-
Notifications
You must be signed in to change notification settings - Fork 0
/
pedestrians.py
58 lines (47 loc) · 1.81 KB
/
pedestrians.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# tests from http://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/
# import the necessary packages
from __future__ import print_function
from imutils.object_detection import non_max_suppression
from imutils import paths
import numpy as np
import imutils
import cv2
from sys import argv, exit
inputFile = argv[1]
cap = cv2.VideoCapture(inputFile)
# initialize the HOG descriptor/person detector
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
frameNumber = 0
font = cv2.FONT_HERSHEY_SIMPLEX
# loop over the capture frames
while(True):
ret, image = cap.read()
if not ret:
break
frameNumber += 1
# load the image and resize it to (1) reduce detection time
# and (2) improve detection accuracy
image = imutils.resize(image, width=min(400, image.shape[1]))
orig = image.copy()
cv2.putText(orig, "{0}".format(frameNumber), (5, 20), font, 0.3, (255,255,255))
# detect people in the image
(rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),
padding=(8, 8), scale=1.05)
# draw the original bounding boxes
for (x, y, w, h) in rects:
cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2)
# apply non-maxima suppression to the bounding boxes using a
# fairly large overlap threshold to try to maintain overlapping
# boxes that are still people
rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])
pick = non_max_suppression(rects, probs=None, overlapThresh=0.65)
# draw the final bounding boxes
for (xA, yA, xB, yB) in pick:
cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2)
# show the output images
cv2.imshow("Before NMS", orig)
cv2.imshow("After NMS", image)
k = cv2.waitKey(1)
if k & 0xFF == ord('q'):
break