-
Notifications
You must be signed in to change notification settings - Fork 141
/
06-shadows.ss
executable file
·250 lines (218 loc) · 7.05 KB
/
06-shadows.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
;
; Chapter 6 of The Little Schemer:
; Shadows
;
; Code examples assemled by Peteris Krumins ([email protected]).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/4GjWdP
;
; The atom? primitive
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; The numbered? function determines whether a representation of an arithmetic
; expression contains only numbers besides the o+, ox and o^ (for +, * and exp).
;
(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
((eq? (car (cdr aexp)) 'o+)
(and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp))))))
((eq? (car (cdr aexp)) 'ox)
(and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp))))))
((eq? (car (cdr aexp)) 'o^)
(and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp))))))
(else #f))))
; Examples of numbered?
;
(numbered? '5) ; #t
(numbered? '(5 o+ 5)) ; #t
(numbered? '(5 o+ a)) ; #f
(numbered? '(5 ox (3 o^ 2))) ; #t
(numbered? '(5 ox (3 'foo 2))) ; #f
(numbered? '((5 o+ 2) ox (3 o^ 2))) ; #t
; Assuming aexp is a numeric expression, numbered? can be simplified
;
(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
(else
(and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp)))))))))
; Tests of numbered?
;
(numbered? '5) ; #t
(numbered? '(5 o+ 5)) ; #t
(numbered? '(5 ox (3 o^ 2))) ; #t
(numbered? '((5 o+ 2) ox (3 o^ 2))) ; #t
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The seventh commandment ;
; ;
; Recur on the subparts that are of the same nature: ;
; * On the sublists of a list. ;
; * On the subexpressions of an arithmetic expression. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The value function determines the value of an arithmetic expression
;
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (car (cdr nexp)) 'o+)
(+ (value (car nexp))
(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) 'o*)
(* (value (car nexp))
(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) 'o^)
(expt (value (car nexp))
(value (car (cdr (cdr nexp))))))
(else #f))))
; Examples of value
;
(value 13) ; 13
(value '(1 o+ 3)) ; 4
(value '(1 o+ (3 o^ 4))) ; 82
; The value function for prefix notation
;
(define value-prefix
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (car nexp) 'o+)
(+ (value-prefix (car (cdr nexp)))
(value-prefix (car (cdr (cdr nexp))))))
((eq? (car nexp) 'o*)
(* (value-prefix (car (cdr nexp)))
(value-prefix (car (cdr (cdr nexp))))))
((eq? (car nexp) 'o^)
(expt (value-prefix (car (cdr nexp)))
(value-prefix (car (cdr (cdr nexp))))))
(else #f))))
; Examples of value-prefix
;
(value-prefix 13) ; 13
(value-prefix '(o+ 3 4)) ; 7
(value-prefix '(o+ 1 (o^ 3 4))) ; 82
; It's best to invent 1st-sub-exp and 2nd-sub-exp functions
; instead of writing (car (cdr (cdr nexp))), etc.
; These are for prefix notation.
;
(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
; It's also best to invent operator function,
; instead of writing (car nexp), etc.
; This is for prefix notation
;
(define operator
(lambda (aexp)
(car aexp)))
; The new value function that uses helper functions
;
(define value-prefix-helper
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (operator nexp) 'o+)
(+ (value-prefix (1st-sub-exp nexp))
(value-prefix (2nd-sub-exp nexp))))
((eq? (car nexp) 'o*)
(* (value-prefix (1st-sub-exp nexp))
(value-prefix (2nd-sub-exp nexp))))
((eq? (car nexp) 'o^)
(expt (value-prefix (1st-sub-exp nexp))
(value-prefix (2nd-sub-exp nexp))))
(else #f))))
; Examples of value-prefix-helper
;
(value-prefix-helper 13) ; 13
(value-prefix-helper '(o+ 3 4)) ; 7
(value-prefix-helper '(o+ 1 (o^ 3 4))) ; 82
; Redefine helper functions for infix notation
;
(define 1st-sub-exp
(lambda (aexp)
(car aexp)))
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
(define operator
(lambda (aexp)
(car (cdr aexp))))
; Examples of value-prefix-helper of infix notation expressions
;
(value-prefix 13) ; 13
(value-prefix '(o+ 3 4)) ; 7
(value-prefix '(o+ 1 (o^ 3 4))) ; 82
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The eighth commandment ;
; ;
; Use help functions to abstract from representations. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; A different number representation:
; () for zero, (()) for one, (() ()) for two, (() () ()) for three, etc.
;
; sero? just like zero?
;
(define sero?
(lambda (n)
(null? n)))
; edd1 just like add1
;
(define edd1
(lambda (n)
(cons '() n)))
; zub1 just like sub1
;
(define zub1
(lambda (n)
(cdr n)))
; .+ just like o+
;
(define .+
(lambda (n m)
(cond
((sero? m) n)
(else
(edd1 (.+ n (zub1 m)))))))
; Example of .+
;
(.+ '(()) '(() ())) ; (+ 1 2)
;==> '(() () ())
; tat? just like lat?
;
(define tat?
(lambda (l)
(cond
((null? l) #t)
((atom? (car l))
(tat? (cdr l)))
(else #f))))
; But does tat? work
(tat? '((()) (()()) (()()()))) ; (lat? '(1 2 3))
; ==> #f
; Beware of shadows.
;
; Go get yourself this wonderful book and have fun with these examples!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/4GjWdP
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;