = 0
part[~cond] = Max((self.open-self.low),(self.open-Delay(self.open,1)))
return Sum(part, 20)
def alpha094(self):
####SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:(CLOSE<DELAY(CLOSE,1)?-VOLUME:0)),30)###
cond1 = (self.close > Delay(self.close,1))
cond2 = (self.close < Delay(self.close,1))
cond3 = (self.close == Delay(self.close,1))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond1] = self.volume
part[cond2] = -1*self.volume
part[cond3] = 0
return Sum(part, 30)
def alpha095(self): #1657
####STD(AMOUNT,20)###
return Std(self.amount,20)
def alpha096(self): #1736
####SMA(SMA((CLOSE-TSMIN(LOW,9))/(TSMAX(HIGH,9)-TSMIN(LOW,9))*100,3,1),3,1)###
return Sma(Sma((self.close-Tsmin(self.low,9))/(Tsmax(self.high,9)-Tsmin(self.low,9))*100,3,1),3,1)
def alpha097(self): #1729
####STD(VOLUME,10)###
return Std(self.volume,10)
def alpha098(self):
####((((DELTA((SUM(CLOSE, 100) / 100), 100) / DELAY(CLOSE, 100)) < 0.05) || ((DELTA((SUM(CLOSE, 100) / 100), 100) /DELAY(CLOSE, 100)) == 0.05)) ? (-1 * (CLOSE - TSMIN(CLOSE, 100))) : (-1 * DELTA(CLOSE, 3)))###
cond = (Delta(Sum(self.close,100)/100, 100)/Delay(self.close, 100) <= 0.05)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = -1 * (self.close - Tsmin(self.close, 100))
part[~cond] = -1 * Delta(self.close, 3)
return part
def alpha099(self): #1766
####(-1 * Rank(Cov(Rank(self.close), Rank(self.volume), 5)))###
return (-1 * Rank(Cov(Rank(self.close), Rank(self.volume), 5)))
def alpha100(self): #1657
####Std(self.volume,20)###
return Std(self.volume,20)
def alpha101(self):
###((RANK(CORR(CLOSE, SUM(MEAN(VOLUME,30), 37), 15)) < RANK(CORR(RANK(((HIGH * 0.1) + (VWAP * 0.9))),RANK(VOLUME), 11))) * -1)
rank1 = Rank(Corr(self.close, Sum(Mean(self.volume,30), 37), 15))
rank2 = Rank(Corr(Rank(((self.high * 0.1) + (self.vwap * 0.9))),Rank(self.volume), 11))
cond = (rank1<rank2)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = 1
part[~cond] = 0
return part
def alpha102(self): #1790
####SMA(MAX(VOLUME-DELAY(VOLUME,1),0),6,1)/SMA(ABS(VOLUME-DELAY(VOLUME,1)),6,1)*100###
return Sma(Max(self.volume-Delay(self.volume,1),0),6,1)/Sma(Abs(self.volume-Delay(self.volume,1)),6,1)*100
def alpha103(self):
####((20-LOWDAY(LOW,20))/20)*100###
return ((20-Lowday(self.low,20))/20)*100
def alpha104(self): #1657
####(-1 * (DELTA(CORR(HIGH, VOLUME, 5), 5) * RANK(STD(CLOSE, 20))))###
return (-1 * (Delta(Corr(self.high, self.volume, 5), 5) * Rank(Std(self.close, 20))))
def alpha105(self): #1729
####(-1 * CORR(RANK(OPEN), RANK(VOLUME), 10))###
return (-1 * Corr(Rank(self.open), Rank(self.volume), 10))
def alpha106(self): #1745
####CLOSE-DELAY(CLOSE,20)###
return self.close-Delay(self.close,20)
def alpha107(self): #1790
####(((-1 * RANK((OPEN - DELAY(HIGH, 1)))) * RANK((OPEN - DELAY(CLOSE, 1)))) * RANK((OPEN - DELAY(LOW, 1))))###
return (((-1 * Rank((self.open - Delay(self.high, 1)))) * Rank((self.open - Delay(self.close, 1)))) * Rank((self.open - Delay(self.low, 1))))
def alpha108(self): #1178
####((RANK((HIGH - MIN(HIGH, 2)))^RANK(CORR((VWAP), (MEAN(VOLUME,120)), 6))) * -1)###
return ((Rank((self.high - Tsmin(self.high, 2)))**Rank(Corr((self.vwap), (Mean(self.volume,120)), 6))) * -1)
def alpha109(self): #1797
####SMA(HIGH-LOW,10,2)/SMA(SMA(HIGH-LOW,10,2),10,2)###
return Sma(self.high-self.low,10,2)/Sma(Sma(self.high-self.low,10,2),10,2)
def alpha110(self): #1650
####SUM(MAX(0,HIGH-DELAY(CLOSE,1)),20)/SUM(MAX(0,DELAY(CLOSE,1)-LOW),20)*100###
return Sum(Max(self.high-Delay(self.close,1),0),20)/Sum(Max(Delay(self.close,1)-self.low,0),20)*100
def alpha111(self): #1789
####SMA(VOL*((CLOSE-LOW)-(HIGH-CLOSE))/(HIGH-LOW),11,2)-SMA(VOL*((CLOSE-LOW)-(HIGH-CLOSE))/(HIGH-LOW),4,2)###
return Sma(self.volume*((self.close-self.low)-(self.high-self.close))/(self.high-self.low),11,2)-Sma(self.volume*((self.close-self.low)-(self.high-self.close))/(self.high-self.low),4,2)
def alpha112(self):
####(SUM((CLOSE-DELAY(CLOSE,1)>0? CLOSE-DELAY(CLOSE,1):0),12) - SUM((CLOSE-DELAY(CLOSE,1)<0?ABS(CLOSE-DELAY(CLOSE,1)):0),12))/(SUM((CLOSE-DELAY(CLOSE,1)>0?CLOSE-DELAY(CLOSE,1):0),12) + SUM((CLOSE-DELAY(CLOSE,1)<0?ABS(CLOSE-DELAY(CLOSE,1)):0),12))*100
cond = (self.close-Delay(self.close,1) > 0)
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = self.close-Delay(self.close,1)
part1[~cond] = 0
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = Abs(self.close-Delay(self.close,1))
part2[cond] = 0
return (Sum(part1,12) - Sum(part2,12))/(Sum(part1,12) + Sum(part2,12))*100
def alpha113(self): #1587
####(-1 * ((RANK((SUM(DELAY(CLOSE, 5), 20) / 20)) * CORR(CLOSE, VOLUME, 2)) * RANK(CORR(SUM(CLOSE, 5),SUM(CLOSE, 20), 2))))###
return (-1 * ((Rank((Sum(Delay(self.close, 5), 20) / 20)) * Corr(self.close, self.volume, 2)) * Rank(Corr(Sum(self.close, 5),Sum(self.close, 20), 2))))
def alpha114(self): #1751
####((RANK(DELAY(((HIGH - LOW) / (SUM(CLOSE, 5) / 5)), 2)) * RANK(RANK(VOLUME))) / (((HIGH - LOW) /(SUM(CLOSE, 5) / 5)) / (VWAP - CLOSE)))###
return ((Rank(Delay(((self.high - self.low) / (Sum(self.close, 5) / 5)), 2)) * Rank(Rank(self.volume))) / (((self.high - self.low) /(Sum(self.close, 5) / 5)) / (self.vwap - self.close)))
def alpha115(self): #1527
####(RANK(CORR(((HIGH * 0.9) + (CLOSE * 0.1)), MEAN(VOLUME,30), 10))^RANK(CORR(TSRANK(((HIGH + LOW) /2), 4), TSRANK(VOLUME, 10), 7)))###
return (Rank(Corr(((self.high * 0.9) + (self.close * 0.1)), Mean(self.volume,30), 10))**Rank(Corr(Tsrank(((self.high + self.low) /2), 4), Tsrank(self.volume, 10), 7)))
def alpha116(self):
####REGBETA(CLOSE,SEQUENCE,20)###
return Regbeta(self.close, Sequence(20))
def alpha117(self): #1786
####((TSRANK(VOLUME, 32) * (1 - TSRANK(((CLOSE + HIGH) - LOW), 16))) * (1 - TSRANK(RET, 32)))###
return ((Tsrank(self.volume, 32) * (1 - Tsrank(((self.close + self.high) - self.low), 16))) * (1 - Tsrank(self.returns, 32)))
def alpha118(self): #1657
####SUM(HIGH-OPEN,20)/SUM(OPEN-LOW,20)*100###
return Sum(self.high-self.open,20)/Sum(self.open-self.low,20)*100
def alpha119(self): #1626
####(RANK(DECAYLINEAR(CORR(VWAP, SUM(MEAN(VOLUME,5), 26), 5), 7)) - RANK(DECAYLINEAR(TSRANK(MIN(CORR(RANK(OPEN), RANK(MEAN(VOLUME,15)), 21), 9), 7), 8)))###
return (Rank(Decaylinear(Corr(self.vwap, Sum(Mean(self.volume,5), 26), 5), 7)) - Rank(Decaylinear(Tsrank(Tsmin(Corr(Rank(self.open), Rank(Mean(self.volume,15)), 21), 9), 7), 8)))
def alpha120(self): #1797
####(RANK((VWAP - CLOSE)) / RANK((VWAP + CLOSE)))###
return (Rank((self.vwap - self.close)) / Rank((self.vwap + self.close)))
def alpha121(self): #972 数据量较少
####((RANK((VWAP - MIN(VWAP, 12)))^TSRANK(CORR(TSRANK(VWAP, 20), TSRANK(MEAN(VOLUME,60), 2), 18), 3)) *-1)###
return ((Rank((self.vwap - Tsmin(self.vwap, 12)))**Tsrank(Corr(Tsrank(self.vwap, 20), Tsrank(Mean(self.volume,60), 2), 18), 3)) *-1)
def alpha122(self): #1790
####(SMA(SMA(SMA(LOG(CLOSE),13,2),13,2),13,2)-DELAY(SMA(SMA(SMA(LOG(CLOSE),13,2),13,2),13,2),1))/DELAY(SMA(SMA(SMA(LOG(CLOSE),13,2),13,2),13,2),1)###
return (Sma(Sma(Sma(Log(self.close),13,2),13,2),13,2)-Delay(Sma(Sma(Sma(Log(self.close),13,2),13,2),13,2),1))/Delay(Sma(Sma(Sma(Log(self.close),13,2),13,2),13,2),1)
def alpha123(self):
####((RANK(CORR(SUM(((HIGH + LOW) / 2), 20), SUM(MEAN(VOLUME,60), 20), 9)) < RANK(CORR(LOW, VOLUME,6))) * -1)###
A = Rank(Corr(Sum(((self.high + self.low) / 2), 20), Sum(Mean(self.volume,60), 20), 9))
B = Rank(Corr(self.low, self.volume,6))
cond = (A < B)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = -1
part[~cond] = 0
return part
def alpha124(self): #1592
####(CLOSE - VWAP) / DECAYLINEAR(RANK(TSMAX(CLOSE, 30)),2)###
return (self.close - self.vwap) / Decaylinear(Rank(Tsmax(self.close, 30)),2)
def alpha125(self): #1678
####(RANK(DECAYLINEAR(CORR((VWAP), MEAN(VOLUME,80),17), 20)) / RANK(DECAYLINEAR(DELTA(((CLOSE * 0.5) + (VWAP * 0.5)), 3), 16)))###
return (Rank(Decaylinear(Corr((self.vwap), Mean(self.volume,80),17), 20)) / Rank(Decaylinear(Delta(((self.close * 0.5) + (self.vwap * 0.5)), 3), 16)))
def alpha126(self): #1797
####(CLOSE+HIGH+LOW)/3###
return (self.close+self.high+self.low)/3
def alpha127(self): #公式有问题,我们假设mean周期为12
####(MEAN((100*(CLOSE-MAX(CLOSE,12))/(MAX(CLOSE,12)))^2),12)^(1/2)###
return (Mean((100*(self.close-Tsmax(self.close,12))/(Tsmax(self.close,12)))**2,12))**(1/2)
def alpha128(self):
#### 100-(100/(1+SUM(((HIGH+LOW+CLOSE)/3>DELAY((HIGH+LOW+CLOSE)/3,1)?(HIGH+LOW+CLOSE)/3*VOLUME:0),14)/SUM(((HIGH+LOW+CLOSE)/3<DELAY((HIGH+LOW+CLOSE)/3,1)?(HIGH+LOW+CLOSE)/3*VOLUME:0),14)))
A = (self.high+self.low+self.close)/3
cond = (A > Delay(A,1))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond] = A*self.volume
part1[~cond] = 0
part2 = self.close.copy(deep=True)
part2.loc[:, :] = None
part2[~cond] = A*self.volume
part2[cond] = 0
return 100-(100/(1+Sum(part1,14)/Sum(part2,14)))
def alpha129(self):
####SUM((CLOSE-DELAY(CLOSE,1)<0?ABS(CLOSE-DELAY(CLOSE,1)):0),12)###
cond = ((self.close-Delay(self.close,1)) < 0)
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = Abs(self.close-Delay(self.close,1))
part[~cond] = 0
return Sum(part, 12)
def alpha130(self): #1657
####(RANK(DECAYLINEAR(CORR(((HIGH + LOW) / 2), MEAN(VOLUME,40), 9), 10)) / RANK(DECAYLINEAR(CORR(RANK(VWAP), RANK(VOLUME), 7),3)))###
return (Rank(Decaylinear(Corr(((self.high + self.low) / 2), Mean(self.volume,40), 9), 10)) / Rank(Decaylinear(Corr(Rank(self.vwap), Rank(self.volume), 7),3)))
def alpha131(self): #1030
####(RANK(DELAT(VWAP, 1))^TSRANK(CORR(CLOSE,MEAN(VOLUME,50), 18), 18))###
return (Rank(Delta(self.vwap, 1))**Tsrank(Corr(self.close,Mean(self.volume,50), 18), 18))
def alpha132(self): #1657
####MEAN(AMOUNT,20)###
return Mean(self.amount,20)
def alpha133(self):
####((20-HIGHDAY(HIGH,20))/20)*100-((20-LOWDAY(LOW,20))/20)*100###
return ((20-Highday(self.high,20))/20)*100-((20-Lowday(self.low,20))/20)*100
def alpha134(self): #1760
####(CLOSE-DELAY(CLOSE,12))/DELAY(CLOSE,12)*VOLUME###
return (self.close-Delay(self.close,12))/Delay(self.close,12)*self.volume
def alpha135(self): #1744
####SMA(DELAY(CLOSE/DELAY(CLOSE,20),1),20,1)###
return Sma(Delay(self.close/Delay(self.close,20),1),20,1)
def alpha136(self): #1729
####((-1 * RANK(DELTA(RET, 3))) * CORR(OPEN, VOLUME, 10))###
return ((-1 * Rank(Delta(self.returns, 3))) * Corr(self.open, self.volume, 10))
def alpha137(self):
####16*(CLOSE-DELAY(CLOSE,1)+(CLOSE-OPEN)/2+DELAY(CLOSE,1)-DELAY(OPEN,1))/((ABS(HIGH-DELAY(CLOSE,1))>ABS(LOW-DELAY(CLOSE,1)) & ABS(HIGH-DELAY(CLOSE,1))>ABS(HIGH-DELAY(LOW,1))?ABS(HIGH-DELAY(CLOSE,1))+ABS(LOW-DELAY(CLOSE,1))/2+ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4:(ABS(LOW-DELAY(CLOSE,1))>ABS(HIGH-DELAY(LOW,1)) & ABS(LOW-DELAY(CLOSE,1))>ABS(HIGH-DELAY(CLOSE,1))?ABS(LOW-DELAY(CLOSE,1))+ABS(HIGH-DELAY(CLOSE,1))/2+ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4:ABS(HIGH-DELAY(LOW,1))+ABS(DELAY(CLOSE,1)-DELAY(OPEN,1))/4)))*MAX(ABS(HIGH-DELAY(CLOSE,1)),ABS(LOW-DELAY(CLOSE,1)))
A = Abs(self.high- Delay(self.close,1))
B = Abs(self.low - Delay(self.close,1))
C = Abs(self.high- Delay(self.low,1))
D = Abs(Delay(self.close,1)-Delay(self.open,1))
cond1 = ((A>B) & (A>C))
cond2 = ((B>C) & (B>A))
cond3 = ~cond1 & ~cond2
part0 = 16*(self.close + (self.close - self.open)/2 - Delay(self.open,1))
part1 = self.close.copy(deep=True)
part1.loc[:, :] = None
part1[cond1] = A + B/2 + D/4
part1[cond2] = B + A/2 + D/4
part1[cond3] = C + D/4
part1.replace({0: None}, inplace=True)
return part0/part1*Max(A,B)
def alpha138(self): #1448
####((RANK(DECAYLINEAR(DELTA((((LOW * 0.7) + (VWAP *0.3))), 3), 20)) - TSRANK(DECAYLINEAR(TSRANK(CORR(TSRANK(LOW, 8), TSRANK(MEAN(VOLUME,60), 17), 5), 19), 16), 7)) * -1)###
return ((Rank(Decaylinear(Delta((((self.low * 0.7) + (self.vwap *0.3))), 3), 20)) - Tsrank(Decaylinear(Tsrank(Corr(Tsrank(self.low, 8), Tsrank(Mean(self.volume,60), 17), 5), 19), 16), 7)) * -1)
def alpha139(self): #1729
####(-1 * CORR(OPEN, VOLUME, 10))###
return (-1 * Corr(self.open, self.volume, 10))
def alpha140(self): #1797
####MIN(RANK(DECAYLINEAR(((RANK(OPEN) + RANK(LOW)) - (RANK(HIGH) + RANK(CLOSE))), 8)), TSRANK(DECAYLINEAR(CORR(TSRANK(CLOSE, 8), TSRANK(MEAN(VOLUME,60), 20), 8), 7), 3))###
return Min(Rank(Decaylinear(((Rank(self.open) + Rank(self.low)) - (Rank(self.high) + Rank(self.close))), 8)), Tsrank(Decaylinear(Corr(Tsrank(self.close, 8), Tsrank(Mean(self.volume,60), 20), 8), 7), 3))
def alpha141(self): #1637
####(RANK(CORR(RANK(HIGH), RANK(MEAN(VOLUME,15)), 9))* -1)###
return (Rank(Corr(Rank(self.high), Rank(Mean(self.volume,15)), 9))* -1)
def alpha142(self): #1657
####(((-1 * RANK(TSRANK(CLOSE, 10))) * RANK(DELTA(DELTA(CLOSE, 1), 1))) * RANK(TSRANK((VOLUME/MEAN(VOLUME,20)), 5)))###
return (((-1 * Rank(Tsrank(self.close, 10))) * Rank(Delta(Delta(self.close, 1), 1))) * Rank(Tsrank((self.volume/Mean(self.volume,20)), 5)))
def alpha143(self): # what fuck
####CLOSE>DELAY(CLOSE,1)?(CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1)*SELF:SELF###
return 0
def alpha144(self):
####SUMIF(ABS(CLOSE/DELAY(CLOSE,1)-1)/AMOUNT,20,CLOSE<DELAY(CLOSE,1))/COUNT(CLOSE<DELAY(CLOSE,1),20)###
cond = (self.close<Delay(self.close,1))
part1 = Abs(self.close/Delay(self.close,1)-1)/self.amount
return Sumif(part1,20,cond)/Count(cond,20)
def alpha145(self): #1617
####(MEAN(VOLUME,9)-MEAN(VOLUME,26))/MEAN(VOLUME,12)*100###
return (Mean(self.volume,9)-Mean(self.volume,26))/Mean(self.volume,12)*100
def alpha146(self): #1650
####MEAN((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1)-SMA((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1),61,2),20)*((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1)-SMA((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1),61,2))/SMA(((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1)-((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1)-SMA((CLOSE-DELAY(CLOSE,1))/DELAY(CLOSE,1),61,2)))^2,61,2)###
return Mean((self.close-Delay(self.close,1))/Delay(self.close,1)-Sma((self.close-Delay(self.close,1))/Delay(self.close,1),61,2),20)*((self.close-Delay(self.close,1))/Delay(self.close,1)-Sma((self.close-Delay(self.close,1))/Delay(self.close,1),61,2))/Sma(((self.close-Delay(self.close,1))/Delay(self.close,1)-((self.close-Delay(self.close,1))/Delay(self.close,1)-Sma((self.close-Delay(self.close,1))/Delay(self.close,1),61,2)))**2,61,2)
def alpha147(self):
####REGBETA(MEAN(CLOSE,12),SEQUENCE(12))###
return Regbeta(Mean(self.close, 12), Sequence(12))
def alpha148(self):
####((RANK(CORR((OPEN), SUM(MEAN(VOLUME,60), 9), 6)) < RANK((OPEN - TSMIN(OPEN, 14)))) * -1)###
cond = (Rank(Corr((self.open), Sum(Mean(self.volume,60), 9), 6)) < Rank((self.open - Tsmin(self.open, 14))))
part = self.close.copy(deep=True)
part.loc[:, :] = None
part[cond] = -1
part[~cond] = 0
return part
def alpha149(self):
####REGBETA(FILTER(CLOSE/DELAY(CLOSE,1)-1,BANCHMARKINDEXCLOSE<DELAY(BANCHMARKINDEXCLOSE,1)),FILTER(BANCHMARKINDEXCLOSE/DELAY(BANCHMARKINDEXCLOSE,1)-1,BANCHMARKINDEXCLOSE<DELAY(BANCHMARKINDEXCLOSE,1)),252)
return 0
def alpha150(self): #1797
####(CLOSE+HIGH+LOW)/3*VOLUME###
return (self.close+self.high+self.low)/3*self.volume
def alpha151(self): #1745
####SMA(CLOSE-DELAY(CLOSE,20),20,1)###
return Sma(self.close-Delay(self.close,20),20,1)
def alpha152(self): #1559
####SMA(MEAN(DELAY(SMA(DELAY(CLOSE/DELAY(CLOSE,9),1),9,1),1),12)-MEAN(DELAY(SMA(DELAY(CLOSE/DELAY(CLOSE,9),1),9,1),1),26),9,1)###