diff --git a/doc/index.rst b/doc/index.rst
index dbe911011cd..1d3bb110ddb 100644
--- a/doc/index.rst
+++ b/doc/index.rst
@@ -52,6 +52,7 @@ Documentation
* :doc:`reshaping`
* :doc:`combining`
* :doc:`time-series`
+* :doc:`weather-climate`
* :doc:`pandas`
* :doc:`io`
* :doc:`dask`
@@ -70,6 +71,7 @@ Documentation
reshaping
combining
time-series
+ weather-climate
pandas
io
dask
diff --git a/doc/io.rst b/doc/io.rst
index 0dc5181f9b8..51c747189da 100644
--- a/doc/io.rst
+++ b/doc/io.rst
@@ -1,11 +1,11 @@
.. _io:
-Serialization and IO
-====================
+Reading and writing files
+=========================
xarray supports direct serialization and IO to several file formats, from
simple :ref:`io.pickle` files to the more flexible :ref:`io.netcdf`
-format.
+format (recommended).
.. ipython:: python
:suppress:
@@ -739,11 +739,14 @@ options are listed on the PseudoNetCDF page.
.. _PseudoNetCDF: http://github.com/barronh/PseudoNetCDF
-Formats supported by Pandas
----------------------------
+CSV and other formats supported by Pandas
+-----------------------------------------
For more options (tabular formats and CSV files in particular), consider
exporting your objects to pandas and using its broad range of `IO tools`_.
+For CSV files, one might also consider `xarray_extras`_.
+
+.. _xarray_extras: https://xarray-extras.readthedocs.io/en/latest/api/csv.html
.. _IO tools: http://pandas.pydata.org/pandas-docs/stable/io.html
diff --git a/doc/plotting.rst b/doc/plotting.rst
index a705c683594..c8f568e516f 100644
--- a/doc/plotting.rst
+++ b/doc/plotting.rst
@@ -39,6 +39,10 @@ For more extensive plotting applications consider the following projects:
data structures for building even complex visualizations easily." Includes
native support for xarray objects.
+- `hvplot `_: ``hvplot`` makes it very easy to produce
+ dynamic plots (backed by ``Holoviews`` or ``Geoviews``) by adding a ``hvplot``
+ accessor to DataArrays.
+
- `Cartopy `_: Provides cartographic
tools.
diff --git a/doc/related-projects.rst b/doc/related-projects.rst
index c89e324ff7c..e899022e5d4 100644
--- a/doc/related-projects.rst
+++ b/doc/related-projects.rst
@@ -13,6 +13,7 @@ Geosciences
- `aospy `_: Automated analysis and management of gridded climate data.
- `infinite-diff `_: xarray-based finite-differencing, focused on gridded climate/meterology data
- `marc_analysis `_: Analysis package for CESM/MARC experiments and output.
+- `MetPy `_: A collection of tools in Python for reading, visualizing, and performing calculations with weather data.
- `MPAS-Analysis `_: Analysis for simulations produced with Model for Prediction Across Scales (MPAS) components and the Accelerated Climate Model for Energy (ACME).
- `OGGM `_: Open Global Glacier Model
- `Oocgcm `_: Analysis of large gridded geophysical datasets
diff --git a/doc/time-series.rst b/doc/time-series.rst
index 3249dad2ec6..53efcd45ba2 100644
--- a/doc/time-series.rst
+++ b/doc/time-series.rst
@@ -212,140 +212,3 @@ Data that has indices outside of the given ``tolerance`` are set to ``NaN``.
For more examples of using grouped operations on a time dimension, see
:ref:`toy weather data`.
-
-
-.. _CFTimeIndex:
-
-Non-standard calendars and dates outside the Timestamp-valid range
-------------------------------------------------------------------
-
-Through the standalone ``cftime`` library and a custom subclass of
-:py:class:`pandas.Index`, xarray supports a subset of the indexing
-functionality enabled through the standard :py:class:`pandas.DatetimeIndex` for
-dates from non-standard calendars commonly used in climate science or dates
-using a standard calendar, but outside the `Timestamp-valid range`_
-(approximately between years 1678 and 2262).
-
-.. note::
-
- As of xarray version 0.11, by default, :py:class:`cftime.datetime` objects
- will be used to represent times (either in indexes, as a
- :py:class:`~xarray.CFTimeIndex`, or in data arrays with dtype object) if
- any of the following are true:
-
- - The dates are from a non-standard calendar
- - Any dates are outside the Timestamp-valid range.
-
- Otherwise pandas-compatible dates from a standard calendar will be
- represented with the ``np.datetime64[ns]`` data type, enabling the use of a
- :py:class:`pandas.DatetimeIndex` or arrays with dtype ``np.datetime64[ns]``
- and their full set of associated features.
-
-For example, you can create a DataArray indexed by a time
-coordinate with dates from a no-leap calendar and a
-:py:class:`~xarray.CFTimeIndex` will automatically be used:
-
-.. ipython:: python
-
- from itertools import product
- from cftime import DatetimeNoLeap
- dates = [DatetimeNoLeap(year, month, 1) for year, month in
- product(range(1, 3), range(1, 13))]
- da = xr.DataArray(np.arange(24), coords=[dates], dims=['time'], name='foo')
-
-xarray also includes a :py:func:`~xarray.cftime_range` function, which enables
-creating a :py:class:`~xarray.CFTimeIndex` with regularly-spaced dates. For
-instance, we can create the same dates and DataArray we created above using:
-
-.. ipython:: python
-
- dates = xr.cftime_range(start='0001', periods=24, freq='MS', calendar='noleap')
- da = xr.DataArray(np.arange(24), coords=[dates], dims=['time'], name='foo')
-
-For data indexed by a :py:class:`~xarray.CFTimeIndex` xarray currently supports:
-
-- `Partial datetime string indexing`_ using strictly `ISO 8601-format`_ partial
- datetime strings:
-
-.. ipython:: python
-
- da.sel(time='0001')
- da.sel(time=slice('0001-05', '0002-02'))
-
-- Access of basic datetime components via the ``dt`` accessor (in this case
- just "year", "month", "day", "hour", "minute", "second", "microsecond",
- "season", "dayofyear", and "dayofweek"):
-
-.. ipython:: python
-
- da.time.dt.year
- da.time.dt.month
- da.time.dt.season
- da.time.dt.dayofyear
- da.time.dt.dayofweek
-
-- Group-by operations based on datetime accessor attributes (e.g. by month of
- the year):
-
-.. ipython:: python
-
- da.groupby('time.month').sum()
-
-- Interpolation using :py:class:`cftime.datetime` objects:
-
-.. ipython:: python
-
- da.interp(time=[DatetimeNoLeap(1, 1, 15), DatetimeNoLeap(1, 2, 15)])
-
-- Interpolation using datetime strings:
-
-.. ipython:: python
-
- da.interp(time=['0001-01-15', '0001-02-15'])
-
-- Differentiation:
-
-.. ipython:: python
-
- da.differentiate('time')
-
-- Serialization:
-
-.. ipython:: python
-
- da.to_netcdf('example-no-leap.nc')
- xr.open_dataset('example-no-leap.nc')
-
-- And resampling along the time dimension for data indexed by a :py:class:`~xarray.CFTimeIndex`:
-
-.. ipython:: python
-
- da.resample(time='81T', closed='right', label='right', base=3).mean()
-
-.. note::
-
-
- For some use-cases it may still be useful to convert from
- a :py:class:`~xarray.CFTimeIndex` to a :py:class:`pandas.DatetimeIndex`,
- despite the difference in calendar types. The recommended way of doing this
- is to use the built-in :py:meth:`~xarray.CFTimeIndex.to_datetimeindex`
- method:
-
- .. ipython:: python
- :okwarning:
-
- modern_times = xr.cftime_range('2000', periods=24, freq='MS', calendar='noleap')
- da = xr.DataArray(range(24), [('time', modern_times)])
- da
- datetimeindex = da.indexes['time'].to_datetimeindex()
- da['time'] = datetimeindex
-
- However in this case one should use caution to only perform operations which
- do not depend on differences between dates (e.g. differentiation,
- interpolation, or upsampling with resample), as these could introduce subtle
- and silent errors due to the difference in calendar types between the dates
- encoded in your data and the dates stored in memory.
-
-.. _Timestamp-valid range: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#timestamp-limitations
-.. _ISO 8601-format: https://en.wikipedia.org/wiki/ISO_8601
-.. _partial datetime string indexing: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#partial-string-indexing
diff --git a/doc/weather-climate.rst b/doc/weather-climate.rst
new file mode 100644
index 00000000000..1950ba62ffb
--- /dev/null
+++ b/doc/weather-climate.rst
@@ -0,0 +1,160 @@
+.. _weather-climate:
+
+Weather and climate data
+========================
+
+.. ipython:: python
+ :suppress:
+
+ import xarray as xr
+
+``xarray`` can leverage metadata that follows the `Climate and Forecast (CF) conventions`_ if present. Examples include automatic labelling of plots with descriptive names and units if proper metadata is present (see :ref:`plotting`) and support for non-standard calendars used in climate science through the ``cftime`` module (see :ref:`CFTimeIndex`). There are also a number of geosciences-focused projects that build on xarray (see :ref:`related-projects`).
+
+.. _Climate and Forecast (CF) conventions: http://cfconventions.org
+
+.. _metpy_accessor:
+
+CF-compliant coordinate variables
+---------------------------------
+
+`MetPy`_ adds a ``metpy`` accessor that allows accessing coordinates with appropriate CF metadata using generic names ``x``, ``y``, ``vertical`` and ``time``. There is also a `cartopy_crs` attribute that provides projection information, parsed from the appropriate CF metadata, as a `Cartopy`_ projection object. See `their documentation`_ for more information.
+
+.. _`MetPy`: https://unidata.github.io/MetPy/dev/index.html
+.. _`their documentation`: https://unidata.github.io/MetPy/dev/tutorials/xarray_tutorial.html#coordinates
+.. _`Cartopy`: https://scitools.org.uk/cartopy/docs/latest/crs/projections.html
+
+.. _CFTimeIndex:
+
+Non-standard calendars and dates outside the Timestamp-valid range
+------------------------------------------------------------------
+
+Through the standalone ``cftime`` library and a custom subclass of
+:py:class:`pandas.Index`, xarray supports a subset of the indexing
+functionality enabled through the standard :py:class:`pandas.DatetimeIndex` for
+dates from non-standard calendars commonly used in climate science or dates
+using a standard calendar, but outside the `Timestamp-valid range`_
+(approximately between years 1678 and 2262).
+
+.. note::
+
+ As of xarray version 0.11, by default, :py:class:`cftime.datetime` objects
+ will be used to represent times (either in indexes, as a
+ :py:class:`~xarray.CFTimeIndex`, or in data arrays with dtype object) if
+ any of the following are true:
+
+ - The dates are from a non-standard calendar
+ - Any dates are outside the Timestamp-valid range.
+
+ Otherwise pandas-compatible dates from a standard calendar will be
+ represented with the ``np.datetime64[ns]`` data type, enabling the use of a
+ :py:class:`pandas.DatetimeIndex` or arrays with dtype ``np.datetime64[ns]``
+ and their full set of associated features.
+
+For example, you can create a DataArray indexed by a time
+coordinate with dates from a no-leap calendar and a
+:py:class:`~xarray.CFTimeIndex` will automatically be used:
+
+.. ipython:: python
+
+ from itertools import product
+ from cftime import DatetimeNoLeap
+ dates = [DatetimeNoLeap(year, month, 1) for year, month in
+ product(range(1, 3), range(1, 13))]
+ da = xr.DataArray(np.arange(24), coords=[dates], dims=['time'], name='foo')
+
+xarray also includes a :py:func:`~xarray.cftime_range` function, which enables
+creating a :py:class:`~xarray.CFTimeIndex` with regularly-spaced dates. For
+instance, we can create the same dates and DataArray we created above using:
+
+.. ipython:: python
+
+ dates = xr.cftime_range(start='0001', periods=24, freq='MS', calendar='noleap')
+ da = xr.DataArray(np.arange(24), coords=[dates], dims=['time'], name='foo')
+
+For data indexed by a :py:class:`~xarray.CFTimeIndex` xarray currently supports:
+
+- `Partial datetime string indexing`_ using strictly `ISO 8601-format`_ partial
+ datetime strings:
+
+.. ipython:: python
+
+ da.sel(time='0001')
+ da.sel(time=slice('0001-05', '0002-02'))
+
+- Access of basic datetime components via the ``dt`` accessor (in this case
+ just "year", "month", "day", "hour", "minute", "second", "microsecond",
+ "season", "dayofyear", and "dayofweek"):
+
+.. ipython:: python
+
+ da.time.dt.year
+ da.time.dt.month
+ da.time.dt.season
+ da.time.dt.dayofyear
+ da.time.dt.dayofweek
+
+- Group-by operations based on datetime accessor attributes (e.g. by month of
+ the year):
+
+.. ipython:: python
+
+ da.groupby('time.month').sum()
+
+- Interpolation using :py:class:`cftime.datetime` objects:
+
+.. ipython:: python
+
+ da.interp(time=[DatetimeNoLeap(1, 1, 15), DatetimeNoLeap(1, 2, 15)])
+
+- Interpolation using datetime strings:
+
+.. ipython:: python
+
+ da.interp(time=['0001-01-15', '0001-02-15'])
+
+- Differentiation:
+
+.. ipython:: python
+
+ da.differentiate('time')
+
+- Serialization:
+
+.. ipython:: python
+
+ da.to_netcdf('example-no-leap.nc')
+ xr.open_dataset('example-no-leap.nc')
+
+- And resampling along the time dimension for data indexed by a :py:class:`~xarray.CFTimeIndex`:
+
+.. ipython:: python
+
+ da.resample(time='81T', closed='right', label='right', base=3).mean()
+
+.. note::
+
+
+ For some use-cases it may still be useful to convert from
+ a :py:class:`~xarray.CFTimeIndex` to a :py:class:`pandas.DatetimeIndex`,
+ despite the difference in calendar types. The recommended way of doing this
+ is to use the built-in :py:meth:`~xarray.CFTimeIndex.to_datetimeindex`
+ method:
+
+ .. ipython:: python
+ :okwarning:
+
+ modern_times = xr.cftime_range('2000', periods=24, freq='MS', calendar='noleap')
+ da = xr.DataArray(range(24), [('time', modern_times)])
+ da
+ datetimeindex = da.indexes['time'].to_datetimeindex()
+ da['time'] = datetimeindex
+
+ However in this case one should use caution to only perform operations which
+ do not depend on differences between dates (e.g. differentiation,
+ interpolation, or upsampling with resample), as these could introduce subtle
+ and silent errors due to the difference in calendar types between the dates
+ encoded in your data and the dates stored in memory.
+
+.. _Timestamp-valid range: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#timestamp-limitations
+.. _ISO 8601-format: https://en.wikipedia.org/wiki/ISO_8601
+.. _partial datetime string indexing: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#partial-string-indexing
diff --git a/doc/whats-new.rst b/doc/whats-new.rst
index 9ef2960ad76..b1363897094 100644
--- a/doc/whats-new.rst
+++ b/doc/whats-new.rst
@@ -100,7 +100,7 @@ Bug fixes
from higher frequencies to lower frequencies. Datapoints outside the bounds
of the original time coordinate are now filled with NaN (:issue:`2197`). By
`Spencer Clark `_.
-- Line plots with the `x` argument set to a non-dimensional coord now plot the correct data for 1D DataArrays.
+- Line plots with the ``x`` argument set to a non-dimensional coord now plot the correct data for 1D DataArrays.
(:issue:`27251). By `Tom Nicholas `_.
- Subtracting a scalar ``cftime.datetime`` object from a
:py:class:`CFTimeIndex` now results in a :py:class:`pandas.TimedeltaIndex`
diff --git a/xarray/backends/api.py b/xarray/backends/api.py
index 61efcfdedf2..36baa9071c0 100644
--- a/xarray/backends/api.py
+++ b/xarray/backends/api.py
@@ -247,6 +247,13 @@ def open_dataset(filename_or_obj, group=None, decode_cf=True,
dataset : Dataset
The newly created dataset.
+ Notes
+ -----
+ ``open_dataset`` opens the file with read-only access. When you modify
+ values of a Dataset, even one linked to files on disk, only the in-memory
+ copy you are manipulating in xarray is modified: the original file on disk
+ is never touched.
+
See Also
--------
open_mfdataset
@@ -597,6 +604,13 @@ def open_mfdataset(paths, chunks=None, concat_dim=_CONCAT_DIM_DEFAULT,
-------
xarray.Dataset
+ Notes
+ -----
+ ``open_mfdataset`` opens files with read-only access. When you modify values
+ of a Dataset, even one linked to files on disk, only the in-memory copy you
+ are manipulating in xarray is modified: the original file on disk is never
+ touched.
+
See Also
--------
auto_combine
diff --git a/xarray/core/dataarray.py b/xarray/core/dataarray.py
index f0660460b84..532795f7374 100644
--- a/xarray/core/dataarray.py
+++ b/xarray/core/dataarray.py
@@ -1419,8 +1419,9 @@ def transpose(self, *dims):
Notes
-----
- Although this operation returns a view of this array's data, it is
- not lazy -- the data will be fully loaded.
+ This operation returns a view of this array's data. It is
+ lazy for dask-backed DataArrays but not for numpy-backed DataArrays
+ -- the data will be fully loaded.
See Also
--------
@@ -2471,10 +2472,10 @@ def integrate(self, dim, datetime_unit=None):
----------
dim: str, or a sequence of str
Coordinate(s) used for the integration.
- datetime_unit
- Can be specify the unit if datetime coordinate is used. One of
- {'Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', 'ps', 'fs',
- 'as'}
+ datetime_unit: str, optional
+ Can be used to specify the unit if datetime coordinate is used.
+ One of {'Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns',
+ 'ps', 'fs', 'as'}
Returns
-------
diff --git a/xarray/core/dataset.py b/xarray/core/dataset.py
index 5296e9834e9..094126565b1 100644
--- a/xarray/core/dataset.py
+++ b/xarray/core/dataset.py
@@ -2890,8 +2890,9 @@ def transpose(self, *dims):
Notes
-----
- Although this operation returns a view of each array's data, it
- is not lazy -- the data will be fully loaded into memory.
+ This operation returns a view of each array's data. It is
+ lazy for dask-backed DataArrays but not for numpy-backed DataArrays
+ -- the data will be fully loaded into memory.
See Also
--------
diff --git a/xarray/core/variable.py b/xarray/core/variable.py
index b675317d83d..433f4a05e1f 100644
--- a/xarray/core/variable.py
+++ b/xarray/core/variable.py
@@ -1133,8 +1133,8 @@ def transpose(self, *dims):
Notes
-----
- Although this operation returns a view of this variable's data, it is
- not lazy -- the data will be fully loaded.
+ This operation returns a view of this variable's data. It is
+ lazy for dask-backed Variables but not for numpy-backed Variables.
See Also
--------