-
Notifications
You must be signed in to change notification settings - Fork 47
/
dataloader.py
699 lines (545 loc) · 25.6 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
from __future__ import print_function, division
import sys
import os
import torch
import numpy as np
import random
import cv2
import csv
from six import raise_from
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.utils.data.sampler import Sampler
import skimage.io
import skimage.transform
import skimage.color
import skimage
from PIL import Image, ImageEnhance
RGB_MEAN = [0.485, 0.456, 0.406]
RGB_STD = [0.229, 0.224, 0.225]
class CSVDataset(Dataset):
"""CSV dataset."""
def __init__(self, root_path, train_file, class_list, transform=None):
"""
Args:
train_file (string): CSV file with training annotations
annotations (string): CSV file with class list
test_file (string, optional): CSV file with testing annotations
"""
self.train_file = train_file
self.class_list = class_list
self.transform = transform
self.root_path = root_path
# parse the provided class file
try:
with self._open_for_csv(self.class_list) as file:
self.classes = self.load_classes(csv.reader(file, delimiter=','))
except ValueError as e:
raise_from(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e)), None)
self.labels = {}
for key, value in self.classes.items():
self.labels[value] = key
# csv with img_path, obj_id, x1, y1, x2, y2, class_name
try:
with self._open_for_csv(self.train_file) as file:
self.image_data = self._read_annotations(csv.reader(file, delimiter=','), self.classes)
except ValueError as e:
raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e)), None)
self.image_names = list(self.image_data.keys())
self.name2video_frames = dict()
self.image_name_prefix = list()
for image_name in self.image_names:
self.image_name_prefix.append(image_name[0:-len(image_name.split('/')[-1].split('_')[-1])])
self.image_name_prefix = set(self.image_name_prefix)
print('total vedio count: {}'.format(len(self.image_name_prefix)))
for image_name in self.image_names:
cur_prefix = image_name[0:-len(image_name.split('/')[-1].split('_')[-1])]
if cur_prefix not in self.name2video_frames:
self.name2video_frames[cur_prefix] = 1
else:
self.name2video_frames[cur_prefix] = self.name2video_frames[cur_prefix] + 1
def _extract_frame_index(self, image_name):
suffix_name = image_name.split('/')[-1].split('_')[-1]
return int(float(suffix_name.split('.')[0]))
def _get_random_surroud_name(self, image_name, max_diff=3, ignore_equal=True, pos_only=True):
suffix_name = image_name.split('/')[-1].split('_')[-1]
prefix = image_name[0:-len(suffix_name)]
cur_index = int(float(suffix_name.split('.')[0]))
total_number = self.name2video_frames[prefix]
if total_number < 2: return image_name
next_index = cur_index
while True:
range_low = max(1, cur_index - max_diff)
range_high = min(cur_index + max_diff, total_number)
if pos_only:
range_low = cur_index
if ignore_equal:
range_low = range_low + 1
if cur_index == total_number:
return image_name
next_index = random.randint(range_low, range_high)
if ignore_equal:
if next_index == cur_index:
continue
break
return prefix + '{0:06}.'.format(next_index) + suffix_name.split('.')[-1]
def _extract_name_prefix(self, image_name):
return image_name[0:-len(image_name.split('/')[-1].split('_')[-1])]
def _parse(self, value, function, fmt):
"""
Parse a string into a value, and format a nice ValueError if it fails.
Returns `function(value)`.
Any `ValueError` raised is catched and a new `ValueError` is raised
with message `fmt.format(e)`, where `e` is the caught `ValueError`.
"""
try:
return function(value)
except ValueError as e:
raise_from(ValueError(fmt.format(e)), None)
def _open_for_csv(self, path):
"""
Open a file with flags suitable for csv.reader.
This is different for python2 it means with mode 'rb',
for python3 this means 'r' with "universal newlines".
"""
if sys.version_info[0] < 3:
return open(path, 'rb')
else:
return open(path, 'r', newline='')
def load_classes(self, csv_reader):
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
class_name, class_id = row
except ValueError:
raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None)
class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line))
if class_name in result:
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
result[class_name] = class_id
return result
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
while True:
try:
img = self.load_image(idx)
next_name = self._get_random_surroud_name(self.image_names[idx])
img_next = self.load_image_by_name(next_name)
annot = self.load_annotations(idx)
annot_next = self.load_annotationse_by_name(next_name)
if (annot.shape[0] < 1) or (annot_next.shape[0] < 1):
idx = random.randrange(0, len(self.image_names))
continue
except FileNotFoundError:
print ('FileNotFoundError in process image.')
idx = random.randrange(0, len(self.image_names))
continue
break
if np.random.rand() < 0.5:
sample = {'img': img, 'annot': annot, 'img_next': img_next, 'annot_next': annot_next}
else:
sample = {'img': img_next, 'annot': annot_next, 'img_next': img, 'annot_next': annot}
if self.transform:
sample = self.transform(sample)
return sample
def load_image_by_name(self, image_name):
img = skimage.io.imread(image_name)
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
return img
def load_image(self, image_index):
img = skimage.io.imread(self.image_names[image_index])
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
return img
def load_annotationse_by_name(self, image_name):
# get ground truth annotations
annotation_list = self.image_data[image_name]
annotations = np.zeros((0, 6))
# some images appear to miss annotations (like image with id 257034)
if len(annotation_list) == 0:
return annotations
# parse annotations
for idx, a in enumerate(annotation_list):
# some annotations have basically no width / height, skip them
x1 = a['x1']
x2 = a['x2']
y1 = a['y1']
y2 = a['y2']
obj_id = a['obj_id']
if (x2-x1) < 1 or (y2-y1) < 1:
continue
annotation = np.zeros((1, 6))
annotation[0, 0] = x1
annotation[0, 1] = y1
annotation[0, 2] = x2
annotation[0, 3] = y2
annotation[0, 4] = self.name_to_label(a['class'])
annotation[0, 5] = obj_id
annotations = np.append(annotations, annotation, axis=0)
return annotations
def load_annotations(self, image_index):
# get ground truth annotations
annotation_list = self.image_data[self.image_names[image_index]]
annotations = np.zeros((0, 6))
# some images appear to miss annotations (like image with id 257034)
if len(annotation_list) == 0:
return annotations
# parse annotations
for idx, a in enumerate(annotation_list):
# some annotations have basically no width / height, skip them
x1 = a['x1']
x2 = a['x2']
y1 = a['y1']
y2 = a['y2']
obj_id = a['obj_id']
if (x2-x1) < 1 or (y2-y1) < 1:
continue
annotation = np.zeros((1, 6))
annotation[0, 0] = x1
annotation[0, 1] = y1
annotation[0, 2] = x2
annotation[0, 3] = y2
annotation[0, 4] = self.name_to_label(a['class'])
annotation[0, 5] = obj_id
annotations = np.append(annotations, annotation, axis=0)
return annotations
def _read_annotations(self, csv_reader, classes):
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
img_file, obj_id, x1, y1, x2, y2, class_name = row[:7]
except ValueError:
raise_from(ValueError('line {}: format should be \'img_file,obj_id,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None)
img_file = os.path.join(self.root_path, img_file.strip())
if img_file not in result:
result[img_file] = []
class_name = class_name.strip()
# If a row contains only an image path, it's an image without annotations.
if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''):
continue
x1 = self._parse(float(x1), int, 'line {}: malformed x1: {{}}'.format(line))
y1 = self._parse(float(y1), int, 'line {}: malformed y1: {{}}'.format(line))
x2 = self._parse(float(x2), int, 'line {}: malformed x2: {{}}'.format(line))
y2 = self._parse(float(y2), int, 'line {}: malformed y2: {{}}'.format(line))
# Check that the bounding box is valid.
if x2 <= x1:
raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1))
if y2 <= y1:
raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1))
# check if the current class name is correctly present
if class_name not in classes:
raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes))
result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name, 'obj_id': obj_id})
return result
def name_to_label(self, name):
return self.classes[name]
def label_to_name(self, label):
return self.labels[label]
def num_classes(self):
return max(self.classes.values()) + 1
def image_aspect_ratio(self, image_index):
image = Image.open(self.image_names[image_index])
return float(image.width) / float(image.height)
def collater(data):
imgs = [s['img'] for s in data]
annots = [s['annot'] for s in data]
imgs_next = [s['img_next'] for s in data]
annots_next = [s['annot_next'] for s in data]
widths = [int(s.shape[1]) for s in imgs]
heights = [int(s.shape[0]) for s in imgs]
batch_size = len(imgs)
max_width = np.array(widths).max()
max_height = np.array(heights).max()
padded_imgs = torch.zeros(batch_size, max_height, max_width, 3)
padded_imgs_next = torch.zeros(batch_size, max_height, max_width, 3)
for i in range(batch_size):
img = imgs[i]
padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img
img_next = imgs_next[i]
padded_imgs_next[i, :int(img_next.shape[0]), :int(img_next.shape[1]), :] = img_next
max_num_annots = max(annot.shape[0] for annot in annots)
max_num_annots_next = max(annot.shape[0] for annot in annots_next)
max_num_annots = max(max_num_annots, max_num_annots_next)
if max_num_annots > 0:
annot_padded = torch.ones((len(annots), max_num_annots, 6)) * -1
if max_num_annots > 0:
for idx, annot in enumerate(annots):
if annot.shape[0] > 0:
annot_padded[idx, :annot.shape[0], :] = annot
else:
annot_padded = torch.ones((len(annots), 1, 6)) * -1
if max_num_annots > 0:
annot_padded_next = torch.ones((len(annots_next), max_num_annots, 6)) * -1
if max_num_annots > 0:
for idx, annot in enumerate(annots_next):
if annot.shape[0] > 0:
annot_padded_next[idx, :annot.shape[0], :] = annot
else:
annot_padded_next = torch.ones((len(annots_next), 1, 6)) * -1
padded_imgs = padded_imgs.permute(0, 3, 1, 2)
padded_imgs_next = padded_imgs_next.permute(0, 3, 1, 2)
return {'img': padded_imgs, 'annot': annot_padded, 'img_next': padded_imgs_next, 'annot_next': annot_padded_next}
def intersect(box_a, box_b):
max_xy = np.minimum(box_a[:, 2:], box_b[2:])
min_xy = np.maximum(box_a[:, :2], box_b[:2])
inter = np.clip((max_xy - min_xy + 1), a_min=0, a_max=np.inf)
return inter[:, 0] * inter[:, 1]
def jaccard_numpy(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: Multiple bounding boxes, Shape: [num_boxes,4]
box_b: Single bounding box, Shape: [4]
Return:
jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
"""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2]-box_a[:, 0] + 1) *
(box_a[:, 3]-box_a[:, 1] + 1)) # [A,B]
area_b = ((box_b[2]-box_b[0] + 1) *
(box_b[3]-box_b[1] + 1)) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def overlap_numpy(box_a, box_b):
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2]-box_a[:, 0] + 1) *
(box_a[:, 3]-box_a[:, 1] + 1)) # [A,B]
return inter / area_a # [A,B]
class Resizer(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, min_side=608, max_side=1024):
return sample
image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next']
rows, cols, cns = image.shape
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# resize the image with the computed scale
image = skimage.transform.resize(image, (int(round(rows*scale)), int(round((cols*scale)))))
image_next = skimage.transform.resize(image_next, (int(round(rows*scale)), int(round((cols*scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
new_image_next = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image_next[:rows, :cols, :] = image_next.astype(np.float32)
annots[:, :4] *= scale
annots_next[:, :4] *= scale
return {'img': torch.from_numpy(new_image), 'annot': torch.from_numpy(annots), 'img_next': torch.from_numpy(new_image_next), 'annot_next': torch.from_numpy(annots_next), 'scale': scale}
class Augmenter(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, flip_x=0.5):
if np.random.rand() < flip_x:
image, annots = sample['img'], sample['annot']
image_next, annots_next = sample['img_next'], sample['annot_next']
image = image[:, ::-1, :]
image_next = image_next[:, ::-1, :]
rows, cols, _ = image.shape
rows_next, cols_next, _ = image_next.shape
assert (rows == rows_next) and (cols == cols_next), 'size must be equal between adjacent images pair.'
x1 = annots[:, 0].copy()
x2 = annots[:, 2].copy()
x_tmp = x1.copy()
annots[:, 0] = cols - x2
annots[:, 2] = cols - x_tmp
# for next
x1 = annots_next[:, 0].copy()
x2 = annots_next[:, 2].copy()
x_tmp = x1.copy()
annots_next[:, 0] = cols - x2
annots_next[:, 2] = cols - x_tmp
sample = {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next}
return sample
class Normalizer(object):
def __init__(self):
self.mean = np.array([[RGB_MEAN]])
self.std = np.array([[RGB_STD]])
def __call__(self, sample):
image, annots = sample['img'], sample['annot']
image_next, annots_next = sample['img_next'], sample['annot_next']
return {'img':torch.from_numpy((image.astype(np.float32) / 255.0 - self.mean) / self.std), 'annot': torch.from_numpy(annots), 'img_next':torch.from_numpy((image_next.astype(np.float32) / 255.0-self.mean)/self.std), 'annot_next': torch.from_numpy(annots_next)}
class UnNormalizer(object):
def __init__(self, mean=None, std=None):
if mean == None:
self.mean = RGB_MEAN
else:
self.mean = mean
if std == None:
self.std = RGB_STD
else:
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
def random_brightness(img, img_next):
prob = np.random.uniform(0, 1)
if prob < 0.5:
delta = np.random.uniform(-0.125, 0.125) + 1
img = ImageEnhance.Brightness(img).enhance(delta)
img_next = ImageEnhance.Brightness(img_next).enhance(delta)
return img, img_next
def random_contrast(img, img_next):
prob = np.random.uniform(0, 1)
if prob < 0.5:
delta = np.random.uniform(-0.5, 0.5) + 1
img = ImageEnhance.Contrast(img).enhance(delta)
img_next = ImageEnhance.Contrast(img_next).enhance(delta)
return img, img_next
def random_saturation(img, img_next):
prob = np.random.uniform(0, 1)
if prob < 0.5:
delta = np.random.uniform(-0.5, 0.5) + 1
img = ImageEnhance.Color(img).enhance(delta)
img_next = ImageEnhance.Color(img_next).enhance(delta)
return img, img_next
def random_hue(img, img_next):
prob = np.random.uniform(0, 1)
if prob < 0.5:
delta = np.random.uniform(-18, 18)
img_hsv = np.array(img.convert('HSV'))
img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
img_next_hsv = np.array(img_next.convert('HSV'))
img_next_hsv[:, :, 0] = img_next_hsv[:, :, 0] + delta
img_next = Image.fromarray(img_next_hsv, mode='HSV').convert('RGB')
return img, img_next
class PhotometricDistort(object):
def __init__(self):
pass
def __call__(self, sample):
image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next']
prob = np.random.uniform(0, 1)
# Apply different distort order
img = Image.fromarray(image)
img_next = Image.fromarray(image_next)
if prob > 0.5:
img, img_next = random_brightness(img, img_next)
img, img_next = random_contrast(img, img_next)
img, img_next = random_saturation(img, img_next)
img, img_next = random_hue(img, img_next)
else:
img, img_next = random_brightness(img, img_next)
img, img_next = random_saturation(img, img_next)
img, img_next = random_hue(img, img_next)
img, img_next = random_contrast(img, img_next)
image = np.array(img)
image_next = np.array(img_next)
return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next}
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, image_next):
for t in self.transforms:
img, image_next = t(img, image_next)
return img, image_next
class RandomSampleCrop(object):
def __init__(self):
pass
def __call__(self, sample):
image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next']
#print('crop1',image.dtype)
height, width, _ = image.shape
shorter_side = min(height, width)
crop_size = np.random.uniform(0.3 * shorter_side, 0.8 * shorter_side)
target_size = 512
if shorter_side < 384:
target_size = 256
min_iou = 0.2
crop_success = False
# max trails (10)
for _ in range(20):
left = np.random.uniform(0, width - crop_size)
top = np.random.uniform(0, height - crop_size)
# convert to integer rect x1,y1,x2,y2
rect = np.array([int(left), int(top), int(left + crop_size), int(top + crop_size)])
# calculate IoU (jaccard overlap) b/t the cropped and gt boxes
overlap = overlap_numpy(annots[:, :4], rect)
overlap_next = overlap_numpy(annots_next[:, :4], rect)
if overlap.max() < min_iou or overlap_next.max() < min_iou:
continue
crop_success = True
image = image[rect[1]:rect[3], rect[0]:rect[2], :]
image_next = image_next[rect[1]:rect[3], rect[0]:rect[2], :]
annots = annots[overlap > min_iou, :].copy()
annots_next = annots_next[overlap_next > min_iou, :].copy()
annots[:, :2] -= rect[:2]
annots[:, 2:4] -= rect[:2]
annots_next[:, :2] -= rect[:2]
annots_next[:, 2:4] -= rect[:2]
#print('crop1',image.max())
expand_ratio = 1.0
if np.random.uniform(0, 1) > 0.75:
height, width, depth = image.shape
expand_ratio = random.uniform(1, 3)
left = random.uniform(0, width * expand_ratio - width)
top = random.uniform(0, height * expand_ratio - height)
expand_image = np.zeros((int(height*expand_ratio), int(width*expand_ratio), depth), dtype=image.dtype)
expand_image[:, :, :] = np.array([[RGB_MEAN]]) * 255.0
expand_image[int(top):int(top + height),
int(left):int(left + width)] = image
image = expand_image
annots[:, :2] += (int(left), int(top))
annots[:, 2:4] += (int(left), int(top))
expand_next_image = np.zeros(
(int(height*expand_ratio), int(width*expand_ratio), depth),
dtype=image_next.dtype)
expand_next_image[:, :, :] = np.array([[RGB_MEAN]]) * 255.0
expand_next_image[int(top):int(top + height),
int(left):int(left + width)] = image_next
image_next = expand_next_image
annots_next[:, :2] += (int(left), int(top))
annots_next[:, 2:4] += (int(left), int(top))
# resize the image with the computed scale
# resize the image with the computed scale
image = (255.0 * skimage.transform.resize(image, (target_size, target_size))).astype(np.uint8)
image_next = (255.0 * skimage.transform.resize(image_next, (target_size, target_size))).astype(np.uint8)
annots[:, :4] *= (target_size / (crop_size * expand_ratio))
annots_next[:, :4] *= (target_size / (crop_size * expand_ratio))
#print('crop2',image.max())
return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next}
if not crop_success:
image = (255.0 * skimage.transform.resize(image, (height // 2, width // 2))).astype(np.uint8)
image_next = (255.0 * skimage.transform.resize(image_next, (height // 2, width // 2))).astype(np.uint8)
annots[:, :4] *= 0.5
annots_next[:, :4] *= 0.5
return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next}
class AspectRatioBasedSampler(Sampler):
def __init__(self, data_source, batch_size, drop_last):
self.data_source = data_source
self.batch_size = batch_size
self.drop_last = drop_last
self.groups = self.group_images()
def __iter__(self):
random.shuffle(self.groups)
for group in self.groups:
yield group
def __len__(self):
if self.drop_last:
return len(self.data_source) // self.batch_size
else:
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
def group_images(self):
# determine the order of the images
order = list(range(len(self.data_source)))
order.sort(key=lambda x: self.data_source.image_aspect_ratio(x))
# divide into groups, one group = one batch
return [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]