-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
certificate.go
234 lines (211 loc) · 7.19 KB
/
certificate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly>
// SPDX-License-Identifier: MIT
//go:build !js
// +build !js
package webrtc
import (
"crypto"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/base64"
"encoding/pem"
"fmt"
"math/big"
"strings"
"time"
"github.com/pion/dtls/v3/pkg/crypto/fingerprint"
"github.com/pion/webrtc/v4/pkg/rtcerr"
)
// Certificate represents a x509Cert used to authenticate WebRTC communications.
type Certificate struct {
privateKey crypto.PrivateKey
x509Cert *x509.Certificate
statsID string
}
// NewCertificate generates a new x509 compliant Certificate to be used
// by DTLS for encrypting data sent over the wire. This method differs from
// GenerateCertificate by allowing to specify a template x509.Certificate to
// be used in order to define certificate parameters.
func NewCertificate(key crypto.PrivateKey, tpl x509.Certificate) (*Certificate, error) {
var err error
var certDER []byte
switch sk := key.(type) {
case *rsa.PrivateKey:
pk := sk.Public()
tpl.SignatureAlgorithm = x509.SHA256WithRSA
certDER, err = x509.CreateCertificate(rand.Reader, &tpl, &tpl, pk, sk)
if err != nil {
return nil, &rtcerr.UnknownError{Err: err}
}
case *ecdsa.PrivateKey:
pk := sk.Public()
tpl.SignatureAlgorithm = x509.ECDSAWithSHA256
certDER, err = x509.CreateCertificate(rand.Reader, &tpl, &tpl, pk, sk)
if err != nil {
return nil, &rtcerr.UnknownError{Err: err}
}
default:
return nil, &rtcerr.NotSupportedError{Err: ErrPrivateKeyType}
}
cert, err := x509.ParseCertificate(certDER)
if err != nil {
return nil, &rtcerr.UnknownError{Err: err}
}
return &Certificate{privateKey: key, x509Cert: cert, statsID: fmt.Sprintf("certificate-%d", time.Now().UnixNano())}, nil
}
// Equals determines if two certificates are identical by comparing both the
// secretKeys and x509Certificates.
func (c Certificate) Equals(o Certificate) bool {
switch cSK := c.privateKey.(type) {
case *rsa.PrivateKey:
if oSK, ok := o.privateKey.(*rsa.PrivateKey); ok {
if cSK.N.Cmp(oSK.N) != 0 {
return false
}
return c.x509Cert.Equal(o.x509Cert)
}
return false
case *ecdsa.PrivateKey:
if oSK, ok := o.privateKey.(*ecdsa.PrivateKey); ok {
if cSK.X.Cmp(oSK.X) != 0 || cSK.Y.Cmp(oSK.Y) != 0 {
return false
}
return c.x509Cert.Equal(o.x509Cert)
}
return false
default:
return false
}
}
// Expires returns the timestamp after which this certificate is no longer valid.
func (c Certificate) Expires() time.Time {
if c.x509Cert == nil {
return time.Time{}
}
return c.x509Cert.NotAfter
}
// GetFingerprints returns the list of certificate fingerprints, one of which
// is computed with the digest algorithm used in the certificate signature.
func (c Certificate) GetFingerprints() ([]DTLSFingerprint, error) {
fingerprintAlgorithms := []crypto.Hash{crypto.SHA256}
res := make([]DTLSFingerprint, len(fingerprintAlgorithms))
i := 0
for _, algo := range fingerprintAlgorithms {
name, err := fingerprint.StringFromHash(algo)
if err != nil {
// nolint
return nil, fmt.Errorf("%w: %v", ErrFailedToGenerateCertificateFingerprint, err)
}
value, err := fingerprint.Fingerprint(c.x509Cert, algo)
if err != nil {
// nolint
return nil, fmt.Errorf("%w: %v", ErrFailedToGenerateCertificateFingerprint, err)
}
res[i] = DTLSFingerprint{
Algorithm: name,
Value: value,
}
}
return res[:i+1], nil
}
// GenerateCertificate causes the creation of an X.509 certificate and
// corresponding private key.
func GenerateCertificate(secretKey crypto.PrivateKey) (*Certificate, error) {
// Max random value, a 130-bits integer, i.e 2^130 - 1
maxBigInt := new(big.Int)
/* #nosec */
maxBigInt.Exp(big.NewInt(2), big.NewInt(130), nil).Sub(maxBigInt, big.NewInt(1))
/* #nosec */
serialNumber, err := rand.Int(rand.Reader, maxBigInt)
if err != nil {
return nil, &rtcerr.UnknownError{Err: err}
}
return NewCertificate(secretKey, x509.Certificate{
Issuer: pkix.Name{CommonName: generatedCertificateOrigin},
NotBefore: time.Now().AddDate(0, 0, -1),
NotAfter: time.Now().AddDate(0, 1, -1),
SerialNumber: serialNumber,
Version: 2,
Subject: pkix.Name{CommonName: generatedCertificateOrigin},
})
}
// CertificateFromX509 creates a new WebRTC Certificate from a given PrivateKey and Certificate
//
// This can be used if you want to share a certificate across multiple PeerConnections
func CertificateFromX509(privateKey crypto.PrivateKey, certificate *x509.Certificate) Certificate {
return Certificate{privateKey, certificate, fmt.Sprintf("certificate-%d", time.Now().UnixNano())}
}
func (c Certificate) collectStats(report *statsReportCollector) error {
report.Collecting()
fingerPrintAlgo, err := c.GetFingerprints()
if err != nil {
return err
}
base64Certificate := base64.RawURLEncoding.EncodeToString(c.x509Cert.Raw)
stats := CertificateStats{
Timestamp: statsTimestampFrom(time.Now()),
Type: StatsTypeCertificate,
ID: c.statsID,
Fingerprint: fingerPrintAlgo[0].Value,
FingerprintAlgorithm: fingerPrintAlgo[0].Algorithm,
Base64Certificate: base64Certificate,
IssuerCertificateID: c.x509Cert.Issuer.String(),
}
report.Collect(stats.ID, stats)
return nil
}
// CertificateFromPEM creates a fresh certificate based on a string containing
// pem blocks fort the private key and x509 certificate
func CertificateFromPEM(pems string) (*Certificate, error) {
// decode & parse the certificate
block, more := pem.Decode([]byte(pems))
if block == nil || block.Type != "CERTIFICATE" {
return nil, errCertificatePEMFormatError
}
certBytes := make([]byte, base64.StdEncoding.DecodedLen(len(block.Bytes)))
n, err := base64.StdEncoding.Decode(certBytes, block.Bytes)
if err != nil {
return nil, fmt.Errorf("failed to decode ceritifcate: %w", err)
}
cert, err := x509.ParseCertificate(certBytes[:n])
if err != nil {
return nil, fmt.Errorf("failed parsing ceritifcate: %w", err)
}
// decode & parse the private key
block, _ = pem.Decode(more)
if block == nil || block.Type != "PRIVATE KEY" {
return nil, errCertificatePEMFormatError
}
privateKey, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err != nil {
return nil, fmt.Errorf("unable to parse private key: %w", err)
}
x := CertificateFromX509(privateKey, cert)
return &x, nil
}
// PEM returns the certificate encoded as two pem block: once for the X509
// certificate and the other for the private key
func (c Certificate) PEM() (string, error) {
// First write the X509 certificate
var o strings.Builder
xcertBytes := make(
[]byte, base64.StdEncoding.EncodedLen(len(c.x509Cert.Raw)))
base64.StdEncoding.Encode(xcertBytes, c.x509Cert.Raw)
err := pem.Encode(&o, &pem.Block{Type: "CERTIFICATE", Bytes: xcertBytes})
if err != nil {
return "", fmt.Errorf("failed to pem encode the X certificate: %w", err)
}
// Next write the private key
privBytes, err := x509.MarshalPKCS8PrivateKey(c.privateKey)
if err != nil {
return "", fmt.Errorf("failed to marshal private key: %w", err)
}
err = pem.Encode(&o, &pem.Block{Type: "PRIVATE KEY", Bytes: privBytes})
if err != nil {
return "", fmt.Errorf("failed to encode private key: %w", err)
}
return o.String(), nil
}