diff --git a/test/distributed/test_c10d_nccl.py b/test/distributed/test_c10d_nccl.py index ce3253affd84a..7bbb87a576c10 100644 --- a/test/distributed/test_c10d_nccl.py +++ b/test/distributed/test_c10d_nccl.py @@ -3869,6 +3869,40 @@ def test_send_recv_subgroup(self, async_op, group_rank): else: c10d.send(x, dst=self.rank - 1, group=subgroup) + @requires_nccl() + @skip_if_lt_x_gpu(4) + @parametrize("group_rank", [True, False]) + def test_batch_send_recv_subgroup(self, group_rank): + world_size = 4 + if self.rank >= world_size: + return + subgroup = self._init_two_pg2_subgroups(world_size) + device = torch.device("cuda:%d" % self.rank) + ops = [] + if self.rank == 0 or self.rank == 2: + x = torch.empty((10,), device=device) + if group_rank: + ops.append(c10d.P2POp(dist.irecv, x, group=subgroup, group_peer=1)) + else: + ops.append( + c10d.P2POp(dist.irecv, x, peer=self.rank + 1, group=subgroup) + ) + + for work in dist.batch_isend_irecv(ops): + work.wait() + expected = torch.ones((10,), device=device) * (self.rank + 1) + self.assertEqual(x, expected) + else: + x = torch.ones((10,), device=device) * self.rank + if group_rank: + ops.append(c10d.P2POp(dist.isend, x, group=subgroup, group_peer=0)) + else: + ops.append( + c10d.P2POp(dist.isend, x, peer=self.rank - 1, group=subgroup) + ) + for work in dist.batch_isend_irecv(ops): + work.wait() + @requires_nccl() @skip_if_lt_x_gpu(4) @parametrize("group_rank", [True, False]) diff --git a/torch/distributed/distributed_c10d.py b/torch/distributed/distributed_c10d.py index 820c9c7c81f91..0afe8cbc34d7c 100644 --- a/torch/distributed/distributed_c10d.py +++ b/torch/distributed/distributed_c10d.py @@ -469,57 +469,61 @@ class P2POp: The type of ``op`` is either ``torch.distributed.isend`` or ``torch.distributed.irecv``. tensor (Tensor): Tensor to send or receive. - peer (int): Destination or source rank. + peer (int, optional): Destination or source rank. group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. tag (int, optional): Tag to match send with recv. + group_peer (int, optional): Destination or source rank. """ def __init__( self, op: Callable, tensor: torch.Tensor, - peer: int, + peer: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0, + group_peer: Optional[int] = None, ): """Init.""" self.op = op self.tensor = tensor - self.peer = peer - self.group = group + self.group = _group_or_default_group(group) + self.peer = _canonicalize_group_rank( + self.group, peer, group_peer, return_global=True + ) self.tag = tag + self.group_peer = _canonicalize_group_rank(self.group, peer, group_peer) def __new__( cls, op: Callable, tensor: torch.Tensor, - peer: int, + peer: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0, + group_peer: Optional[int] = None, ): """Create and return a new instance of the class.""" _check_op(op) _check_single_tensor(tensor, "tensor") + return object.__new__(cls) def __repr__(self): my_group_rank = get_rank(self.group) - peer_group_rank = ( - get_group_rank(self.group, self.peer) if self.group else self.peer - ) op_name = self.op.__name__ group_name = self.group.group_name if self.group else "default_pg" if "send" in op_name: s = my_group_rank - d = peer_group_rank + d = self.group_peer elif "recv" in op_name: - s = peer_group_rank + s = self.group_peer d = my_group_rank else: return super().__repr__() - return f"P2POp({op_name} pg={group_name}, s={s}, d={d}, {self.tensor.shape}, {self.tensor.dtype})" + return f"P2POp({op_name} pg={group_name}, group_src={s}, group_dst={d}, {self.tensor.shape}, {self.tensor.dtype})" class _CollOp: @@ -2545,7 +2549,7 @@ def _coalescing_manager( work.wait() # type: ignore[possibly-undefined] -def batch_isend_irecv(p2p_op_list): +def batch_isend_irecv(p2p_op_list: List[P2POp]) -> List[Work]: """ Send or Receive a batch of tensors asynchronously and return a list of requests. @@ -2588,17 +2592,33 @@ def batch_isend_irecv(p2p_op_list): _check_p2p_op_list(p2p_op_list) group = p2p_op_list[0].group device = p2p_op_list[0].tensor.device + + def peer_kwarg(op: P2POp) -> Dict[str, int]: + key = "group_dst" if op.op == isend else "group_src" + return {key: op.group_peer} + if device.type == "cuda": # NCCL style coalescing with _coalescing_manager(group, device, async_ops=True) as cm: for p2p_op in p2p_op_list: - p2p_op.op(p2p_op.tensor, p2p_op.peer, p2p_op.group, p2p_op.tag) + p2p_op.op( + p2p_op.tensor, + group=p2p_op.group, + tag=p2p_op.tag, + **peer_kwarg(p2p_op), + ) + return cm.works else: # Backward support for Gloo reqs = [] for p2p_op in p2p_op_list: - work = p2p_op.op(p2p_op.tensor, p2p_op.peer, p2p_op.group, p2p_op.tag) + work = p2p_op.op( + p2p_op.tensor, + group=p2p_op.group, + tag=p2p_op.tag, + **peer_kwarg(p2p_op), + ) if work: reqs.append(work) return reqs