forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcdpQuadtree.cu
739 lines (610 loc) · 25.6 KB
/
cdpQuadtree.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <thrust/random.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
////////////////////////////////////////////////////////////////////////////////
// A structure of 2D points (structure of arrays).
////////////////////////////////////////////////////////////////////////////////
class Points {
float *m_x;
float *m_y;
public:
// Constructor.
__host__ __device__ Points() : m_x(NULL), m_y(NULL) {}
// Constructor.
__host__ __device__ Points(float *x, float *y) : m_x(x), m_y(y) {}
// Get a point.
__host__ __device__ __forceinline__ float2 get_point(int idx) const {
return make_float2(m_x[idx], m_y[idx]);
}
// Set a point.
__host__ __device__ __forceinline__ void set_point(int idx, const float2 &p) {
m_x[idx] = p.x;
m_y[idx] = p.y;
}
// Set the pointers.
__host__ __device__ __forceinline__ void set(float *x, float *y) {
m_x = x;
m_y = y;
}
};
////////////////////////////////////////////////////////////////////////////////
// A 2D bounding box
////////////////////////////////////////////////////////////////////////////////
class Bounding_box {
// Extreme points of the bounding box.
float2 m_p_min;
float2 m_p_max;
public:
// Constructor. Create a unit box.
__host__ __device__ Bounding_box() {
m_p_min = make_float2(0.0f, 0.0f);
m_p_max = make_float2(1.0f, 1.0f);
}
// Compute the center of the bounding-box.
__host__ __device__ void compute_center(float2 ¢er) const {
center.x = 0.5f * (m_p_min.x + m_p_max.x);
center.y = 0.5f * (m_p_min.y + m_p_max.y);
}
// The points of the box.
__host__ __device__ __forceinline__ const float2 &get_max() const {
return m_p_max;
}
__host__ __device__ __forceinline__ const float2 &get_min() const {
return m_p_min;
}
// Does a box contain a point.
__host__ __device__ bool contains(const float2 &p) const {
return p.x >= m_p_min.x && p.x < m_p_max.x && p.y >= m_p_min.y &&
p.y < m_p_max.y;
}
// Define the bounding box.
__host__ __device__ void set(float min_x, float min_y, float max_x,
float max_y) {
m_p_min.x = min_x;
m_p_min.y = min_y;
m_p_max.x = max_x;
m_p_max.y = max_y;
}
};
////////////////////////////////////////////////////////////////////////////////
// A node of a quadree.
////////////////////////////////////////////////////////////////////////////////
class Quadtree_node {
// The identifier of the node.
int m_id;
// The bounding box of the tree.
Bounding_box m_bounding_box;
// The range of points.
int m_begin, m_end;
public:
// Constructor.
__host__ __device__ Quadtree_node() : m_id(0), m_begin(0), m_end(0) {}
// The ID of a node at its level.
__host__ __device__ int id() const { return m_id; }
// The ID of a node at its level.
__host__ __device__ void set_id(int new_id) { m_id = new_id; }
// The bounding box.
__host__ __device__ __forceinline__ const Bounding_box &bounding_box() const {
return m_bounding_box;
}
// Set the bounding box.
__host__ __device__ __forceinline__ void set_bounding_box(float min_x,
float min_y,
float max_x,
float max_y) {
m_bounding_box.set(min_x, min_y, max_x, max_y);
}
// The number of points in the tree.
__host__ __device__ __forceinline__ int num_points() const {
return m_end - m_begin;
}
// The range of points in the tree.
__host__ __device__ __forceinline__ int points_begin() const {
return m_begin;
}
__host__ __device__ __forceinline__ int points_end() const { return m_end; }
// Define the range for that node.
__host__ __device__ __forceinline__ void set_range(int begin, int end) {
m_begin = begin;
m_end = end;
}
};
////////////////////////////////////////////////////////////////////////////////
// Algorithm parameters.
////////////////////////////////////////////////////////////////////////////////
struct Parameters {
// Choose the right set of points to use as in/out.
int point_selector;
// The number of nodes at a given level (2^k for level k).
int num_nodes_at_this_level;
// The recursion depth.
int depth;
// The max value for depth.
const int max_depth;
// The minimum number of points in a node to stop recursion.
const int min_points_per_node;
// Constructor set to default values.
__host__ __device__ Parameters(int max_depth, int min_points_per_node)
: point_selector(0),
num_nodes_at_this_level(1),
depth(0),
max_depth(max_depth),
min_points_per_node(min_points_per_node) {}
// Copy constructor. Changes the values for next iteration.
__host__ __device__ Parameters(const Parameters ¶ms, bool)
: point_selector((params.point_selector + 1) % 2),
num_nodes_at_this_level(4 * params.num_nodes_at_this_level),
depth(params.depth + 1),
max_depth(params.max_depth),
min_points_per_node(params.min_points_per_node) {}
};
////////////////////////////////////////////////////////////////////////////////
// Build a quadtree on the GPU. Use CUDA Dynamic Parallelism.
//
// The algorithm works as follows. The host (CPU) launches one block of
// NUM_THREADS_PER_BLOCK threads. That block will do the following steps:
//
// 1- Check the number of points and its depth.
//
// We impose a maximum depth to the tree and a minimum number of points per
// node. If the maximum depth is exceeded or the minimum number of points is
// reached. The threads in the block exit.
//
// Before exiting, they perform a buffer swap if it is needed. Indeed, the
// algorithm uses two buffers to permute the points and make sure they are
// properly distributed in the quadtree. By design we want all points to be
// in the first buffer of points at the end of the algorithm. It is the reason
// why we may have to swap the buffer before leavin (if the points are in the
// 2nd buffer).
//
// 2- Count the number of points in each child.
//
// If the depth is not too high and the number of points is sufficient, the
// block has to dispatch the points into four geometrical buckets: Its
// children. For that purpose, we compute the center of the bounding box and
// count the number of points in each quadrant.
//
// The set of points is divided into sections. Each section is given to a
// warp of threads (32 threads). Warps use __ballot and __popc intrinsics
// to count the points. See the Programming Guide for more information about
// those functions.
//
// 3- Scan the warps' results to know the "global" numbers.
//
// Warps work independently from each other. At the end, each warp knows the
// number of points in its section. To know the numbers for the block, the
// block has to run a scan/reduce at the block level. It's a traditional
// approach. The implementation in that sample is not as optimized as what
// could be found in fast radix sorts, for example, but it relies on the same
// idea.
//
// 4- Move points.
//
// Now that the block knows how many points go in each of its 4 children, it
// remains to dispatch the points. It is straightforward.
//
// 5- Launch new blocks.
//
// The block launches four new blocks: One per children. Each of the four blocks
// will apply the same algorithm.
////////////////////////////////////////////////////////////////////////////////
template <int NUM_THREADS_PER_BLOCK>
__global__ void build_quadtree_kernel(Quadtree_node *nodes, Points *points,
Parameters params) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// The number of warps in a block.
const int NUM_WARPS_PER_BLOCK = NUM_THREADS_PER_BLOCK / warpSize;
// Shared memory to store the number of points.
extern __shared__ int smem[];
// s_num_pts[4][NUM_WARPS_PER_BLOCK];
// Addresses of shared memory.
volatile int *s_num_pts[4];
for (int i = 0; i < 4; ++i)
s_num_pts[i] = (volatile int *)&smem[i * NUM_WARPS_PER_BLOCK];
// Compute the coordinates of the threads in the block.
const int warp_id = threadIdx.x / warpSize;
const int lane_id = threadIdx.x % warpSize;
// Mask for compaction.
// Same as: asm( "mov.u32 %0, %%lanemask_lt;" : "=r"(lane_mask_lt) );
int lane_mask_lt = (1 << lane_id) - 1;
// The current node.
Quadtree_node &node = nodes[blockIdx.x];
// The number of points in the node.
int num_points = node.num_points();
float2 center;
int range_begin, range_end;
int warp_cnts[4] = {0, 0, 0, 0};
//
// 1- Check the number of points and its depth.
//
// Stop the recursion here. Make sure points[0] contains all the points.
if (params.depth >= params.max_depth ||
num_points <= params.min_points_per_node) {
if (params.point_selector == 1) {
int it = node.points_begin(), end = node.points_end();
for (it += threadIdx.x; it < end; it += NUM_THREADS_PER_BLOCK)
if (it < end) points[0].set_point(it, points[1].get_point(it));
}
return;
}
// Compute the center of the bounding box of the points.
const Bounding_box &bbox = node.bounding_box();
bbox.compute_center(center);
// Find how many points to give to each warp.
int num_points_per_warp = max(
warpSize, (num_points + NUM_WARPS_PER_BLOCK - 1) / NUM_WARPS_PER_BLOCK);
// Each warp of threads will compute the number of points to move to each
// quadrant.
range_begin = node.points_begin() + warp_id * num_points_per_warp;
range_end = min(range_begin + num_points_per_warp, node.points_end());
//
// 2- Count the number of points in each child.
//
// Input points.
const Points &in_points = points[params.point_selector];
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
// Compute the number of points.
for (int range_it = range_begin + tile32.thread_rank();
tile32.any(range_it < range_end); range_it += warpSize) {
// Is it still an active thread?
bool is_active = range_it < range_end;
// Load the coordinates of the point.
float2 p =
is_active ? in_points.get_point(range_it) : make_float2(0.0f, 0.0f);
// Count top-left points.
int num_pts =
__popc(tile32.ballot(is_active && p.x < center.x && p.y >= center.y));
warp_cnts[0] += tile32.shfl(num_pts, 0);
// Count top-right points.
num_pts =
__popc(tile32.ballot(is_active && p.x >= center.x && p.y >= center.y));
warp_cnts[1] += tile32.shfl(num_pts, 0);
// Count bottom-left points.
num_pts =
__popc(tile32.ballot(is_active && p.x < center.x && p.y < center.y));
warp_cnts[2] += tile32.shfl(num_pts, 0);
// Count bottom-right points.
num_pts =
__popc(tile32.ballot(is_active && p.x >= center.x && p.y < center.y));
warp_cnts[3] += tile32.shfl(num_pts, 0);
}
if (tile32.thread_rank() == 0) {
s_num_pts[0][warp_id] = warp_cnts[0];
s_num_pts[1][warp_id] = warp_cnts[1];
s_num_pts[2][warp_id] = warp_cnts[2];
s_num_pts[3][warp_id] = warp_cnts[3];
}
// Make sure warps have finished counting.
cg::sync(cta);
//
// 3- Scan the warps' results to know the "global" numbers.
//
// First 4 warps scan the numbers of points per child (inclusive scan).
if (warp_id < 4) {
int num_pts = tile32.thread_rank() < NUM_WARPS_PER_BLOCK
? s_num_pts[warp_id][tile32.thread_rank()]
: 0;
#pragma unroll
for (int offset = 1; offset < NUM_WARPS_PER_BLOCK; offset *= 2) {
int n = tile32.shfl_up(num_pts, offset);
if (tile32.thread_rank() >= offset) num_pts += n;
}
if (tile32.thread_rank() < NUM_WARPS_PER_BLOCK)
s_num_pts[warp_id][tile32.thread_rank()] = num_pts;
}
cg::sync(cta);
// Compute global offsets.
if (warp_id == 0) {
int sum = s_num_pts[0][NUM_WARPS_PER_BLOCK - 1];
for (int row = 1; row < 4; ++row) {
int tmp = s_num_pts[row][NUM_WARPS_PER_BLOCK - 1];
cg::sync(tile32);
if (tile32.thread_rank() < NUM_WARPS_PER_BLOCK)
s_num_pts[row][tile32.thread_rank()] += sum;
cg::sync(tile32);
sum += tmp;
}
}
cg::sync(cta);
// Make the scan exclusive.
int val = 0;
if (threadIdx.x < 4 * NUM_WARPS_PER_BLOCK) {
val = threadIdx.x == 0 ? 0 : smem[threadIdx.x - 1];
val += node.points_begin();
}
cg::sync(cta);
if (threadIdx.x < 4 * NUM_WARPS_PER_BLOCK) {
smem[threadIdx.x] = val;
}
cg::sync(cta);
//
// 4- Move points.
//
if (!(params.depth >= params.max_depth ||
num_points <= params.min_points_per_node)) {
// Output points.
Points &out_points = points[(params.point_selector + 1) % 2];
warp_cnts[0] = s_num_pts[0][warp_id];
warp_cnts[1] = s_num_pts[1][warp_id];
warp_cnts[2] = s_num_pts[2][warp_id];
warp_cnts[3] = s_num_pts[3][warp_id];
const Points &in_points = points[params.point_selector];
// Reorder points.
for (int range_it = range_begin + tile32.thread_rank();
tile32.any(range_it < range_end); range_it += warpSize) {
// Is it still an active thread?
bool is_active = range_it < range_end;
// Load the coordinates of the point.
float2 p =
is_active ? in_points.get_point(range_it) : make_float2(0.0f, 0.0f);
// Count top-left points.
bool pred = is_active && p.x < center.x && p.y >= center.y;
int vote = tile32.ballot(pred);
int dest = warp_cnts[0] + __popc(vote & lane_mask_lt);
if (pred) out_points.set_point(dest, p);
warp_cnts[0] += tile32.shfl(__popc(vote), 0);
// Count top-right points.
pred = is_active && p.x >= center.x && p.y >= center.y;
vote = tile32.ballot(pred);
dest = warp_cnts[1] + __popc(vote & lane_mask_lt);
if (pred) out_points.set_point(dest, p);
warp_cnts[1] += tile32.shfl(__popc(vote), 0);
// Count bottom-left points.
pred = is_active && p.x < center.x && p.y < center.y;
vote = tile32.ballot(pred);
dest = warp_cnts[2] + __popc(vote & lane_mask_lt);
if (pred) out_points.set_point(dest, p);
warp_cnts[2] += tile32.shfl(__popc(vote), 0);
// Count bottom-right points.
pred = is_active && p.x >= center.x && p.y < center.y;
vote = tile32.ballot(pred);
dest = warp_cnts[3] + __popc(vote & lane_mask_lt);
if (pred) out_points.set_point(dest, p);
warp_cnts[3] += tile32.shfl(__popc(vote), 0);
}
}
cg::sync(cta);
if (tile32.thread_rank() == 0) {
s_num_pts[0][warp_id] = warp_cnts[0];
s_num_pts[1][warp_id] = warp_cnts[1];
s_num_pts[2][warp_id] = warp_cnts[2];
s_num_pts[3][warp_id] = warp_cnts[3];
}
cg::sync(cta);
//
// 5- Launch new blocks.
//
if (!(params.depth >= params.max_depth ||
num_points <= params.min_points_per_node)) {
// The last thread launches new blocks.
if (threadIdx.x == NUM_THREADS_PER_BLOCK - 1) {
// The children.
Quadtree_node *children =
&nodes[params.num_nodes_at_this_level - (node.id() & ~3)];
// The offsets of the children at their level.
int child_offset = 4 * node.id();
// Set IDs.
children[child_offset + 0].set_id(4 * node.id() + 0);
children[child_offset + 1].set_id(4 * node.id() + 1);
children[child_offset + 2].set_id(4 * node.id() + 2);
children[child_offset + 3].set_id(4 * node.id() + 3);
const Bounding_box &bbox = node.bounding_box();
// Points of the bounding-box.
const float2 &p_min = bbox.get_min();
const float2 &p_max = bbox.get_max();
// Set the bounding boxes of the children.
children[child_offset + 0].set_bounding_box(p_min.x, center.y, center.x,
p_max.y); // Top-left.
children[child_offset + 1].set_bounding_box(center.x, center.y, p_max.x,
p_max.y); // Top-right.
children[child_offset + 2].set_bounding_box(p_min.x, p_min.y, center.x,
center.y); // Bottom-left.
children[child_offset + 3].set_bounding_box(center.x, p_min.y, p_max.x,
center.y); // Bottom-right.
// Set the ranges of the children.
children[child_offset + 0].set_range(node.points_begin(),
s_num_pts[0][warp_id]);
children[child_offset + 1].set_range(s_num_pts[0][warp_id],
s_num_pts[1][warp_id]);
children[child_offset + 2].set_range(s_num_pts[1][warp_id],
s_num_pts[2][warp_id]);
children[child_offset + 3].set_range(s_num_pts[2][warp_id],
s_num_pts[3][warp_id]);
// Launch 4 children.
build_quadtree_kernel<NUM_THREADS_PER_BLOCK><<<
4, NUM_THREADS_PER_BLOCK, 4 * NUM_WARPS_PER_BLOCK * sizeof(int)>>>(
&children[child_offset], points, Parameters(params, true));
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Make sure a Quadtree is properly defined.
////////////////////////////////////////////////////////////////////////////////
bool check_quadtree(const Quadtree_node *nodes, int idx, int num_pts,
Points *pts, Parameters params) {
const Quadtree_node &node = nodes[idx];
int num_points = node.num_points();
if (!(params.depth == params.max_depth ||
num_points <= params.min_points_per_node)) {
int num_points_in_children = 0;
num_points_in_children +=
nodes[params.num_nodes_at_this_level + 4 * idx + 0].num_points();
num_points_in_children +=
nodes[params.num_nodes_at_this_level + 4 * idx + 1].num_points();
num_points_in_children +=
nodes[params.num_nodes_at_this_level + 4 * idx + 2].num_points();
num_points_in_children +=
nodes[params.num_nodes_at_this_level + 4 * idx + 3].num_points();
if (num_points_in_children != node.num_points()) return false;
return check_quadtree(&nodes[params.num_nodes_at_this_level], 4 * idx + 0,
num_pts, pts, Parameters(params, true)) &&
check_quadtree(&nodes[params.num_nodes_at_this_level], 4 * idx + 1,
num_pts, pts, Parameters(params, true)) &&
check_quadtree(&nodes[params.num_nodes_at_this_level], 4 * idx + 2,
num_pts, pts, Parameters(params, true)) &&
check_quadtree(&nodes[params.num_nodes_at_this_level], 4 * idx + 3,
num_pts, pts, Parameters(params, true));
}
const Bounding_box &bbox = node.bounding_box();
for (int it = node.points_begin(); it < node.points_end(); ++it) {
if (it >= num_pts) return false;
float2 p = pts->get_point(it);
if (!bbox.contains(p)) return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Parallel random number generator.
////////////////////////////////////////////////////////////////////////////////
struct Random_generator {
int count;
__host__ __device__ Random_generator() : count(0) {}
__host__ __device__ unsigned int hash(unsigned int a) {
a = (a + 0x7ed55d16) + (a << 12);
a = (a ^ 0xc761c23c) ^ (a >> 19);
a = (a + 0x165667b1) + (a << 5);
a = (a + 0xd3a2646c) ^ (a << 9);
a = (a + 0xfd7046c5) + (a << 3);
a = (a ^ 0xb55a4f09) ^ (a >> 16);
return a;
}
__host__ __device__ __forceinline__ thrust::tuple<float, float> operator()() {
#ifdef __CUDA_ARCH__
unsigned seed = hash(blockIdx.x * blockDim.x + threadIdx.x + count);
// thrust::generate may call operator() more than once per thread.
// Hence, increment count by grid size to ensure uniqueness of seed
count += blockDim.x * gridDim.x;
#else
unsigned seed = hash(0);
#endif
thrust::default_random_engine rng(seed);
thrust::random::uniform_real_distribution<float> distrib;
return thrust::make_tuple(distrib(rng), distrib(rng));
}
};
////////////////////////////////////////////////////////////////////////////////
// Allocate GPU structs, launch kernel and clean up
////////////////////////////////////////////////////////////////////////////////
bool cdpQuadtree(int warp_size) {
// Constants to control the algorithm.
const int num_points = 1024;
const int max_depth = 8;
const int min_points_per_node = 16;
// Allocate memory for points.
thrust::device_vector<float> x_d0(num_points);
thrust::device_vector<float> x_d1(num_points);
thrust::device_vector<float> y_d0(num_points);
thrust::device_vector<float> y_d1(num_points);
// Generate random points.
Random_generator rnd;
thrust::generate(
thrust::make_zip_iterator(thrust::make_tuple(x_d0.begin(), y_d0.begin())),
thrust::make_zip_iterator(thrust::make_tuple(x_d0.end(), y_d0.end())),
rnd);
// Host structures to analyze the device ones.
Points points_init[2];
points_init[0].set(thrust::raw_pointer_cast(&x_d0[0]),
thrust::raw_pointer_cast(&y_d0[0]));
points_init[1].set(thrust::raw_pointer_cast(&x_d1[0]),
thrust::raw_pointer_cast(&y_d1[0]));
// Allocate memory to store points.
Points *points;
checkCudaErrors(cudaMalloc((void **)&points, 2 * sizeof(Points)));
checkCudaErrors(cudaMemcpy(points, points_init, 2 * sizeof(Points),
cudaMemcpyHostToDevice));
// We could use a close form...
int max_nodes = 0;
for (int i = 0, num_nodes_at_level = 1; i < max_depth;
++i, num_nodes_at_level *= 4)
max_nodes += num_nodes_at_level;
// Allocate memory to store the tree.
Quadtree_node root;
root.set_range(0, num_points);
Quadtree_node *nodes;
checkCudaErrors(
cudaMalloc((void **)&nodes, max_nodes * sizeof(Quadtree_node)));
checkCudaErrors(
cudaMemcpy(nodes, &root, sizeof(Quadtree_node), cudaMemcpyHostToDevice));
// Build the quadtree.
Parameters params(max_depth, min_points_per_node);
std::cout << "Launching CDP kernel to build the quadtree" << std::endl;
const int NUM_THREADS_PER_BLOCK = 128; // Do not use less than 128 threads.
const int NUM_WARPS_PER_BLOCK = NUM_THREADS_PER_BLOCK / warp_size;
const size_t smem_size = 4 * NUM_WARPS_PER_BLOCK * sizeof(int);
build_quadtree_kernel<
NUM_THREADS_PER_BLOCK><<<1, NUM_THREADS_PER_BLOCK, smem_size>>>(
nodes, points, params);
checkCudaErrors(cudaGetLastError());
// Copy points to CPU.
thrust::host_vector<float> x_h(x_d0);
thrust::host_vector<float> y_h(y_d0);
Points host_points;
host_points.set(thrust::raw_pointer_cast(&x_h[0]),
thrust::raw_pointer_cast(&y_h[0]));
// Copy nodes to CPU.
Quadtree_node *host_nodes = new Quadtree_node[max_nodes];
checkCudaErrors(cudaMemcpy(host_nodes, nodes,
max_nodes * sizeof(Quadtree_node),
cudaMemcpyDeviceToHost));
// Validate the results.
bool ok = check_quadtree(host_nodes, 0, num_points, &host_points, params);
std::cout << "Results: " << (ok ? "OK" : "FAILED") << std::endl;
// Free CPU memory.
delete[] host_nodes;
// Free memory.
checkCudaErrors(cudaFree(nodes));
checkCudaErrors(cudaFree(points));
return ok;
}
////////////////////////////////////////////////////////////////////////////////
// Main entry point.
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// Find/set the device.
// The test requires an architecture SM35 or greater (CDP capable).
int cuda_device = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProps;
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, cuda_device));
int cdpCapable = (deviceProps.major == 3 && deviceProps.minor >= 5) ||
deviceProps.major >= 4;
printf("GPU device %s has compute capabilities (SM %d.%d)\n",
deviceProps.name, deviceProps.major, deviceProps.minor);
if (!cdpCapable) {
std::cerr << "cdpQuadTree requires SM 3.5 or higher to use CUDA Dynamic "
"Parallelism. Exiting...\n"
<< std::endl;
exit(EXIT_WAIVED);
}
bool ok = cdpQuadtree(deviceProps.warpSize);
return (ok ? EXIT_SUCCESS : EXIT_FAILURE);
}