forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ParticleSystem_cuda.cu
151 lines (124 loc) · 5.7 KB
/
ParticleSystem_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This file contains simple wrapper functions that call the CUDA kernels
*/
#define HELPERGL_EXTERN_GL_FUNC_IMPLEMENTATION
#include <helper_gl.h>
#include <helper_cuda.h>
#include <cstdlib>
#include <cstdio>
#include <string.h>
#include <cuda_gl_interop.h>
#include "thrust/device_ptr.h"
#include "thrust/for_each.h"
#include "thrust/iterator/zip_iterator.h"
#include "thrust/sort.h"
#include "particles_kernel_device.cuh"
#include "ParticleSystem.cuh"
extern "C" {
cudaArray *noiseArray;
void setParameters(SimParams *hostParams) {
// copy parameters to constant memory
checkCudaErrors(cudaMemcpyToSymbol(params, hostParams, sizeof(SimParams)));
}
// Round a / b to nearest higher integer value
int iDivUp(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); }
// compute grid and thread block size for a given number of elements
void computeGridSize(int n, int blockSize, int &numBlocks, int &numThreads) {
numThreads = min(blockSize, n);
numBlocks = iDivUp(n, numThreads);
}
inline float frand() { return rand() / (float)RAND_MAX; }
// create 3D texture containing random values
void createNoiseTexture(int w, int h, int d) {
cudaExtent size = make_cudaExtent(w, h, d);
size_t elements = size.width * size.height * size.depth;
float *volumeData = (float *)malloc(elements * 4 * sizeof(float));
float *ptr = volumeData;
for (size_t i = 0; i < elements; i++) {
*ptr++ = frand() * 2.0f - 1.0f;
*ptr++ = frand() * 2.0f - 1.0f;
*ptr++ = frand() * 2.0f - 1.0f;
*ptr++ = frand() * 2.0f - 1.0f;
}
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float4>();
checkCudaErrors(cudaMalloc3DArray(&noiseArray, &channelDesc, size));
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr = make_cudaPitchedPtr(
(void *)volumeData, size.width * sizeof(float4), size.width, size.height);
copyParams.dstArray = noiseArray;
copyParams.extent = size;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
free(volumeData);
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = noiseArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.addressMode[1] = cudaAddressModeWrap;
texDescr.addressMode[2] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&noiseTex, &texRes, &texDescr, NULL));
}
void integrateSystem(float4 *oldPos, float4 *newPos, float4 *oldVel,
float4 *newVel, float deltaTime, int numParticles) {
thrust::device_ptr<float4> d_newPos(newPos);
thrust::device_ptr<float4> d_newVel(newVel);
thrust::device_ptr<float4> d_oldPos(oldPos);
thrust::device_ptr<float4> d_oldVel(oldVel);
thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(
d_newPos, d_newVel, d_oldPos, d_oldVel)),
thrust::make_zip_iterator(thrust::make_tuple(
d_newPos + numParticles, d_newVel + numParticles,
d_oldPos + numParticles, d_oldVel + numParticles)),
integrate_functor(deltaTime, noiseTex));
}
void calcDepth(float4 *pos,
float *keys, // output
uint *indices, // output
float3 sortVector, int numParticles) {
thrust::device_ptr<float4> d_pos(pos);
thrust::device_ptr<float> d_keys(keys);
thrust::device_ptr<uint> d_indices(indices);
thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(d_pos, d_keys)),
thrust::make_zip_iterator(thrust::make_tuple(
d_pos + numParticles, d_keys + numParticles)),
calcDepth_functor(sortVector));
thrust::sequence(d_indices, d_indices + numParticles);
}
void sortParticles(float *sortKeys, uint *indices, uint numParticles) {
thrust::sort_by_key(thrust::device_ptr<float>(sortKeys),
thrust::device_ptr<float>(sortKeys + numParticles),
thrust::device_ptr<uint>(indices));
}
} // extern "C"