-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeonames.html
942 lines (866 loc) · 72 KB
/
geonames.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Paul Oldham" />
<title>Mapping and Monitoring with Geonames</title>
<script src="site_libs/jquery-1.12.4/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-1.1/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-1.1/highlight.js"></script>
<script src="site_libs/htmlwidgets-0.8/htmlwidgets.js"></script>
<link href="site_libs/leaflet-0.7.7/leaflet.css" rel="stylesheet" />
<script src="site_libs/leaflet-0.7.7/leaflet.js"></script>
<link href="site_libs/leafletfix-1.0.0/leafletfix.css" rel="stylesheet" />
<link href="site_libs/leaflet-label-0.2.2/leaflet.label.css" rel="stylesheet" />
<script src="site_libs/leaflet-label-0.2.2/leaflet.label.js"></script>
<script src="site_libs/Proj4Leaflet-0.7.2/proj4-compressed.js"></script>
<script src="site_libs/Proj4Leaflet-0.7.2/proj4leaflet.js"></script>
<script src="site_libs/leaflet-binding-1.1.0/leaflet.js"></script>
<link href="site_libs/leaflet-markercluster-0.5.0/MarkerCluster.css" rel="stylesheet" />
<link href="site_libs/leaflet-markercluster-0.5.0/MarkerCluster.Default.css" rel="stylesheet" />
<script src="site_libs/leaflet-markercluster-0.5.0/leaflet.markercluster.js"></script>
<script src="site_libs/leaflet-markercluster-0.5.0/leaflet.markercluster.layersupport-src.js"></script>
<script src="site_libs/leaflet-markercluster-0.5.0/leaflet.markercluster.freezable-src.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
padding-left: 25px;
text-indent: 0;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">ABS Monitoring</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Get Started
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="index.html">Introduction</a>
</li>
<li>
<a href="gettingstarted.html">Getting Started</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Taxonomic Data
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="gbif.html">Accessing GBIF</a>
</li>
<li>
<a href="mapgbif.html">Mapping GBIF Data</a>
</li>
</ul>
</li>
<li>
<a href="crossref.html">Scientific Literature</a>
</li>
<li>
<a href="geonames.html">Geographic Names</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Mapping and Monitoring with Geonames</h1>
<h4 class="author"><em>Paul Oldham</em></h4>
</div>
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>In this section we will focus on using the <a href="http://www.geonames.org/">Geonames</a> service to identify the coordinates for place names in Kenya. We will then take a subset of coordinates for Kenya using the example of lakes, ponds and lagoons. Finally, we will use <code>leaflet</code> to create interactive maps of the data and create a hyperlink to search the patent literature and other literature sources.</p>
<p>Our aim in this walk through is to produce this map as an interactive map that will allows the reader to zoom in, select a marker and look up patents and literature linked to lakes in Kenya.</p>
<div class="figure">
<img src="images/geonames/final_map.png" />
</div>
<p>By the end of this section you will be able to access geonames, filter the data down to the subjects you are interested in, and create an interactive hyperlinked map with leaflet.</p>
<div id="about-geonames" class="section level3">
<h3>About geonames</h3>
<p><a href="http://www.geonames.org/">Geonames</a> is a deceptively simple service that provides free access to the coordinates and related information for 11 million places around the world. As such, it is the world’s biggest open access repository for coordinate data.</p>
<div class="figure">
<img src="images/geonames/GeoNames_frontpage.png" />
</div>
<p>There are a variety of ways of obtaining information from geonames, including the geonames web service. If you only want to work on data from a specific country, one of the easiest ways to obtain the data is by downloading it from the country data dump.</p>
<div class="figure">
<img src="images/geonames/GeoNames_2017-0127_14-40-15.png" />
</div>
<p>As an alternative we can access the geonames service using the API through packages such as <code>geonames</code> in R. There are a wide variety of existing clients that are listed on the <a href="http://www.geonames.org/export/client-libraries.html">geonames client libraries</a> page.</p>
<pre class="r"><code>install.packages("geonames")</code></pre>
<p>To work with the geonames package you will need to sign up for a free account and take a note of your username or it will not work.</p>
<pre class="r"><code>library(geonames)
options(geonamesUsername="yourid")</code></pre>
<p>To get started we need to find the Geoname Id for Kenya (KE)</p>
<pre class="r"><code>library(geonames)
options(geonamesUsername="yourid")
GN_kenya <- GNcountryInfo("KE")</code></pre>
<pre class="r"><code>head(GN_kenya)</code></pre>
<pre><code>## continent capital languages geonameId south isoAlpha3 north
## 1 AF Nairobi en-KE,sw-KE 192950 -4.678047 KEN 5.019938
## fipsCode population east isoNumeric areaInSqKm countryCode
## 1 KE 40046566 41.899078 404 582650.0 KE
## west countryName continentName currencyCode
## 1 33.908859 Republic of Kenya Africa KES</code></pre>
<p>Next it will be useful to have the administrative data which we can find using the geonames id with GN children.</p>
<pre class="r"><code>library(geonames)
options(geonamesUsername="yourid")
GN_kenya_children <- GNchildren(192950)</code></pre>
<pre class="r"><code>head(GN_kenya_children)</code></pre>
<pre><code>## adminCode1 lng geonameId toponymName countryId fcl population
## 1 10 36 200573 Baringo 192950 A 555561
## 2 11 35.35 7667666 Bomet 192950 A 724186
## 3 12 34.639 200066 Bungoma 192950 A 1630934
## 4 13 34.17 199987 Busia 192950 A 488075
## 5 14 35.55 7667646 Elegeyo-Marakwet 192950 A 369998
## 6 15 37.531 198474 Embu 192950 A 516212
## countryCode name fclName countryName
## 1 KE Baringo country, state, region,... Kenya
## 2 KE Bomet country, state, region,... Kenya
## 3 KE Bungoma country, state, region,... Kenya
## 4 KE Busia country, state, region,... Kenya
## 5 KE Elegeyo-Marakwet country, state, region,... Kenya
## 6 KE Embu country, state, region,... Kenya
## fcodeName adminName1 lat fcode
## 1 first-order administrative division Baringo 0.66667 ADM1
## 2 first-order administrative division Bomet -0.79 ADM1
## 3 first-order administrative division Bungoma 0.66 ADM1
## 4 first-order administrative division Busia 0.35 ADM1
## 5 first-order administrative division Elegeyo-Marakwet 0.99 ADM1
## 6 first-order administrative division Embu -0.425 ADM1
## numberOfChildren
## 1 <NA>
## 2 <NA>
## 3 <NA>
## 4 1
## 5 <NA>
## 6 1</code></pre>
<p>This produces a table that contains the administrative divisions for Kenya. We can then drill down into this data by selecting the geoname id for an administrative area. In this case we will choose Nakuru (as we are interested in Lake Nakuru).</p>
<pre class="r"><code>library(geonames)
options(geonamesUsername="yourid")
GN_nakuru <- GNchildren(7668902)
save(GN_nakuru, file = "GN_nakuru.rda")</code></pre>
<pre class="r"><code>head(GN_nakuru)</code></pre>
<pre><code>## adminCode1 lng geonameId toponymName countryId fcl population
## 1 39 35.98333 200792 Athinai 192950 P 0
## 2 39 36.11667 200707 Bahati Settlement 192950 P 0
## 3 39 36.3491 199246 Cokereria 192950 P 0
## 4 39 35.68333 199083 Darasha ya Mawe 192950 P 0
## 5 39 36.05 199067 Dawsonville 192950 P 0
## 6 39 35.93004 8605137 Egerton 192950 P 0
## countryCode name fclName countryName
## 1 KE Athinai city, village,... Kenya
## 2 KE Bahati Settlement city, village,... Kenya
## 3 KE Cokereria city, village,... Kenya
## 4 KE Darasha ya Mawe city, village,... Kenya
## 5 KE Dawsonville city, village,... Kenya
## 6 KE Egerton city, village,... Kenya
## fcodeName adminName1 lat fcode
## 1 populated place Nakuru -0.06667 PPL
## 2 populated place Nakuru -0.15 PPL
## 3 populated place Nakuru -0.4346 PPL
## 4 populated place Nakuru -0.43333 PPL
## 5 populated place Nakuru -0.28333 PPL
## 6 populated place Nakuru -0.36667 PPL</code></pre>
<p>As an alternative we can also simply search for a name we are interested in:</p>
<pre class="r"><code>library(geonames)
options(geonamesUsername="yourid")
GN_lake_nakuru_s <- GNsearch(q="Lake Nakuru")</code></pre>
<pre class="r"><code>load("GN_lake_nakuru_s.rda")</code></pre>
<pre class="r"><code>head(GN_lake_nakuru_s)</code></pre>
<pre><code>## adminCode1 lng geonameId toponymName countryId fcl
## 1 39 36.09297 184621 Lake Nakuru 192950 H
## 2 39 36.09982 189775 Lake Nakuru National Park 192950 L
## 3 39 36.24272 198571 Lake Elmenteita 192950 H
## 4 39 36.35975 184706 Lake Naivasha 192950 H
## 5 39 36.26233 199238 Crater Lake 192950 H
## 6 39 36.08333 189773 Lake View Estate 192950 P
## population countryCode name fclName
## 1 0 KE Lake Nakuru stream, lake, ...
## 2 0 KE Lake Nakuru National Park parks,area, ...
## 3 0 KE Lake Elmenteita stream, lake, ...
## 4 0 KE Lake Naivasha stream, lake, ...
## 5 0 KE Crater Lake stream, lake, ...
## 6 0 KE Lake View Estate city, village,...
## countryName fcodeName adminName1 lat fcode
## 1 Kenya lake Nakuru -0.35703 LK
## 2 Kenya park Nakuru -0.33947 PRK
## 3 Kenya lake Nakuru -0.44015 LK
## 4 Kenya lake Nakuru -0.76732 LK
## 5 Kenya lake Nakuru -0.7829 LK
## 6 Kenya section of populated place Nakuru -0.3 PPLX</code></pre>
<p>The main limiting issue with the API is that the focus is on administrative units and population centres with features (such as lakes, mountains etc.) only available at present through the search facility.</p>
<p>So, the API will mainly be useful to us for initial look up of information, and administrative and population information. It can also be used for reverse geocoding but we will not cover that here. For our purposes the most important resource is the data dump.</p>
</div>
<div id="working-with-files-from-the-geonames-data-dump" class="section level3">
<h3>Working with files from the geonames data dump</h3>
<p>We will be working with the data for Kenya that is available from the data dump <a href="http://download.geonames.org/export/dump/KE.zip">here</a></p>
<p>When we unzip the file it contains two files:</p>
<ol style="list-style-type: lower-alpha">
<li>the place names, features and coordinate data</li>
<li>A text file containing the details and the column names.</li>
</ol>
<p>Note that the actual data file does not contain the column names. You will find them listed in the readme.txt</p>
<div class="figure">
<img src="images/geonames/readme.txt_2017-0128_09-53-36.png" />
</div>
<p>We can import the data directly from the website using a slightly involved route as follows by creating a temporary directory as a holder, then downloading and unzipping and finally importing the KE.txt file with <code>readr::read_tsv()</code>. It is important to set column names to false with col_names = FALSE. If using this route you will need to know the country code for the .txt file to unzip.</p>
<pre class="r"><code>library(readr)
temp <- tempfile()
download.file("http://download.geonames.org/export/dump/KE.zip", temp)
KE <- unz(temp, "KE.txt")
kenya_geodump <- read_tsv(KE, col_names = FALSE)</code></pre>
<p>We can also import a manually downloaded file into RStudio using <code>File > Import Dataset > From CSV</code> setting the Delimiter to Tab and unchecking First Row as Names.</p>
<p>We can add the column names using the small geonames_fields function below.</p>
<pre class="r"><code>geonames_fields <- function(df){
library(dplyr)
df <- dplyr::rename_(df, "geonameid" = "X1", "name" = "X2", "asciiname" = "X3", "alternatenames" = "X4", "latitude" = "X5", "longitude" = "X6", "feature_class" = "X7", "feature_code" = "X8", "country_code" = "X9", "cc2" = "X10", "admin1_code" = "X11", "admin2_code" = "X12", "admin3_code" = "X13", "admin4_code" = "X14", "population" = "X15", "elevation" = "X16", "dem" = "X17", "timezone" = "X18", "modification_date" = "X19")
}</code></pre>
<pre class="r"><code>kenya_geodump <- geonames_fields(kenya_geodump)
head(kenya_geodump)</code></pre>
<pre><code>## # A tibble: 6 × 19
## geonameid name asciiname
## <int> <chr> <chr>
## 1 54121 Mata Arba Mata Arba
## 2 55628 Kolbiyow Kolbiyow
## 3 58869 Bur Gause Bur Gause
## 4 60856 Did Songa Did Songa
## 5 149213 Umba Umba
## 6 154205 Mchongo Mchongo
## # ... with 16 more variables: alternatenames <chr>, latitude <dbl>,
## # longitude <dbl>, feature_class <chr>, feature_code <chr>,
## # country_code <chr>, cc2 <chr>, admin1_code <chr>, admin2_code <chr>,
## # admin3_code <chr>, admin4_code <chr>, population <int>,
## # elevation <int>, dem <int>, timezone <chr>, modification_date <date></code></pre>
<p>We now have a list of names and IDs for Kenya.</p>
<pre class="r"><code>head(kenya_geodump) %>% print()</code></pre>
<pre><code>## # A tibble: 6 × 19
## geonameid name asciiname
## <int> <chr> <chr>
## 1 54121 Mata Arba Mata Arba
## 2 55628 Kolbiyow Kolbiyow
## 3 58869 Bur Gause Bur Gause
## 4 60856 Did Songa Did Songa
## 5 149213 Umba Umba
## 6 154205 Mchongo Mchongo
## # ... with 16 more variables: alternatenames <chr>, latitude <dbl>,
## # longitude <dbl>, feature_class <chr>, feature_code <chr>,
## # country_code <chr>, cc2 <chr>, admin1_code <chr>, admin2_code <chr>,
## # admin3_code <chr>, admin4_code <chr>, population <int>,
## # elevation <int>, dem <int>, timezone <chr>, modification_date <date></code></pre>
<p>Geonames uses a range of codes called <a href="http://www.geonames.org/export/codes.html">feature codes</a> that can be downloaded from here <a href="http://download.geonames.org/export/dump/featureCodes_en.txt" class="uri">http://download.geonames.org/export/dump/featureCodes_en.txt</a>. We can read the file into R directly and provide the relevant column names. For reference the file can be found in data with this rproject on github <a href="">link here</a>.</p>
<pre class="r"><code>library(readr)
library(tidyr)
geonames_features <- readr::read_tsv("http://download.geonames.org/export/dump/featureCodes_en.txt", col_names = FALSE) %>% dplyr::rename("feature_code" = X1, "description" = X2, "detail" = X3)</code></pre>
<pre><code>## Parsed with column specification:
## cols(
## X1 = col_character(),
## X2 = col_character(),
## X3 = col_character()
## )</code></pre>
<pre class="r"><code>geonames_features</code></pre>
<pre><code>## # A tibble: 671 × 3
## feature_code description
## <chr> <chr>
## 1 A.ADM1 first-order administrative division
## 2 A.ADM1H historical first-order administrative division
## 3 A.ADM2 second-order administrative division
## 4 A.ADM2H historical second-order administrative division
## 5 A.ADM3 third-order administrative division
## 6 A.ADM3H historical third-order administrative division
## 7 A.ADM4 fourth-order administrative division
## 8 A.ADM4H historical fourth-order administrative division
## 9 A.ADM5 fifth-order administrative division
## 10 A.ADM5H historical fifth-order administrative division
## # ... with 661 more rows, and 1 more variables: detail <chr></code></pre>
<p>Let’s take a look.</p>
<pre class="r"><code>head(geonames_features)</code></pre>
<pre><code>## # A tibble: 6 × 3
## feature_code description
## <chr> <chr>
## 1 A.ADM1 first-order administrative division
## 2 A.ADM1H historical first-order administrative division
## 3 A.ADM2 second-order administrative division
## 4 A.ADM2H historical second-order administrative division
## 5 A.ADM3 third-order administrative division
## 6 A.ADM3H historical third-order administrative division
## # ... with 1 more variables: detail <chr></code></pre>
<p>The codes are presented as A.ADM1 for <code>first-order administrative division</code> and so on. We would like to break this up a bit to make it easier to filter for our subjects of interest. At this stage we don’t know if we will need the original combined codes and so when separating the columns we will use <code>remove=FALSE</code>. tidyr’s <code>separate()</code> function will helpfully guess the rest for us.</p>
<pre class="r"><code>library(tidyr)
geonames_features <- tidyr::separate(geonames_features, feature_code, c("feature_class", "feature_subclass"), remove = FALSE, fill = "right")
geonames_features</code></pre>
<pre><code>## # A tibble: 671 × 5
## feature_code feature_class feature_subclass
## * <chr> <chr> <chr>
## 1 A.ADM1 A ADM1
## 2 A.ADM1H A ADM1H
## 3 A.ADM2 A ADM2
## 4 A.ADM2H A ADM2H
## 5 A.ADM3 A ADM3
## 6 A.ADM3H A ADM3H
## 7 A.ADM4 A ADM4
## 8 A.ADM4H A ADM4H
## 9 A.ADM5 A ADM5
## 10 A.ADM5H A ADM5H
## # ... with 661 more rows, and 2 more variables: description <chr>,
## # detail <chr></code></pre>
<p>We have one empty row at the end of the dataset that throws a warning. This proves to be a double bar for not available in the original file that is converted to null.</p>
</div>
<div id="filtering-to-identifying-lakes-and-water-features" class="section level3">
<h3>Filtering to identifying Lakes and Water Features</h3>
<p>We are interested in exploring the data on lakes and water features in Kenya. These can be found in feature_class H. We can easily filter our dataset as follows</p>
<pre class="r"><code>kenya_geonames_water <- dplyr::filter(geonames_features, feature_class == "H")
kenya_geonames_water</code></pre>
<pre><code>## # A tibble: 137 × 5
## feature_code feature_class feature_subclass description
## <chr> <chr> <chr> <chr>
## 1 H.AIRS H AIRS seaplane landing area
## 2 H.ANCH H ANCH anchorage
## 3 H.BAY H BAY bay
## 4 H.BAYS H BAYS bays
## 5 H.BGHT H BGHT bight(s)
## 6 H.BNK H BNK bank(s)
## 7 H.BNKR H BNKR stream bank
## 8 H.BNKX H BNKX section of bank
## 9 H.BOG H BOG bog(s)
## 10 H.CAPG H CAPG icecap
## # ... with 127 more rows, and 1 more variables: detail <chr></code></pre>
<p>Within feature_class H the feature codes that relate to Lakes are listed under L in the feature_code and under L in the feature_subclass.</p>
<p>If we take a look at the new water features table then we will see that there are quite a number of codes. Which codes we will want will depend on our purposes.</p>
<pre class="r"><code>library(dplyr)
dplyr::select(kenya_geonames_water, 1,3,4)</code></pre>
<pre><code>## # A tibble: 137 × 3
## feature_code feature_subclass description
## <chr> <chr> <chr>
## 1 H.AIRS AIRS seaplane landing area
## 2 H.ANCH ANCH anchorage
## 3 H.BAY BAY bay
## 4 H.BAYS BAYS bays
## 5 H.BGHT BGHT bight(s)
## 6 H.BNK BNK bank(s)
## 7 H.BNKR BNKR stream bank
## 8 H.BNKX BNKX section of bank
## 9 H.BOG BOG bog(s)
## 10 H.CAPG CAPG icecap
## # ... with 127 more rows</code></pre>
<p>Having reviewed the codes we now need to decide how to filter the actual geonames table. We will start by filtering on the main code H. We are interested in lakes so lets try using the identifier for lakes. In practice we may need more than one code.</p>
<pre class="r"><code>library(dplyr)
kenya_geodump %>% dplyr::filter(., feature_class == "H") %>%
filter(., grepl('^L', feature_code)) -> kenya_lakes # output
kenya_lakes</code></pre>
<pre><code>## # A tibble: 89 × 19
## geonameid name asciiname
## <int> <chr> <chr>
## 1 161340 Lake Amboseli Lake Amboseli
## 2 178141 West Scarp West Scarp
## 3 178374 Lake Wamoro Lake Wamoro
## 4 178403 Bandari ya Wali Bandari ya Wali
## 5 178699 Lake Uranga Lake Uranga
## 6 178846 Tyndall Tarn Tyndall Tarn
## 7 179212 Tilam Tilam
## 8 179287 Thompson Tarns Thompson Tarns
## 9 179492 Lake Telelana Lake Telelana
## 10 179494 Teleki Tarn Teleki Tarn
## # ... with 79 more rows, and 16 more variables: alternatenames <chr>,
## # latitude <dbl>, longitude <dbl>, feature_class <chr>,
## # feature_code <chr>, country_code <chr>, cc2 <chr>, admin1_code <chr>,
## # admin2_code <chr>, admin3_code <chr>, admin4_code <chr>,
## # population <int>, elevation <int>, dem <int>, timezone <chr>,
## # modification_date <date></code></pre>
<p>Ok, we now have a table with 89 names. We could go further and include the alternate names column or we could extend the filters to mangroves or other features. In the original table we also find a code for Parks and so we could also include Lake Nakuru National Park, Lake Bogoria National Reserve and others. To capture those we would simply look for the term Lake in the name or asciiname or alternate name. A simple example searching the asciiname would be to look for the work Lake using <code>stringr</code>. This will return a logical TRUE/FALSE that we can add to assist with filtering the dataset.</p>
<pre class="r"><code>library(dplyr)
library(stringr)
kenya_geodump$lake <- stringr::str_detect(kenya_geodump$asciiname, "Lake") %>%
as.character()</code></pre>
<p>Note that without the addition of <code>as.character() the column that we added will be of type boolean and won't be available to filter with</code>dplyr::filter()`.</p>
<p>Let’s take a look. We now have a logical TRUE false column on the word Lake.</p>
<pre class="r"><code>library(dplyr)
dplyr::select(kenya_geodump,1:3, 20) %>% head()</code></pre>
<pre><code>## # A tibble: 6 × 4
## geonameid name asciiname lake
## <int> <chr> <chr> <chr>
## 1 54121 Mata Arba Mata Arba FALSE
## 2 55628 Kolbiyow Kolbiyow FALSE
## 3 58869 Bur Gause Bur Gause FALSE
## 4 60856 Did Songa Did Songa FALSE
## 5 149213 Umba Umba FALSE
## 6 154205 Mchongo Mchongo FALSE</code></pre>
<p>Now we can filter that to retain the references to Lake.</p>
<pre class="r"><code>library(dplyr)
KE_geodump_lakes <- dplyr::filter(kenya_geodump, lake == "TRUE")</code></pre>
<pre class="r"><code>head(KE_geodump_lakes)</code></pre>
<pre><code>## # A tibble: 6 × 20
## geonameid name asciiname
## <int> <chr> <chr>
## 1 161340 Lake Amboseli Lake Amboseli
## 2 178374 Lake Wamoro Lake Wamoro
## 3 178699 Lake Uranga Lake Uranga
## 4 179492 Lake Telelana Lake Telelana
## 5 179817 Lake Stefanie Lake Stefanie
## 6 179974 Lake Solai Lake Solai
## # ... with 17 more variables: alternatenames <chr>, latitude <dbl>,
## # longitude <dbl>, feature_class <chr>, feature_code <chr>,
## # country_code <chr>, cc2 <chr>, admin1_code <chr>, admin2_code <chr>,
## # admin3_code <chr>, admin4_code <chr>, population <int>,
## # elevation <int>, dem <int>, timezone <chr>, modification_date <date>,
## # lake <chr></code></pre>
<p>Note here that this returns a lower number than the use of the codes above because not all lakes include the word Lake in their name. However, it will capture parks that include the name but also additional features that we may not want such as Lake Rudolf Airport. So, for our present purposes we will drop this.</p>
<p>As this makes clear, additional refinements many be needed when working with the table to select precisely those features that you want.</p>
</div>
<div id="look-up-the-lake-names-in-patents" class="section level3">
<h3>Look up the Lake names in Patents</h3>
<p>We can use the <code>lensr</code> package (presently only on Github), to generate counts of the number of patent documents for each of our search terms. We will use the kenya_lakes table with 89 entries for this test. To avoid putting pressure on the server we will leave the timer = to the default of 20.</p>
<p>To get started we need to install the <code>lensr</code> package.</p>
<pre class="r"><code>devtools::install_github("poldham/lensr")</code></pre>
<pre class="r"><code>library(lensr)</code></pre>
<p>We will use the <code>lens_count()</code> function to generate a set of urls to search the lens and retrieve the counts for our 89 terms. It should take about 25 minutes to run. <code>lensr</code> count will search 95 patent jurisdictions worldwide by default. However, some patent documents, notably machine read documents from Australia, can create significant noise. To limit the search to the main jurisdictions (US, EP, JP and WO) the argument <code>jurisdiction = "main"</code> can be added (see the <code>lensr</code> package documentation).</p>
<p>Note also that by default the Lens uses stemming rather than an exact match. So for example Carr Lakes will also capture <code>Carr, Lake</code> where the Carr is an inventor surname and the Lake is part of a place name (Lake Jackson in Texas). Stemming is disabled by default in <code>lensr</code> to limit what you get to what you ask for.</p>
<p>Note that a limitation of the existing code is that we cannot use a combination of terms such as “kenya” AND “lake naivasha”. This will be addressed in a future update of <code>lensr</code></p>
<p>The first thing you will see when you run the code below is a set of urls being generated. Then those URLs will be sent to the Lens to retrieve the counts every 20 seconds. You may want to go and have a cup of tea.</p>
<pre class="r"><code>library(lensr)
kenya_lakes_pat_raw <- lensr::lens_count(kenya_lakes$asciiname, jurisdiction = "main")
save(kenya_lakes_pat_raw, file = "kenya_lakes_pat_raw.rda")</code></pre>
<pre class="r"><code>load("kenya_lakes_pat_raw.rda")
kenya_lakes_patents <- kenya_lakes_pat_raw
head(kenya_lakes_patents, 20)</code></pre>
<pre><code>## # A tibble: 20 × 3
## publications families search
## <dbl> <dbl> <chr>
## 1 0 0 ""Lake Amboseli""
## 2 0 0 ""West Scarp""
## 3 0 0 ""Lake Wamoro""
## 4 0 0 ""Bandari ya Wali""
## 5 0 0 ""Lake Uranga""
## 6 0 0 ""Tyndall Tarn""
## 7 9 7 ""Tilam""
## 8 0 0 ""Thompson Tarns""
## 9 0 0 ""Lake Telelana""
## 10 0 0 ""Teleki Tarn""
## 11 0 0 ""Lake Stefanie""
## 12 0 0 ""Square Tarn""
## 13 0 0 ""South-Western Lagoon""
## 14 0 0 ""Lake Solai""
## 15 0 0 ""Sokorte Guda""
## 16 3 2 ""Simbi Lake""
## 17 0 0 ""Simba Taru""
## 18 0 0 ""Simba Tarn""
## 19 0 0 ""Ziwa la Minkirio""
## 20 0 0 ""Lake Shaka Babo""</code></pre>
<p>Where there are a small number of results you will see a message that the number of publications is being copied into the families column. This is because the Lens database normally returns both publications and families. However, where the numbers are low it will only return a field called results (the equivalent of patent families).</p>
<p>For specific geographic place names such as <code>Tyndall Tarn</code> we would not expect to see many results. For other names (such as Crater Lake) that may be common across a number of countries expect to see a significant number of false positives. As such, the queries should be seen as the starting point for an enquiry rather than as the final end result.</p>
</div>
<div id="adding-urls-to-the-table-for-mapping" class="section level3">
<h3>Adding urls to the table for mapping</h3>
<p>When the query has finished running we will want to add some URLs to that table so that we know where they came from and to use in mapping. We can do that as follows using the <code>lens_urls</code> function that powers <code>lens_count</code> used above.</p>
<pre class="r"><code>library(lensr)
kenya_lakes_patents$url <- lensr::lens_urls(kenya_lakes$asciiname, jurisdiction = "main")
head(kenya_lakes_patents)</code></pre>
<pre><code>## # A tibble: 6 × 4
## publications families search
## <dbl> <dbl> <chr>
## 1 0 0 ""Lake Amboseli""
## 2 0 0 ""West Scarp""
## 3 0 0 ""Lake Wamoro""
## 4 0 0 ""Bandari ya Wali""
## 5 0 0 ""Lake Uranga""
## 6 0 0 ""Tyndall Tarn""
## # ... with 1 more variables: url <chr></code></pre>
</div>
<div id="tidy-the-names-for-matching-to-geonames" class="section level3">
<h3>Tidy the names for matching to geonames</h3>
<p>Next, we will tidy up by removing the double quotes around the lake names (with thanks to <a href="http://stackoverflow.com/questions/31257671/how-to-find-and-replace-double-quotes-in-r-data-frame">Claus Wilke</a>. This will allow us to match the names when mapping below.</p>
<pre class="r"><code>library(dplyr)
library(stringr)
kenya_lakes_patents %>% mutate_each(funs(str_replace_all(., "\"", ""))) -> kenya_lakes_patents # output df</code></pre>
<pre class="r"><code>head(kenya_lakes_patents)</code></pre>
<pre><code>## # A tibble: 6 × 4
## publications families search
## <chr> <chr> <chr>
## 1 0 0 Lake Amboseli
## 2 0 0 West Scarp
## 3 0 0 Lake Wamoro
## 4 0 0 Bandari ya Wali
## 5 0 0 Lake Uranga
## 6 0 0 Tyndall Tarn
## # ... with 1 more variables: url <chr></code></pre>
<p>We will want to filter out the results that are either zero or where the patent results are large. Note here that the nature of the searches is such that there may be significant false positives that will require careful manual review.</p>
<p>By default <code>lensr</code> returns numbers as character fields. We will need to convert them to numeric.</p>
<pre class="r"><code>kenya_lakes_patents$publications <- as.numeric(kenya_lakes_patents$publications)
kenya_lakes_patents$families <- as.numeric(kenya_lakes_patents$families)</code></pre>
<p>To visualize the data we will want to take out the noisy result for North West in the data. There are a number of ways to do this including looking up the row numbers and excluding them. Here is one using filter and <code>!=</code> for is not.</p>
<pre class="r"><code>kenya_lakes_patents %>% dplyr::filter(search != "North West") -> kenya_lakes_patents # output df</code></pre>
<p>Note that Crater Lake and Blue Lagoon are also particularly likely to return false positive results… but for the moment we will live with that.</p>
<p>Next, let’s generates a quick summary of the data.</p>
<pre class="r"><code>library(dplyr)
library(ggplot2)
library(plotly)
kenya_lakes_patents %>% dplyr::filter(families > 0) %>%
ggplot2::ggplot(aes(x = search, y = families, fill = search)) +
geom_bar(stat = "identity", show.legend = FALSE) +
coord_flip()</code></pre>
<p><img src="geonames_files/figure-html/ggplot_summary-1.png" width="672" /></p>
<p>The results for Crater Lake and Blue Lagoon clearly require further investigation and could be dropped at this stage.</p>
<p>For example, Crater Lake generates 86 patent families. However, an additional search for references to both Kenya and Crater Lake reveals only 11 families and 31 publications. A review of these documents reveals that only 9 families contain explicit reference to collection in Kenya and two are passing references. Those documents can be viewed in a <a href="https://www.lens.org/lens/collection/14539">collection</a>.</p>
<p>While we will proceed with mapping, we need to bear in mind that the results are to be used for exploratory purposes and are not definitive.</p>
</div>
</div>
<div id="mapping-the-results" class="section level2">
<h2>Mapping the results</h2>
<p>We now have some counts of the number of patent documents associated with a Lake in Kenya.</p>
<p>One of the advantages of using geonames is that the table contains the latitude and longitude for the location. Bear in mind that for large features we would probably prefer to use shape files. But, for the moment, we will simply see what we learn from mapping to the geonames coordinates for the features.</p>
<p>The first step is to ensure that there is a shared name between the two tables and then join them together.</p>
<p>If we view the names of the two tables we need <code>kenya_lakes</code> and <code>lakes_patents</code> we will see that there is no shared value to join the table on. We will solve this by renaming <code>search</code> in the patents table as name (the equivalent in the parent <code>kenya_lakes</code>).</p>
<pre class="r"><code>library(dplyr)
kenya_lakes_patents$name <- kenya_lakes_patents$search</code></pre>
<p>Next we join the two tables:</p>
<pre class="r"><code>map_lakes_patents <- left_join(kenya_lakes, kenya_lakes_patents) </code></pre>
<pre><code>## Joining, by = "name"</code></pre>
<p>If we inspect map_lakes_patents we will see that we have NA and zero results for some of our patent data in the families field. If we maintain these locations in the dataset then they will appear on our map, which will result in confusion. So, we need to filter them out. Bear in mind that where we are using the scientific literature as well that we may want to keep these records.</p>
<pre class="r"><code>map_lakes_patents <- filter(map_lakes_patents, families >= 1) %>%
drop_na(families)</code></pre>
<p>That reduces our set to those that contain some results.</p>
<p>We now have a table that include the data from geonames with the coordinates and the counts from the patent data. We are now in a position to map them using the leaflet package as we did for the GBIF data earlier.</p>
<p>Note that the numbers that will appear on the map refer to the number of locations, not the number of patent documents.</p>
<pre class="r"><code>library(leaflet)
lakes_data <- leaflet(map_lakes_patents) %>%
addTiles() %>%
addCircleMarkers(~longitude, ~latitude, popup = map_lakes_patents$name, radius = 1, fillOpacity = 0.5, clusterOptions = markerClusterOptions())
lakes_data</code></pre>
<div id="htmlwidget-c9f9fb3d883474881c5b" style="width:672px;height:480px;" class="leaflet html-widget"></div>
<script type="application/json" data-for="htmlwidget-c9f9fb3d883474881c5b">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addTiles","args":["//{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",null,null,{"minZoom":0,"maxZoom":18,"maxNativeZoom":null,"tileSize":256,"subdomains":"abc","errorTileUrl":"","tms":false,"continuousWorld":false,"noWrap":false,"zoomOffset":0,"zoomReverse":false,"opacity":1,"zIndex":null,"unloadInvisibleTiles":null,"updateWhenIdle":null,"detectRetina":false,"reuseTiles":false,"attribution":"© <a href=\"http://openstreetmap.org\">OpenStreetMap\u003c/a> contributors, <a href=\"http://creativecommons.org/licenses/by-sa/2.0/\">CC-BY-SA\u003c/a>"}]},{"method":"addCircleMarkers","args":[[0.84633,-0.36845,0.6255,0.04768,3.5,-1.75517,-0.35703,-0.76732,-1.86667,0.26667,-2.10682,0.55502,-1.16667,-0.44015,-0.15,-0.7829,0.25886,-3.35,-0.07526,-2.59901],[36.12145,34.63003,40.31928,37.52809,36,36.27615,36.09297,36.35975,36.28333,36,36.40455,40.43233,37.33333,36.24272,37.31667,36.26233,36.10178,40.01667,37.46533,40.33862],1,null,null,{"lineCap":null,"lineJoin":null,"clickable":true,"pointerEvents":null,"className":"","stroke":true,"color":"#03F","weight":5,"opacity":0.5,"fill":true,"fillColor":"#03F","fillOpacity":0.5,"dashArray":null},{"showCoverageOnHover":true,"zoomToBoundsOnClick":true,"spiderfyOnMaxZoom":true,"removeOutsideVisibleBounds":true,"spiderLegPolylineOptions":{"weight":1.5,"color":"#222","opacity":0.5},"freezeAtZoom":false},null,["Tilam","Simbi Lake","Sariba","Sacred Lake","Lake Turkana","Nasikie Engida","Lake Nakuru","Lake Naivasha","Lake Magadi","Kamarr","Kabongo","Halati","Enchanted Lake","Lake Elmenteita","Curling Pond","Crater Lake","Lake Bogoria","Blue Lagoon","Lake Alice","Tana River"],null,null,null,null]}],"limits":{"lat":[-3.35,3.5],"lng":[34.63003,40.43233]}},"evals":[],"jsHooks":[]}</script>
<p>This gives us a map of the different locations with an associated patent document (bearing in mind that the patent data may need further refinement for false positives). The question now becomes making the links interactive. We can do this by hyperlinking the names of the places with the data in the Lens database.</p>
<div id="linking-map-labels-to-data" class="section level3">
<h3>Linking Map Labels to Data</h3>
<p>To add hyperlinks to the map we need a label and the hyperlink in a particular format. It should look something like this and associates a URL with a label</p>
<pre class="r"><code>#<a href="http://www.gbif.org/occurrence/436684107">"Tamarix africana"</a></b></code></pre>
<p>We need a small function to add the necessary code to our reference data set in map_lakes_patents. This rough and ready function simply pastes the html code in the right place with the Lens url and the name of the lake. The <code>htmltools</code> package may provide a neater approach.</p>
<pre class="r"><code>label_map <- function(url_id = "NULL", label = "NULL"){
b <- "<b>"
href <- "<a href="
close_href <- ">"
closea <- "</a>"
closeb <- "</b>"
out <- paste0(b, href, url_id, close_href, label, closea, closeb)
}</code></pre>
<p>We now use the function to create a new field with the map labels hyperlinked to the patent database.</p>
<pre class="r"><code>map_lakes_patents$map_labels <- label_map(url_id = map_lakes_patents$url, label = map_lakes_patents$asciiname)</code></pre>
<p>Now we use the map_labels field in creating the map.</p>
<pre class="r"><code>library(leaflet)
lakes_data <- leaflet(map_lakes_patents) %>%
addTiles() %>%
addCircleMarkers(~longitude, ~latitude, popup = map_lakes_patents$map_labels, radius = 1, fillOpacity = 0.5, clusterOptions = markerClusterOptions())
lakes_data</code></pre>
<div id="htmlwidget-4e89085b4e0603170c0a" style="width:672px;height:480px;" class="leaflet html-widget"></div>
<script type="application/json" data-for="htmlwidget-4e89085b4e0603170c0a">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addTiles","args":["//{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",null,null,{"minZoom":0,"maxZoom":18,"maxNativeZoom":null,"tileSize":256,"subdomains":"abc","errorTileUrl":"","tms":false,"continuousWorld":false,"noWrap":false,"zoomOffset":0,"zoomReverse":false,"opacity":1,"zIndex":null,"unloadInvisibleTiles":null,"updateWhenIdle":null,"detectRetina":false,"reuseTiles":false,"attribution":"© <a href=\"http://openstreetmap.org\">OpenStreetMap\u003c/a> contributors, <a href=\"http://creativecommons.org/licenses/by-sa/2.0/\">CC-BY-SA\u003c/a>"}]},{"method":"addCircleMarkers","args":[[0.84633,-0.36845,0.6255,0.04768,3.5,-1.75517,-0.35703,-0.76732,-1.86667,0.26667,-2.10682,0.55502,-1.16667,-0.44015,-0.15,-0.7829,0.25886,-3.35,-0.07526,-2.59901],[36.12145,34.63003,40.31928,37.52809,36,36.27615,36.09297,36.35975,36.28333,36,36.40455,40.43233,37.33333,36.24272,37.31667,36.26233,36.10178,40.01667,37.46533,40.33862],1,null,null,{"lineCap":null,"lineJoin":null,"clickable":true,"pointerEvents":null,"className":"","stroke":true,"color":"#03F","weight":5,"opacity":0.5,"fill":true,"fillColor":"#03F","fillOpacity":0.5,"dashArray":null},{"showCoverageOnHover":true,"zoomToBoundsOnClick":true,"spiderfyOnMaxZoom":true,"removeOutsideVisibleBounds":true,"spiderLegPolylineOptions":{"weight":1.5,"color":"#222","opacity":0.5},"freezeAtZoom":false},null,["<b><a href=https://www.lens.org/lens/search?q=%22Tilam%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Tilam\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Simbi+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Simbi Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Sariba%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Sariba\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Sacred+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Sacred Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Turkana%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Turkana\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Nasikie+Engida%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Nasikie Engida\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Nakuru%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Nakuru\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Naivasha%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Naivasha\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Magadi%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Magadi\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Kamarr%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Kamarr\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Kabongo%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Kabongo\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Halati%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Halati\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Enchanted+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Enchanted Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Elmenteita%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Elmenteita\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Curling+Pond%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Curling Pond\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Crater+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Crater Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Bogoria%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Bogoria\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Blue+Lagoon%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Blue Lagoon\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Alice%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Alice\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Tana+River%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Tana River\u003c/a>\u003c/b>"],null,null,null,null]}],"limits":{"lat":[-3.35,3.5],"lng":[34.63003,40.43233]}},"evals":[],"jsHooks":[]}</script>
<p>Ok we have the hyperlink working. At a more advanced stage we would probably want to add a set of hyperlinks that would direct the reader to a range of different data sources. For the moment we will stick with patents.</p>
</div>
<div id="sizing-the-markers" class="section level3">
<h3>Sizing the markers</h3>
<p>At the moment all of the markers are the same size. It would be useful if we could see the sizes based on for example the number of patent families (first filings) or the number of patent publications.</p>
<pre class="r"><code>library(leaflet)
lakes_data <- leaflet(map_lakes_patents) %>%
addTiles() %>%
addCircleMarkers(~longitude, ~latitude, popup = map_lakes_patents$map_labels, radius = map_lakes_patents$families, fillOpacity = 0.5, clusterOptions = markerClusterOptions())
lakes_data</code></pre>
<div id="htmlwidget-80442c7fdd3c2677f575" style="width:672px;height:480px;" class="leaflet html-widget"></div>
<script type="application/json" data-for="htmlwidget-80442c7fdd3c2677f575">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addTiles","args":["//{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",null,null,{"minZoom":0,"maxZoom":18,"maxNativeZoom":null,"tileSize":256,"subdomains":"abc","errorTileUrl":"","tms":false,"continuousWorld":false,"noWrap":false,"zoomOffset":0,"zoomReverse":false,"opacity":1,"zIndex":null,"unloadInvisibleTiles":null,"updateWhenIdle":null,"detectRetina":false,"reuseTiles":false,"attribution":"© <a href=\"http://openstreetmap.org\">OpenStreetMap\u003c/a> contributors, <a href=\"http://creativecommons.org/licenses/by-sa/2.0/\">CC-BY-SA\u003c/a>"}]},{"method":"addCircleMarkers","args":[[0.84633,-0.36845,0.6255,0.04768,3.5,-1.75517,-0.35703,-0.76732,-1.86667,0.26667,-2.10682,0.55502,-1.16667,-0.44015,-0.15,-0.7829,0.25886,-3.35,-0.07526,-2.59901],[36.12145,34.63003,40.31928,37.52809,36,36.27615,36.09297,36.35975,36.28333,36,36.40455,40.43233,37.33333,36.24272,37.31667,36.26233,36.10178,40.01667,37.46533,40.33862],[7,2,27,3,1,5,9,1,46,2,2,2,3,11,4,86,17,71,7,11],null,null,{"lineCap":null,"lineJoin":null,"clickable":true,"pointerEvents":null,"className":"","stroke":true,"color":"#03F","weight":5,"opacity":0.5,"fill":true,"fillColor":"#03F","fillOpacity":0.5,"dashArray":null},{"showCoverageOnHover":true,"zoomToBoundsOnClick":true,"spiderfyOnMaxZoom":true,"removeOutsideVisibleBounds":true,"spiderLegPolylineOptions":{"weight":1.5,"color":"#222","opacity":0.5},"freezeAtZoom":false},null,["<b><a href=https://www.lens.org/lens/search?q=%22Tilam%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Tilam\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Simbi+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Simbi Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Sariba%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Sariba\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Sacred+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Sacred Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Turkana%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Turkana\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Nasikie+Engida%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Nasikie Engida\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Nakuru%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Nakuru\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Naivasha%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Naivasha\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Magadi%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Magadi\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Kamarr%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Kamarr\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Kabongo%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Kabongo\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Halati%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Halati\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Enchanted+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Enchanted Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Elmenteita%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Elmenteita\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Curling+Pond%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Curling Pond\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Crater+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Crater Lake\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Bogoria%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Bogoria\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Blue+Lagoon%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Blue Lagoon\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Lake+Alice%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Lake Alice\u003c/a>\u003c/b>","<b><a href=https://www.lens.org/lens/search?q=%22Tana+River%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50>Tana River\u003c/a>\u003c/b>"],null,null,null,null]}],"limits":{"lat":[-3.35,3.5],"lng":[34.63003,40.43233]}},"evals":[],"jsHooks":[]}</script>
<p>We now have a map with labels, and hyperlinks that is sized on the raw number of families retrieved from the Lens.</p>
</div>
<div id="adding-more-data-to-the-labels" class="section level3">
<h3>Adding more data to the labels</h3>
<p>Going back to our earlier labels. The question now is whether we can add more labels to the map. Such as hyperlinks to look for the scientific literature.</p>
<p>The answer lies with the label map function we created earlier. However, we will need to do a little preparation to format the labels for use in the urls. We will use a small function for this. The function could of course be expanded to other urls. Basically it will take a term (in this case it will be the asciiname) and format a URL for an exact match. <!--- should be able to use Purr and pmap here to add multiples and link to the label_map function using tags$---></p>
<pre class="r"><code>map_url <- function(query, label = "NULL", type = "NULL"){
href <- "<a href="
close_href <- ">" #included for flexibility in labelling
close_a <- "</a>"
if(type == "google"){
query <- stringr::str_replace_all(query, " ", "+")
google_base <- "https://www.google.co.uk/#q="
url <- paste0(google_base, query)
out <- paste0(href, shQuote(url), close_href, label, close_a)
}
if(type == "crossref"){
# example http://search.crossref.org/?q=%2Blake+%2Bbogoria
query <- stringr::str_replace_all(query, " ", "+%2B")
crossref_base <- "http://search.crossref.org/?q=%2B"
url <- paste0(crossref_base, query)
out <- paste0(href, shQuote(url), close_href, label, close_a)
}
if(type == "gbif"){
# example http://www.gbif.org/species/search?q=Tamarix+africana
query <- stringr::str_replace_all(query, " ", "+")
gbif_base <- "http://www.gbif.org/species/search?q="
url <- paste0(gbif_base, query)
out <- paste0(href, shQuote(url), close_href, label, close_a)
}
if(type == "lens"){
# note restriction to main jurisdictions and no stemming to reduce duplication and false positives
query <- stringr::str_replace_all(query, " ", "+")
lens_base <- "https://www.lens.org/lens/search?q="
url <- paste0(lens_base, "%22", query, "%22", "&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50")
out <- paste0(href, shQuote(url), close_href, label, close_a)
}
out
}</code></pre>
<p>We can now add these to the map_lakes patents table as follows. Note that we will overwrite the existing patent links.</p>
<pre class="r"><code>map_lakes_patents$google <- map_url(map_lakes_patents$asciiname, label = "Lookup Google", type = "google")
map_lakes_patents$crossref <- map_url(map_lakes_patents$asciiname, label = "Lookup Crossref", type = "crossref")
map_lakes_patents$lens <- map_url(map_lakes_patents$asciiname, label = "Lookup Patents", type = "lens")</code></pre>
<p>These now need combining into one field and we will use <code>sep=</code> to break the hyperlinks up. This is a little complicated and would merit a tidy up.</p>
<pre class="r"><code>sep = "<br>"
close_sep = "</br>"
str_open = "<strong>"
str_close = "</strong>"
map_lakes_patents$combined_labels <- paste0(sep, str_open, map_lakes_patents$asciiname, str_close, close_sep, sep, map_lakes_patents$lens, close_sep, sep, map_lakes_patents$google, close_sep, sep, map_lakes_patents$crossref, close_sep)</code></pre>
<p>Let’s take a look.</p>
<pre class="r"><code>library(leaflet)
lakes_data <- leaflet(map_lakes_patents) %>%
addTiles() %>%
addCircleMarkers(~longitude, ~latitude, popup = map_lakes_patents$combined_labels, radius = map_lakes_patents$families, fillOpacity = 0.5, clusterOptions = markerClusterOptions())
lakes_data</code></pre>
<div id="htmlwidget-0b45852982b0bcfcdf49" style="width:672px;height:480px;" class="leaflet html-widget"></div>
<script type="application/json" data-for="htmlwidget-0b45852982b0bcfcdf49">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addTiles","args":["//{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",null,null,{"minZoom":0,"maxZoom":18,"maxNativeZoom":null,"tileSize":256,"subdomains":"abc","errorTileUrl":"","tms":false,"continuousWorld":false,"noWrap":false,"zoomOffset":0,"zoomReverse":false,"opacity":1,"zIndex":null,"unloadInvisibleTiles":null,"updateWhenIdle":null,"detectRetina":false,"reuseTiles":false,"attribution":"© <a href=\"http://openstreetmap.org\">OpenStreetMap\u003c/a> contributors, <a href=\"http://creativecommons.org/licenses/by-sa/2.0/\">CC-BY-SA\u003c/a>"}]},{"method":"addCircleMarkers","args":[[0.84633,-0.36845,0.6255,0.04768,3.5,-1.75517,-0.35703,-0.76732,-1.86667,0.26667,-2.10682,0.55502,-1.16667,-0.44015,-0.15,-0.7829,0.25886,-3.35,-0.07526,-2.59901],[36.12145,34.63003,40.31928,37.52809,36,36.27615,36.09297,36.35975,36.28333,36,36.40455,40.43233,37.33333,36.24272,37.31667,36.26233,36.10178,40.01667,37.46533,40.33862],[7,2,27,3,1,5,9,1,46,2,2,2,3,11,4,86,17,71,7,11],null,null,{"lineCap":null,"lineJoin":null,"clickable":true,"pointerEvents":null,"className":"","stroke":true,"color":"#03F","weight":5,"opacity":0.5,"fill":true,"fillColor":"#03F","fillOpacity":0.5,"dashArray":null},{"showCoverageOnHover":true,"zoomToBoundsOnClick":true,"spiderfyOnMaxZoom":true,"removeOutsideVisibleBounds":true,"spiderLegPolylineOptions":{"weight":1.5,"color":"#222","opacity":0.5},"freezeAtZoom":false},null,["<br><strong>Tilam\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Tilam%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Tilam'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BTilam'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Simbi Lake\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Simbi+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Simbi+Lake'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BSimbi+%2BLake'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Sariba\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Sariba%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Sariba'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BSariba'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Sacred Lake\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Sacred+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Sacred+Lake'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BSacred+%2BLake'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Turkana\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Turkana%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Turkana'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BTurkana'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Nasikie Engida\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Nasikie+Engida%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Nasikie+Engida'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BNasikie+%2BEngida'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Nakuru\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Nakuru%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Nakuru'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BNakuru'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Naivasha\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Naivasha%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Naivasha'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BNaivasha'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Magadi\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Magadi%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Magadi'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BMagadi'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Kamarr\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Kamarr%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Kamarr'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BKamarr'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Kabongo\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Kabongo%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Kabongo'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BKabongo'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Halati\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Halati%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Halati'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BHalati'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Enchanted Lake\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Enchanted+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Enchanted+Lake'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BEnchanted+%2BLake'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Elmenteita\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Elmenteita%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Elmenteita'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BElmenteita'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Curling Pond\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Curling+Pond%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Curling+Pond'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BCurling+%2BPond'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Crater Lake\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Crater+Lake%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Crater+Lake'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BCrater+%2BLake'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Bogoria\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Bogoria%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Bogoria'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BBogoria'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Blue Lagoon\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Blue+Lagoon%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Blue+Lagoon'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BBlue+%2BLagoon'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Lake Alice\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Lake+Alice%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Lake+Alice'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BLake+%2BAlice'>Lookup Crossref\u003c/a>\u003c/br>","<br><strong>Tana River\u003c/strong>\u003c/br><br><a href='https://www.lens.org/lens/search?q=%22Tana+River%22&jo=true&j=EP&j=JP&j=US&j=WO&st=false&n=50'>Lookup Patents\u003c/a>\u003c/br><br><a href='https://www.google.co.uk/#q=Tana+River'>Lookup Google\u003c/a>\u003c/br><br><a href='http://search.crossref.org/?q=%2BTana+%2BRiver'>Lookup Crossref\u003c/a>\u003c/br>"],null,null,null,null]}],"limits":{"lat":[-3.35,3.5],"lng":[34.63003,40.43233]}},"evals":[],"jsHooks":[]}</script>
<p>We now have an interactive map with three working hyperlinks.</p>
</div>
</div>
<div id="round-up" class="section level2">
<h2>Round Up</h2>
<p>In this section we have walked through the process of using the geonames service to develop search queries for a range of different data types (patents, the scientific literature, and google) and then created an interactive geographic map.</p>
<p>Some elements of the piece require improvement, for example the patent search queries will generate significant noise on certain common names and the underlying search feature of <code>lensr</code> needs improvement. In addition, the process for generating the map hyperlinks could be tidied up (perhaps using htmltools). However, we now have a means of obtaining georeferences and then visually linking with other types of data.</p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>