-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathclassify.py
83 lines (66 loc) · 3.15 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright 2018 The CSGAN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train, validate and test a classifier."""
import argparse
import sys
import tensorflow as tf
from models import classification as cls
def parse_args():
"""Parses command-line arguments.
Returns:
args: Command-line arguments
"""
parser = argparse.ArgumentParser()
# Classification configuration file and feature file are the only two required arguments.
parser.add_argument('--cfg', required=True, help='Classifier config file')
parser.add_argument('--feature_file', required=True, help='Feature file to train on.')
# Optional flags.
parser.add_argument('--test_split', default='test', required=False, help='Split to test on.')
parser.add_argument('--retrain', default=False, required=False, help='Whether or not to re-train the classifier'
'(for neural networks)',
action='store_true')
parser.add_argument('--validate', default=False, required=False, help='Whether or not to use validation split to'
'select the best model (for neural networks)',
action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args, _ = parser.parse_known_args()
return args
def main():
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth = True
with tf.Session(config=run_config) as session:
# Create classifier from config.
classifier = cls.Classifier(args.cfg, args.feature_file, args.test_split)
classifier.session = session
# Train classifier.
classifier.train(retrain=args.retrain)
# Find the best model based on validation set accuracy.
if args.validate:
best_model = classifier.validate()
else:
best_model = None
# Only needed for non neural network classifiers.
classifier.save_classifier()
# Test classifier on train split.
_, train_acc, per_class = classifier.test_classifier(input_split='train', save_result=True,
model_name=best_model)
# Test classifier on test split.
_, test_acc, per_class = classifier.test_classifier(input_split=args.test_split, save_result=True,
model_name=best_model)
if __name__ == '__main__':
args = parse_args()
main()