-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel.py
74 lines (64 loc) · 2.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
nclasses = 43 # GTSRB as 43 classes
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# CNN layers
self.conv1 = nn.Conv2d(3, 100, kernel_size=5)
self.bn1 = nn.BatchNorm2d(100)
self.conv2 = nn.Conv2d(100, 150, kernel_size=3)
self.bn2 = nn.BatchNorm2d(150)
self.conv3 = nn.Conv2d(150, 250, kernel_size=3)
self.bn3 = nn.BatchNorm2d(250)
self.conv_drop = nn.Dropout2d()
self.fc1 = nn.Linear(250*2*2, 350)
self.fc2 = nn.Linear(350, nclasses)
self.localization = nn.Sequential(
nn.Conv2d(3, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 4 * 4, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 4 * 4)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform forward pass
x = self.bn1(F.max_pool2d(F.leaky_relu(self.conv1(x)),2))
x = self.conv_drop(x)
x = self.bn2(F.max_pool2d(F.leaky_relu(self.conv2(x)),2))
x = self.conv_drop(x)
x = self.bn3(F.max_pool2d(F.leaky_relu(self.conv3(x)),2))
x = self.conv_drop(x)
x = x.view(-1, 250*2*2)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)