diff --git a/.editorconfig b/.editorconfig
deleted file mode 100644
index 814d7b2..0000000
--- a/.editorconfig
+++ /dev/null
@@ -1,24 +0,0 @@
-# http://editorconfig.org
-
-root = true
-
-[*]
-indent_style = space
-indent_size = 4
-trim_trailing_whitespace = true
-insert_final_newline = true
-charset = utf-8
-end_of_line = lf
-
-[*.bat]
-indent_style = tab
-end_of_line = crlf
-
-[LICENSE]
-insert_final_newline = false
-
-[Makefile]
-indent_style = tab
-
-[*.{yml, yaml}]
-indent_size = 2
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
deleted file mode 100644
index 0a59609..0000000
--- a/.pre-commit-config.yaml
+++ /dev/null
@@ -1,39 +0,0 @@
-repos:
- - repo: https://github.com/Lucas-C/pre-commit-hooks
- rev: v1.1.9
- hooks:
- - id: forbid-crlf
- - id: remove-crlf
- - repo: https://github.com/pre-commit/pre-commit-hooks
- rev: v3.4.0
- hooks:
- - id: trailing-whitespace
- - id: end-of-file-fixer
- - id: check-merge-conflict
- - id: check-yaml
- args: [ --unsafe ]
- - repo: https://github.com/pre-commit/mirrors-isort
- rev: v5.8.0
- hooks:
- - id: isort
- args: [ "--filter-files" ]
- - repo: https://github.com/ambv/black
- rev: 21.5b1
- hooks:
- - id: black
- language_version: python3.8
- - repo: https://github.com/pycqa/flake8
- rev: 3.9.2
- hooks:
- - id: flake8
- additional_dependencies: [ flake8-typing-imports==1.10.0 ]
- - repo: https://github.com/pre-commit/mirrors-mypy
- rev: v0.901
- hooks:
- - id: mypy
- exclude: tests/
- - repo: https://github.com/nbQA-dev/nbQA
- rev: 1.2.2
- hooks:
- - id: nbqa-black
- - id: nbqa-isort
diff --git a/CHANGELOG.md b/CHANGELOG.md
deleted file mode 100644
index 28666c7..0000000
--- a/CHANGELOG.md
+++ /dev/null
@@ -1,5 +0,0 @@
-# Changelog
-
-## 0.1.0 (2021-12-17)
-
-* First release on PyPI.
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
deleted file mode 100644
index 546f2a0..0000000
--- a/CONTRIBUTING.md
+++ /dev/null
@@ -1,152 +0,0 @@
-# Contributing
-
-Contributions are welcome, and they are greatly appreciated! Every little bit
-helps, and credit will always be given.
-
-You can contribute in many ways:
-
-## Types of Contributions
-
-### Report Bugs
-
-Report bugs at [https://github.com/pietrolesci/energizer/issues](https://github.com/pietrolesci/energizer/issues).
-
-If you are reporting a bug, please include:
-
-* Your operating system name and version.
-* Any details about your local setup that might be helpful in troubleshooting.
-* Detailed steps to reproduce the bug.
-
-### Fix Bugs
-
-Look through the GitHub issues for bugs. Anything tagged with "bug" and "help
-wanted" is open to whoever wants to implement it.
-
-### Implement Features
-
-Look through the GitHub issues for features. Anything tagged with "enhancement"
-and "help wanted" is open to whoever wants to implement it.
-
-### Write Documentation
-
-Pytorch-Energizer could always use more documentation, whether as part of the
-official Pytorch-Energizer docs, in docstrings, or even on the web in blog posts,
-articles, and such.
-
-### Submit Feedback
-
-The best way to send feedback is to file an issue at https://github.com/pietrolesci/energizer/issues.
-
-If you are proposing a feature:
-
-* Explain in detail how it would work.
-* Keep the scope as narrow as possible, to make it easier to implement.
-* Remember that this is a volunteer-driven project, and that contributions
- are welcome :)
-
-## Set up local development environment!
-
-Ready to contribute? Here's how to set up `energizer` for local development.
-
-1. Fork the `energizer` repo on GitHub.
-
-1. Clone your fork locally
-
- ```bash
- git clone git@github.com:your_name_here/energizer.git
- ```
-
-1. Ensure [conda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) is installed, otherwise install it
-
- ```bash
- LINK_TO_CONDA_INSTALLER= #(1)
- wget $LINK_TO_CONDA_INSTALLER
- #(2)
- ```
-
- 1. Check [here](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) for a suitable version of the conda installer, copy the link, and paste it here to download the file.
-
- 2. Run the installer.
-
-1. Create a new conda environment
- ```bash
- CONDA_ENV_NAME= #(1)
- conda create -n $CONDA_ENV_NAME python=3.9 -y
- conda activate $CONDA_ENV_NAME
- ```
-
- 1. Put here the name of the conda environment.
-
-1. Ensure [poetry](https://python-poetry.org/docs/) is installed, otherwise install it
-
- ```bash
- curl -sSL https://install.python-poetry.org | python3 -
- ```
-
-1. Install dependencies and start your virtualenv:
-
- ```bash
- poetry install --all-extras --sync
- ```
-
-1. Create a branch for local development:
-
- ```bash
- git checkout -b name-of-your-bugfix-or-feature
- ```
-
- Now you can make your changes locally.
-
-1. When you're done making changes, check that your changes pass the
- tests, including testing other Python versions, with tox:
-
- ```bash
- poetry run tox
- ```
-
-1. Commit your changes and push your branch to GitHub:
-
- ```bash
- git add .
- git commit -m "Your detailed description of your changes."
- git push origin name-of-your-bugfix-or-feature
- ```
-
-1. Submit a pull request through the GitHub website.
-
-## Pull Request Guidelines
-
-Before you submit a pull request, check that it meets these guidelines:
-
-1. The pull request should include tests.
-2. If the pull request adds functionality, the docs should be updated. Put
- your new functionality into a function with a docstring, and add the
- feature to the list in README.md.
-3. The pull request should work for Python 3.7, 3.8, 3.9, 3.10. Check
- https://github.com/pietrolesci/energizer/actions
- and make sure that the tests pass for all supported Python versions.
-
-## Tips
-
-```bash
-poetry run pytest tests/some_test_file.py
-```
-
-To run a subset of tests.
-
-
-## Deploying
-
-A reminder for the maintainers on how to deploy.
-Make sure all your changes are committed (including an entry in CHANGELOG.md).
-Then run:
-
-```bash
-poetry run bump2version patch #(1)
-git push
-git push --tags
-```
-
-1. Possible values: `major` / `minor` / `patch`.
-
-GitHub Actions will then deploy to PyPI if tests pass.
diff --git a/docs/api/acquisition_functions.md b/docs/api/acquisition_functions.md
deleted file mode 100644
index cb5d6a8..0000000
--- a/docs/api/acquisition_functions.md
+++ /dev/null
@@ -1 +0,0 @@
-::: energizer.acquisition_functions
diff --git a/docs/api/query_strategies.md b/docs/api/query_strategies.md
deleted file mode 100644
index a2384bd..0000000
--- a/docs/api/query_strategies.md
+++ /dev/null
@@ -1,33 +0,0 @@
-## Random strategies
-
-::: energizer.query_strategies.RandomStrategy
- options:
- show_root_heading: true
-
-
-## Uncertainty-based query strategies
-
-Uncertainty-based query strategies select instance with high aleatoric uncertainty
-or epistemic uncertainty. Aleatoric uncertainty refers to the uncertainty
-in data due the data generation processes (sometimes called irreducible uncertainty).
-Epistemic uncertainty comes from the modeling/learning process and is caused by a
-lack of knowledge.
-
-::: energizer.query_strategies.LeastConfidenceStrategy
- options:
- show_root_heading: true
-
-::: energizer.query_strategies.MarginStrategy
- options:
- show_root_heading: true
-
-::: energizer.query_strategies.EntropyStrategy
- options:
- show_root_heading: true
-
-
-
----
-
-## Base classes
-::: energizer.query_strategies.base
diff --git a/docs/api/trainer.md b/docs/api/trainer.md
deleted file mode 100644
index f152302..0000000
--- a/docs/api/trainer.md
+++ /dev/null
@@ -1 +0,0 @@
-::: energizer.trainer
diff --git a/docs/changelog.md b/docs/changelog.md
deleted file mode 100644
index 67259da..0000000
--- a/docs/changelog.md
+++ /dev/null
@@ -1,3 +0,0 @@
-{%
- include-markdown "../CHANGELOG.md"
-%}
diff --git a/docs/contributing.md b/docs/contributing.md
deleted file mode 100644
index a485597..0000000
--- a/docs/contributing.md
+++ /dev/null
@@ -1,8 +0,0 @@
----
-hide:
- - navigation
----
-
-{%
- include-markdown "../CONTRIBUTING.md"
-%}
diff --git a/docs/examples/bert-agnews.ipynb b/docs/examples/bert-agnews.ipynb
deleted file mode 100644
index aab2969..0000000
--- a/docs/examples/bert-agnews.ipynb
+++ /dev/null
@@ -1,417 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# %load_ext autoreload\n",
- "# %autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "MODEL_NAME = \"google/bert_uncased_L-2_H-128_A-2\"\n",
- "BATCH_SIZE = 32\n",
- "EVAL_BATCH_SIZE = 512\n",
- "LEARNING_RATE = 0.0001\n",
- "\n",
- "trainer_kwargs = {\n",
- " \"query_size\": 1,\n",
- " \"max_epochs\": 3,\n",
- " \"max_labelling_epochs\": 5,\n",
- " \"test_after_labelling\": True,\n",
- " \"accelerator\": \"gpu\",\n",
- " \"limit_val_batches\": 1,\n",
- " # total_budget=5,\n",
- " # for testing purposes\n",
- " # limit_train_batches=10,\n",
- " # limit_test_batches=10,\n",
- " # limit_pool_batches=10,\n",
- " # log_every_n_steps=1,\n",
- "}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Pre"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import json\n",
- "import os\n",
- "from copy import deepcopy\n",
- "from typing import Any, Dict, Tuple\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import pandas as pd\n",
- "import torch\n",
- "import torch.nn.functional as F\n",
- "from datasets import load_dataset\n",
- "from pytorch_lightning import LightningModule\n",
- "from pytorch_lightning import Trainer as PLTrainer\n",
- "from pytorch_lightning import seed_everything\n",
- "from torch import Tensor, nn\n",
- "from torch.utils.data import DataLoader\n",
- "from torchmetrics import Accuracy, F1Score, MetricCollection, Precision, Recall\n",
- "from transformers import (\n",
- " AdamW,\n",
- " AutoModelForSequenceClassification,\n",
- " AutoTokenizer,\n",
- " DataCollatorWithPadding,\n",
- " get_constant_schedule_with_warmup,\n",
- ")\n",
- "\n",
- "from energizer import Trainer\n",
- "from energizer.acquisition_functions import entropy, expected_entropy\n",
- "from energizer.query_strategies import RandomStrategy\n",
- "from energizer.query_strategies.base import AccumulatorStrategy"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)\n",
- "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
- "\n",
- "# renames \"label\" to \"labels\"\n",
- "collator = DataCollatorWithPadding(\n",
- " tokenizer=tokenizer, padding=True, return_tensors=\"pt\"\n",
- ")\n",
- "\n",
- "# load dataset\n",
- "dataset = load_dataset(\"pietrolesci/ag_news\", \"concat\")\n",
- "\n",
- "# tokenize\n",
- "dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True)\n",
- "columns_to_keep = [\"label\", \"input_ids\", \"token_type_ids\", \"attention_mask\"]\n",
- "\n",
- "# train-val split and record datasets\n",
- "train_set, test_set = dataset[\"train\"], dataset[\"test\"]\n",
- "_split = train_set.train_test_split(0.3)\n",
- "_, val_set = _split[\"train\"], _split[\"test\"]\n",
- "\n",
- "labels = train_set.features[\"label\"].names\n",
- "num_classes = len(labels)\n",
- "\n",
- "# create dataloaders\n",
- "batch_size = BATCH_SIZE\n",
- "eval_batch_size = EVAL_BATCH_SIZE # this is use when evaluating on the pool too\n",
- "train_dl = DataLoader(\n",
- " train_set.with_format(columns=columns_to_keep),\n",
- " batch_size=batch_size,\n",
- " collate_fn=collator,\n",
- " num_workers=2,\n",
- ")\n",
- "val_dl = DataLoader(\n",
- " val_set.with_format(columns=columns_to_keep),\n",
- " batch_size=eval_batch_size,\n",
- " collate_fn=collator,\n",
- " num_workers=2,\n",
- ")\n",
- "test_dl = DataLoader(\n",
- " test_set.with_format(columns=columns_to_keep),\n",
- " batch_size=eval_batch_size,\n",
- " collate_fn=collator,\n",
- " num_workers=2,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "class TransformerModel(LightningModule):\n",
- " def __init__(\n",
- " self,\n",
- " model_name: str,\n",
- " num_classes: int,\n",
- " learning_rate: float = 0.00001,\n",
- " num_warmup_steps: int = 50,\n",
- " ) -> None:\n",
- " super().__init__()\n",
- " self.model_name = model_name\n",
- " self.num_classes = num_classes\n",
- " self.model = AutoModelForSequenceClassification.from_pretrained(\n",
- " self.model_name,\n",
- " num_labels=self.num_classes,\n",
- " )\n",
- " self.learning_rate = learning_rate\n",
- " self.num_warmup_steps = num_warmup_steps\n",
- " for stage in (\"train\", \"val\", \"test\"):\n",
- " metrics = MetricCollection(\n",
- " {\n",
- " \"accuracy\": Accuracy(),\n",
- " \"precision_macro\": Precision(\n",
- " num_classes=num_classes, average=\"macro\"\n",
- " ),\n",
- " \"recall_macro\": Recall(num_classes=num_classes, average=\"macro\"),\n",
- " \"f1_macro\": F1Score(num_classes=num_classes, average=\"macro\"),\n",
- " \"f1_micro\": F1Score(num_classes=num_classes, average=\"micro\"),\n",
- " }\n",
- " )\n",
- " setattr(self, f\"{stage}_metrics\", metrics)\n",
- "\n",
- " def common_step(self, batch: Any, stage: str):\n",
- " \"\"\"Outputs loss and logits, logs loss and metrics.\"\"\"\n",
- " out = self(batch)\n",
- " logits, loss = out.logits, out.loss\n",
- " self.log(f\"{stage}/loss\", loss)\n",
- "\n",
- " metrics = getattr(self, f\"{stage}_metrics\")(logits, batch[\"labels\"])\n",
- " self.log_dict(metrics)\n",
- "\n",
- " return loss\n",
- "\n",
- " def forward(self, batch) -> torch.Tensor:\n",
- " return self.model(**batch)\n",
- "\n",
- " def training_step(\n",
- " self, batch: Any, batch_idx: int = 0, optimizer_idx: int = 0\n",
- " ) -> Dict[str, Any]:\n",
- " return self.common_step(batch, \"train\")\n",
- "\n",
- " def validation_step(self, batch: Any, batch_idx: int = 0) -> Dict[str, Any]:\n",
- " return self.common_step(batch, \"val\")\n",
- "\n",
- " def test_step(self, batch: Any, batch_idx: int = 0) -> Dict[str, Any]:\n",
- " return self.common_step(batch, \"test\")\n",
- "\n",
- " def configure_optimizers(self) -> Dict[str, Any]:\n",
- " optimizer = AdamW(\n",
- " filter(lambda p: p.requires_grad, self.parameters()),\n",
- " lr=self.learning_rate,\n",
- " )\n",
- " return {\n",
- " \"optimizer\": optimizer,\n",
- " \"lr_scheduler\": {\n",
- " \"scheduler\": get_constant_schedule_with_warmup(\n",
- " optimizer=optimizer, num_warmup_steps=self.num_warmup_steps\n",
- " ),\n",
- " \"monitor\": \"val/loss\",\n",
- " \"frequency\": 1,\n",
- " \"interval\": \"step\",\n",
- " },\n",
- " }"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Active fit"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = TransformerModel(\n",
- " model_name=MODEL_NAME, num_classes=num_classes, learning_rate=LEARNING_RATE\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Random strategy"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "random_strategy = RandomStrategy(deepcopy(model))\n",
- "\n",
- "seed_everything(1994)\n",
- "trainer = Trainer(**trainer_kwargs)\n",
- "results = trainer.active_fit(\n",
- " model=random_strategy,\n",
- " train_dataloaders=train_dl,\n",
- " val_dataloaders=val_dl,\n",
- " test_dataloaders=test_dl,\n",
- ")\n",
- "random_df = results.to_pandas()\n",
- "random_df"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### AccumulatorStrategy"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "class EntropyStrategy(AccumulatorStrategy):\n",
- " \"\"\"A implememntation of the `Entropy` active learning strategy.\"\"\"\n",
- "\n",
- " def get_inputs_from_batch(self, batch: Dict[str, Tensor]) -> Dict[str, Tensor]:\n",
- " batch.pop(\"labels\")\n",
- " return batch\n",
- "\n",
- " def pool_step(self, batch: Dict[str, Tensor], batch_idx: int) -> Tensor:\n",
- " logits = self(batch).logits\n",
- " return entropy(logits)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "entropy_strategy = EntropyStrategy(deepcopy(model))\n",
- "\n",
- "seed_everything(1994)\n",
- "trainer = Trainer(**trainer_kwargs)\n",
- "results = trainer.active_fit(\n",
- " model=entropy_strategy,\n",
- " train_dataloaders=train_dl,\n",
- " val_dataloaders=val_dl,\n",
- " test_dataloaders=test_dl,\n",
- ")\n",
- "entropy_df = results.to_pandas()\n",
- "entropy_df"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### AnchorPointsStrategy"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# class MyRandomArchorPointsStrategy(RandomArchorPointsStrategy):\n",
- "# def get_search_query_from_batch(self, batch: Any) -> Tensor:\n",
- "# return batch[\"input_ids\"]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# random_anchor_points_strategy = RandomArchorPointsStrategy(deepcopy(model), 10)\n",
- "\n",
- "# datastore = ActiveDataModuleWithIndex(\n",
- "# train_dataloader=train_dl,\n",
- "# val_dataloaders=val_dl,\n",
- "# test_dataloaders=test_dl,\n",
- "# faiss_index_path=\"all-mpnet-base-v2_ag-news_train.faiss\",\n",
- "# )\n",
- "\n",
- "# seed_everything(1994)\n",
- "# trainer = Trainer(**trainer_kwargs)\n",
- "# results = trainer.active_fit(\n",
- "# model=random_anchor_points_strategy,\n",
- "# datastore=datastore,\n",
- "# )\n",
- "# rap_df = results.to_pandas()\n",
- "# rap_df"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "----"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "plt.plot(random_df[\"train_size\"], random_df[\"accuracy\"], label=\"random\")\n",
- "plt.plot(entropy_df[\"train_size\"], entropy_df[\"accuracy\"], label=\"entropy\")\n",
- "plt.legend()\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "random_df[\"strategy\"] = \"random\"\n",
- "entropy_df[\"strategy\"] = \"entropy\"\n",
- "results = pd.concat([random_df, entropy_df], ignore_index=False, axis=0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# results.to_parquet(\"results_al.parquet\", index=False)\n",
- "# with open(\"results_al_metadata.json\", \"w\") as fl:\n",
- "# json.dump(trainer_kwargs, fl)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3.9.13 ('energizer-dev')",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.13"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "944ffd4f8dbdaa69d919c942d599fc997735694f55f2ea363be8b6b69a40ba5a"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/docs/examples/cnn-mnist.ipynb b/docs/examples/cnn-mnist.ipynb
deleted file mode 100644
index 747549a..0000000
--- a/docs/examples/cnn-mnist.ipynb
+++ /dev/null
@@ -1,1388 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Imports"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "from typing import Tuple, Union\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import seaborn as sns\n",
- "import torch\n",
- "import torch.nn.functional as F\n",
- "from pytorch_lightning import LightningModule, seed_everything\n",
- "from torch import Tensor, nn\n",
- "from torch.utils.data import DataLoader, random_split\n",
- "from torchmetrics import Accuracy, F1Score, MetricCollection, Precision, Recall\n",
- "from torchvision import transforms\n",
- "from torchvision.datasets import MNIST\n",
- "\n",
- "from energizer import Trainer\n",
- "from energizer.query_strategies import (\n",
- " BALDStrategy,\n",
- " EntropyStrategy,\n",
- " LeastConfidenceStrategy,\n",
- " MarginStrategy,\n",
- " RandomStrategy,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Data preparation\n",
- "\n",
- "Load and preprocess data, and prepare dataloaders"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_dir = \"./data\"\n",
- "\n",
- "preprocessing_pipe = transforms.Compose(\n",
- " [\n",
- " transforms.ToTensor(),\n",
- " transforms.Normalize((0.1307,), (0.3081,)),\n",
- " ]\n",
- ")\n",
- "\n",
- "# create train and test sets\n",
- "train_set = MNIST(data_dir, train=True, download=True, transform=preprocessing_pipe)\n",
- "test_set = MNIST(data_dir, train=False, download=True, transform=preprocessing_pipe)\n",
- "\n",
- "# train-val split to create a validation set\n",
- "train_set, val_set = random_split(train_set, [55000, 5000])\n",
- "\n",
- "# create dataloaders\n",
- "batch_size = 32\n",
- "eval_batch_size = 128 # this is use when evaluating on the pool too\n",
- "num_workers = os.cpu_count()\n",
- "\n",
- "# dataloaders\n",
- "train_dl = DataLoader(train_set, batch_size=batch_size, num_workers=num_workers)\n",
- "val_dl = DataLoader(val_set, batch_size=eval_batch_size, num_workers=num_workers)\n",
- "test_dl = DataLoader(test_set, batch_size=eval_batch_size, num_workers=num_workers)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Model definition\n",
- "Define the model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "class MNISTCNNModel(LightningModule):\n",
- " def __init__(self) -> None:\n",
- " \"\"\"Here we define the model architecture and the metrics.\"\"\"\n",
- " super().__init__()\n",
- "\n",
- " # create the CNN\n",
- " self.model = nn.Sequential(\n",
- " nn.Conv2d(1, 32, kernel_size=5),\n",
- " nn.ReLU(),\n",
- " nn.MaxPool2d(kernel_size=2),\n",
- " nn.Dropout2d(),\n",
- " nn.Conv2d(32, 64, kernel_size=5),\n",
- " nn.ReLU(),\n",
- " nn.MaxPool2d(kernel_size=2),\n",
- " nn.Dropout2d(),\n",
- " nn.Flatten(),\n",
- " nn.Linear(1024, 128),\n",
- " nn.Dropout(),\n",
- " nn.Linear(128, self.num_classes),\n",
- " )\n",
- "\n",
- " # implement metrics\n",
- " for stage in (\"train\", \"val\", \"test\"):\n",
- " metrics = MetricCollection(\n",
- " {\n",
- " \"accuracy\": Accuracy(),\n",
- " \"precision_macro\": Precision(\n",
- " num_classes=self.num_classes, average=\"macro\"\n",
- " ),\n",
- " \"recall_macro\": Recall(\n",
- " num_classes=self.num_classes, average=\"macro\"\n",
- " ),\n",
- " \"f1_macro\": F1Score(\n",
- " num_classes=self.num_classes, average=\"macro\"\n",
- " ),\n",
- " \"f1_micro\": F1Score(\n",
- " num_classes=self.num_classes, average=\"micro\"\n",
- " ),\n",
- " }\n",
- " )\n",
- " setattr(self, f\"{stage}_metrics\", metrics)\n",
- "\n",
- " @property\n",
- " def num_classes(self) -> int:\n",
- " \"\"\"This is very tailored to MNIST, so hard-code this propoerty.\"\"\"\n",
- " return 10\n",
- "\n",
- " def get_inputs_from_batch(self, batch: Tuple[Tensor, Tensor]) -> Tensor:\n",
- " return batch[0]\n",
- "\n",
- " def forward(self, x: Tensor) -> Tensor:\n",
- " return self.model(x)\n",
- "\n",
- " def common_step(self, batch: Tuple[Tensor, Tensor], stage: str) -> Tensor:\n",
- " \"\"\"For convenience define a common step.\"\"\"\n",
- "\n",
- " # forward pass\n",
- " x, y = batch\n",
- " logits = self(x)\n",
- "\n",
- " # metrics\n",
- " loss = F.cross_entropy(logits, y)\n",
- " metrics = getattr(self, f\"{stage}_metrics\")(logits, y)\n",
- "\n",
- " # log\n",
- " self.log(\"loss\", loss, on_step=False, on_epoch=True, prog_bar=False)\n",
- " self.log_dict(metrics, on_step=False, on_epoch=True, prog_bar=False)\n",
- "\n",
- " return loss\n",
- "\n",
- " def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:\n",
- " return self.common_step(batch, \"train\")\n",
- "\n",
- " def validation_step(\n",
- " self, batch: Tuple[Tensor, Tensor], batch_idx: int\n",
- " ) -> Tensor:\n",
- " return self.common_step(batch, \"val\")\n",
- "\n",
- " def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:\n",
- " return self.common_step(batch, \"test\")\n",
- "\n",
- " def configure_optimizers(self) -> None:\n",
- " return torch.optim.SGD(self.parameters(), lr=0.001)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Active fit"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Instantiate model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = MNISTCNNModel()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "!!! info \"Batch unpacking\"\n",
- " When passing a model to build a strategy, internally a `deepcopy` will be created. This is done to avoid modifying the model state and passing it around when trying other strategies. It avoids messing up states."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "strategies = {\n",
- " \"random\": RandomStrategy(model),\n",
- " \"leastconfidence\": LeastConfidenceStrategy(model),\n",
- " \"margin\": MarginStrategy(model),\n",
- " \"entropy\": EntropyStrategy(model),\n",
- " \"bald\": BALDStrategy(model),\n",
- "}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "For clarity let's pack the trainer kwargs in a dictionary"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "trainer_kwargs = {\n",
- " \"query_size\": 10, # new instances will be queried at each iteration\n",
- " \"max_epochs\": 3, # the underlying model will be fit for 3 epochs\n",
- " \"max_labelling_epochs\": 2, # how many times to run the active learning loop\n",
- " \"accelerator\": \"cpu\", # use the gpu\n",
- " \"test_after_labelling\": True, # since we have a test set, we test after each labelling iteration\n",
- " \"limit_val_batches\": 0, # do not validate\n",
- " \"log_every_n_steps\": 1, # we will have a few batches while training, so log on each\n",
- "}\n",
- "\n",
- "results_dict = {}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Run experiments"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Global seed set to 42\n",
- "GPU available: True (mps), used: False\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "/Users/lescipi/miniconda3/envs/energizer-dev/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1789: UserWarning: MPS available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='mps', devices=1)`.\n",
- " rank_zero_warn(\n",
- "\u001b[1;32m[2022-09-26 17:46:39] energizer/INFO\u001b[0m ~ \u001b[1;33mtrainer:269\u001b[0m$ \u001b[37mTrainer: trainer active_fit stage\u001b[0m\n",
- "\n",
- " | Name | Type | Params\n",
- "---------------------------------------------------\n",
- "0 | model | Sequential | 184 K \n",
- "1 | train_metrics | MetricCollection | 0 \n",
- "2 | val_metrics | MetricCollection | 0 \n",
- "3 | test_metrics | MetricCollection | 0 \n",
- "---------------------------------------------------\n",
- "184 K Trainable params\n",
- "0 Non-trainable params\n",
- "184 K Total params\n",
- "0.738 Total estimated model params size (MB)\n",
- "\u001b[1;36m[2022-09-26 17:46:39] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `RandomStrategy`\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 0--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:39] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12139999866485596 │\n",
- "│ f1_macro │ 0.05989480018615723 │\n",
- "│ f1_micro │ 0.12139999866485596 │\n",
- "│ loss │ 2.302485466003418 │\n",
- "│ precision_macro │ 0.050614677369594574 │\n",
- "│ recall_macro │ 0.1247788593173027 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05989480018615723 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.302485466003418 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.050614677369594574 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1247788593173027 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:41] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `RandomStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:41] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:41] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:41] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54990\n",
- "total_data_size: 55000\n",
- "train_size: 10\n",
- "\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 1--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:41] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:46:41] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n",
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:46:46] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12540000677108765 │\n",
- "│ f1_macro │ 0.050436750054359436 │\n",
- "│ f1_micro │ 0.12540000677108765 │\n",
- "│ loss │ 2.302597761154175 │\n",
- "│ precision_macro │ 0.033808622509241104 │\n",
- "│ recall_macro │ 0.12841922044754028 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12540000677108765 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.050436750054359436 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12540000677108765 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.302597761154175 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.033808622509241104 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12841922044754028 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:49] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `RandomStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:46:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54980\n",
- "total_data_size: 55000\n",
- "train_size: 20\n",
- "\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:46:49] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:46:49] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-----------------------------Last fit_loop------------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:46:54] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.1378999948501587 │\n",
- "│ f1_macro │ 0.06494041532278061 │\n",
- "│ f1_micro │ 0.1378999948501587 │\n",
- "│ loss │ 2.301481008529663 │\n",
- "│ precision_macro │ 0.044325053691864014 │\n",
- "│ recall_macro │ 0.1415809839963913 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1378999948501587 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.06494041532278061 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1378999948501587 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.301481008529663 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.044325053691864014 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1415809839963913 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:57] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `RandomStrategy`\u001b[0m\n",
- "Global seed set to 42\n",
- "GPU available: True (mps), used: False\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "/Users/lescipi/miniconda3/envs/energizer-dev/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1789: UserWarning: MPS available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='mps', devices=1)`.\n",
- " rank_zero_warn(\n",
- "\u001b[1;32m[2022-09-26 17:46:58] energizer/INFO\u001b[0m ~ \u001b[1;33mtrainer:269\u001b[0m$ \u001b[37mTrainer: trainer active_fit stage\u001b[0m\n",
- "\n",
- " | Name | Type | Params\n",
- "---------------------------------------------------\n",
- "0 | model | Sequential | 184 K \n",
- "1 | train_metrics | MetricCollection | 0 \n",
- "2 | val_metrics | MetricCollection | 0 \n",
- "3 | test_metrics | MetricCollection | 0 \n",
- "---------------------------------------------------\n",
- "184 K Trainable params\n",
- "0 Non-trainable params\n",
- "184 K Total params\n",
- "0.738 Total estimated model params size (MB)\n",
- "\u001b[1;36m[2022-09-26 17:46:58] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `LeastConfidenceStrategy`\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 0--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:46:58] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12139999866485596 │\n",
- "│ f1_macro │ 0.05989480018615723 │\n",
- "│ f1_micro │ 0.12139999866485596 │\n",
- "│ loss │ 2.302485466003418 │\n",
- "│ precision_macro │ 0.050614677369594574 │\n",
- "│ recall_macro │ 0.1247788593173027 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05989480018615723 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.302485466003418 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.050614677369594574 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1247788593173027 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:00] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `LeastConfidenceStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:10] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:10] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:10] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54990\n",
- "total_data_size: 55000\n",
- "train_size: 10\n",
- "\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 1--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:10] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:47:10] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n",
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:47:15] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12439999729394913 │\n",
- "│ f1_macro │ 0.05229624733328819 │\n",
- "│ f1_micro │ 0.12439999729394913 │\n",
- "│ loss │ 2.3006510734558105 │\n",
- "│ precision_macro │ 0.03502652049064636 │\n",
- "│ recall_macro │ 0.12720972299575806 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12439999729394913 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05229624733328819 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12439999729394913 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.3006510734558105 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.03502652049064636 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12720972299575806 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:18] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `LeastConfidenceStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54980\n",
- "total_data_size: 55000\n",
- "train_size: 20\n",
- "\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:47:28] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:47:28] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-----------------------------Last fit_loop------------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:47:34] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.1298999935388565 │\n",
- "│ f1_macro │ 0.058535393327474594 │\n",
- "│ f1_micro │ 0.1298999935388565 │\n",
- "│ loss │ 2.299091100692749 │\n",
- "│ precision_macro │ 0.039099011570215225 │\n",
- "│ recall_macro │ 0.1328250616788864 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1298999935388565 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.058535393327474594 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1298999935388565 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.299091100692749 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.039099011570215225 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1328250616788864 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:37] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `LeastConfidenceStrategy`\u001b[0m\n",
- "Global seed set to 42\n",
- "GPU available: True (mps), used: False\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "/Users/lescipi/miniconda3/envs/energizer-dev/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1789: UserWarning: MPS available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='mps', devices=1)`.\n",
- " rank_zero_warn(\n",
- "\u001b[1;32m[2022-09-26 17:47:37] energizer/INFO\u001b[0m ~ \u001b[1;33mtrainer:269\u001b[0m$ \u001b[37mTrainer: trainer active_fit stage\u001b[0m\n",
- "\n",
- " | Name | Type | Params\n",
- "---------------------------------------------------\n",
- "0 | model | Sequential | 184 K \n",
- "1 | train_metrics | MetricCollection | 0 \n",
- "2 | val_metrics | MetricCollection | 0 \n",
- "3 | test_metrics | MetricCollection | 0 \n",
- "---------------------------------------------------\n",
- "184 K Trainable params\n",
- "0 Non-trainable params\n",
- "184 K Total params\n",
- "0.738 Total estimated model params size (MB)\n",
- "\u001b[1;36m[2022-09-26 17:47:37] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `MarginStrategy`\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 0--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:37] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12139999866485596 │\n",
- "│ f1_macro │ 0.05989480018615723 │\n",
- "│ f1_micro │ 0.12139999866485596 │\n",
- "│ loss │ 2.302485466003418 │\n",
- "│ precision_macro │ 0.050614677369594574 │\n",
- "│ recall_macro │ 0.1247788593173027 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05989480018615723 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.302485466003418 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.050614677369594574 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1247788593173027 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:40] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `MarginStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:47:49] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54990\n",
- "total_data_size: 55000\n",
- "train_size: 10\n",
- "\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 1--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:49] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:47:49] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n",
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:47:54] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.11969999969005585 │\n",
- "│ f1_macro │ 0.054541368037462234 │\n",
- "│ f1_micro │ 0.11969999969005585 │\n",
- "│ loss │ 2.29711651802063 │\n",
- "│ precision_macro │ 0.045692265033721924 │\n",
- "│ recall_macro │ 0.12266905605792999 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.11969999969005585 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.054541368037462234 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.11969999969005585 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.29711651802063 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.045692265033721924 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12266905605792999 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:47:57] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `MarginStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:07] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:07] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:07] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54980\n",
- "total_data_size: 55000\n",
- "train_size: 20\n",
- "\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:48:07] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:48:07] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-----------------------------Last fit_loop------------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:48:13] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.11890000104904175 │\n",
- "│ f1_macro │ 0.05812247842550278 │\n",
- "│ f1_micro │ 0.11890000104904175 │\n",
- "│ loss │ 2.2988967895507812 │\n",
- "│ precision_macro │ 0.054246868938207626 │\n",
- "│ recall_macro │ 0.12245862185955048 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.11890000104904175 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05812247842550278 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.11890000104904175 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.2988967895507812 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.054246868938207626 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12245862185955048 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:16] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `MarginStrategy`\u001b[0m\n",
- "Global seed set to 42\n",
- "GPU available: True (mps), used: False\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "/Users/lescipi/miniconda3/envs/energizer-dev/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1789: UserWarning: MPS available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='mps', devices=1)`.\n",
- " rank_zero_warn(\n",
- "\u001b[1;32m[2022-09-26 17:48:16] energizer/INFO\u001b[0m ~ \u001b[1;33mtrainer:269\u001b[0m$ \u001b[37mTrainer: trainer active_fit stage\u001b[0m\n",
- "\n",
- " | Name | Type | Params\n",
- "---------------------------------------------------\n",
- "0 | model | Sequential | 184 K \n",
- "1 | train_metrics | MetricCollection | 0 \n",
- "2 | val_metrics | MetricCollection | 0 \n",
- "3 | test_metrics | MetricCollection | 0 \n",
- "---------------------------------------------------\n",
- "184 K Trainable params\n",
- "0 Non-trainable params\n",
- "184 K Total params\n",
- "0.738 Total estimated model params size (MB)\n",
- "\u001b[1;36m[2022-09-26 17:48:16] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `EntropyStrategy`\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 0--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:16] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12139999866485596 │\n",
- "│ f1_macro │ 0.05989480018615723 │\n",
- "│ f1_micro │ 0.12139999866485596 │\n",
- "│ loss │ 2.302485466003418 │\n",
- "│ precision_macro │ 0.050614677369594574 │\n",
- "│ recall_macro │ 0.1247788593173027 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.05989480018615723 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12139999866485596 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.302485466003418 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.050614677369594574 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1247788593173027 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:19] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `EntropyStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:28] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54990\n",
- "total_data_size: 55000\n",
- "train_size: 10\n",
- "\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 1--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:28] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:48:28] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n",
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:48:34] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12999999523162842 │\n",
- "│ f1_macro │ 0.06347090005874634 │\n",
- "│ f1_micro │ 0.12999999523162842 │\n",
- "│ loss │ 2.2974393367767334 │\n",
- "│ precision_macro │ 0.046992816030979156 │\n",
- "│ recall_macro │ 0.1336027979850769 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12999999523162842 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.06347090005874634 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12999999523162842 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.2974393367767334 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.046992816030979156 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1336027979850769 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:36] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `EntropyStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:46] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:46] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:48:46] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54980\n",
- "total_data_size: 55000\n",
- "train_size: 20\n",
- "\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:48:46] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:48:46] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-----------------------------Last fit_loop------------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:48:52] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.12530000507831573 │\n",
- "│ f1_macro │ 0.06157331541180611 │\n",
- "│ f1_micro │ 0.12530000507831573 │\n",
- "│ loss │ 2.297584295272827 │\n",
- "│ precision_macro │ 0.04746979475021362 │\n",
- "│ recall_macro │ 0.1287963092327118 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12530000507831573 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.06157331541180611 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.12530000507831573 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.297584295272827 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.04746979475021362 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1287963092327118 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:55] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `EntropyStrategy`\u001b[0m\n",
- "Global seed set to 42\n",
- "GPU available: True (mps), used: False\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "/Users/lescipi/miniconda3/envs/energizer-dev/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1789: UserWarning: MPS available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='mps', devices=1)`.\n",
- " rank_zero_warn(\n",
- "\u001b[1;32m[2022-09-26 17:48:55] energizer/INFO\u001b[0m ~ \u001b[1;33mtrainer:269\u001b[0m$ \u001b[37mTrainer: trainer active_fit stage\u001b[0m\n",
- "\n",
- " | Name | Type | Params\n",
- "---------------------------------------------------\n",
- "0 | model | Sequential | 184 K \n",
- "1 | train_metrics | MetricCollection | 0 \n",
- "2 | val_metrics | MetricCollection | 0 \n",
- "3 | test_metrics | MetricCollection | 0 \n",
- "---------------------------------------------------\n",
- "184 K Trainable params\n",
- "0 Non-trainable params\n",
- "184 K Total params\n",
- "0.738 Total estimated model params size (MB)\n",
- "\u001b[1;36m[2022-09-26 17:48:55] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `BALDStrategy`\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 0--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:55] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.09989999979734421 │\n",
- "│ f1_macro │ 0.07487398386001587 │\n",
- "│ f1_micro │ 0.09989999979734421 │\n",
- "│ loss │ 2.383131742477417 │\n",
- "│ precision_macro │ 0.09914936870336533 │\n",
- "│ recall_macro │ 0.10110820829868317 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.09989999979734421 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.07487398386001587 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.09989999979734421 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.383131742477417 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.09914936870336533 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10110820829868317 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:48:57] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `BALDStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:49:59] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:49:59] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:49:59] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54990\n",
- "total_data_size: 55000\n",
- "train_size: 10\n",
- "\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-------------------------Labelling Iteration 1--------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:49:59] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:49:59] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n",
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:50:04] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.10409999638795853 │\n",
- "│ f1_macro │ 0.07243089377880096 │\n",
- "│ f1_micro │ 0.10409999638795853 │\n",
- "│ loss │ 2.390538215637207 │\n",
- "│ precision_macro │ 0.10765033960342407 │\n",
- "│ recall_macro │ 0.1064007356762886 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10409999638795853 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.07243089377880096 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10409999638795853 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.390538215637207 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10765033960342407 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.1064007356762886 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:50:08] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `BALDStrategy`\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:51:22] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:193\u001b[0m$ \u001b[37mQueried 10 instance\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:51:22] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:281\u001b[0m$ \u001b[37mAnnotated 10 instances\u001b[0m\n",
- "\u001b[1;32m[2022-09-26 17:51:22] energizer/INFO\u001b[0m ~ \u001b[1;33mactive_learning_loop:282\u001b[0m$ \u001b[37mNew data statistics\n",
- "num_pool_batches: 430\n",
- "num_train_batches: 1\n",
- "pool_size: 54980\n",
- "total_data_size: 55000\n",
- "train_size: 20\n",
- "\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:51:22] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n",
- "\u001b[1;36m[2022-09-26 17:51:22] energizer/DEBUG\u001b[0m ~ \u001b[1;33mactive_learning_loop:250\u001b[0m$ \u001b[37mMNISTCNNModel state dict has been re-initialized\u001b[0m\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-----------------------------Last fit_loop------------------------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_epochs=3` reached.\n",
- "\u001b[1;36m[2022-09-26 17:51:27] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:470\u001b[0m$ \u001b[37mUsing underlying `MNISTCNNModel`\u001b[0m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Test metric ┃ DataLoader 0 ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ accuracy │ 0.10339999943971634 │\n",
- "│ f1_macro │ 0.07382594794034958 │\n",
- "│ f1_micro │ 0.10339999943971634 │\n",
- "│ loss │ 2.378535270690918 │\n",
- "│ precision_macro │ 0.10162188857793808 │\n",
- "│ recall_macro │ 0.10477112978696823 │\n",
- "└───────────────────────────┴───────────────────────────┘\n",
- "
\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m accuracy \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10339999943971634 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.07382594794034958 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m f1_micro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10339999943971634 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 2.378535270690918 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m precision_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10162188857793808 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m recall_macro \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.10477112978696823 \u001b[0m\u001b[35m \u001b[0m│\n",
- "└───────────────────────────┴───────────────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1;36m[2022-09-26 17:51:30] energizer/DEBUG\u001b[0m ~ \u001b[1;33mtrainer:466\u001b[0m$ \u001b[37mUsing `BALDStrategy`\u001b[0m\n"
- ]
- }
- ],
- "source": [
- "for name, strategy in strategies.items():\n",
- " seed_everything(42) # for reproducibility (e.g., dropout)\n",
- "\n",
- " trainer = Trainer(**trainer_kwargs, enable_progress_bar=False)\n",
- "\n",
- " results = trainer.active_fit(\n",
- " model=strategy,\n",
- " train_dataloaders=train_dl,\n",
- " val_dataloaders=val_dl,\n",
- " test_dataloaders=test_dl,\n",
- " )\n",
- "\n",
- " results_dict[name] = results.to_pandas()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Results\n",
- "Now let's look at the results"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {},
- "outputs": [],
- "source": [
- "results_df = pd.concat([v.assign(query_strategy=k) for k, v in results_dict.items()])\n",
- "results_df = results_df.melt(\n",
- " id_vars=[\"train_size\", \"query_strategy\"], var_name=\"metrics\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 87,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACUIAAAGhCAYAAACuvlz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhU5dsH8O8sMAvDDuICIuKOG25pkimUmWku5VZZaoulmb7+UnLXcAPLTE2tzLJN07Ky0jI1s81Kc00lQFZB2ZdhmBlm5rx/DBwZQWVcgIHv57q4YM6cc+Y5zwxnmXM/9y0RBEEAERERERERERERERERERERERGRA5PWdgOIiIiIiIiIiIiIiIiIiIiIiIhuFQOhiIiIiIiIiIiIiIiIiIiIiIjI4TEQioiIiIiIiIiIiIiIiIiIiIiIHB4DoYiIiIiIiIiIiIiIiIiIiIiIyOExEIqIiIiIiIiIiIiIiIiIiIiIiBweA6GIiIiIiIiIiIiIiIiIiIiIiMjhMRCKiIiIiIiIiIiIiIiIiIiIiIgcHgOhiIiIiIiIiIiIiIiIiIiIiIjI4TEQioiIiIiIiIiIiIiIiIiIiIiIHB4DoYiIiIiIiIiIiIiIiIiIiIiIyOExEIqIiIiIiIiIiIiIiIiIiIiIiBweA6GIiIiIiIiIiIiIiIiIiIiIiMjhMRCKiIiIiIiIiIiIiIiIiIiIiIgcHgOhiIiIiIiIiIiIiIiIiIiIiIjI4TEQioiIiIiIiIiIiIiIiIiIiIiIHB4DoYiIiIiIiKje2rVrF8LDw2u7GfVeWloa2rZti7S0tDv2GkajETt27Lhj669o3bp16N69O3r06IEPP/zwup+hV155Ba+88kqNtIvqtnXr1mH8+PG13YwGpSb3C3Rtt3IMuNE+NDw8HLt27bqV5hEREREREVEDw0AoIiIiIiIiIqrzvvvuO2zatOmOv05BQQHWr1+PyMhIfP311xg9ejQ+//zzO/665PgmTZqEdevW1XYzGpSa2i8QERERERERkeOQ13YDiIiIiIiIiIhuRBCEGnkdrVYLAOjTpw+aNWsGAFAqlTXy2uTYXFxcarsJDU5N7ReIiIiIiIiIyHEwIxQREREREVE9JQgCdEZTjf7Ye1O6vJzOW2+9hZ49e2LJkiXYtGkTwsPD0bFjR4SFhWH9+vXi/OPHj8fGjRvx9NNPo3PnznjggQfwyy+/iM9fvnwZzzzzDLp27YoRI0YgJSXF5vUSEhLw9NNPo1u3brjnnnuwfv16WCwWANayVrNnz0ZUVBRCQ0MRHh6OX3/9FR9//DHuvvtu9O7dGx9++OEtvCM3SRAAY3HN/txCcEFhYSFmzZqFbt26ISwsDFFRUdDr9eLzBw4cwPDhw9GpUyf06NEDM2fORHFxsbjstGnT0KNHD/Ts2RMvv/wytFot/vzzT8yZMwcXL14Uyy+ZTCasXr0aYWFh6N69O1566SXk5eUBAAwGA1atWoV7770XXbt2xfPPP4+MjAwAVz5z+/btw3333YdOnTph8uTJyM/PR1pamlgG77777sMrr7xSqbzi0aNHMXz4cHTu3BnTp09HSUmJzfb/+OOPGDx4MLp06YJHH30Uf/31l/jcjT6/OTk5mDFjBrp164a+ffti9erV4v9URkYGnn/+eXTp0gXh4eFYv349zGbzTb9PN0MQBOhKdTX6c7P7lEOHDiE8PByhoaFYunQp/vvvP4wcORJdu3bF5MmTodVqYTQasWLFCtxzzz0ICQlBeHg4PvvsM3Fd4eHhWLVqFcLCwjB8+HAIgoAzZ85g9OjR6Ny5M8aOHYs333xTLIdXsTTerl27MH78eKxduxZ33XUXevTogRUrVtR44I4gCLDodDX6czPbeK3P9/X6sar9wvjx4xEVFYWIiAj0798fWq0Wly5dwvTp09GrVy/cddddWLp0KYxGIwDr+zRu3Di89tprCA0NRf/+/bFz504AwLFjx9ChQwfk5uaK7Txz5gy6dOkiBkzWFEEQUGow19jPzX5Ov//+e/Tr1w/dunXDwoULxX7euXMnBg0ahI4dO+Kuu+7CkiVLrrn/2r59O/r3749u3bphw4YNN91nRERERERE1HAxIxQREREREVE9JAgCHt30B44l59Xo6/YI9MTO5/tAIpHYtdw///yDL774Art378bWrVuxevVqBAQE4JdffsHixYsxYMAAhISEAAA2bdqERYsWYdGiRXj99dexYMECHDx4EFKpFNOnT4darcbOnTsRFxeHefPmwdPTEwCQm5uLxx57DOHh4di5cycSExMxf/58aDQaTJgwAQCwZ88ePPPMM/j666+xevVqzJgxAz169MBHH32E77//HtHR0RgyZAi8vLxua79dkyAAWx4AUv+smdcrF9AbmPQ9YOf7CADz5s1DaWkptm3bBoPBgKVLl+LVV1/F8uXLkZKSgunTp2PhwoW4++67kZSUhJdffhk7duzAxIkTsXbtWmRlZWHbtm0wmUyYNWsWNmzYgBkzZmDu3LnYsmULPv/8c3h5eWHNmjX46quvsHz5cjRt2lT8TKxduxaLFi3CP//8g+joaHh4eOC1117DlClT8MUXX4jt3LRpkxho9MILL+D999/HSy+9hJ07d2LUqFHYuXMngoKC8OOPP4rL5ObmYvLkyRgzZgxWr16N7777DuvXr8eIESMAAOfPn0dkZCSWLFmCzp074+eff8azzz6L3bt3IzAwUHzda31+p06dCplMho8//hjFxcX4v//7PzRq1AiPP/44XnzxRbRr1w5ffvklsrKysHDhQkgkEkydOvUW3+zqEQQBT+59EieyTtTI65ULbRSKrYO22r1Peeedd7BhwwbEx8fjf//7Hw4fPoxFixZBqVRiypQp+Pzzz6HVanHo0CGsW7cO3t7e+PLLL8UgGh8fHwDAN998g/feew+CIECr1eKZZ57Bgw8+iJUrV+L333/HihUr0K1btyrbcPz4cfj4+GDbtm04ffo0XnnlFfTr1w99+/a95X6pDkEQkPzY4yg5frxGXq+cqls3BH7ycbXfM0EQrvn5btKkyTX7sWfPnpX2C4A1uOm9996Ds7MznJ2d8dRTTyEwMBAfffQRcnNzsWDBAgDA/PnzAQCnT5+GWq3GZ599hlOnTmHx4sVo0qQJ+vbtCz8/P/z4448YM2YMAGDv3r249957odFo7kDPXbt/dq36B5cuFNTYazYJdseIl7vZ/X+3Y8cOvPHGGzCbzZg9ezbefvttMfhs1apV6NChA86cOYNZs2ahT58+GDhwoM3yv/zyC5YtW4aoqCiEhIRg9erVuHjx4u3cNCIiIiIiImoAmBGKiIiIiIionrI/hKX2PPXUU2jevLmY7aNPnz7w9/fHuHHj4Ovri7i4OHHee++9FyNHjkTz5s3xwgsvICMjA1lZWYiLi8Px48exdOlStG7dGoMHD8a4cePE5b799luoVCpERUUhODgY9913H6ZPn47NmzeL83h6emL69Olo3rw5RowYgaKiIsybNw/BwcF4+umnYTKZkJycXKN940jvpMViwf79+7Fq1Sq0bdsWnTt3RlRUFL788ksUFRXBYrFg/vz5GD16NPz9/REWFoa7775bfH8vXrwIFxcX+Pv7o3379njzzTfxyCOPwNnZGa6urpDJZPD19YVUKsWOHTvwf//3f+jXrx9atWqFJUuWoHXr1igoKMDXX3+NhQsXonfv3mjXrh1ee+01JCYm4rfffhPb+tJLL6Fz587o0qULhg4ditOnT0Mmk4nBFF5eXnB1dbXZvr1798LLywuzZs1Cy5YtMW3aNHTq1El8/r333sPo0aMxdOhQBAYG4sknn0S/fv2wbds2cZ5rfX7Pnz+P48ePY+XKlejQoQN69uyJxYsXw83NDUeOHEF6ejqioqLQsmVL3HXXXYiMjKzxDGX2BkXUpilTpqBdu3YYMmQIvL298dBDD6Fv377o3r07+vTpgwsXLqBdu3ZYtmwZunbtioCAADz//PMoLS1FUlKSuJ6HH34Ybdu2Rbt27bBnzx6o1WrMnz8fLVu2xBNPPIEHHnjgmm0wm83iezZs2DC0a9cOp0+froGtr8AB3rMbfb6v1Y9X7xdkMhkAiNmEOnbsiF9++QWXL18W90l9+vTBwoULsW3bNjETnUQiQUxMDNq0aYNHH30UDz30EHbs2AGJRILBgwfj+++/F9v6/fff46GHHqrxPnKAtxEAMHfuXHTv3h29evXC9OnTsX37dqjVaixbtgwDBw6Ev78/Bg0ahA4dOtgc18vt3LkTQ4cOxfDhw9G6dWssX74cCoWiFraEiIiIiIiIHBkzQhEREREREdVDEokEO5/vg5LSmi2dpXKS3VSwRLNmzQAAvXv3xsmTJ/H6668jISEB586dQ1ZWlli+DgBatGgh/l2elcNkMiE+Ph4eHh5o2rSp+HynTp3Em9gJCQkICQmBXH7lUjg0NBRZWVkoLCwEAPj7+4vtVyqVNm0rf1xe6qdGSCTWzEylupp7TQBwUt/UnffDhw/DYrGgX79+NtMtFguSk5PRsWNHODs7Y+PGjYiLi0NcXBzi4+MxbNgwAMCTTz6JKVOmoE+fPujTpw8eeOABDB06tNLr5OXlIT8/X8wSBgCtWrXCtGnTcPLkSVgsFnTp0kV8zsPDA0FBQUhISEBQUBAAiBmaAOvnqLS09IbbFx8fj3bt2tl8xjt16iSWx0tISMDevXttyquVlpYiLCxMfHytz29iYiI8PDwQEBAgPn/fffcBAD7++GPk5+eje/fuNn2q1+uRl5cnZj27kyQSCbYO2ooSU8mNZ76NVHLVTe1TKvajUqkU/4/LHxuNRtx333347bffsHLlSly4cAFnz54FAJuSXRWXi42NRUhIiBhwAwBdu3a1yRpWkbe3t03mII1GA5PJZPe23CyJRILATz6GUFKz75lEZd97lpCQcM3Pd35+vt39WPE9S0hIQIsWLeDu7i5O69atG0wmk1g6NTAwEN7e3uLzHTt2xPbt2wEAQ4YMwQcffIC8vDykpqYiLy8P/fv3r/a23Q4SiQQjXu4Gk9Fy45lvE7mz9Kb+7zp37iz+3aFDB2RnZyMgIABKpRJr165FfHw8YmNjkZycbLNfLJeQkICxY8eKjz09PW3+l4mIiIiIiIiqg4FQRERERERE9ZREIoHa2TEu+8ozPuzcuRPLly/HqFGjMHDgQERGRuLJJ5+0mdfJyanS8oIg2Pyuat6qskqUB1iVBz5UDJIqJ5XWcjJliQRwdqndNlSTyWSCq6urTQm6cn5+fjh//jzGjRuH8PBw9OjRAxMmTMDWrVvFefr06YOff/4ZBw4cwKFDh7Bw4UL8+uuveO2112zWVdX7VO5a2UPMZrNNQF1Vn6PqqOozVh4IZTab8eyzz2L48OE285QH0V3rdQVBuG57TCYTWrZsiQ0bNlR67uqsVXeSRCKB2kldY693KyoGKwFV/x+/8cYb2LlzJ0aOHInhw4dj0aJFCA8Pt5mn4udJJpNVev+vflyRs7NzpWnXm/9OkEgkkKjr9nt2vc/3X3/9ZXc/VnzPqtoflO/vr7XfN5vN4uelffv2aN68Ofbv34+kpCRERETUSoYiiUQCJ4XsxjPWsor/Z+Xv0d9//42ZM2di+PDhuOeeezB16lQsWbLkmuu43nGciIiIiIiIqDpYGo+IiIiIiIjqjG3btmHq1KmYO3cuhg8fDk9PT+Tk5FQreKBNmzYoKCiwKV137tw58e+goCD8+++/Npl/jh8/Di8vL3h4eNzW7Wio7rnnHhQVFVkz0QQGIjAwEHq9HjExMTAajfj666/Rs2dPvP7663jsscfQuXNnJCcni+/vBx98gH///RcjRozAm2++iRUrVmDfvn0AbMuyubm5wdPTE+fPnxennTt3Dv369YO/vz/kcjlOnDghPpeXl4fk5GQxG9TNat26Nc6ePWuTMejqz1haWpq47YGBgfjss89w+PDhG647MDAQ+fn5yMjIEKd9+OGHmDJlCoKCgpCeng4vLy9xvWlpaVi7dq1Dlaura7Zv344FCxbg5ZdfxuDBg8WAtmvtb1q3bo1z587ZBNT9+++/NdLW+ux6n+8budHnPygoCElJScjPzxennThxAnK5HM2bNwcAJCcni2XyAODMmTNo06aN+HjIkCH46aef8PPPP9dKWTxH8t9//4l/nzp1Co0bN8bu3bvxyCOP4NVXX8WoUaMQHByMlJSUKv/PWrdubVM+UqvV1kI5WiIiIiIiInJ0DIQiIiIiIiKiOsPT0xN//PEHEhMTcebMGfzf//0fSktLq1WOLjg4GH369MHcuXNx/vx57N+/Hx9//LH4/NChQ2E0GrFw4UIkJCRg//79WLduHcaNG8dgkttEoVDgnnvuwcsvv4xTp07h33//xZw5c6DT6eDm5gYPDw/Exsbi1KlTSExMxMqVK3H69Gnx/b106RJeffVVnDhxAklJSfjhhx/QoUMHAIBKpUJBQQGSkpJgMpkwfvx4vPnmmzhy5Aji4uKwbNkydO3aFRqNBqNGjUJUVBT+/PNPnD9/HrNmzULjxo3Rt2/fW9q+hx56CCUlJVi2bBkuXLiAzZs349ixY+LzEyZMwJ49e/Dhhx8iJSUFH3zwAT744AObcnjX0rp1a/Tu3Rvz5s1DbGws/vzzT7zzzjvo27cvwsLC0KxZM8yaNQuxsbE4evQoFixYAJVKVSnzEVWfh4cHfvrpJ6SmpuLo0aOYPXs2gGuXv3zooYeg1WqxYsUKJCYmYseOHdizZ09NNrleupXP99X7hav17dsXAQEBmD17NmJjY3HkyBFERUVhyJAhcHNzAwDodDosWrQICQkJ2LFjB77//ns89thj4jqGDBmCX3/9FVlZWbe8D6nvoqKicPLkSfz2229Yu3YtJkyYAA8PDxw/fhyxsbGIi4vDK6+8gqysrCr/z5544gns3bsXO3bsQEJCAhYuXAi9Xl8LW0JERERERESOjIFQREREREREVGfMnTsXWq0Ww4YNw7Rp09C2bVvcf//9Nll3rueNN96Ap6cnxo4di9WrV2P8+PHicxqNBps3b0ZKSgqGDx+OqKgoPPXUU3jxxRfv1OY0SDExMfD398eECRMwceJEBAUFYfXq1QCA8ePHo2vXrpgwYQIee+wxpKenY+rUqTh79iwAYPr06ejWrRteeOEFDBs2DDqdDqtWrQIA9O7dG4GBgRg6dCjOnTuH5557DgMHDsSMGTMwbtw4NG7cGFFRUQCAyMhI3H333XjppZcwbtw4KBQKfPDBB1WW2LKHu7s7Nm/ejNOnT2PYsGH4/fffMWzYMPH5rl27IiYmBp9++ikGDx6MHTt24PXXX0fPnj2rtf5Vq1ZBpVJhzJgx+N///ocxY8bgscceg0wmw8aNG2GxWDB69GhMmzYN9957L+bPn39L29PQLV++HOfOncNDDz2EOXPmYNCgQejcufM19zcuLi7YtGkT/v77bwwdOhRffvklhg4desufq4buVj7fV+8Xqlp3ecm90aNHY+bMmYiIiMCrr74qztOkSRP4+vri0UcfxebNm7Fq1Sp0795dfD4wMBCtWrXC/fffzzJtNzBu3Di88MILmDFjBoYNGyYeY729vTFmzBhMnDgRCoUC48aNq/L96tGjB1asWIG3334bjz76KLy8vNC+ffta2BIiIiIiIiJyZBKhOvUFiIiIiIiIiIiIGrDU1FRcvnwZPXr0EKctWbIEJSUlWLlyZS22jG7Wrl27sH79ehw8ePCa81gsFgwYMADR0dHo3bt3DbaOiIiIiIiIiG4GM0IRERERERERERHdgFarxcSJE/H999/j4sWL2LdvH77++msMGjSotptGd8ihQ4ewfPlyKJVK9OrVq7abQ0RERERERETVIK/tBhAREREREREREdV17du3x8KFC7F69WpkZGSgadOmmDNnDvr371/bTaM75L333kNiYiLWrFkDqZTjSYmIiIiIiIgcAUvjERERERERERERERERERERERGRw+NQJiIiIiIiIiIiIiIiIiIiIiIicngMhCIiIiIiIiIiIiIiIiIiIiIiIofHQCgiIiIiIiIiIiIiIiIiIiIiInJ4DIQiIiIiIiIiIiIiIiIiIiIiIiKHx0AoIiIiIiIiIiIiIiIiIiIiIiJyeAyEIiIiIiIiIiIiIiIiIiIiIiIih8dAKCIiIiIiIiIiIiIiIiIiIiIicngMhCIiIiIiIiIiIiIiIiIiIiIiIofHQCgiIiIiIiIiIiIiIiIiIiIiInJ4DIQiIiIiIiIiIiIiIiIiIiIiIiKHx0AoIiIiIiIiIiIiIiIiIiIiIiJyeAyEIiIiIiIiIiIiIiIiIiIiIiIih8dAKCIiIiIiIiIiIiIiIiIiIiIicngMhCIiIiIiIiIiIiIiIiIiIiIiIofHQCgiIiIiIiIiIiIiIiIiIiIiInJ4DIQiIiIiIiIiIiIiIiIiIiIiIiKHx0AoIiIiIiIiIiIiIiIiIiIiIiJyeAyEIiIiIiIiIiIiIiIiIiIiIiIih8dAKCIiIiIiIiIiIiIiIiIiIiIicngMhCIiIiIiIiIiIiIiIiIiIiIiIofHQCgiIiIiIiIiIiIiIiIiIiIiInJ4DIQiIiIiIiIiIiIiIiIiIiIiIiKHx0AoIiIiIiIiIiIiIiIiIiIiIiJyeAyEIiIiIiIiIiIiIiIiIiIiIiIih8dAKCIiIiIiIiIiIiIiIiIiIiIicngMhCIiIiIiIiIiIiIiIiIiIiIiIofHQChq0HJycrB3795rPr9r1y6Eh4fXYIsqGz9+PNatW1erbSAicnSOsL8nIqLa5QjHitzcXDzxxBPo1KkTIiMjbZ7buHEjXnnllVpqGRFRw8PjxvXx+ywicgSOsC+vSeHh4di1a9dtm4+IqCHiscVWxeuCV155hd9dUY2R13YDiGrTa6+9BkEQ8OCDD1b5/ODBg9G/f/+abRQREd123N8TEdGNOMKxYvfu3UhKSsJXX30FT09Pcfq3336LdevW4eGHH67F1hERNSw8blzfunXr4OTkdMfWT0R0OzjCvrwmff7551Cr1bdtPiKihojHFqK6gYFQ1KAJgnDd55VKJZRKZQ21hoiI7hTu74mI6EYc4Vih1WrRokULBAcHAwBMJhOioqLw5ZdfIiAgoFbbRkTU0PC4cX0eHh53dP1ERLeDI+zLa5KXl9dtnY+IqCHisYWobmBpPHIoaWlpaNu2LQ4dOoTw8HCEhoZi6dKl+O+//zBy5Eh07doVkydPhlarFZfZvn27OO/48eMRGxsLwDoy7csvv8SXX34ppiBs27Yt3nzzTdx11114/vnnK6UnPHXqFMaNG4cuXbrggQcewHfffQcAKC0txfz583HXXXchNDQUzz//PC5fvlzlNowfPx5t27at9DN+/Phq9cGuXbvw4IMPonPnzhg5ciT+/vtv8bk//vgDw4YNQ6dOnRAREYHt27eLz+3ZswcPPPAAOnXqhMGDB2P//v3V7HUioprXEPf3Wq0Wc+bMQZ8+fdCxY0cMGjTIZl+dk5ODGTNmoFu3bujbty9Wr14tXlQlJyfj6aefRmhoKPr3748PP/wQAPDnn3+ibdu2Nq9TMf3sunXrMGXKFDz++OPo1asX/vrrL1y+fBkvvfQSevbsiY4dO2LEiBE4duyYuPy1XmvixIlYunSpzWs9//zzWLNmTZXbS0R0qxrasWLdunVYt24d/v77b7Rt2xZ//vkndDodYmNjsWPHDoSGhtrVf3/++SfCw8Px+eefo2/fvujZsyfeffdd/P333xg0aBBCQ0Mxe/ZsWCwWADd/nCp/n9566y307NkTr776KgDgp59+wogRI9C5c2cMHjwY+/bts6v9RET24nGjZo8bV5fGe//998W+fPrpp5GamirOFxUVhYiICPTv3x9arRaXLl3C9OnT0atXL9x1111YunQpjEajXe0lovqpoe3Ly+dfv369+LqPPfYYEhISbPrj6nPtH3/8EYMHD0aXLl3w6KOP4q+//hLXZzKZsHr1aoSFhaF79+546aWXkJeXB8C25N358+cxduxYdOnSBffccw/Wr18vrqPifBaLBZs3b0ZERAQ6d+5s08flffr1119jyJAh6NixIx577DHxGHAj69atw+zZsxEVFYXQ0FCEh4fj119/xccff4y7774bvXv3Fr+XAoD4+HjxO6tOnTrZ9NX13r9du3Zh7NixmDp1Krp3747du3ffcLuIqP5oqMeWq8/BMzIy8Pzzz6NLly4IDw/H+vXrYTabxWUOHz6MESNGoEuXLnj44Yfxxx9/ALAGfm3atAnh4eHo2LEjwsLCbI4ZN2v8+PF47733MHHiRHTu3BmPPvookpOTsWDBAoSGhmLgwIE2x7cDBw5g+PDh6NSpE3r06IGZM2eiuLhYfP7rr7/GoEGD0KVLF4wdOxZnz54FcOV+ycMPP4w+ffogKSkJBQUFWLBgAe6++250794ds2bNQkFBwS1vE9UwgciBpKamCm3atBHGjRsnnDt3Tvjmm2+ENm3aCPfff7/w66+/CkePHhV69eolvP/++4IgCMKBAweEvn37CgcPHhQSExOFN954Q+jVq5eQn58vaLVaYfr06cL06dOFnJwcQRAEoU2bNsKwYcOEhIQEIS4uTvjiiy+EAQMGCIIgCNnZ2UL37t2FJUuWCAkJCcIXX3whhISECOfOnRPef/99YeDAgcKZM2eE+Ph44YknnhBeeumlKrchLy9PyMzMrPSTl5dX5fxPPPGEsHbtWkEQBOGLL74QunbtKnz55ZdCQkKCsGrVKqFr167CpUuXBJPJJPTq1UvYsGGDkJqaKnz99ddCu3bthLi4OCE7O1sICQkRvvjiCyEtLU3YvHmz0KlTp2u+JhFRbWuI+/tXXnlFGDNmjHD27FkhMTFRmDdvntCrVy/BYDAIgiAIY8aMER577DHh33//Ff766y+hb9++wkcffSTo9XohPDxcmDZtmvDff/8JBw4cELp27SocPHhQOHLkiNCmTRub14mMjBQiIyMFQRCEtWvXCm3atBE+/fRT4ezZs0JJSYnwxBNPCFOmTBHi4+OFuLg4YfLkycKQIUMEQRCu+1o7d+4U7rnnHsFisQiCIAiFhYVCSEiI8N9//938B4GI6Doa2rFCq9UKK1euFMaMGSNkZmaKx4dyFffv1XHkyBEhJCREmDx5spCQkCBs3rxZaNeunTB8+HDh+PHjwsGDB4WQkBBh3759giDc/HGq/H2aNGmSkJycLCQmJgq///67EBISIrz//vvChQsXhC1btggdOnQQTp8+Xe32ExHZi8eNmj1uVPw+a9u2bUK3bt2E7777TkhMTBSmTZsmjBgxQpyva9euwrFjx4TTp08LBoNBGDhwoPDss88K58+fF37//XchIiJCiIqKqnZbiaj+amj7ckGw7ic7duwovP/++0J8fLwwY8YMITw8XDAYDFWea587d04IDQ0Vdu/eLSQlJQlbt24VOnfuLCQlJQmCIAivvfaaEBYWJvz8889CXFyc8NhjjwnTpk0TBEEQBgwYIHzxxReCIAjC0KFDhcWLFwspKSnCzz//LHTp0kU4dOhQpfnWrl0r9OnTR9i/f78QHx8vREZGCmFhYUJxcbHYpxEREcLvv/8uxMbGCoMGDRJmzpxZrfd77dq1QkhIiPDGG28IycnJwvTp04Xu3bsLkydPFuLj44X169cLHTp0EHJycgSz2SxEREQICxYsEJKTk4UzZ84Io0ePFiZPnnzD9++LL74Q2rRpI6xevVqIj48XcnJybrhdRFR/NNRjS8VzcIvFIowcOVKYO3eukJCQIBw5ckQYOHCgsH79ekEQBOG///4TOnToILz11ltCYmKi8Pbbbwtdu3YVMjMzhV27dgm9e/cWfv/9dyE1NVX49NNPhTZt2ghnzpwRX6v8usCea5AnnnhCCA0NFfbs2SPExcUJAwcOFHr06CGsWbNGiI+PF6ZMmSIMHTpUEARBSE5OFkJCQoTPPvtMSE1NFX755RfhrrvuErZs2SIIgiAcPnxYCAkJET799FMhKSlJiIqKEsLCwgSDwSBERkYK7dq1Ew4cOCCcPHlSfO1HHnlEOHnypHDy5ElhxIgRwvPPP1+tdlPdwdJ45JCmTJmCdu3aoV27dli+fDkeeugh9O3bFwDQp08fXLhwAQCwefNmTJ48GQMGDAAAzJgxA4cPH8bu3bsxfvx4MfVgxVSuY8aMQcuWLQFYo3DLfffdd3B3d8f8+fMhlUrRsmVLFBQUQK/XIy0tDQqFAs2aNYOHhwdWrlyJ/Pz8Ktt+K6nBP/roI4wfPx7Dhw8HALz88sv4+++/8fHHH+Ppp59Gfn4+fHx84O/vD39/fzRq1Ai+vr64ePEiSktL0bhxYzRr1gyTJk1C27ZtoVAobrotREQ1oSHt73v27ImJEyeiTZs2AIBJkyZh586dyMnJQUFBAY4fP479+/eLJSwWL14MnU6HX3/9Fbm5uVi+fDk0Gg1at24ttr06fHx8MG7cOADW0Rv33XcfHnjgATRu3BgA8Pjjj+O5554DgOu+1sCBA7F48WL8888/6N69O/bv34+goCC0bt3arn4gIrJXQzlWuLi4QK1Ww8nJCb6+vtVe7npKS0sRGRmJoKAgNG3aFDExMXj88cfRtWtXAED79u3F/rvZ41S5p556Cs2bNwcAvPbaa3jggQcwYcIEAEBQUBBOnTqFLVu2YPXq1bdl24iIroXHjZtnz3Gjos8++wwTJkzA4MGDAQALFy7Ee++9B71eDwDo378/unXrBsA6kvvy5cvYsWMH3N3dxflfeOEF/N///R9cXFxuy7YQkWNrKPvycv369RPPnaOionDPPffgt99+E79zqXiuPWvWLIwePRpDhw4FADz55JP4+++/sW3bNkRGRmLHjh2IjIxEv379AABLlizB3r17K73mxYsXERERgWbNmiEgIADvv/8+/P39beYRBAEff/wxZs6ciYiICLF9999/P3bv3o2xY8cCsGYR79OnDwBg3Lhx+OSTT6q97Z6enpg+fTokEglGjBiBvXv3Yt68eQgICMDTTz+NtWvXIjk5GUqlEmPHjsVjjz0GtVoNABgxYgQ2b94M4PrvHwBIJBK88MILUCqV1d4uIqpfGtqxpeI5+B9//IH09HTs3LlTbEdkZCTmzJmDqVOn4vPPP0e3bt0wZcoUAMBzzz0HnU6HwsJCNGnSBCtWrLDZz7/11luIi4tDSEiI3e2qaMCAAXjwwQcBAPfddx/27NmDl156CRKJBKNHj8bUqVMBWLMTzp8/H6NHjwYA+Pv74+6770ZcXBwA6/XIkCFDxPsgs2fPhpOTk5jlqVOnTmKWrvPnz+Ovv/7C999/j6CgIADAqlWrMHjwYFy4cEF8H6nuYyAUOaTyL9cBay3VZs2a2TwuT5edkJCAVatW2XyZbjAYkJSUdM11V1xXRYmJiejQoYPNjeWJEycCsH659N133yEsLAy9evXCfffdh5EjR1a5nmeeecamxFC57t27iyfl15KQkCDu1Mt17doVCQkJ8PDwwLhx4zB//nxs2LABAwYMwCOPPAJ3d3e4ubmhf//+mDhxIoKCghAREYFRo0ZBpVJd9/WIiGpbQ9rfDx8+HPv378eOHTtw4cIF/PvvvwAAs9mMxMREeHh42PTHfffdB8B64RUUFASNRiM+98gjjwCwlq+4kYr9IJFIMG7cOOzZswf//PMPEhMTcebMGbG8RWJi4jVfC7B+Mff999+je/fu2Lt3r3ijg4joTmpIx4o7obz/yr+ou1b/3exxKi0trdJ6ExISKt08CA0NxRdffHG7N4+IqBIeN25NdY8bFSUmJtrcBPHx8UFkZKT4+OpjRIsWLcQgKADo1q0bTCYTUlJS0L59+9u3MUTksBravrz8RjUAaDQaBAUFISEhQQyEuno/unfvXnz22WfitNLSUoSFhSEvLw/5+fk2++RWrVph2rRplV5z8uTJWL16NT777DP0798fw4YNqxRYm5OTg/z8fHTp0kWc5uTkhI4dO9qUpAsMDLRpf2lpaZXbWRV/f39IJBIAlY895Y+NRiPUajXGjRuHr776CmfOnMGFCxdw9uxZ+Pj4ALj++3fhwgV4e3uL66vudhFR/dLQji1XHzvy8/PRvXt3cZrFYoFer0deXl6l83nAGgAGAMHBwTh58iRef/11JCQk4Ny5c8jKyhLvKdyKigG4SqUSTZs2tTkmlB9PWrRoAWdnZ2zcuBFxcXGIi4tDfHw8hg0bBsDazxW/h3J2dr7m9ciFCxfg5uYmBkGVb6O7uzsDoRwMA6HIIclkMpvH18p6YTabMXfuXDEKtVzFG7hXu1aWJLn82v8urVu3xsGDB3Ho0CEcOnQIq1evxrfffotPPvlE3CGXW7ZsmTjKoKLyk+zrqaptZrNZPJgsXrwYjz/+OPbv34/9+/fjs88+w4YNG3Dvvffi7bffxqlTp3DgwAH8+OOP+PTTT/Hpp5/yCyQiqtMa0v5+9uzZOH78OIYNG4Zx48bB19cXY8aMAWD9suVartfeq9sEACaTyWaZiv1gsVgwadIkFBYWYvDgwQgPD0dpaSlefPHFG74WAAwZMgTR0dGYNm0afv/9d8yfP/+68xMR3Q4N6VhxJ1y9Ldfqv5s9TpWr2JdV9avFYrktX5IREd0Ijxu3prrHjestc7UbHSPMZrPNbyKihrYvv/q1zWazzTZXbLPZbMazzz4rVpWouP4b7Y8reu655/Dggw9i//79OHjwIJ566ilERUVh1KhRVb7u1e2reG5fneuFa6mqzVW938XFxXj00Ufh6emJ8PBwDBkyBBcuXMCWLVuuuZ6KbnQsAipvFxHVLw3t2FKxTSaTCS1btsSGDRsqzefq6nrddu7cuRPLly/HqFGjMHDgQERGRuLJJ5+85vz2qO61x/nz5zFu3DiEh4ejR48emDBhArZu3XrN9VytYl84OztXOY/ZbOb1iINhIBTVa0FBQbh06ZLNiIM5c+bgvvvuQ0REBCQSCQRBqNa6WrRogZ9//hmCIIgHmBkzZqBjx47w8fGBs7MzBg8ejAcffBAnTpzAmDFjkJOTI444KOfn53dL23Py5ElxdDUAnDx5Ej169EBWVhY2bNiAOXPm4IUXXsALL7yAp59+GgcPHoS/vz8+//xzREZGonPnzpgxYwYeeugh/PLLLwyEIqJ6wdH391qtFt9++y127NiBzp07AwB+/vlnANY044GBgcjPz0dGRgaaNGkCAPjwww9x5MgRjB49GsnJySgpKREz/UVHR6O0tBQPPfSQuP7yC7G0tDS0aNGiynbEx8fj77//xh9//CGm7i1PVy4IAlq0aHHN15o/fz7Cw8Mxb948vPfee2jbtq2Ylp2IqC5w9GNFbbqV49TcuXMrra/8uqai48eP24y2IyKqbTxu3D6BgYE4f/68WG4iLy8PDz74ID7//PNK8wYFBSEpKQn5+fliiY8TJ05ALpfz+oKI7FZf9uXnz58X/y4qKkJKSgratm1b5bxBQUFIS0uz2eaYmBgEBQVh1KhR8PT0xPnz58Xlz507h8mTJ2Pfvn3i/AaDAatWrcKzzz6LiRMnYuLEiVi4cCF++OEHm0AoV1dX+Pj44MSJE2jXrh0Aa/apf//9VywnVVP++usvZGZm4ptvvhFveP/666/i+3u9969i+Sqgbm0XEdU99eXYcvU2paenw8vLC66urgCA3377Dbt27UJMTAwCAwNx7tw5m2XGjh2L8ePHY9u2bZg6dSqeeeYZAEBhYSFycnKq3Qe3w9dff42ePXvi9ddfF6clJycjODgYwJXrkXJmsxn3338/Vq1aVWldQUFBKCwstMn+FB8fD61Wy++tHMyNh+wQObCJEydi69at+Oqrr5CSkoJVq1Zh79694o5PpVLh4sWLuHz58g3XNXToUOTn5yMmJgZJSUnYtWsXDhw4gL59+6KoqAjLli3DH3/8gdTUVHzzzTdo3LgxPD09b+v2TJgwAR9//DG++uorJCYm4rXXXsP58+fx6KOPwt3dHT/++COWL1+OlJQU/P333zh//jw6dOgANzc3bNu2DRs2bEBqaioOHTqEixcvokOHDre1fUREtcXR9/fOzs5QqVTYt28f0tLS8Msvv+DVV18FYE3v3bp1a/Tu3Rvz5s1DbGws/vzzT7zzzjvo27cvwsLC4OPjg4ULFyIhIQEHDhzA9u3bERYWhtatW0OpVGLTpk1ITU3F5s2bcfbs2Wu2w83NDVKpFN999x0uXryI77//HuvWrRPbcb3XAqwjTCIiIvD++++LQVhERHWFox8ratOtHKeqMmHCBPzwww/YunUrkpKS8MEHH+DHH3/EuHHjanKziIiui8eN22f8+PHYunUr9u/fj8TERCxatAj+/v42pS7K9e3bFwEBAZg9ezZiY2Nx5MgRREVFYciQIXBzc6uF1hORI6sv+/JvvvkGX331FRISEjBv3jw0bdoUd911V5XzTpgwAXv27MGHH36IlJQUfPDBB/jggw/EQXHjx4/Hm2++iSNHjiAuLg7Lli1D165dbbKGKBQK/PPPP4iKisKFCxdw+vRpHD16tMr7CRMmTMDatWtx8OBBJCQkYMGCBTAYDBg8ePBt2fbq8vDwgE6nw/79+5GWloadO3fik08+EUtZXe/9q0pd2S4iqnvqy7GlorCwMDRr1gyzZs1CbGwsjh49igULFkClUkEmk2HcuHE4evQo3n//fSQnJ+Ptt99GXFwcevToAU9PT/zxxx9ITEzEmTNn8H//938oLS2tsmT2neLh4YHY2FicOnUKiYmJWLlyJU6fPi22Yfz48di9eze+/PJLJCcnY8WKFRAEoVK5P8BaBq9fv36IjIzEqVOncOrUKURGRqJnz55o06ZNjW0T3TpmhKJ6bfDgwcjOzsbatWuRnZ2NVq1aYePGjeJJ/7BhwzB16lQ8/PDDOHLkyHXX5ebmhrfffhvLly/HRx99hICAALz++uto37492rZti0uXLmHWrFkoKChAx44dsXHjxkppFG/n9mRlZaF9+/bYsmWLeHDdsGEDli9fjocffhguLi549NFHMWrUKEilUqxbtw6vvfYaNm3aBG9vb8ycOVO8cU1E5OgcfX/v7OyMVatWITo6Gh999BH8/f3xwgsvYM2aNTh37hyCg4OxatUqLFmyBGPGjIFGo8GYMWPw2GOPQSKRYMOGDXj11VcxYsQI+Pj4YPbs2ejfvz8AICoqCm+88QY++ugj3H///Xj88ceRl5dXZTsaN26MxYsX46233sLq1asRFBSE+fPnIzIyEmfPnkVoaOh1X6v8vfj222/5xRAR1TmOfqyoTbdynLp48WKl9XXp0gUxMTFYt24dVq1ahaCgIKxZs6ZSWnkiotrE48btM2zYMFy+fBlLliyBVqtFr169sHbt2irnlclk2LBhA6KiojB69Gi4uLhg6NChmDlzZg23mojqg/qyLx86dCi2b9+ORYsWoUePHnj33XevWeana9eu4rl2TEwMmjdvjtdffx09e/YEYC15V1RUhBkzZsBkMqF///5YsGBBpfW88cYbePXVV/Hoo49CLpdj0KBBmDJlSqX5Jk2aBK1WiwULFkCr1SI0NBQfffRRpSxLd1poaCimTp2KJUuWwGAwoG3btli4cCHmzZuHy5cvw8/P75rv39VZTurSdhFR3VNfji0VyWQybNy4UTwHV6vVGDRoECIjIwEAzZs3x7p16/D6669j9erVaN26NTZt2gQ/Pz/MnTsXc+fOxbBhw+Dt7Y0HH3wQKpWqyn3rnTJ+/HicPXsWEyZMgEKhQM+ePTF16lR89913AICePXti0aJFeOutt5CVlYWOHTti06ZN1ywdGB0djaVLl2LChAmQyWSIiIjAnDlzamx76PaQCDWZl4yIiIiI6rUdO3Zg9+7d+Pjjj2u7KUREREREREREDm38+PHo1asXpk2bVttNISIiInIYzAhFRERERLcsOTkZZ86cwcaNGzFjxozabg4RERERERERERERERE1QAyEIiIiIqJblpaWhnnz5iEiIgJDhw6t7eYQETVoOTk5uO+++647z/Hjx2uoNUREVNfxuEFERDXthx9+wCuvvHLN57t3747NmzfXYIuIiKimLFu2DJ9//vk1n588eTKef/75GmwR1UcsjUdERERERERUj5jNZqSlpV13nsDAwBpqDRER1XU8bhARUU0rLi5Gdnb2NZ9XKpXw8/OrwRYREVFNyc3NRVFR0TWfd3d3h4eHR801iOolBkIREREREREREREREREREREREZHDk9Z2A4iIiIiIiIiIiIiIiIiIiIiIiG4VA6GIiIiIiIiIiIiIiIiIiIiIiMjhMRCKiIiIiIiIiIiIiIiIiIiIiIgcnry2G3CrsrOLIAj2L+fl5YLc3OLb36B6iv1lP/aZfdhf9ruVPvP1db3NranbbvZYAfCzaS/2l33YX/Zjn9mHxwr78Nqi5rDP7MP+sg/7y348XlQfry1qDvvLPuwv+7HP7OMIxwqDwYAlS5Zg3759UCqVmDRpEiZNmnTdZY4ePYrIyEgcOHCg0nMbN25EcnIyVq5caXdbeG1Rc9hn9mF/2Yf9ZT9HOF7UJTxe1Az2l33YX/Zjn9mnJo4VDTIjlEQCyGRSSCS13RLHwP6yH/vMPuwv+7HPagb72T7sL/uwv+zHPrMP+6tmsJ/txz6zD/vLPuwv+7HPagb72T7sL/uwv+zHPrOPo/RXTEwMzpw5g61bt2LRokVYv349vv/++2vOHxsbi+nTp0Oo4g70t99+i3Xr1t3J5lbiKP1cl7DP7MP+sg/7y37ss5rBfrYP+8s+7C/7sc/sU1P95fAZoYiIiIiIiIiIiIiIqOHS6XTYuXMn3n33XYSEhCAkJARxcXH45JNPMGjQoErzb9++HdHR0QgICIBWqxWnm0wmREVF4csvv0RAQEBNbgIREREREd0mDTIjFBERERERERERERER1Q/nz5+HyWRCaGioOK179+44efIkLBZLpfkPHz6M6OhoTJgwwWa6TqdDbGwsduzYYbMuIiIiIiJyHMwIRUREREREREREREREDisrKwuenp5wdnYWp/n4+MBgMCA/Px9eXl4282/YsAEAsGvXLpvpbm5u2L59+y2352ZKfZQvw7Iq1cc+sw/7yz7sL/uxz4iIqK5gIBQRERERERERERERETmskpISmyAoAOJjo9FY4+3x9natlWUbKvaZfdhf9mF/2Y99RkREtY2BUERERERERERERERE5LAUCkWlgKfyx0qlssbbk5NTBEGwbxmJxBo8cDPLNlTsM/uwv+zD/rLfrfaZjw8DqIiI6PZgIBQREREREd0RBoMBS5Yswb59+6BUKjFp0iRMmjSpynnPnj2LRYsW4b///kOrVq2wZMkSdOzYEQDQtm3bKpeJjo7G8OHD8eOPP+LFF1+0ee6BBx7A2rVrb+8GERERERFRneTn54e8vDyYTCbI5dbbHllZWVAqlXBzc6vx9ggCbjpw4laWbajYZ/Zhf9mH/WU/9hkREdU2BkIREREREdEdERMTgzNnzmDr1q1IT09HZGQkmjZtikGDBtnMp9Pp8Nxzz2Ho0KFYuXIltm3bhsmTJ+PHH3+EWq3Gr7/+ajP/Bx98gL179yIiIgIAEB8fjwEDBiAqKkqcR6FQ3PkNJCIiIiKiOqF9+/aQy+U4ceIEevToAQA4duwYOnXqBKlUWsutIyIiIiKimsQrACIiIiIiuu10Oh127tyJefPmISQkBPfffz+eeeYZfPLJJ5Xm3bNnDxQKBWbPno3g4GDMmzcPLi4u+P777wEAvr6+4o9er8dHH32EpUuXwtXVmjI9ISEBbdq0sZmvNkZ9ExERERFR7VCpVBg+fDgWL16MU6dOYf/+/diyZQuefPJJANbsUHq9vpZbSURERERENYGBUEREREREdNudP38eJpMJoaGh4rTu3bvj5MmTsFgsNvOePHkS3bt3h0QiAQBIJBJ069YNJ06cqLTetWvXok+fPrj77rvFaQkJCWjRosUd2Q4iIiIiInIMc+bMQUhICJ566iksWbIE06ZNw8CBAwEAYWFh2LNnTy23kIiIiIiIagJL4xERERER0W2XlZUFT09PODs7i9N8fHxgMBiQn58PLy8vm3lbtWpls7y3tzfi4uJspqWnp+Pbb7/F9u3bxWmCICAxMRG//vor3n77bZjNZgwaNAgvvfSSzWsTEREREVH9plKpEB0djejo6ErPxcbGVrnMyJEjMXLkyCqfW7ly5W1tHxERERER1QwGQhHdARazAEEQarsZRERE1MDV5vlISUlJpUCk8sdGo7Fa81493+eff46OHTuiS5cu4rT09HRx+TVr1iAtLQ1Lly6FXq/H/Pnz7WpzWUIqu5cRLMJNLdtQlfcV+6x62F/2YX/Zj31GRETVwe86iRyfxSJAsPB/mYiIiGpXTVxbMBCK6CZZzBYU5xuhzdGjKEePomwDtDl6aHP00BUYodQ4wcvfBT6BrvAJ1MCziRpSGatREhER0Z33S0IO1h6+AKWzHB893hVAzd/dVigUlQKZyh8rlcpqzXv1fD/88APGjh1rM61Zs2b4888/4e7uDolEgvbt28NisWDWrFmYM2cOZDJZtdvs7e1a7XnL/fTJeZz/PQMefmp4N9PAx9/64+2vgdrNWSz3R5XdTH83ZOwv+7C/7Mc+IyKiqvydkoc3Dl1AqUXAtie7QS7l95tEjkAQBBTnGZCbVozci8XITStGXoYOEAAXLwVcvRVw9VFaf7yV0PgooVDLeQ1LREREd8zJiwVYfegC8ktK8cn4btAo7ly4EgOhiK7DYhGgKygLdsrWlwU9WQOeivMNECzXXrakqBQXz+Xj4rl8AIDMSQrvCoFR3gEaOCmqf2OOiIiI6EYuFpTg9YMJ+OVCLgCgrZ8rLAIgrYXvMf38/JCXlweTyQS53HrZkZWVBaVSCTc3t0rzZmdn20zLzs5Go0aNxMcZGRmIj49HREREpdfy8PCweRwcHAyDwYCCggKbEnw3kpNTBHsHoxiNJljMAnLTi5GbXoy4vy+Lzylc5PBorIZHYxU8Gqvh3lgNN18lZPKGffNIIrEGXNxMfzdE7C/7sL/sd6t95uPDACoiovoos8iAN3++gH2xWQCAAC8VzBYBDfxUlqjO0mtLxYAn628tjCXmKuctzCxBYWZJpelOSpkYGFXxt8ZbAbkz72UQERHRzckuNmL94Qv47mwmAMDXVQEBd/aLOwZCUYMnWASUFBlRlGMQg520OQYU5ehRnGeAxXztf0KZkxQaL4V1xIS3Ahpvpfi3kyBH/KnLyE7SIjulCMYSMzITi5CZWATA+mWzRxM1fJprxOAolavzNV+LiIiI6FoMJgs+/DsVW/9KhcFkgUwqwePdmyFySAhKikpqJRigffv2kMvlOHHiBHr06AEAOHbsGDp16gTpVaPIu3TpgnfffReCIEAikUAQBPzzzz94/vnnxXlOnjyJJk2aoGnTpjbL/vLLL3j55Zdx6NAhqFQqAMC5c+fg4eFhVxAUAAgC7O6rbkOa4+5hrZB4Lgt5GToUXNIh/1IJtDl6GIpNuJxQiMsJheL8UpkErj5Ka4BUEzXc/axBUkqNk30vXA/cTH83ZOwv+7C/7Mc+IyIiADCZLdh+PB3v/p4MXakZUgnwaNemmPdwR5QW63msIKoDTEYz8tJ1YsBTbloxivONleaTyiTwaKKGVzMXePm7wNvfBd4+rkiJy0Fh+cDvbOuPrsCIUr3ZGkiVVlxpXSo3J9sgKR8lNN5KuHgoIJUxixQRERFVZjJbsONEOt75PRnFRjMkAIZ1aowFwzpC0Bvv6LUFA6GoQRAEAXptaVmgkzXIqTzgSZurh9l07f8yqVwCjadtkJP1txIqVydIqkixIJFYR8U6uUshhFmDrQqz9chOLkJ2shbZyUUozjciL12HvHQd4o5Yox9dPBXwbaGBT3NrYJSrj5KpaImIiOi6fkvMxWsH45GWrwcA9GjugdnhrdDSRw0XhRwlRbXTLpVKheHDh2Px4sVYvnw5MjMzsWXLFqxYsQKANTuUq6srlEolBg0ahNdffx3Lli3D2LFjsX37dpSUlODBBx8U1xcXF4fg4OBKrxMaGgqFQoH58+dj6tSpSE1NRUxMDJ555pka2U6JRAJXLyWatvVAkzYe4nST0YzCzBLkXypB/iUd8i/pUHC5BKV6Mwoul6DgcgmST+aI8ys1TvBorIJ7Y7WYRcrVR8nSykRERERUY46l5iP6QDwSc3QAgE5N3BAZ0QrtGmvgrnJCdrG+lltI1PBYzAIKMkusAU9lGZ8KM6se8OTmq4RnedBTMxe4N1bbZCSWSAB3HxWaSNzRuLW7zbImoxnaXGs1DJsgqRwDjDoTSgpLUVJYiswLtl8ySGUSuHgqbErsWcvuqaDUsNQeERFRQ3UsNR8xB+Jxoezaor2fBpERrdCxqRu8NQpk6ysHcd9ODISiekMQBBiKTTbl64oqBDuZjNeuYyeRlgc7VQ54Urk7Q3qL9WQkUgncG6ng3kiF4J7WEi+6AiOyU8oDo7TIv6xDcZ4BxXkGJB233hRTqOXwbq6BT6AGvoGu8GiibvClVIiIiMgqvUCPNw4l4FC89bzBV+OMGfe2xP1tfevMF41z5szB4sWL8dRTT0Gj0WDatGkYOHAgACAsLAwrVqzAyJEjodFo8Pbbb2PRokXYsWMH2rZti3feeQdqtVpcV3Z2Ntzd3Su9hkajwXvvvYfly5fjkUcegYuLC8aOHVtjgVDXIneWwctfAy9/jThNEATo8o1lgVElZdmjdNDmGaDXluJSfCkuxdtmj3JrpBIDo8qDpBRqXsYRERER0e2TpbWWwfvhvLUMnofKCdP6BWFIiB+kdeTagqghEAQBxXmGCuXtipGXoYO5tPK9DZWbU1mmJw28/F3g2VQNZ+XNXyvKnWVl157qSs8ZdCaxmkZ5BqnyweZmkyBOq7ROhdSaQeqqLFKu3ko4KVlqj4iIqD66XGTA2goltt2Vcrx4TxAe7tS4Rq8t+A06ORyDzlSWzalCwFOuNeCpVF91zWvAOtpB7aGAa1mwk/WE2zpSQe1e8+lb1e7OaN7JG807eQMAjHoTclKLxaxRuWlaGHQmpJ/PR/r5fADWUnxe/i7waW4NjPIO0PCCgYiIqIExmiz4+GgatvyZIpbBG9etGZ7p0xwuznXr9F6lUiE6OhrR0dGVnouNjbV53LlzZ3z55ZfXXNeSJUuu+Vzr1q3x/vvv33xDa4hEYh0p6+KpQLP2nuL0UkN59iidTZCUyWhBfoYO+Rk6m/Wo3Jzg0VhdFhilgoefGhof5S0H7xMRERFRw1JVqYqRXZrghb4t4K5qeKWbiWqavrhULEWXe9H6Y9SZKs3npJDZZHry9HeB2s25xtqpUMuhaK6BT3ONzXTBIkBXaLySRaosg1RRth66fANMBotYFeNqSlcnMUCqfFC6q48SLp4KDgYnIiJyQKVmCz49dhHvHUlGSakFUgkwsnMTPF9L1xZ1604JUZlSvVkcUVAe7KTNtY4qMJZcO9gJEkDt5iwGOWnKT6S9FHX+BNpZKUeT1u5oUpaS1myy3vjKqlBOz1hiRlZiEbISi3AOGdZUto3V1oxRZeX0VDV4AUREREQ164+kXKw6EI/UsjJ43QPcMSu8FYJ9XGq5ZXQrnBQyeAdo4B1QIXuURUBxvkEsrVdQFiBVnGcoK0lQgIz/CsT5ZXIJ3PxU4ghe97K/nVW85CMiIiKiyv5Js5aqSMi2Bih0bOKK2RGt0N7PtZZbRlQ/mYxm5KXryjI9aZGbVozi/MolYaQyCTyaqMuyPbnAq5kLXL2VkNTBgS8SqQQuHgq4eCjgF2ybwdlsslhL7ZVljyqqkE3KUGyCvqgU+qJSZCUVXbVOwMVDcSV7VFkmKVdvJVRuTnUmAzYRERFdcSQpF6sOJiAlrwQA0LmpG2aHt0JbP80Nlrxz+K041RqT0QxtjuFKwFOFk2JDceVRDxWpXJ2uBDl5K+DqZT0p1ngpIHOqu8FO9pDJpVduiIVZb4YVZeuRlaJFdlIRslO0KM4ziFkC4o9kAgBcPBXwaa6BTwtX+DbXwNVXyYsDIiIiB3epUI/Vhy7gp7hsAICPi7UM3sB2dacMHt1eEqkEGi8lNF5K+HeokD1Kb0b+ZR0KLl3JIFVwuQTmUgvyLuqQd9F2pK3a3bkse9SVICmNl6JOfolORERERHdedrERa3++gL3nrN8l1lapCqL6zGIWUJBZYhP0VJhZAkGoPK+rj9Ia8FSW7cm9sbpOD+iuLplcCvdGKrg3UlV6zlhiulJmryyDVPl9IpOxLIAq1wCgwHadTmWl9nwUlYKkOAiIyhkMBixZsgT79u2DUqnEpEmTMGnSpOsuc/ToUURGRuLAgQNVPr93717MmDHDJrv5zbwOEVF9k16gxxuHEnAoPgcA4KV2wvR7W+LB9o1q/b4FzwzojjKXlp20lpWvs9aRtj4uKSq97rIKF/mVqH8vhVg7WuOtgNy54ZWDk0glcGukglsjFYJ7+AIAdIVG5CRrkZVizRpVcEmH4jwDivMMSD5p3eE4q+XWwKhADXyau8Kzaf24kCIiImoIjCYLPjmWhveOlJXBkwBjujXDs30CoVHwVL4hclLK4BvoCt/AKyP1LRYBxbmGK4FRZUFSugKj+JMemy/OL3OSihmjxCApPzVLLhMRERHVYyaLgJ0n0vH2b0liGbwRnZvghbAW8GAZPKKbJggCivMMV8rbpRUjL0MHc6ml0rwqN6eyTE8aeDVzgWczNZyVDe/a3lklt/aB/1Wl9gQBJUWlV7JIZevFIKniPAPMpRbxuvdqChd5hVJ7VwKk6tPgeaqemJgYnDlzBlu3bkV6ejoiIyPRtGlTDBo0qMr5Y2NjMX36dCgUiiqfLywsxLJly275dYiI6hODyYIP/07F1r9S6+x9i7rRCnJoZpMFxXkG2+xOZcFOukIjUMUoh3LOarm1hF1ZRiexnJ23kjdiqkHt5gx1Jy8EdPICABj1JuSmFlvL6aVYR5oYdSakn89H+vl8ANayKV7+ZYFRga7wDnBpkBdbREREdd3V6WRD/d0xO6IVWrEMHl1FKpWII2EDOnqJ040lJjFjVPmXxYVl2aNy06xf0Ffk4qmAR2MV3Bur4eGngkcTNVw8mD2KiIiIyNGdSCtAzMF4xGVZz//a+2kQeV9rhDRmGTwie+mLS5F3sRg5ZddUuRet38FfzUkhg2ezK5mePP1doHZzroUWOw6JRGK95+HmjEYt3Wyes5gtKM4zioFRYhapbOuge0OxCYZiLbJTtFettKzUnrcCmrLgqPLrZ7WbM6936xmdToedO3fi3XffRUhICEJCQhAXF4dPPvmkygCl7du3Izo6GgEBAdBqtVWs0RrwFBAQgKysrJt+HSKi+uRwQg5W/5SAiwV6AED3AHfMCm+F4Dp234LRD1QtFrMF2hw9CrOvBDmVBzzp8g1VpnQt56SU2ZSvKw920ngroVDzI3g7OSvlaNzaHY1bW+txm00W5GfokJ2iRVZZOT2jzoSspKKy2tsZkEgAdz91WWCUNTiKF2RERES151KhHmt+voAD/1nL4NWldLLkWJxVcjQKckOjoCtfIFvMArQ5euRf1iH/UgkKygKkSgpLxcyiF8/li/PLnaXWwKiy0nrufmq4+6ngpOCgBSIiIqK6LqfYiHWHL+C7s1fK4E25JwjDOjaGjDf/iW7IZDQjL11nU+KuON9YaT6pTAKPJmprtqey4CdXbyWDbG4jqUwqBjBdrdRgrlBqz/a3yWARr3URX2iznExeVpK+Qok9Vx8FXL2VULgwU54jOn/+PEwmE0JDQ8Vp3bt3x6ZNm2CxWCCV2mYHO3z4MKKjo6HVarF+/fpK6/vrr7/w119/Yd68eXjuuedu+nWIiOqD1LwSrD6UgF8v5AIAGmmcMf3elri/rW+dvG/BKBQSWSwCSgqMZVmdrmR30uYaUJxrgMVy7WgnubO0LKuToqx8nVKMsFeo5XXyw98QyORSeAdo4B2gQdu+jSEIAoqy9chO1iI7pQhZSVoU510poxL/p/VLERcPZ/gEuoqBUW4+vGgjIiK600rNFnx67CI2/5EMvckCqQQYHdoMk++uO+lkyfFJZVfKLTfvdGW6QVeWPeqSNUAq/5IOhZklMBktyEnRIqfiqFoJoPFUlJXVuxIkpfZw5nk/kYMRBAEW83VGNhERkUMyWQR8cSIdm35PgtZgLYM3rFNjTA0LgoeaN/eJqmIxCyjMLEFOhaCnwsySKgeBu/oo4eV/JduTe2M1ZHIGPtQWJ4UMnk1d4NnUNhOFIAgwFJtsSuwVZV+572U2CSjILEFBZkmldTqrZHD1UcKnmSucNTKx3J7GSwG5MwcG1VVZWVnw9PSEs/OVwf4+Pj4wGAzIz8+Hl5eXzfwbNmwAAOzatavSuoxGIxYsWICFCxfCycn22Gnv61zPzXyNUr4Mv4KpHvaXfdhf9qvvfVZiNOP9v1Lw0d9pKDULkEsleKKHPyb1bg71TRwTa6q/eEelgREEASWFpWXZnK4KeMozwGK69hegYnR8efm68hrL3gooNU686eEAJBIJ3HxVcPNVoWUPXwBASaER2SlaZJeV08vP0KE434ji/Bwkn8wBYD3p92nuKmaN8mzqwgs7IiKi2+iv5DzEHIhHclkZvK7N3DA7ohVa+2pquWXUUCjUcvi1dINfy4rZoywoytaLgVHlQVJ6bSm0uQZocw1IO5snzu+klMHdzxoUZQ2SUsG9kYpfEhPVErPJgpKiUpQUGq0/4t/W3/qyxxazgP5PtEOjtiyPRERUH5y8WIDoA7Zl8GZHtELHJm43WJKo4RAEAcV5BrG0Xe7FYuSl62AutVSaV+XqZA16auYCL38NPJup4azkrTVHIJFIoNQ4Qalxgm8L23Ndi1mArsBgm0Uq21oNRVdghLHEjJzUYuSkFldar9rd+co9srIMUq4+SqjdFZDKeJ+sNpWUlNgEJwEQHxuNlbO5Xc9bb72FkJAQhIWF4c8//7xjr+PtffPXYbeybEPE/rIP+8t+9a3PBEHA92cuIerbs0gvK4N3T2sfLH44BMG34b7Fne4vnq3VQ4IgQK81VQh2qhDwlGuo8mS+nFQmgYtnWVan8hM4byWat/aG3mSsv6GMDZjKzRkBHb0Q0NEaoV5qMCMnVWvNGpVchJy0YhhLzEiPzUd6bD4Aa1Ccl78GPs2tgVHeARo4q7g7ISIistflIgPWHLqA/f9lAbCWwXupX0sM7sAyeFT7pDJpWSk8NQK7eIvT9dpSFJSV1svPsGYWLcrWo1RvLjuHvJI9SiIBNN5KeDRWlWWPUsOzsQqCN4P8iG6WYBFg0JkqBzcVXQlyKikqhVFnqtb6pDIJnBiwSETk8HJ1Rqw7nIhv/70MAHBTyjElrAWGd2rCMnjU4OmLS5F3sRg5acVi8FNV50pOChk8m13J9OTp7wK1m3MVayRHJ5WVDfz3UqLJVc+ZjGbr4J8cPcw6AZdTCsRgKWOJGboCI3QFRmReKKxinbaJBMrL+SlcWDmlJigUikqBSOWPlcrKZRWv5b///sOOHTvwzTff3NHXAYCcnKIqM89dj0RiDSC4mWUbIvaXfdhf9quPfZaYo8Oqg/H4KzkfANDETYH/DQjGva28IZEIyM4uuul132p/+fhUL4CKkQsOShAEGHUmFOUYKmd3yrXWPb4WiRRw8VBY03h625azU7s7Q3rVhbFEArh6KWHILq03/7x0bU4KGRq3ckfjVu4ArJkA8jJ0YmBUdrIWBp0JWUlFyEoq28lJAPdGKvgEusK3rJye2p0XiERERNdSarZg+z8X8e4fySgptZbBG9W1KSbf3QKuHFlKdZx1RK07/ILdxWlmkwVFWXrkX9aVZY+yZpGqWIYg9cyV7FEKFzncG6nE0nrufmq4N1JB5sSso9SwmYzmawc3lQU46YtKq13OTiqXQOXqDJWb05Xfbs5QuZb9LnvcuIn7LX2JRUREtcdsEfDFyQxs+i0JRQZrYMewjo0x9Z4W8FTz+zlqeExGM/LSddZMT2VBT8V5hkrzSWUSeDRWV8j25AJXbyUkDBxs8OTOMusgniZq+Pi4IjvbeqP2yn05a/YosdReth5FuXpYTAIKs/QozNJXWqeTQnYl+UCFICmNtxJOCg5KuF38/PyQl5cHk8kEudz6/VpWVhaUSiXc3KqfGXHfvn0oKCjA/fffDwAwm80AgNDQUCxZsgT+/v635XUAlH227FrktizbELG/7MP+sl996LNiowmb/0jBtn8uwmwR4CyT4MmeAXiqVwCUTtbj1e3axjvdX7zLUscZS8ozO1UOeCrVm6+5nEQCqD0UFYKcrgQ7uXg4QyrjDQaqHqlMCm9/Dbz9NWjbtzEEQUBRtr6snJ41OEqba0DB5RIUXC5Bwl+ZAAC1h3NZxihrcJSbr4oXkURERACOpuQj5kA8EnN1AIDOTa1l8No2YoYcclwyuRQeTdTwaKIWp1kz1ZYi/1JJWVk9axapouwSGIpNyEwsQmbilcALiRRw9VaWldWzrsvDTwWlK8twk+OzWAQYtKUVsjiV/22bxel61/lXU7jIrwQzVRnk5AxnleyG/z/89yIiclyn0wsRfSAesZnWjJxtG1nL4HVuyjJ41DBYzAKy04qQcDoLOWla5KYVozCzpMqbaq4+SmvQU1m2J/fGasjkvE9C1SeRSKBwcYLCxQk+zW2zUQgWAbpCozgQqCinLEAqW4/iAiNKDWbkXdQh76Ku0npVrk7QXJVBytVbCRdP3suzV/v27SGXy3HixAn06NEDAHDs2DF06tQJUmn1+/KJJ57A0KFDxccnT57ErFmz8NVXX8Hb2xsymey2vA4RUV0hCAJ+OJ+FN3++gOxia4a7e1p6YeaAYPh7qGq5dTeHgVB1QKnBbFO+rmI5O8MNUtlbaxGXpdr0VkLjZQ14cvFS8CSe7giJRAI3XxXcfFVo2d0XAFBSZLQGRaVYA6PyM3TQ5RuRkp+LlFO5AABnlQzezTXwaW4NjPJs5sLPKBERNShZWgPe/PkCfjhvLYPnqXLCtH5BeCjED1LehaZ6SCIpy0Tj6owmra9kj7KYLJCWSpF0Pht5GToxSMpYYr4yevZ0rji/Qi0XM0eVB0m5+Sp5Lkl1giAIKDWYoa+QvUlXaIT+qqxOem0phGsnbrYhd5ZC5eoMpZuTbeYmV2fxb6XGif8DREQNWJ7OiLd+ScLXZy4BAFwVcrwQ1gIjO7MMHtVfgiCgON+I3LKAp9yLxchL18FcWvkkS+nqBG8x05MGnk3VcFbxdhjdORKpBC4eCrh4KMRqG+XMpRZoc69kkBKDpHL0MBSbrAMlikqRlVh01ToBF09FpQApjY8SKg4YqpJKpcLw4cOxePFiLF++HJmZmdiyZQtWrFgBwJq1ydXV9Ybl6zw8PODh4SE+vnTJerwNDAwUp13vdYiIHElclharDibgeFoBAMDfQ4n/DQhGWEvvWm7ZreGZXw2pWFP46uxOem3pdZdVujqJWZ00Xkq4elvL2rl4KSFn6QiqA1Suzgjo6IWAjl4ArMF9uWlaZCVpkZ1ShJzUYhhLzMiILUBGrHUnKpVL4NXMRcwY5aq2r24y1T6DwYAlS5Zg3759UCqVmDRpEiZNmnTdZY4ePYrIyEgcOHBAnGY2m/HGG2/gyy+/hE6nQ79+/bBgwQL4+PgAAM6ePYsRI0bYrCckJAS7du26/RtFRHQHmMwWfHY8He/8ngxdqRlSCfBIl6Z4vm8g3JROtd08ohonc5LCp4krJGqgRdlIbUEQUFJYWlZWz5o5Kv+SDtocPQw6EzIvFCLzQqG4DolUAjff8uxR1gApj8ZqKDX8n6Lbx2K2iNmb9EVG6CqUqNOXZ3UqMsJkrF6Ek0RiLS0pBjOVZXFSX/XYSXHjLE71Da8tiIiqx2wR8NXpDGz4NQmFeusA2qEhfnixXxC8WAaP6hl9cSnyLhYjJ81a4i7vYnGVA8edlTJ4NnWBZzM1vPw18PJ3gdqN/w9Ud8icpHD3U8Hdr3JGDWOJSQyOKsq2JkmwPjZYA6hyDNDmGJDxX4HNcnJnqZggwRogZb1vqPFRwlnZsG/9zpkzB4sXL8ZTTz0FjUaDadOmYeDAgQCAsLAwrFixAiNHjryjr0NE5AiK9Ca8/XsSPj+RDrMAKORSPN27OR7r7g9FPRh817CPhreZ2WSpEOykLztBsf5dUnj9YCeFi7zspKVCdqeyDE+sD0yOxkkhg1+wO/yCrSMfLGYL8jN0yErRIjupCNkpWhiKTWWl9bQ4D+CXj+Pg3kgFn8CyrFEtNFC7K2p3Q+i6YmJicObMGWzduhXp6emIjIxE06ZNMWjQoCrnj42NxfTp06FQ2L6v77zzDvbs2YM1a9bA09MTS5cuxezZs7FlyxYAQHx8PNq3b493331XXKa87jYRUV13LNVaBu9CjjX1eacmrpgd0Qrt/FxvsCRRwyKRSKB2d4ba3RlN23qI001GMwozS5B/uaQsSMr6u1RvFksz4+SV9Sg15dmjrD/ufiq4+SpZToBsCIIAY4m5Qpk641V/W38bdCagirIqVXFSyqrO3uTqJJasU2icIGWWjirx2oKI6Mb+zbCWwTt32VoGr7WvCyIjWqFLM/cbLElU95mMZuRl6KyZnsqyPRXnGSrNJ5VJ4NFYbS1x18wF3gEuCGrri5xcbZXl8IjqOmeVHN4BGngHaGymCxYBJUWlV7JIVQiSKs43wGS03nPJz6hcak/hIrfJIFWeRUrTQCrJqFQqREdHIzo6utJzsbGxVS4zcuTI6wZH3XXXXZWWvd7rEBHVZRZBwLf/Xsb6w4nIK7HGsES08cGMe1uisVv9SVzCb3vsZDFbUJxnFMvXlWd30ubooSswXvdk21klqxDkpLgS7OStaPAR2lS/SWXSstE4GrS9uzEEQYA2x4Cs5CKxnJ42xyDezEr4y1oySO3ubA2MCnSFT3MN3BupIOGNgzpBp9Nh586dePfddxESEoKQkBDExcXhk08+qfJmxfbt2xEdHY2AgABotVqb58xmM+bMmYOePXsCAMaPH4+ZM2eKzyckJCA4OBi+vr53dqOIiG6jbK0Bbx5OxPfnMgEAHionTLsnCEM6sgwekT3kzjLxPLKcIAjQFRiRn6FDQVmAVP4lHbS5Bui1JujjC3E5/kr2KKnMWtrZo4nKGiTlZy2zp3Bh9qj6yFxqQUFWCbKSi6AruCq4qax0nb7ICLOpenfKpDIJlK4VS9Q52wY8lT2WO3MA083itQUR0fXl60rx1q+J+Pr0JQgANAoZXujbAiO7NIWc35ORA7KYBRRmliDnojXLU26aFgWZJVWWEXb1UZaVt7P+eDRW2wRySCTg98VUL0mkVwYL+bV0s3nObLKgOM9wpcxejkEMltJrS2EoNsFQbB2EbrNOCaD2UIgZpDQ+Srj5WO9Tqt2c+b9ERNQAnLtchFUH4nE6w1qOtYWXCi+Ht8JdgZ613LLbj9E3VbBYBOjyrekmrw54Ks43VHlCXk6ukIoBTlcHPCnU7G4iwDriv3xEQsvuvtYTcGcFYo9niOX08jN00BUYkXIqFymncgFYR1n7NC8LjArUwKupC2QsD1krzp8/D5PJhNDQUHFa9+7dsWnTJlgsFkiltu/L4cOHER0dDa1Wi/Xr19s89+KLL4p/5+TkYOfOnejVq5c4LSEhAW3btr1DW0JEdHuZLAJ2HL+Id35PRrHRDAmAkV2a4IW+LeCuYtAF0e0gkUjg4qGAi4cCzdpfuUgvNZRljyorrVdwSYf8yzqYDBYxWArIEedXuTqVZY9SlZXYU8PVWwmpjF/+1kWCRYBBZ6qcuanoSgankkIjjCXmaq/TWS2vIouTk02wk0It5w2BO4zXFkREVTNbBHx95hI2/JKIgrIyeA+F+GHaPUHwdmHZL3IMgiCgON+I3DStmOkpL10Hc2nlmyxKVyd4l2V68vLXwLOpGs4q3lMhuppMLoWbrwpuvpVL7ZXqzeJ9zcJsPbTlZfdy9DAZrAFUxXkGXIq7ep0S631Nnyvl9sof894mEZHjyy8pxcZfk/DlqQwIANROMjzTpznGdmsGp3qaSb/BHr0Ei4DifAOKsq8EO5UHPhXnGWAxX3t0qMxJKpawu7qcncJFDglH+RPZTe3mjIAQL/h38AJgvZGVm1aM7OQiZCVrkZOqRanejIz/CsR62FKZBF7NXGyyRvHiuGZkZWXB09MTzs5Xvnjz8fGBwWBAfn4+vLy8bObfsGEDAGDXrl3XXOfatWvx1ltvwd3dHdu2bROnJyQkwGKxYOjQoSgqKkK/fv0we/ZsaDSaa67raje7Wy5fjrv16mF/2Yf9Zb+63mfH0woQvT8e8dnFAICQxq6IvK8VOjSunTJ4db2/iG43J4WsUkmB8us+MTCqLEiqOM9gDaYpKsCluAJxfplcArdGVwKjyoOkeI55Z5mMZptgpiqzOGlLr3udXpHMSQqVq5M1k5Nb5eAmlZszVBonDqqoI3htQVVhf9mH/WW/ut5n/2YUIfpAPM5eso7ULi+D19W/dsrg1fX+orrDUFyK3ItXytvlphVbyw1fRa6QWgOeyoKevPxdoHZjgB/RrXJSysT/rYoEQYBea0JRdok18UN5gFS2HtpcA8wm4Ur5+as4q+Vw9VaIwVHlWaQ03krIeU1FRFSnmS0Cvj6dgQ2/JomDKwa1b4SX+gXBV6Oo5dbdWQ3y29yTP6Qi7khmlaMOyknlEmi8lJUCnly9lVC6OjHYiegOc1LI4BfsBr9ga9pXi9mC/EslyE4uQnayFlnJRTAUm6yl9VK0wC+XAADujVRXAqMCNXDxqN878dpSUlJic6MCgPjYaDTe1DqHDRuGAQMGYPPmzZg0aRK+++47KBQKpKamwt/fH8uXL0dhYSFWrFiBWbNmYePGjdVet7f3rQUh3OryDQ37yz7sL/vVtT7LLNJj5Z7z2HX8IgDAU+2EyEHtMLpHAKR1IItIXesvopokkVqv6zReSvh3qJA9Sm9GwWUd8stK6xVcspbZMxktyEvXIS9dZ7Metbsz3MuCojwaq+Hup4LGW1kn/sfrMotZgL7YGtSkLyyFrkJpuiuBT6UoNVQzi5MEULrIy4KarAFOyrLf6goBT00DPJCTo71u6XqqO3htQdfD/rIP+8t+da3P8oqNWLUvFtv+SoEgAK4KOWYObIPxvQMhrwMjtetaf1HtMhnNyMvQWYOeygKfivMMleaTyiTwaKy2lrcrC9Bw9VEy6yZRDZJIJNaBIa5OaBRk+5zFbB1AVCmLVLYeJYWlMOpMyNGZkJNaXGm9andnsfqHxlsJd18lvLyqP8iAiIjunFPphVh1IB7nM62lUlv5uGBWRDC6+XvUbsNqSIMMhMpJLYa51AKpTAIXT4VN+brycnash0tUt0hlV0YJtbnbOoJBm2sQA6Oyk7UoytGjILMEBZklSPg7C4D1RLxiOT23RiresLoNFApFpZsS5Y+VSuVNrTMwMBAAEBMTg379+mHfvn0YOXIkjhw5AoVCAScna0mplStX4pFHHsHly5fh5+dXrXXn5BTd1I0wicT6Jd/NLt/QsL/sw/6yX13rM5NFwOcn0rHx1ySxDN7wzo0x9Z4geKickJurrdX23Wp/+fjwJgfVX05KWdn54ZXPuWARoM0zID/DGhRVXk5Pl2+ErsD6kxFbIXuUkxTufuXZo1Tw8LP+dlbW/8tsQRBQajDbBDPZlKgrsgY+6bWl1d7/yJ2l1y1Rp3JzglLjBOkNbgJLJODAJQfDawuqCvvLPuwv+9W1PrMIAnafvoR1vySioMQ6UvvBDo0wvV8QfDQK5OdVvvlck3htQRazgMKskgqZnrQoyCyBUMVYc1cfZVmmJ+uPR2M1ZPLaD+QjoqpJZRJrOTxvJZq0sX3OZDRXyiBV/rtUbxavlS8nFIrLFKbr0ebe6p1bExHR7ZerM2L94UR88+9lAIBGIcPzd7fAI12bQt6A7pHX/29oq3DvhDZQOTlDbyplsBORg5JIrpycB3XzBQDotaXWwKgUa2BUXkYxdAVGpJzORcrpXADWm17eARr4lmWN8mrmwpIYN8HPzw95eXkwmUyQy62HkqysLCiVSri5udm1rp9++gkdOnQQbzwoFAoEBAQgLy8PACqVqQgODgYAu25WCAJu6YvNW12+oWF/2Yf9Zb+60Gcn0goQczAecVnWGxLt/TSIjGiFkCbWfWBtt6+iutBfRI5AIr1yfhnQ8cp0Y4nJJjCq4JI18N5cahFHv1fk4uFcVlbPWlrPvbEaGk+Fw1x7mk0W6LXXCnC6Mv16GZYrkkgBpaaK0nQVy9a5OsNJKbvDW0Z1Fa8t6HrYX/Zhf9mvLvTZuctFiDkQjzMZ1jJ4wT5qzI5oJY7Uru32VVQX+ovuPEEQUJxvRG6aVgx8ykvXVXn+p3R1gre/CzybuVh/N3VhWWmiekTuLINnEzU8m6htpguCAIPOZBsgla2HXluKpq09aqexREQNXPnA7bd/T4K2LPv60BA/vNgvCF7qhleCuEGekcrkUrh5q2DMNvHCjageUWqc4B/iBf8QLwDW0Qo5acVi1qicVC1K9WZciivApTjraH6pTALPZi7waa6Bb6ArvJtroFA3yF2jXdq3bw+5XI4TJ06gR48eAIBjx46hU6dOkErtCyyLjo7GiBEjMHnyZACAVqtFUlISgoODER8fj1GjRmH37t0ICAgAAJw7dw5yuVwc5U1EVJNyio1Y90sivisbTeGmlGNqWAsM69QEMgcJciAi+zir5PBt4QrfFlcyGVgsArQ5ejEwqjxIqqSwFMX5RhTnG5F+Pl+cX+5cMXtUWYCUnxpOipoL/hEEAUadySaY6ergppIiIwzFpmqv00kpuxLMVDG4qUKQk8LFiRlZ6bp4bUFEDVVBSSk2/paEXSczIABwcZbhubsDMbpr0zpRBs/RGAwGLFmyBPv27YNSqcSkSZMwadKk6y5z9OhRREZG4sCBAzbTv/32W6xZswZZWVkICwtDVFQUvLy87mTza5WhuLQsy1Ox+Nugq3xOKFdcydjv5a+Bl78L1G4N76YaEVkHqitdnKB0cbLJtCyRWLMAZmcX1WLriIgann/S8rHqQALis60DNts10mB2RCt0amrfALP6hHf7iajekjvL4NfSDX4trTt5i1lA/iUdslPKy+kVQa81ISdFi5wULWJ/vQQAcGukgk+gBr5lJfXUHs4sr3EVlUqF4cOHY/HixVi+fDkyMzOxZcsWrFixAoB1BLerq2u1Slk8/vjjWLduHdq1a4emTZti9erVaN68Ofr16wfAWtZiwYIFmDt3LgoLC7Fo0SKMGjUK7u7ud3QbiYgqMlkE7DqZjo2/XRlNMaxTY7wYFgQPtVMtt46IappUKoGbrwpuviqg05XpBp0JBZd0yL+sQ/6lEhRc0qEgswQmowU5qcXISbXNHqXxUoiBUR5+arg3UcPlJs49TaUW6KvM3FT+tzXIyWKq3kggqUwiBjMpKwQ1qSs+dnWC3JlZnOjW8dqCiBoaiyDg2zOXse6XROSXlAIAHmjni+n3toSvRlHLrXNcMTExOHPmDLZu3Yr09HRERkaiadOmGDRoUJXzx8bGYvr06VAobPv81KlTmDdvHpYsWYJ27dph2bJlmDNnDt5+++2a2Iw7zmQ0Iy9DZxP0VJxnqDSfVCaBe2MVvJpp4O1vDX5y9VE6TJZTIiIiooYgS2vAmz9fwA/nswAA7ko5pnDgNoCbCIS6fPkyli1bhiNHjkChUGDw4MGYOXNmpQsGANi9ezfeeustZGRkoEOHDpg7dy46d+4MwDoadf369di5cydKSkrQt29fLFy4sF6PrCCi2iWVScRRS236WPdD2lyDNSiqLDiqKFuPwswSFGaW4MLf1oOGys06qsEaHOUKNz8VR7UDmDNnDhYvXoynnnoKGo0G06ZNw8CBAwEAYWFhWLFiBUaOHHnD9Tz++OMoKSnB4sWLkZubi759+2Ljxo3i6O+NGzdi2bJlePzxxyGVSjF06FDMnj37jm4bEVFFJy8WIOZAPP7LujKaIvK+VujYpOGOpiCiqinUcjRq6YZGLa/sHyxmAUXZZdmjygKk8i/poC8qhTbXAG2uARfP5onzOylkcG98JXuUZ2MVBB2QnpIPXYE1uEl/VRYnY4m5+m10kVcqUad0c4a6rESd0s0JCrWcAwGoRvHagogaitjLWkQfiMfpjEIAQJC3GpERrdA9wKN2G+bgdDoddu7ciXfffRchISEICQlBXFwcPvnkkyoDobZv347o6GgEBARAq9XaPPfxxx/jwQcfxPDhwwFYA6wGDBiA1NRUMaOgo7CYBRRmlVQIetKiILMEQhUVjl19lGWZnqw/Ho3VkMmZmYyIiIioLio1W7D9n4vY/EcKdKVmSACM7NIEz/dtAQ8VB24DgEQQql8cThAEjB07Fm5ubpg9ezYKCgowd+5cREREIDIy0mbeo0ePYuLEiVi6dCm6deuGTz/9FLt27cLBgwfh4uKC7du3Y+PGjVi1ahU8PDywePFiuLu7Y+PGjXZtQHZ2kd3l7SqmZmRpvBtjf9mPfWafutRfem0pclK0yEouQnaKFnnpOggW20Y5KWTwbq6xltNr4QrPZi6QO9XsFwO32me+vq43nqkeudl+qkufTUfA/rIP+8t+Nd1nuToj1h9OxDdlZfBcFdbRFCM6O8ZoCh4r7Mdri5rBPrPSF5das0eVBUYVXNKhMEsPi/nmOkXmJLUpSadyrVyyTunqVO9vaPHzZT8eL+zDa4uawf6yD/vLfjXdZ0V6Ezb+loQvTqbDIgBqJxmevTsQY0MdowxeXT9W/PPPP3jiiSdw4sQJODtbS7X9+eefePbZZ3HixIlKpVanTJmC4cOHQ6vVYv369Th48KD43AMPPIBnn30Wjz76qDgtPDwcM2fOxJAhQ6rdppq+thAEAcX5RuSlFSPnoha5acXIS9fBXFo56kmpcRIDnrz9XeDZ1AXOKscsHsL9n33YX/Zhf9mvrh8v6iJ+F3Xnsb/sw/6yX0332Z/JeXjtYDyScksAAJ2auGJ2RCu083OMfWhNHSvsOru9cOECTpw4gd9++w0+Pj4AgJdeegnR0dGVAqGysrIwZcoUDBs2DAAwdepUbNmyBQkJCejcuTN+/vlnDB48GL169QIAPPPMM/jf//5nT3OIiG47pcYJzTp4olkHTwDWdNG5acXIKssalZOiRanBjEtxBbgUVwDAmmnKs6namjWqrJyeQu2YXx4QERFgtgjYdSoDG39NQpHBBAB4uKMfXrwnCJ5q51puHRHVF0oXJyiD3eEXfKUkl9lkuZI9qjxA6nIJpDIJFBr5leAmmyAn699OShmzOBEREdUxFkHAd/9exrrDicgrK4M3sK21DF4jV5bBu12ysrLg6ekpBkEBgI+PDwwGA/Lz8ytVodiwYQMAYNeuXZXWlZmZiUaNGtlM8/b2xqVLl+xq082clpUvU51lDcWlyL1YjJw0a3m73LRiGHSmSvPJFVJ4NbMGPHn5a+DVzAUqN6d6c95oT58R+8te7C/7sc+IiO6cS4V6vHHoAg7GZQMAPFVOmNYvCA+F+EHKHW8ldt2p9/X1xebNm8UgqHJXp48FgAcffFD8W6/X44MPPoC3tzeCg4MBAB4eHjh06BAmTJgAd3d3fPfdd2jfvv3NbAMR0R0jd5bZlDexmAUUXNZZA6OSreX09NpS5KQWIye1GLFly7n5KsVyej6BrnDxcK43XzAQEdVnp9MLEXMgHuczree3bXxdEHlfa3RuyjJ4RHTnyeRSeDRWw6OxWpzGkXhERESO6b9MLWIOxONkelkZPC81ZkUEo2dzz1puWf1TUlJiEwQFQHxsNBrtWpder69yXfaux9v75kfkX71sqdGM7JQiXE4qRGZSIS4nFaIwW19pOalMAh9/DRq1cINfCzc0auEGTz81JA6Q0fhW3Up/N0TsL/uwv+zHPiMiun2MJgs+PpqGLX+mwGCyQCYBRoU2w3N9AuGqZGKOa7GrZ9zc3HDPPfeIjy0WCz7++GP07t37msv88ccfmDRpEgRBwGuvvQYXFxcA1gxRL7zwAvr16weZTAZfX1989tlnN7kZREQ1w5r9yZoyuk0fP2va6TwDspPLyukla1GUrUdhlvXnwtEsAIDK1UkMivIJdIW7nwrSBvAlBBGRo8jTGfHWL0n4+ox1lK9GIcMLfYPwSBfHKINHRERERER1Q5HehLd/T8LOE9YyeConKZ7tE4ix3ZrByQHK4DkihUJRKVCp/LFSqbwt61KpVHatJyfn5kodeXq4IPF8FrJTyzI9XSxGwWUdhMoV7uDqoxTL23k1c4FHYzVkTlc+YxZYkJNbeRB7fSKRWAMubqa/GyL2l33YX/a71T7z8WEAFRFRRb9dyMXrP8UjNd8aBB/q745Z4cFo7aup5ZbVfbcUIrZq1SqcPXsWn3/++TXnad26NXbt2oWffvoJr7zyCvz9/dG1a1dcvHgRSqUSmzZtgpubG2JiYjB37lxs2bLFrjbc6RSzxP66Gewz+zhyf0kkErh6K+HqrURQN2u2PH1xKXJStMhK1iIrqQh56TqUFJUi9UweUs/kAbCmpfZproFPc1f4Bmrg5e8CubPMjte1/U1ERDfHbBHw1ekMbPg1CYV6axmBISF+mNYvCF4sg0dERERERNUkCAL2nsvEmz9fQK7OWgbvvja+mNG/JfxYBu+O8vPzQ15eHkwmE+Ry6y2PrKwsKJVKuLnZl93Xz88P2dnZNtOys7Ph6+tr13oEAXYHAcT9mYlTP6TCZKwc9aTUOMHL30UMfPJs6gJnVeXbOw01WONm+rshY3/Zh/1lP/YZEdGtScsvweqfEvDLhVwAgI+LM6bf2xIPtPNlBaJquulAqFWrVmHr1q1444030KZNm2vO5+PjAx8fH7Rv3x4nT57E9u3b0aVLF0RGRmL27NkYMGAAAGDNmjUYMGAATp48iS5dulS7HbczxSxdH/vLfuwz+9Sb/vIB/AO9gLIEeqVGMzITC5GRkI+M+AJkXChAqd6MS3GFuBRnTY8ulUng29wVTVp5oEmwO5q0codKc+Mb8PWmz4iIasG/GYWIPhCPc5etI2Rb+7ogMqIVujRzr+WWERERERGRI4nLspbBO3HR+j1PoKcKsyJa4a5AlsGrCe3bt4dcLseJEyfQo0cPAMCxY8fQqVMnSKX2ZeHq0qULjh07hpEjRwIAMjIykJGRYdc9i5uVm6qFyWiBXCGFVzOXKz/+GqjcnHjTi4iIiKie05easfWvVHz4dyqMZgEyqQSPdWuGp/s0h4szy+DZ46Z6KyoqCtu2bcOqVavwwAMPVDnPqVOnIJPJEBISIk4LDg5GQkICcnNzkZGRgbZt24rPNWnSBJ6enrh48aJdFxU3m2KW6Syrj/1lP/aZfRpCfym85Wjh7YMWvXxgMQsouKxDVrIW2clFyErWQl9UisuJhbicWIgTP1qXcfVVwre5Bj4trFmjXDwV4hceTDFLRHTz8ktK8dYvifj69CUIAFycZXihbws80rUp5CyDR0RERERE1aQ1mPDO78nYcfwizAKglEvxTJ9APNadZfBqkkqlwvDhw7F48WIsX74cmZmZ2LJlC1asWAHAmh3K1dW1WmXyxo0bh/Hjx6Nr167o1KkTli1bhv79+yMgIOBObwZ6jmiBe0a1gcFcyjTwRERERA2IIAg4FJ+DNw4lIKPQAADo1dwDs8JboYW3upZb55jsDoRav349tm/fjtWrV2PQoEHXnO/zzz/HxYsX8d5774nT/v33X3To0AHu7u5wdnZGQkICgoODAQC5ubnIz8+Hv7+/Xe25lfSKTM1oH/aX/dhn9mko/SWRSuDRxAUeTVzQurcfBEFAcb4R2clFyC4LjirM0qOo7OfCMWs6bqWrk7WcXqAr/Fq6wtvbtcH0GRHR7WARBHx9+hLe+iURBWVl8B7q0Agv9msJHxeWwSMiIiIiouoRBAHfn8/Emz8nIqfYCACIaOODGfe2RGO3Gwfb0O03Z84cLF68GE899RQ0Gg2mTZuGgQMHAgDCwsKwYsUKMcvT9YSGhuLVV1/F2rVrUVBQgL59+yIqKupONx8AIJVJ4eatQna2id/3ERERETUQSbk6vH4wAUeS8wAAfq4KzOzfEgNa+zAj6C2wKxAqISEBGzZswHPPPYfu3bsjKytLfM7X19dmZMWYMWMwevRobN26Fffeey92796NU6dOISYmBnK5HCNHjkR0dDQ8PT3h7u6O6OhodOnSBZ06dbrtG0lEVJdJJBJoPBXQeCrQoqsPAMBQXIrsFK31J7kIeek66ItKkfZvHtL+tR4IzRMFeAe71GbTiYgcxtlLRYg5EI9/LxUBAFr5uGB2RCuE+rMMHhERERERVV98djFiDsTjeFoBAKC5pwqzwoPRu4VXLbesYVOpVIiOjkZ0dHSl52JjY6tcZuTIkVUGR11rOhERERHR7aIzmvHekRR8eiwNJosAJ5kE43sGYEKvAKicZLXdPIdnVyDUgQMHYDabsXHjRmzcuNHmudjYWJuRFSEhIVi/fj1Wr16N119/Ha1bt8Z7770HPz8/AMDcuXOxZs0a/O9//4PBYMDdd9+NVatWMaqNiAiAwsUJzdp7oll7TwCAyWhG7sVia8aoFC2K8wxwcWf2EiKiGykoKcXG35Kw62SGWAZvct8WGMUyeEREREREZAetwYR3/0jGZ/9Yy+Ap5FI83bs5Hu/uD2c5y+AREREREdGNCYKAH2Oz8ObPF5CptWaX7Rvkhf8NCEaAp6qWW1d/2BUI9dxzz+G555675vNXj6wYMGAABgwYUOW8CoUCkZGRiIyMtKcJREQNktxZhkZBbmgU5AYAkEgAHx9XZGcX1XLLiIjqJosg4Jszl7Du8JUyeA+2b4SX+gXBR6Oo5dYREREREZGjEAQB+85nYc3PF5BdVgavfytvzBwQjCYsg0dERERERNUUn12M1w7G41iqNbtsU3cl/jcgGP2CvWu5ZfWPXYFQRERERER13fnLRYg+EI8zGdZg0ZbeasyOaIXuAR612zAiIiIiInIoF3KsZfDKb1QEeCjxv/BW6BvEMnhERERERFQ9VWWXndArAON7BkDB7LJ3BAOhiIiIiKheKNSXYuOvSfiirAye2kmGyX0DMbprU8hlvJggIiIiIqLqKTaasPmPFGz75yLMFgEKuRQT7wrAEz14o4KIiIiIiKrHIgjYezYTaw9fQK6uFIA1u+z/9Q9GU3dml72TGAhFRERERA7NIgj49t/LWHc4Efkl1ouJB9r5Yvq9LeHLMnhERERERFRNgiDgx1hrGbwsrbUM3r3B1jJ4vFFBRERU9xkMBixZsgT79u2DUqnEpEmTMGnSpOsuc/ToUURGRuLAgQPiNLPZjDfeeANffvkldDod+vXrhwULFsDHxwcAcPbsWYwYMcJmPSEhIdi1a9ft3ygickixmVrEHIjHqfRCAEBzTxVeDg9GnxbMLlsTGAhFRERERA4r9rIW0QficTrDejER5GUtg9ejuUftNoyIiIiIiBxKYo4OMQfjcTQlHwDQzF2Jl8ODEdbSu3YbRkRERNUWExODM2fOYOvWrUhPT0dkZCSaNm2KQYMGVTl/bGwspk+fDoXCdjDlO++8gz179mDNmjXw9PTE0qVLMXv2bGzZsgUAEB8fj/bt2+Pdd98Vl5HLedudiICCklJs+i0Ju05lwCIAKicpnukdiHHdm8GJlStqDPfIRERERORwivQmbPotCZ+fTBcvJp7tE4hx3ZqxDB4REREREVWbzmjGe0eS8cmxK2XwnuoVgCd7sgweERGRI9HpdNi5cyfeffddhISEICQkBHFxcfjkk0+qDITavn07oqOjERAQAK1Wa/Oc2WzGnDlz0LNnTwDA+PHjMXPmTPH5hIQEBAcHw9fX985uFBE5DIsg4KtTl/DWL4ko0JsAAAPb+uKle1vCz5WVK2oaA6GIiIiIyGFYLAK+PXMJaw8nijW1729rLYPHiwkiIiIiIqouQRCwPzYLq39KQGZZGbx7Wnph5oBg+Huoarl1REREZK/z58/DZDIhNDRUnNa9e3ds2rQJFosFUqltgPPhw4cRHR0NrVaL9evX2zz34osvin/n5ORg586d6NWrlzgtISEBbdu2vUNbQkSO5kRqPuZ+cQpnLxUBAFp6WytXdA/wqN2GNWAMhCIiIiIih/Bfphard57G0eQ8AEALLxVmhbdCr0DPWm4ZERERERE5kqRcHWZ8dRa/xmcDAJq6K/G/AcHoF8wyeERERI4qKysLnp6ecHZ2Fqf5+PjAYDAgPz8fXl5eNvNv2LABALBr165rrnPt2rV466234O7ujm3btonTExISYLFYMHToUBQVFaFfv36YPXs2NBqNXW2WSOya3WaZm1m2IWJ/2Yf9ZZ88nRHrf0nC16cvAQBcnGWY3DcQo7s2ZeWKa6ipzxgDoYiIiIioTtMarGXwdp5IZ01tIiIiIiK6aSWlZmw5koKPj6bBZBHgLJOIZfCUTrLabh4RERHdgpKSEpsgKADiY6PReFPrHDZsGAYMGIDNmzdj0qRJ+O6776BQKJCamgp/f38sX74chYWFWLFiBWbNmoWNGzfatX5vb9ebatetLtsQsb/sw/66PpPZgk//SsFrP8SisKwM3iPd/BH5YFs0clXWcuscw53+jDEQioiIiIjqJEEQsPdcJt78+YJYBu+hTk3wQp8A+PFigoiIiIiIqkkQBPwUn4PVPyXgcpEBADCgrS+m39MCzdxZBo+IiKg+UCgUlQKeyh8rlTf3XWJgYCAAICYmBv369cO+ffswcuRIHDlyBAqFAk5OTgCAlStX4pFHHsHly5fh5+dX7fXn5BRBEOxrk0RiDSC4mWUbIvaXfdhfN3biYgFi9sfjv6xiAEDbRi5YNrIzglydIBhKkW0oreUW1m23+hnz8aleABUDoYiIiIiozonPKkbMgTgcv1gIAGjuqcLsiFYY0qM5srN5EUZERERERNWTkleCVQfjcSTJWmK7iZsCL4e3wsi7ApGTo+W1BRERUT3h5+eHvLw8mEwmyOXWW+BZWVlQKpVwc3Oza10//fQTOnToIAY1KRQKBAQEIC/Pej5xdQm84OBgALA7EEoQcNPnIreybEPE/rIP+6uybK0B635JxJ6zmQAAN6UcL/RtgZFdmsCvkRvvW9jpTn/GGAhFRERERHWG1mDCu38k47N/LsIsAEq5FE/3bo7HuvtD4cQyeEREREREVD36UjPe/zMFHx1NQ6lZgJNMgid7BmBCrwConGWQSCS13UQiIiK6jdq3bw+5XI4TJ06gR48eAIBjx46hU6dOkErt+14xOjoaI0aMwOTJkwEAWq0WSUlJCA4ORnx8PEaNGoXdu3cjICAAAHDu3DnI5XIxgxQR1R8mswWfHU/Hu38ko9hohgTAsE6NMTUsCB5qJ/Cyom5iIBQRERER1TpBEPDD+Sys+fkCcoqtKavDW/vg//q3RGM3lsEjIiIiIqLqEQQBP8fn4PWfEnCprAxe7xaemBXeCs09WQaPiIiovlKpVBg+fDgWL16M5cuXIzMzE1u2bMGKFSsAWLNDubq6VqtM3uOPP45169ahXbt2aNq0KVavXo3mzZujX79+AKwl8xYsWIC5c+eisLAQixYtwqhRo+Du7n5Ht5GIatbRlHzEHIxHYo4OABDS2BWzIlohpHH1yrNR7WEgFBERERHVqoTsYsQciMc/aQUArGXwXg4PRp8WXrXcMiIiIiIiciSpeSV47ad4/J5oLVvT2FWBmQOC0b+VNzNAERERNQBz5szB4sWL8dRTT0Gj0WDatGkYOHAgACAsLAwrVqzAyJEjb7iexx9/HCUlJVi8eDFyc3PRt29fbNy4UcwstXHjRixbtgyPP/44pFIphg4ditmzZ9/RbSOimnOpUI83f07E/v+yAAAeKie8eE8LDO3YGFJeVzgEBkIRERERUa0oNprw7u8p2P5PGswCoCgrg/d4d384y1kGrz4wGAxYsmQJ9u3bB6VSiUmTJmHSpElVznv27FksWrQI//33H1q1aoUlS5agY8eOAIC2bdtWuUx0dDSGDx9u1+sQERERUf2jLzXjg79S8eHfqSg1C5BLJRjf0x8T72oOlZOstptHRERENUSlUiE6OhrR0dGVnouNja1ymZEjR1YKjpJKpXjuuefw3HPPVblMkyZNsH79+ltvMBHVKUaTBZ8eS8N7R1KgN1kglQCPdmmKyX0D4aZ0qu3mkR0YCEVERERENUoQBPwYay2Dl6W1lsHr38obMwcEownL4NUrMTExOHPmDLZu3Yr09HRERkaiadOmGDRokM18Op0Ozz33HIYOHYqVK1di27ZtmDx5Mn788Ueo1Wr8+uuvNvN/8MEH2Lt3LyIiIux6HSIiIiKqXwRBwOGEXKz+KR7phWVl8AI98XJ4MAK91LXcOiIiIiIichS/J+bi9Z8SkJJXAgDo2swNs8JboU0jTS23jG4Gh9oTEZHdDAYD5s6dix49eiAsLAxbtmy54TJHjx4Vb1iXM5vNeO2119C3b1+EhoZi+vTpyM7OFp8XBAGvvfYaevfujV69eiEmJgYWi+W2bw8R1ZwLOcWYsvMU5n13HllaI/w9lFgzsiNWDQthEFQ9o9PpsHPnTsybNw8hISG4//778cwzz+CTTz6pNO+ePXugUCgwe/ZsBAcHY968eXBxccH3338PAPD19RV/9Ho9PvroIyxduhSurq52vQ4REdU9vLYgopuVll+CmV/9i5e//hfphQY00jgjemh7rH2kI4OgiIiIiIioWi4WlGDW1/9i+q4zSMkrgbeLM5Y82BbvjOnCICgHxoxQRERkN3szb8TGxmL69OlQKBQ209955x3s2bMHa9asgaenJ5YuXYrZs2eLNz/ef/99fPvtt1i/fj1MJhNmzZoFb29vPP3003d8G4no9tIZzdj8RzI+/ecizBYBCvn/s/ff8VHdd6L//zozZ5p6F2o00dTAFGNTbezYxoUiwIn3m7vXWXvTduPkJk7s62Szxr8kxuCSsl7biRPvze5mTWKMMO4NFzDFNjZFgKgCVEC9S1NO+f1xRiPGEpgRAgl4Px8PPYROmzMfBjSf+byLjW9Mz+Hvr8zBJW3wLkllZWVomsbkyZND26ZOncozzzyDYRjYbD1/7zt37mTq1Kkowf7qiqIwZcoUduzY0as0+e9+9ztmzJjBzJkzI34cIYQQQ4/MLYQQkfIGdP7zkwr+/HEF/mAbvK9Py+buq6UNnhBCCCGEEP1h6jqBTz/Gu76Ehs+3Y8vKRs0vRM0vxFFQiC0rO/TZ7aXCG9D5r08q+fMnFfg0A7sCX5uSxTdnjCDGJWE0Fzv5GxRCCBGR7sobzz77LAUFBRQUFHDw4EH+8pe/9LlYsXr1alauXElOTg7t7e1h+3Rd54EHHuDKK68E4O///u/50Y9+FNr/n//5n3z/+99n2rRpAPz4xz/mt7/9rSxWCHERMU2Tdw7U85v3D1MbbIM3NzeZH80bTVa8Z5DvTpxPdXV1JCYm4nQ6Q9tSUlLw+Xw0NzeTlJQUduyYMWPCzk9OTubgwYNh26qrq3nllVdYvXp1vx7ny/RnLt99ziX2OcB5JWMWGRmvyMh4RW4wx0zmFkKISG083MBj7x2musULwPThCfzkujGMTJYKUEIIIYQQQkRKr6/D9+p6vK+sxzh5IrTdKNuHVrYP1r4AgBIfj5pnBUWp+QWoeQXYYmMH67bPSai99vs984ppwxP48bxcclOiB/nuxECRQCghhBARibTyxocffsjKlStpb2/nySefDNv3ve99L/TnhoYGXnjhBaZPnw5ATU0NJ06cCC1kdD9OVVUVtbW1pKWlnY+nJ4QYQEcbOlm14RCfHG8GICvezb3zcpmTmzy4NyYuiK6urrDgJCD0s9/vP6tjv3jcmjVrKCwsZNKkSf16nC+TnNz/yfu5nHu5kjGLjIxXZGS8IjcYYyZzCyHE2apq6eLxDYfZeKQRgLQYJz+8Npfrx6VccpnpQgghhBBCnE+mrhP4eCve9SX4t3wEug6AEhOL++ZbSSteSOOBIwT2lKLtLUU7sB+zpYXA1o8IbP0odB37iJFW1aiCQhz5hdhHjUZRh3b4yfGmLh5/7xCby5sAmVdcyob2K1EIIcSQE2nljaeeegqAtWvXnvaav/vd7/j3f/934uPjef7550OPA4QtSqSkpABw8uTJiBYr+vveRSoKREbG6+yYuo5/y2a869bQWLYP26hcHIVFqEUTrRKz8QmDfYvnrNOv86etx/nLp5VohonTrvCNq4Zz5/Rza4Mnr7EImCb21gpwp6Eo7kG5BZfL1SsQqftnt9t9Vsd+8bg333yTO+64o9+P82UaGtowzYhOQVGs4IH+nHu5kjGLjIxXZGS8IneuY5aS0v8AKplbiNOR8To7pmEQ+PRjukrW0Lh7F7bhI1ALJ+IomoijsAhb4tlXxhyqfJrBf35cwf/7ONiuwqbw9alZ/OOMEUQ5+98GT15jkbG3V4MrHkWRDHkhhBBCiIuVXluD79WX8b7yEkZtTWi7OnES7oVLcF07D5vbTVRKLJ3Dx+C6/kYATL8f7dBBKyhqbymBPaUY1VXox46iHzuK7/VXrAu53agT8nHkF6AWWG317Cmpg/FUe+kK6PzHtuP896eVBILttf/XtGz+4arh5zSvEEOXBEIJIYSIyEBW3ui2aNEi5s2bxx//+EfuuusuXn31Vbxeb9i1z+VxzjW7XSoKREbGq29aQwPNa16k+a+r0ap7Sszqn28n8Pn20M/O0aPxTL6CqMmT8UyejHPUKBRb/4OHLiTTNHm99CS/eGUvJ4IlZa+bkMbyBQUMH8BWFfIaO432Oij/wPo68j40H4eoZJJ/fBBsF34yl56eTlNTE5qmoQYzgerq6nC73cTFxfU6tr6+PmxbfX192ML0iRMnOHToENdff32/H+fLmCb9Dpw4l3MvVzJmkZHxioyMV+QGY8xkbiG+jIxX3/TmZppL1tG8+nkCx46HbQ/s2klX8GfHiOFEXWHNKzyTJ+Mak4tiv3g+5H9vfy3L1+/hWEMnADNGJ/OLxQWMSRu414W8xk6jsxGObrTmFUfeh8Yj4Iwl+d594JIxE0IIIYS4WJi6TmDrZrwvr7OqPxkGAEpsHK75t+BesBh11OgzXkNxOnHkF+DILwC+BoDR1GQFRe0tRdu7B23vHszODrQdn6Ht+Cx0ri0tPRQU5cgvRB0/HsV14RJ3TdPk3QP1/Pr9w9S2W/P/GSMTuXdeLiOSpL32pUwCoYQQQkRkICtvdBsxYgQAq1atYu7cubz11luMGTMmdG2XyxX2OB6PJ6Lr9ze7XSoKREbGqzfTNNF276KrZA2+994FTQNAiYvDc9tCUm+7mcadewjs3k2gdBf68WP4jxzBf+QILS9alQ6UmFirYlRhkZXZnVeAEjX03qAfbezk0XcPse1YMwCZcS5+fP0Y5uYmg6lTX992zo8hr7EvCHTiqN6Ko+IjnJUbUev3hu02bQ6UsTfS0NR5wSt8AOTl5aGqKjt27GDatGkAbN++naKiol6tjiZNmsSzzz6LaZooioJpmnz22Wd85zvfCR2zc+dOMjIyyMzM7PfjCCGEGFpkbiFOR8arb4F9e625xTtvg98HgBIdjfuW20hbvIDGPQcI7N5lzS3KjxA4dpyWY8dpeeml0LFqQSGOAmtuoeYXYouJGcyn1KfqFi9PvHeY9w81AJAa4+SH147mhvGpKAoytzgftC4cJz7FUbERR8Um1LrdKPQMjKnYUXKvpaFVx1QiH/9znVsIIYQQQojI6DU1+F5bH6z+VBvark6ajHthMa5r5qEE58f9YUtMxDlrDs5ZcwAr4Eo/fhRt7x6rpd6eUvSjRzBqa/DX1uB/713rRLsddcxY1IIi1LwCq0tGds55aUt3pKGDxzYc5pPjzYC1ZvGjebnMzU2WNniDQfej1u7EWb0FYmNh3DeA8/f3IIFQQgghIjKQlTfee+898vPzSU9PB6yFkJycHJqamkLb6urqyM7ODv0ZIDU1slKa55rdLhUFIiPjBWZnJ96338Bbsgb98KHQdjW/EHfxUlzzrj+lxOxYXLctBsBobkbbs5tA6W7r+95SzPY2/Fs349+62bqIzYY9d6y1cFFYhKNwIrZhGYP2xr0roPPcVqukbHcbvP99ZQ53Ts/B7bCfl9fCZfsa0wPWRKFyE47KjThOfoZiBMIO0ZLz8efMwZ89Gy3rKlIy0jHrB2dxx+PxsHjxYpYvX87DDz9MbW0tzz33HCtWrACs/9NjY2Nxu93Mnz+fxx9/nF/96lfccccdrF69mq6uLm6++ebQ9Q4ePEhubm7EjyOEEGLokrmF+DIyXmD6vPjeeRvvujVoZftC2+1jx+FZvAzXDTdhi/JYc4sR43DdfBsARlurtQixexda6S4rQ7ujg8DH2wh8vM26iKJgH5WLo6jIaqlXOBFbVvagzS38msF/f1rJc9uOh9rg/d2ULP5xxnCindb/EQP9erhsX2OGjlq3G0flJpwVG3Gc/BRF94UdoiWNx589m0D2bLTsq0nOzBy0uYUQQgghhPhypqbh37YF7/oSAls391R/iovDdfNtVvWnESPPy2MrdjvqqFzUUbm4b10IgNHZgVa2z6oY1b3e0diItr8MbX8Z8ELo/kIVowoKUfMKsMX2P5C+3afxxy3HWf15FXpwzeLO6Tn87yutNQtxgRgaau0uHFWbcVZtwXHiYxStK7TblvEV9Nic8/bwEgglhBAiIgNZeWPlypUUFxfz7W9/G4D29naOHj1Kbm4u6enpZGZmsn379tBixfbt28nMzAxrlSTEUKKVH8G77kV8b7yG2dlhbXS5cH3lJjzFS1HH553xfFtCQngWhaahHz4YzOrejVa6C6PmJPrB/egH98Naa6JgS05BLewOjCpCHTcB5QttZgaaaZq8d6iBJ947TE2b9YH5zFGJ/HjeGHISI6usIE7DNLE3HbQWJio34ajagi3QHnaIHpuNP2cOgezZ+LNmYUalhPYNhaSWBx54gOXLl3PnnXcSExPDPffcw403Wr3lZ8+ezYoVK1iyZAkxMTH8/ve/58EHH+Rvf/sb48eP5w9/+ANRp1Q/q6+vJz4+PuLHEUIIMXTJ3EKI09MrjtP10lp8r72C2dZqbXQ4cM37Cu7ipagFRWcMWLLFxuG8agbOq2YAwblF+RECpbvQdu8isGc3RnUV+pFD6EcOwUslACgJicGKtBOt5IvxEy5I64rN5Y08tuEQFc1WK8upOfH85Lox5KZEn/fHviyYJvaWchwVG63EiqrN2HwtYYfo0cMIBJMqAtmzMaLTQ/uGwtxCCCGEEEL0Ta85ifeV9fheXY9R11P9yTF5Ku6Fi3HOufacqj/1ly0qGueUaTinWPN90zQxak6i7eluqVeKdmA/Zmsrga2breCtIPuIkah5BaGKtvZRo1HUM4e2mKbJG2W1/O6Dcuo7rCrQ1+Qm83+uHU12gqxZnHeGjlq/B0fVZuur+uNe6xmGO4lA1gxck5dhxGaf19uRQCghhBARiaTCx5f5+te/zr/9278xYcIEMjMzeeKJJxg+fDhz584F4O/+7u947LHHGDZsGACPP/44d9111/l7ckL0g6lp+De+j7fkRQKfbw9tt2Xn4ClehuvmW7HFRlbRoJuiqqjj81DH5+FZZvXe1mtrrOyJ3bvQSnejHSjDaKjH/8EG/B9ssE50OFDH5+EonIhaVISjoAhbcsoZHikyx5u6eHTDIbYebQIgI87FvVJSdkDY2qtxVH4UDH76CHtnTdh+w5UQWpjw58zGiBsxpFclPB4PK1euZOXKlb327d+/P+zniRMnUlJSctprPfTQQ/16HCGEEEOXzC2ECGdqGv4tH+EtWUPgk22h7baMDNyLluC+ZSG2xMR+XVtRVdSx41DHjoPiZQAYDfUE9uxGC7bq1vbvw2xuwr/pQ/ybPrROVFXUcROsBYiiiaiFE7GnDlwA4clWL0+8f4T3DtYDkBLt5P9cM5obJ6TK3OIcKR21wWqyVitte3t12H7DGUcga0YwsWIOesLoIT23+DI+n4+HHnqIt956C7fbzV133XXa/+f37t3Lgw8+yIEDBxgzZgwPPfQQhYWFgLWA9txzz/GXv/yF1tZWbrjhBv7lX/6F6GgJyhNCCCHE0GFqGv6tm63qT9u29FR/io/HffNtuBYsRh0+YpDvMpyiKNiHZWAfloHr+hsAMAMBtEMH0fbsRttbSmDvHoyqSvRjR9GPHcX3xqvWyW63teZRUIgarBxlT+mp8Hygtp3HNhzi8yoriSQnwc29141h1qikC/48Lxumgb2hDGfVZhyVm3Gc2NYr2cJwxRPIvJpA1kz82TPRk8aj2Gy4UmKhvg3OY7VZCYQSQggRsbOt8PFlvv71r9PV1cXy5ctpbGxk1qxZPP3006Hs77vvvpuGhga+973vYbfbWbZsGd/4xjfO51MT4qzptTV4X34J7/oSzMYGa6PNhnP2XNzFy3BMmYYSYSWDs2FPS8eelo5r3lcAq1WGVrbPWrgotdrqmc1NVvuL0l2wOnhrmVlWYFRhEY6iidhH5aLYIysD6w3o/Me24/zXp5UEdBOHXeHvr8zhH6ZLSdn+UnwtOKq24Ky0Ap/UpkNh+027i0Dm1fizZxHImYOWUgDKwL+uhBBCiMEicwshwGhswPvKS3hfKsGoDQbCKwqOq2biKV6K46oZEb93Pxu25BRcc+fhmjsPANPvRztQFqpGG9i9C7OxwcrU3luK9wVrcmFLHxZspRecW+SO/dLs7C/yawZ/2V7Jn7YG2+Ap8LUpWXxzxghiXPKRdX8o/nYc1VtD7e7UxvDEA9PmJJAxjUD2HPw5s9FSi8B26Yz1qlWrKC0t5c9//jPV1dXcf//9ZGZmMn/+/LDjOjs7+da3vsWCBQt45JFHeP755/n2t7/N22+/TVRUFH/961958skn+cUvfsH48eNZsWIF9957L88888wgPTMhhBBCiB76yRM91Z/q60LbHVOm4l5QjHPutee9W8RAUhwOHHn5OPLyASsZ3GhqQtu3x6oatacUbZ/V5lvb+Tnazs9D59rS0mB8AVs9mbzQlcCBhGzcLhd3XT2cr0/NxqnK5+gDyjSxN+4PtrrbjKNqKzZfc9ghhjOWQOZVBLJmEsiaiZacB7bBWTtSTPPi7upd34++5IoCKSmx/Tr3ciTjFTkZs8jIeEXuXMcsNbX/vXUvRv0dJ3ltRuZyGC/TNAls/wTvuhetDGldB0BJSsa9YDHuBYuxp6d/yVUs52u8TNPEqKoMBkbtIrB7N3r5Yb74IIonCjW/oKflRX7haftum6bJB4caeOL9w5xotdrgXT0ykZ9cN4bhF7AN3iXxGtN9OE58GsrKVmt3ophGaLep2NBSJ4ba3QWGTQW1f61I5HdF5GRucWHImEVGxisyMl6Rk98XkZG5xYVxOYyXaZpou3bQVfKiVdlV04BgBvdti3AvLMaemXVW1zqvc4sT1VZgVLAqrX74YCjbPMTtxpFXEGzVPRG1oBBbfMJpr7v1aCOPbjjM8aYuACZnx3Pf9WMYcwHb4F0SrzE9gFrzOc5Kq92dWvM5iqGFdpsoaKmFwWqycwgMuxIc/Zu/DfXfFZ2dnVx99dU8++yzXHXVVQA89dRTbNmyhf/6r/8KO3bNmjU8/fTTvPPOOyiKgmma3HTTTXznO99hyZIl3Hbbbdx44418//vfB6C2tpa5c+fy2muvMXr06LO+J5lbXBgyZpGR8YqMjFfkhvrvi6FIfl+cf5fCeJmahn/zJrwvr7OqPwWfiBKfgPuW23Dftgj7AFV/GorjZRoG+rGjaHv3WFWj9uxGLz/Sa16i2+zYRuXimWitdzjyC7DlDD/vlWaH4pgNCNPE3nzYanNXuRln9RZsXQ3hh6hRBDKn4+8OfEot/NJkiwv1u+LSSfkQQgghhDhPjLY2fK+/gnfdi+gVx0Pb1Sum4CleavXYdjgG8Q57KIqCPTsHe3YOzL8VAKO93ZogBKtGaXtKMTs7CGz/hMD2T+iyTsQ+clQws9vK7rblDKeqxctjGw7zUXkjAMNiXfxoXi7XjpE2eGfFNKy+2BWbrLYUJ7ahaN6wQ7SEXAI5s/FnzyGQNQPTFT9INyuEEEIIIc43o7MD35uvW3OLI4dD29XCItyLl+G69joUl2sQ77CHoijYM7OsgKwbrao6RmcH2r69VtJF6W600t2Y7W0EPt9O4PPt1twCsA8fEaoapRZOxD5iJDXtfn7zwRHePWC1wUuKcvCDa0Zzc16azC3OhmlibyzDWbEJR+VGnFVbUbTOsEP0uBH4c+YE22nPwnT3r5XixaasrAxN05g8eXJo29SpU3nmmWcwDCNUHRBg586dTJ06NfSaUxSFKVOmsGPHDpYsWUJFRQWTJk0KHZ+WlkZSUhI7duyIKBBKCCGEEOJc6Seq8b7yEr5XX8ZoqA9td0y9EvfCxThnX3NRVX/qL8VmQx01GnXUaLh1AXtPtvGbN0rRyvYxoek4U9qrKGypQG1phMMH8B4+ACVrrHPj4kJBUWp+IWp+AbbYuEF+RkOUaWJrORqs9mRVfLJ31oQforoJDLsy1OpOS50I9qGxNvZFEgglhBBCCHEa2v4yukrW4HvnTfBZlZCUqGhc82/BvXgJ6qjcQb7Ds2OLicE5/Wqc068GwNR19KPlPVWjSndjVFaglx9BLz+C7+V1APiiYtkVn0Nm4kiuSB7JtK9czf+eMxaPtME7I1vLMavVXcUmnFUfYfM2he3Xo9J6srKzZ2HEZA7SnQohhBBCiAtFO3IY77oX8b3xGmZXMHjF7cZ1w3w8i5eijhs/uDd4lmxR0TinXolz6pXAKdnZocCoXejHj4W+fK+9DEDAE82u+BxSE0dyRfIICq+5mrvnjZc2eF/C1laFs2KjFfhU+RG2rvqw/YYnORj0NBt/9myMuJxButPBVVdXR2JiIs5TFgJTUlLw+Xw0NzeTlJQUduyYMWPCzk9OTubgwYOhP9fU9Cz4dHZ20tLSQlNT+Lzuy/Qntq/7HIkLPHsyZpGR8YqMjFfkZMyEOHdW9aeNeF8qIfDJtp7qTwmJVvWnBYutJOjLUHNngKc+KmfdrpOYQFTmeK5bdiPXTs7EblMwamusSrZ7Sq3qUQfKMFtbCWzdTGDr5tB17MNHhIKiHAVF2EfnRtzq+1Jha604pdXdZuztJ8L2m3YXgWFTQq3uAulXgH1oJO58mcvzb1QIIYQQ4jRMnw/fe+/gLXkRbW9paLt99BjcS5bhuuEmbFEXrmXD+aDY7ai5Y1Bzx8CiJQAYTY2hhYuGTz/DcWg/rs42pnfuZfqJvdaJm3+Pb+w49GDVKLVw4lm3AryUKV0NOCs/shYnKjZhb6sI2284YghkzQgtTuhJ4+QTISGEEEKIy4AZCOD/8H26Stag7fw8tN0+fATu4mW4brrltO2pLxanZme7FywGwGhpRttjVaRt/PQz7Af24ezqYGpXGVNPllknbn6WwN/G0l40MdRSzzYs47KvDKV4m6yFiIpNOCo3obaUh+03VQ+BzKvwZ8/BnzMHPXkCKLbTXO3y0dXVFRYEBYR+9vv9Z3Vs93G33HILv//975k6dSrZ2dk88sgjAAQCgYjuKTm5//+2z+Xcy5WMWWRkvCIj4xU5GTMhIqdXV+F95SW8r76M2djTfswxbXpP9ach0pXiQtMNk3W7T/D0pqO0eK1W0DfnpfH9uaNIiekJyrGnD8OePgzXdTcA1nxMO3wQbU+pNT/Zt8dKCO9O2njjVetElwt1Qh6O/EIrQKqgEHtq2gV/nheCrb062OpuC86qzb3WMkybg0D6lOB6xkwC6VNAdQ/S3Z4bCYQSQgghhCA40Vj3It7XXsZsabE2qiqua6/DXbwMtWjSJf2hvC0xibqi6Txen8ym/EmoEzSm+Wv5x/hWRtUcQSvdjVFfh1a2D61sH941f7XOS0sLtdNTCyeijh136WdPBDpxVG/DWbkJZ8VG1Ia9YbtNm8PKksi22t1paZOGbHlYIYQQQggx8PSaGrwvl+B9eR1mo9ViGrsd5+xrcBcvxTFl2qU9t4hPoKnoSn7TkMw74wuxj9WZ5K/jm/GtjKsvt+YWNSfRD+5HP7gf1r4AgJKUjKNoYk9LvXETLv1WH1oXjhOfWhVlKz9Crd2FghnabSp2tPQrrKpPOXOshQj7JT4m/eByuXoFPHX/7Ha7z+rY7uP+6Z/+iYqKCm699VZUVeWOO+5gwoQJxMTERHRPDQ1t3QUczpqiWMED/Tn3ciVjFhkZr8jIeEXuXMcsJUUCqMTlxdQ0/Js+xLs+WP0pSElMwn3LAtwLFmHPyh7EOxx8u6pbWfXuIfbXtgMwNjWan1w3hsnZ8V96ruJw4JiQj2NCPiz9KgBGczPa3lICe/eg7S1F27cHs70dbecOtJ07Qufa0tJQ86ygKEdBoTU3cV98AUFKR+0pre42o7YcDdtv2lS0tEn4uys+DZsGDs/g3OwAu8RXqYQQQgghTs/UdQJbN9O17kUC27aEysza0ofhXliM+7aF2JKSB/kuzz9vQOe/Pqnk/318HL9uYrcp/H9XjuLuq68hymm1wTNN0yotu3tXqKWeduggRm0t/g3v4N/wjnUxlwt1Qr4VGFU0EUdBEbaEhMF7cgPB0FBrd4ZaUjhOfoZihGcDa8n5wcWJ2fgzrgLnxV01TAghhBBCRMY0DALbP8Fbsgb/RxvBMACwJafgWrjYamFxiWYVnyqgG6z+rIpntxyjK2BgU2DZ1By+PXMOse6ej6L17rYVu3ehle5GO7gfs7EB/wfv4f/gPesghwN1fF5wblFkzS2SUwbpmQ0QQ0et242jchPOyk04TnyCovvCDtESx+HPmU0gew6BrKsxnbIo/GXS09NpampC0zTUYGJOXV0dbrebuLi4XsfW14e3GKyvryctzfr3GRUVxW9/+1va2tpQFIWYmBhmzJhBVlZWRPdkmvQ7cOJczr1cyZhFRsYrMjJekZMxE+LM9KpKvC+/hPf1l3sSJwDHlVfhXliMc9acy7b6U7eGDj//trGcV/dYLYtjXSrfmTWCJZMyUW39TyqxJSTgnDkb58zZQLDV9/FjVtWofaUE9pSiHzlsrXvUbsD/wQbrRLsde+5YHPkFVnBUfiG2nOFDLsFF6WrAUbUlFPykNh0K228qNrTUIgJZM63gp4zpl+xahgRCCSGEEOKyYzQ14X11Pd6X1mKc7Ol57LhqBu7iZTivnolitw/iHV44m4408NiGw1S1eAG4cngCP7luDKOSo8KOUxSlp7TsV24EwOzqIlC2tyc4as9uzNZWtJ2fh7X+sGXn4CicGMruto8chWIbwu0bTBN708Fg4NNHOKq3YPO3hR2ix2aHsrL9WbMwoy7yBRkhhBBCCNEvRlsrvtdeoWvdixiVPW0FHFOm4l68DOecay79iqlBnxxv4tF3D1Pe2AnAxMw47rt+DOPTelfSsaelY09LxzXvKwCYPi/a/rJgYNQuAqW7MZubrASM0l2w2jrPlpkVrEZrtdOzj84d2nM308TeUm4FPlVsxFG1GZuvJewQPXqYNa/Ink0gexZG9LBButmLV15eHqqqsmPHDqZNmwbA9u3bKSoqwvaFueekSZN49tlnMU0TRVEwTZPPPvuM73znOwCsWrWKsWPHUlxcDMCuXbtoa2tj8uTJF/ZJCSGEEOKSYgYCPdWfPv04tF1JSsJ9y0Kr+lNmZIHXlyLNMHlhRzW//+goHX4dgEWFw/inOSNJihr4yqiKzYY6chTqyFFw6wIAzM5Oa26ydzfa3j1oe0oxGurRD5ShHyiDdS9a58bGoeYX4MgvwD1zOkbWKJTYL69UNaD3723CUb0VR+VmnFWbURv3h+03UdBSCqxqT9lW4JPpijvN1S4tl8csXAghhBCXPdM00Up34y1Zg+/9dyFgVfRR4uKsicaiYuzZOYN8lxdOVUsXT7x3hA8PW/3GU2Oc/PDaXL4yLuWssxgUjwfn5Kk4J08FgtkTFcdDCxda6S70o+UYlRX4KitCPbeVmBjU/MJQ1Sg1Lx9bdGRtBgaarb0aR+VHVlZ2xSbsnTVh+w1XAoHsWfiz5+DPmY0RN8Kq9y2EEEIIIS5L2v59dJWswffOW+CzKvoo0dG45t+Ke9ES1FGjB/kOL5zaNh+//eAIb+2vAyDR4+CeuaO4tSAd29nOLVxuHBOvwDHxCiBYkbaqMlSNNrB7N3r5YYzqKnzVVfjeet06zxOFml9gtdMrmoiaX4gtdnArKCmddaF5hbNyI/b26rD9hjOOQNYM/DlzCGTPRk/IlbnFOfJ4PCxevJjly5fz8MMPU1tby3PPPceKFSsAqzpUbGwsbreb+fPn8/jjj/OrX/2KO+64g9WrV9PV1cXNN98MQFpaGk8++SS5ubnYbDZ+8pOf8Hd/93ckXOyVjoUQQggxKPTKCryvvIT3tVcwm4LVnxQlvPrTZZI48WW2VzTz6IZDHK63Eivy0mO47/oxFGZc2MAdJSoKx+QpOCZPAbq7ZdSi7d1NYE+pFRy1vwyzrZXAti0Etm2h8z/+CIA9ZzhqQaG1/pFfiD13zID+/Sq+VhzV23pa3dXvDWutDaAlT+hpdZd5FaY7ccAe/2Ii/6qEEEIIcUkzOzvxvfMmXSVr0A8dDG1X8wpwFy/Fdd1XUFwXX2/n/vJpBv/1SQX/7+MKfJphtcGbksXdM4YT7Ty3t4aKzYY6YiTqiJG4b10IgNHagrZ3j7WAsXsXgWDP7cDHWwl8vNU60WbDPjrXCowqKMJRNBFbZtZ5LSur+FqsErGVm3BUbupdItbuIpB5Vajqk5ZSAMoQrmIlhBBCCCHOO9PnxbfhHbwlL6Lt2xPabs8dg2fJ7bi+chNKVNQZrnBp0XSD1Z9X8+zmY3QGdGwKLJ2UyXdmjSDOfW6tPBRFwZ6dYyWrzL8VAKO9HW1vaTA4ajfanlLMzg4C2z8hsP0TuqwTsY8cZQVGFU7EUVh03ltWKP52azGiciPOio29s7BtTgIZ0whkz8GfPQstbSLY5GP5gfbAAw+wfPly7rzzTmJiYrjnnnu48UarmvHs2bNZsWIFS5YsISYmht///vc8+OCD/O1vf2P8+PH84Q9/ICr4b/fv//7vqaqq4pvf/CY2m41Fixbx4x//eDCfmhBCCCEuMmYggH/j+3jXryOw/ZPQdiUpGfdtC3HfulCqP52its3H7z48wptlVmJFvFvln+eMYmHhMOzn0AZvoFjdMtKxp59S0TYQQDt80AqK2luKUbaHwLHj6BXWl++N16yTXS7U8RNw5BcFA6QKsKeln/1jd881qrfgqNqCWrcbxTTCjtESxwZb3c0gkDUD05M8YM/9YiYzLiGEEEJckrSj5XjXvYjvjVcxOzqsjU4XrhtuxL14KY4J+YN7g4Pgo/JGHttwiMpmqw3etJx4fnL9GEYnn78e0La4eJxXz8R59UwATE1DP3K4J7O7dBfGiRPohw5agWrdZWUTk3AUFoUWMNTxE1Dcrv7fiO7DcXJ7KCtbrd0ZNmGwemNPDGVlB4ZNBfXyCZATQgghhBCnp1dV4l23Fu9r6zFbW62NDgeua6/HXbwMtbDovAbaDEXbK5pZ+e4hyhusbO2ijFjuu34ME9LPXzUmW0wMzulX45x+NQCmrqMfLT9lbrEbo7ICvfwIevkRfC+vA0CJj7cSLrrnFnn5KJ5zeK+vB1BrPsdZuRFn5UeoNZ+hGFpot4mClloYqigbyJgODs+5PHVxFjweDytXrmTlypW99u3fHx6cNnHiREpKSvq8jt1u52c/+xk/+9nPzst9CiGEEOLSpVccx/vyOryvv4rZ3GRtVBQcV83AvWAxzpmzpfrTKQK6wfPbq/jj1mN0BQwUYMmkDL47ayTxnnNLrDjfFIcDx4R8HBPyUZbeTkpKLLWHKgjs3UNg7x60PbvRgknh2q6daLt2hs61paah5ltBUY6CQtTxeSju4Pwk0InjxCc4uys+1e5CMfWwx9biR4Va3fkzZ2BGp13Ip37RkH9pQgghhLhkmJqGf+MHeNetIfDZ9tB2W3YOnsVLcd18K7a4C9ujeSg40erlifcO8/4hqw1eSrSTH147mhvGp17wBRtFVVHHjUcdNx6W3A6AUV9PYM/uUGCUtr8Ms6kR/8YP8G/8wDpRVVHHT0C/chramAnYC4qwp6Se/oFMA7V+L46KjVbVpxPbUDRv2CFaQi6BnNlW1afMGZjuhPP0rIUQQgghxMXG1HX8WzfjLVlDYNuW0HbbsAzci5bgvnUBtsSkQbzDwVHf7uO3H5bzxr5aABI8Du6ZM4rbCs++Dd5AUex21NwxqLljYNESAIymxlCb7kDpLrSyfZgtLQQ2byKweZN1ot2OOnYcWnBuoRZMxJ5+hqxs08TeWIazwqom66jeii3QEXaIHjcCf/ZsK7Eiayam5/J7bQghhBBCXI5Mv99ak1i/NnxNIiUV160Lcd+2EPuwjEG8w6Fp29EmHt1wiGNNXQAUZcRx3/W55zWx4nyzJSTgnDEL54xZAJiGgV5xHG1PqVXZdm8p+uFDGHW1+D/YgP+DDcETbTgy4vAkB4iOOoEnqQtnrB7qnq3HjcCfdbUV/JQ1EyNGXk9nQwKhhBBCCHHR0+tq8b68Dt/6dRgN9dZGmw3nrDm4i5fhmHoliu3ya2vm1wz++9NKntt23GqDp8AdU7L55sxzb4M3kGwpKbiumYfrmnkAmD4f2oH9YVWjzMZGtD2lNO4p7TkvIwNHQU/VKEeqE9eJzVbVp6qPsHmbwh5Hj0ojkB0MfMqejRGbeUGfpxBCCCGEGPqMpka8r6zH+9JajJqT1sZgFrdn8VIcV89EsdsH9yYHgWaY/O3zKv6w+Rgdfn3IZmvbEpNwzbkG15xrgGDLigP70fbsDrXrNurr0Mr20VS2r+e8tLSearSFE3EOi8Z1YguOyk04Kz/C1lUX9jiGOynYRtuaXxhxwy/o8xRCCCFE33w+Hw899BBvvfUWbrebu+66i7vuuuuM53z66afcf//9vPvuu6Ftuq7z61//mpKSEjo7O5k7dy4///nPSUlJAcA0TR5//HHWrFmDYRgsW7aMH//4x9guw8+gL1f68WN4X34J7+uvYLY0WxsVBcdVM3EvKsZ59Uyp/tSHE61efv3+Ed47aK3jJEU5uGfuKG7Jv/CJFeebYrOhjhiJOmIk3HIbAGZ7M+bWVzA+/YDA/gP4qjrQuiBQ1UygClqJA+Kwue04cnOwT5qOOnYman7BZZnkfy7kX58QQgghLkqmaRL47FO8JS/i3/QB6FZ5UCUpCfeCxbgXFJ85q/cSt+VoI49tOMzxYEbFlGyrDd6YlPPXBm+gKC4XjqKJOIomAtbftXGiGq10F/ZD+2j7ZDv6kcMYJ07gO3EC3ztvWeepBp6kAJ4UP1EpflzDYjBGXx0MfpqDnjQOLrHJlBBCCCGEOHemaaLt3oV33Rp8770LmtXmTImLw33rQtyLlmDPyh7kuxw8n1e2sOrdQxyqt6ogFQyz2uDlDxv62dqKw4GjoBBHQSGer/6dNbeorUEr3YV6qIy2Tz5FO3QQo7YW/4Z38G94xzrPbuJOsuYVnhQ/7vQozNHT8WfPwZ89Gz0lDxRZ6BRCCCGGmlWrVlFaWsqf//xnqquruf/++8nMzGT+/Pl9Hr9//35+8IMf4HK5wrb/4Q9/4LXXXuM3v/kNiYmJ/PKXv+S+++7jueeeA+A//uM/eOWVV3jyySfRNI2f/OQnJCcnc/fdd5/35ygGj+n34//wPbzr1xH4/JTqT6lpPdWf0ocN4h0OXT7N4L8/reA/tlWEkra/OjmLb80cQYzrEg5Z0QOotTtDre4cJz+1OlfEAtPAnAo+0unQx9PZEo+vqp3AoaMYXh++PUdhz1H4n78BYM8ZjppfYLX9zi/EnjtGgu3OQEZGCCGEEBcVo60N35uv4V33Ivqxo6Ht6qTJeIqX4Zx7LYpj6GQkX2gngxkVG4IZFcnRTv7PNaO5acKFb4M3UBRFwZ6ZhZqWSMr0JOIndWA/Uod24BCd9U66Gpx01TsxAjY6a1101rpoCJ5rH9GFWngSR9F+1EIX9pzhl2V1MCGEEEII0ZvZ2Yn37TfwlqxBP3wotF3NL8RdvBTXvOtRXO5BvMPBVd/h598+PMJre602ePFulX+eM4pFRcMu2mxtRVGwpw9DTUkgZXoycRM7sJfXEyjbj7feEZpb6H4bXXUuuup6FkVt2V04Ck/iKDqAWujGPnKUzC2EEEKIIaSzs5MXXniBZ599loKCAgoKCjh48CB/+ctf+gyEWr16NStXriQnJ4f29vawfbqu88ADD3DllVcC8Pd///f86Ec/Cu3/z//8T77//e8zbdo0AH784x/z29/+VgKhLlHasaNWR4o3XsVsabE22mw4rp6Je2ExzqtmSEDKGWw83MDj7x2mqsULBJO2rxvDmNShn7QdMUNDrduNo2qzFfxU/QmK1hl+iCcFf7DNXSB7Jnr8KFAU3IAbMDUN/fBBAnv3WJVt95RiVFagVxxHrziO783XrQs5XagTJuDIL0TNL0QtKMSedvkWB/gi+RcphBBCiIuCdvAAXSVr8L39BnitN8yKJwrX/FtwL16KOjp3kO9wcAV0g798Wsmfth7HG8yo+NqULL454yLOqDA0K1uiYiOOyk04Tm4HI0BUcLdrGLgKconOnoM/ayZdgWFoZYdCLfX0iuPox8rRj5Xje3U9YGX1q/lFOIqCLfXyClA8nsF7jkIIIYQQ4oLTyo/gXfcivjdew+y0qhzhcuH6yk14ipeijs8b3BscZJphsmZHNc98dDTUBm/xxGH80+xRJAyhNngRMXTU+lIcFRtxVm7CceIT0H09c4t0cE8YQVTObPxZs/Aa2QT2H+mZWxwtx6iswFdZge+NVwFQYmJQ8wutdnpFE1Hz8rFFxwzecxRCCCEuc2VlZWiaxuTJk0Pbpk6dyjPPPINhGL3a1n344YesXLmS9vZ2nnzyybB93/ve90J/bmho4IUXXmD69OkA1NTUcOLEiVCQVPfjVFVVUVtbS1pa2vl4euICM30+fB+8h3d9CdrOz0PbbWlpuG9bhOuWhZd1R4qzUdncxePvHWbTkUYAUmOspO0bxl+8Sdu9GDr2hr1wYDtx+99Drd6GLRAeWGm4EwlkzQgFP+mJY8/YuUJRVdTxeda8tHiZdY2WZrR9ewnsLUXbU4q2dw9mexvarp1ou3aGzrWlpKIWFKLmFeAoKEQdn3fZrn9cpKtiQgghhLgcmD4fvvc34F23Bq10d2i7fXQu7sVLcd10M7aoSzBrIELbjjbx6IZDHAu2wZucFcd914+9+DIqTBN700EclZtwVmzCUb0Fm78t/Jj4HLxZs/BnzcafPQszKjW0SwXUcYW4Fy4GwGhuJrBnN9ruXdb3fXswW1sJbP2IwNaPrJPsduy5Y3EUFuEomohaOBFb+rBLZyImhBBCCCEAK6vWv/F9vCUvhrWxsOcMt+YWN9+KLTZu8G5wiNhR2cKqDYc4WGcFiOWlx3D/9WMoyLjIxsY0sbeUB+cWG3FUbcbmawk/JjYDb+Ys/DmzCWTPxojuaWNiB+xjCnDfugAAo60VbU+pFRi1exeBfXsw29sJfLyVwMdbrZMUBfvoXCswqtBq9W3LzJK5hRBCCHGB1NXVkZiYiNPpDG1LSUnB5/PR3NxMUlJS2PFPPfUUAGvXrj3tNX/3u9/x7//+78THx/P888+HHgcIC3hKSUkB4OTJkxEFQvXnbUL3OfIW4+xEOl7a0XK8L6/D+/qrmK2t1kabDefM2bgXLraqP9nt5+dmh4CBeH15Azr/sa2C//qkAr9uotoU/r+pWfzjjBFEOS/ysTMN7A1lVpu7yi04qreG5hnd//MYrngCmVcTyJ5hBT4lTwhrq92fobUnJGCfMRPXjJnB2zDQKytCFaO0vXvQDh/CqK/D/8F7+D94L3iiHXV0LmqwXbiaXzjoXTMu1P9hEgglhBBCiCFHr67Cu74E7yvrMVuarY2qivOa66wM7YlXyIfJQE2bj9+8f5h3Dlht8JKiHPzgmtHcnJd20YyPrf0EjsqPcFZuxFGxCXtnTdh+wxVPIHs2/uzZBHJmk5RbRHtDO6Z5FtdOSMA1aw6uWXMAa/FLO3QArXQ3gd1WZrdRW4N+oAz9QBnetS9Y56WkohYWBRcwilDHjkc55QMUIYQQQghx8dBra/CuX4f35XWYjcEGyjYbztlzcRcvwzH1yovmvfP51NDh5982lvPqHuv9eJxb5Z9nj2RRUQZ228UxPkpnnVXtqWITzspN2NurwvYbzlgCWTPxZ89GGz6HxDFXnP3cIjYO59UzcV4dXHjQNPQjh4MVo3YTKN2FcaIa/fAhq83iS9aCqpKYhKMwWI22cCLq+AkoLteZHkoIIYQQ/dTV1RUWBAWEfvb7/f265qJFi5g3bx5//OMfueuuu3j11VfxBrsVnPpY/X2c5OTYft3XuZ57OTrTeBleL21vvUXT3/5G16c9SRNqRgYJy5aSsHQpjmHDTnv+pag/ry/TNHlzz0l+8co+qpqtpO05Y1N4cEEBY9Iu0sqppgl1ZVC+EY5uhKOboKsx/BhnLIyYCaPmwMg52IYV4bLZOe/v+tPiYUph6EejsxPv3r107dxJ146ddO3ciVZbi3bwANrBA3jXWXMUW1wcnqIiPJMm4bliEu6iItTExPN9t72c7//DJBBKCCGEEEOCqesEPt5KV8kaAls30/1ptC0tHfeiYty3LsSWnDLIdzk0BHSD57dX8cetx+gKGNgU+OrkLL49c+i3wVN8rTiqtliBT5WbUJsOhe037S4CGdODWdlz0FIKwGZliSgK55QmoKgqjgn5OCbk41n2NQD0mhq0PbsIlO5GK92FdmC/lTXx/gb872+wTnQ6UcfnnbKAUYQtKbnf9yGEEEIIIc4v0zQJbP8Eb8ka/B9tBF0HQElKxr1gMe6Fi7GnSRsLsNrgrd1ZzdMfHaXdZ43ToqJhfG/2KBKihnYbPMXfjqN6G45Kq92d2lAWtt+0OQlkTCWQPccKfkqbCDZrvjQQcwt13HjUceNhye0AGPX1ViXa0l1WgNT+MsymRvwbP8C/8QPrRFVFHT/BmlcUFKEWTcSeknqGRxJCCCHE2XK5XL0Ckbp/drvd/brmiBEjAFi1ahVz587lrbfeYsyYMaFru4IBzt2P44mwBVVDQ9tZBWWfSlGsAIL+nHs5OtN4aeVHrKSJN17DbAtWf7Lbcc6chXthMc7pV6PY7bQA1Ld98dKXpP6+vo42dvLou4fYdqwZgGGxLu69LpdrxySjKCb1F8v4mSb25iPBik+bcVRtwdZVH36II4pAxpUEsmYSyJ6JnlZEcmpiz5g1dg7OvQOMHA8jx+Ne9FXcWIlB2p5SAnv3WHOV/WUYra10fPQRHR99FDrNnp1jVY3KL7Ra640Zi6Ken7Wmc/0/LCXl7AKohvZKmRBCCCEueUZzM95X1+N9aS3GierQdseVV+EuXoZzxqzz9obrYvTxMasN3tFGK6NiUmYc910/hnFDNaNC9+E4uT2Ylb0RtXYnimmEdpuKDS21yFqcyJlDYNhUUPv3wUR/2NPTsaffgOu6G6z78XrRyvYGFzCsylFmSzPa7p1ou0/ptZ2VHZbZbR81+pIuiSyEEEIIcTEw2trwvf4K3nUvolccD213TJ6Ke/ESnHOuRXEM7eCeC2lnVQur3j3EgWAbvAlpMdz/lTEUDtU2eHoAteZznJVWxSe15jMUQws7JJBSSCAnWFE2Yzo4oi7Y7dlSUnBdMw/XNfMAq9W7dmB/sGqUFRxlNjai7SlF21OKt/u8YRnhc4vcMTIHFkIIIfohPT2dpqYmNE1DDf4uraurw+12ExcX2fub9957j/z8fNLTreB5l8tFTk4OTU1NoW11dXVkZ2eH/gyQmhpZgLNp0u9gpnM593LUPV6mz4vvvQ1415eEf96bPgz3gkW4blmAPTUt7LzL0dm+vjr8Gs9tPc7/bK9CM0ycdoW/vzKHb0zPwe2wh641ZJkmttZjOLsDn6q3YO8I71phqm4Cw64kkDUDf9ZMtLRJYO+ZV3bnVwzFf5O21HSc16bjvPZ6IFjZ9vAhAntL0fZa8xK94jh6ZQV6ZQW+N1+3TnS6UMdPCLbTK0DNL8KWNrCdSM73eMmMSgghhBAXnGmaaHtL8ZaswbfhHQgEAFBi43DdchueRUuw5wwf5LscWmrbfPzmgyO8vd+aVCdFObhn7ihuyU/HNpRaeZgGav1eHBVWVrbjxDYUzRt2iJYwOhj4NJtA5gxMd8Lg3GsfFLcbxxVTcFwxBbBeq0ZlRVjLC738CEZVJb6qytDEQImKtjIlulvq5RdiixmiwWlCCCGEEJcYbX8ZXSVr8L3zJvh8gPX+zDX/FtyLl6COyh3kOxxaGjv9PPlhOS8H2+DFulT+afZIiicOsTZ4pom9sQxn5Uc4KjbiqN6KLdARdogeN8IKesqejT97JqZn6FRuVVwuHEUTcRRNBIJzixPVoWq0gdJd6IcPYZw8ge/kCXzvvGWd6HbjyC/oaadXUIgtLn4Qn4kQQghxccjLy0NVVXbs2MG0adMA2L59O0VFRdhstoiutXLlSoqLi/n2t78NQHt7O0ePHiU3N5f09HQyMzPZvn17KBBq+/btZGZmkpaWdqbLikGkHTlM1/p1+N54DbM9WJ3Ibsc5czbuhcU4rrxKEl0jYJomb5XV8dsPj1DXblVEmz06iXvn5ZKdEFlltAvN1lqJo2qzFfxUtRl7e3XYftPuIjBsilXxKWsmgfQrwH5ptLdWuivUjp8AxcsAMFpb0PYFk8P37kHbuwezrbV3cnhyirUGkh+sHDUhDyXCKngXkgRCCSGEEOKCMbu68L3zJl0lL6If3B/ark7Iw118O67rv4LiunDVgC4Gmm7w/GdVPLulpw3eskmZfGfWSGLdQ+OtnK3lmNXqrmITzqqPsHmbwvYbnlT8ObPxZ88hkD0bIzZzkO40coqiYM8ZbgXm3XwbYFUa0PaW9rTT27sHs7ODwCfbCHyyjS7rROyjRlsLF8HgKFt2zoBmTAghhBBCXM5Mnw/fe+/gLXkRbW9paLt99BjcS5bhuuEmbFHRg3iHQ49umKzddYKnNx2lzWdVUlpYmM735owiMco5yHdnsbVV4ajchLNiI87Kj7B11YXtN9xJ+LNnBQOfZmPEjxikO42coijYM7OwZ2bBjfMBMDo7rMWGYNKFtmc3Zns7gc+2E/hsuzW3AOwjRgXnFVblKPvwESgRLugKIYQQlzqPx8PixYtZvnw5Dz/8MLW1tTz33HOsWLECsKo2xcbGnlWbvK9//ev827/9GxMmTCAzM5MnnniC4cOHM3fuXAD+7u/+jscee4xhw4YB8Pjjj3PXXXedvycn+sX0evG9/w5HX3uZrs8/D223Dcvoqf4kbYojdqi+g0ffPcRnlS0AZCe4+dG1uczJHTpJCaeytZ+wWt1VbcZZtQV76/Gw/abNgZY+GX/WDCvwadgUUIdugM9As8XF47xqBs6rZgDBBI6K41bVqGBbPf3wQYyGevwfvo//w/etE+127KNzrSSO/CLUgkLsOcOHzDxlaKyeCSGEEOKSph07iveltfhefwWzvd3a6HThuv4G3MXLcOTlD+4NDlGfHm9m1YZDlDdYPaWLMuK4//oxjE8f3EpDSleDlZUdbEnxxYmD4YgmkDUjtDihJ43vqQ97CbDFxoZPDHQdvfzIKS0vdmNUVaIfOYx+5DCsLwFAiU/AUdQTGKVOyJPAPyGEEEKICOnVVXjXvYj3tZcxW6wP3lFVXPOux714GWrRRAk+78Pu6lZWvXuIslprPjYuNZr7vzKWiZmD2wZP8TZbCxKVm3BUbERtKQ/bb6puAplX4c+egz97DnpKHihD44P1gWCLisY5bTrOadMBMA0D/Vg52u7dofmFXnEc/Vg5+rFyfK+uB6xqympBEY6iYEu9CfkoUReuDaAQQggxVD3wwAMsX76cO++8k5iYGO655x5uvPFGAGbPns2KFStYsmTJl17n61//Ol1dXSxfvpzGxkZmzZrF008/Haosdffdd9PQ0MD3vvc97HY7y5Yt4xvf+Mb5fGoiAtrhQ3jXl+B76/We9Qi7HefsubgXLLaqPw2RYI2LSZtX4w9bjvHC51XoJrhUG/9wVQ7/a1oOLnXojKfSUYuzeovV6q5qc+85hmJHS5tEIGsm/uyZBIZNu6AttYc6RVGwDx+BffgImH8rYAUVavv3Edi7x2r1va8Uo7YW/eAB9IMH4KXgGkhMDGpegVU1KthWzxafMDjPwzQj67xXU1PDr371K7Zu3YrL5eKWW27hRz/6ES5X73Jg69ev59///d85ceIE+fn5/PSnP2XixImh/W+88Qa//vWvqampYcqUKfziF78gKysroidQX98Wce9ARYGUlNh+nXs5kvGKnIxZZGS8IneuY5aaGjvwNzWE9Xec5LUZmS+Ol6lp+Dd9iLdkDYHPPg0dZ8vOwb1oCe6bbx20N0BDwZleX3XtPn77wRHeLLOynxM8Vhu82woGqQ1eoBNH9TZrcaJyE476PWG7TZtKIH0qgexZ+HPmoKVdEdYje6BcTP8mjcaGU1pe7Ebbvw/8/vCD7HbUcRPCM7vT0gfsHuR3ReRkbnFhyJhFRsYrMjJekZPfF5GRucWF0WtuoesEtm6ma92LBLZtoXsQbenDrLnFrQuwJQ3N7OML4Uyvr6ZOP/++8SgvlZ4EIMZl57uzRrF00iC1wdO8OE58alWUrdyEWrsLhZ6b7l6U8OdY1WQDw6aclzYUF9O/SaO5GW3PbgLdVaP27Qm1gAyx27HnjsVRWGQlXxQUYRuWMWBBgfK7InIyt7gwZMwiI+MVGRmvyMnvi8jJ74uBY3Z14dvwDt6XS9D29FSMtWVkknzH19CvuQFbcsog3uHFoa/Xl2GavLa3hn/7sJzGzgAA141N4f9cO5qMuMFP9FW6GnBUbcFZtcUKfGo6GLbfVGxoqUVW8nbWTAIZ0zGdA5dsfrn+m9Rra4Kt9Eqt6lFl+3rPU7DWBB35VlCUWlCIY8xYUjOSzvvviogqQpmmyfe//33i4uL4y1/+QktLCz/96U+x2Wzcf//9Ycd++umn/OxnP+OXv/wlU6ZM4X/+53/45je/yYYNG4iOjuazzz7j3nvv5ec//znTp09n1apV/OhHP+Kvf/1rJLckhBBCiCFGr6/Du34d3vXrMOqDbQxsNqvXdvEyHNOmS7bFaWi6wV8/r+YPm4/RGdBRgKWTMvju7JHEuQc+sOi0DA21dmcoK9txcjuKEQi/1+QJoVZ3/syrwSltR05lS0rGNfdaXHOvBcD0+9EO7kfbvSsUIGU01KPt24O2bw/eF1Zb56WlWxndwcpR6phxKKoUcRVCCCHE5cloaqLrlfV4X1qLcfJEaLvjqhm4i5fhvHomit0+iHc4dOmGybrdJ3hq01FavVYbvNsK0rln7iiSLmQbPENHrS/FUbHRml+c+ARFD/9wXEsciz97NoGcOQQyr8Z0DW6VqqHGlpCAc9YcnLPmAFbSkXbogNVOb7dVNcqorUE/UIZ+oAzv2hes85JTrLlFYRFq0UTUseNRnEOjBaIQQgghxEDRDh3A+/JL+N58DbOjw9pot+Occw3uhcU4p11JSlr8ZRekMlDKatpY9e5hdp9oBWBEooefXDeGq0YmDto9Kd5mHNVbg5VlP0Jt3B+230RBS8m3gp6yZhLInI7pih+ku7102dPSsael47r2OsCap+hHDhPYszsUIKUfP4ZRWYGvsgLfW69bJzpd+K6Zg+v/PgjOgU966RbRqsqRI0fYsWMHH330ESkpVsTk97//fVauXNkrEKquro5/+qd/YtGiRQD88z//M8899xyHDx9m4sSJPPfccyxcuJA77rgDgJ/97GfceeedNDY2kpSUNBDPTQghhBAXiGmaBD7fTuWrL9H2zjug6wAoiUm4FyzCvbAYe/qwQb7LoW17RTOr3j3EkWAbvMKMWO67fgx56RcgE8o0sTcdwlG5EWfFJhzVW7D528IO0WOy8OfMJpA9B3/2LMwo6Z0eCcXpxFFQhKOgCA/BPts1J62KUcHgKP3wQYzaGvwb3sa/4W3rRJcLNa8AR/cCRkERtoSEwXwqQgghhBDnlWmaaKW7qXrtJVrfeAMCVkC+EheH+5aFuBcVY8/OGeS7HNr2nGhl5buH2FdjtQEZmxrN/dePYVLWBfjw3zSxt5SH2mg7Kj/C5msJO0SPTrfmFTmzCWTNwojJOP/3dQlRVBXHhHwcE/LxLPsaAHpNDdqenqQL7cB+jIZ6/B9swP/BButEpxN1fF6oGq2jsOiyrqQmhBBCiIuXVf3pbbzr16HtPaX6U2YW7gWLcd9yW+h9jnTN7p+WrgBPbTrK2p0nMAGPw8Y3Z4zgjilZOOwXNtFd8bXiqN6Go2ozjqotqPV7wqrKAmhJ4/FnzSSQPdNKrnAPXqDW5UpRVdRx41HHjYfiZQAYba2nVI2y2uqZba20vf8Bzu+1oSQNkUCo1NRU/vjHP4aCoLq1d/fWPMXNN98c+rPX6+X//b//R3JyMrm5uQB8/PHHPPLII6FjcnJy2LBhQ0Q3L4QQQojBZbS343vjVbzr1qIf6+mzrE66As/iZTivmYfiuICVjC5C9e0+fvNBOW/sqwUg3q1yz9xRLCgcdl7b4NnaT+Co/CjUksLeURO233DFW63usufgz56NET9SZo0DSFEU7MMysA/LwPWVmwAwOzsJlO0NBkftRtuzG7OtFW3HZ2g7PqMreK59+AjUgiIchRNRi4qwjxglVdaEEEIIcdEzOzvxvfMmXSVr0A/1tDJQ8wpwFy/Fdd1XUFyD33ZhKGvuCvDkh+W8tPskJhDttPPdWSNZekUm6nlsg6d01oXaaDsrNmFvrwrbbzhjCWTNxJ89i0D2HPTEMTK3GGD29HTs6Tfguu4GAEyvF23/PquVXrBylNnSjLZ7J9runaHzbFnZpwRGTcQ+arRUWRNCCCHEkKUdPIB3fQm+t98Ir/4091rcC4txTJkmn5Oeo1ZvgDe3HWPVG2W0dFmVZW+akMr3544mLfb8Ba2cSvG34zjxcU/gU91uFNMIO0ZLHGvNMbJmEMiagemRAP+hyBYbh/OqGTivmgEEE8Qrj5OUGk+rJ+G8VmmLKBAqLi6OOXPmhH42DIP//u//5uqrrz7tOVu2bOGuu+7CNE0ee+wxoqOjaW1tpaWlBV3XufvuuykrK2PixIksX76c9PT0iJ5Af+bM3efIfPvsyHhFTsYsMjJekRsKY+bz+XjooYd46623cLvd3HXXXdx1111nPOfTTz/l/vvv59133w1tM02TZ599ltWrV9Pc3ExRURE///nPGTNmDAB79+6luLg47DoFBQWsXbt24J+UOGvaoQN4S17E+/Yb0GWFZyieKOIXL0SZvxD76DGDfIdDnzeg89ymch5/az8dfqsN3pJJGXx31kjiPQMfPKb4WnFUbQllZvfqk213EciYHqz6NBstpRBs8gH4haREReGcMg3nlGkAmIaBXnE8VDVKK92Nfqwc/fgx9OPH8L3+inVeTKzVW7sw2E4vvwBblLQqFEIIcfGQucXlTTtajnfdi/jeeLVnMcPpIn7BrSg3L0Qdnz+4N3gR8GkGz398nEde20dLsA3erflpfG/uaFKiz0MrNH8HzuqtwbnFRtSGsrDdps1BYNhUAjlWUoWWNgls0u75QlLcbhyTJuOYNBnoXnCo6AmMKt2FXn4Eo6oSX1UlvjetNhVKVDRqfkFPS738QmyxF6BKsRBCCCHEaZidncHqTyVo+/aGttuysq3qTzffKlUu+6G5M8CRxg7KGzopb+jkcPB7Q4c/dExuShQ/uW4MU3MSzu/NBLpwnPwEZ+VmHFWbUWt3oph62CFa/CirzV32TPyZMzCj087vPYnzQlEU1OEjcKbEQn3bl59wDs5pBvroo4+yd+9e1qxZc9pjxo4dy9q1a3nvvff4v//3/5Kdnc2wYVZrnF/+8pf88Ic/5Ac/+AG//e1v+fa3v83atWuxRRCpmZzc/4nYuZx7OZLxipyMWWRkvCI3mGO2atUqSktL+fOf/0x1dTX3338/mZmZzJ8/v8/j9+/fzw9+8ANcrvCI8dWrV/Pcc8+xYsUKRo4cyR//+Ee++c1v8tprr+HxeDh06BB5eXk8++yzoXNUVT5AHQym34/v/Q14S9agle4KbbePGo27eBnum+aTNiJDem33odUbYH9tO/trO6zvNe0ca+rECI5T/rBY7r9+DPnDBvDftO7DcXK7VfWpYiNq7Y6wrAkTBS1tYrDV3WwCGVNB9Qzc44tzpthsqCNGoo4YifvWhQAYrS1oe0qDCxi7COzdg9neRmDbFgLbtlgn2mzYc8fgKJxI1NJFMHL8ID4LIYQQ4svJ3OLyY2oa/o0f4F23hsBn20Pbbdk5eBYvxX3LraSNzpa5RR/afRoH6topq2nnQHCOUd7QgR4cpzEp0dx3/RgmZw9gGzw9gFq7A2fFRiupouYzFEMLOySQUkAgezb+nDkEMqaDI2rgHl+cM0VRsOcMx54zHG6+DQCjrc1qUbFnN1rpbqtNRWcHgU8/JvDpx1ZFWkXBPmo0jsKJuBfdCuMnDurzEEIIIcTlQzuwP1j96U3MzmDChKrinDsP98LFOCZPlepPX8I0TRo7AxxpsAKejgSDncobOmnqCpz2vOxED1+7IpNl56uyrOa11i6qNuOs2oJa8zmKEX4/etzwYLWnmQSyZmDEZA78fYhLWr8/7Xn00Uf585//zK9//WvGjRt32uNSUlJISUkhLy+PnTt3snr1au69914Abr/9dhYvXgzAY489xqxZs9ixYwdTpkw56/toaIj8AxFFsYIH+nPu5UjGK3IyZpGR8YrcuY5ZSsq5BVt0dnbywgsv8Oyzz1JQUEBBQQEHDx7kL3/5S5+LFatXr2blypXk5OT0aqdaUlLCXXfdxbx58wBYvnw506dP57PPPmPWrFkcPnyY3NxcUlNTz+meRf/pJ6rxvlSC99X1mM1N1ka7Hec11+EpXoo6aTKKokhVN6yJRX2Hn/211sLE/lprcaK61dfn8Rnxbu66KoeFA9EGzzRQ6/eGsrId1dtQNG/YIVrC6GDg0yyrXKz0yb7o2OLicc6YhXPGLMBaRNQPH+oJjCrdjXHyBPrBA+gHD3DslZdIefsDsMsirxBCiKFJ5haXF72uFu/L6/CtX4fRUG9ttNlwzpqDu3gZjqlXothsMrcIagjOLU79qmz29nlsSoyL/31lFrdfkXXuixWmib1xv9XurmIjjuqt2AIdYYfoccOthIrsOfizZ0oriouQLTY2vE2FrqOXHwmfW1RVoh85jH7kMBXrS0h+YwNKdMwg37kQQgghLlVGZwf+d97G+3IJWtm+0HZbdg7uhcW459+KLVE+0/4i0zSpa/dbwU6NnZQ39FR66q4Y25fMeDejk6MYlRTFqOQoRidHMTI5ipFZiQOblKL7cdR8Hmx1txnHyc9Q9PA1Ez0mM9jqbiaBrJkYcdkD9ODictWvFZFf/OIXPP/88zz66KPcdNNNfR6za9cu7HY7BQUFoW25ubkcPnyYxMREHA4Ho0ePDu1LTEwkISGBkydPRnQvpkm//xGey7mXIxmvyMmYRUbGK3KDNWZlZWVomsbkyZND26ZOncozzzyDYRi9Kvt9+OGHrFy5kvb2dp588smwfffddx/Z2T1vaBRFwTRN2tqskoiHDx9m/HipZnKhmYZB4OOtdJWsIbDlo9ALzZaWZk04bluELTllkO9ycBmmSVWzt9fCRGNn35kUmfFuxqfFMD4tmglpsUxIj2bCyJRzmlDYWo/jrNgYDH76CJu3MfwePan4s2dZWdnZszFis/r3QGLIUlQVdfwE1PETYOlXAdDr64IZ3buJGzcaQ1Xl96sQQoghS+YWlz7TNAl89inekhfxb/oAdKvFgZKUZLWyWFCMPT19kO9ycJmmyYlWH2W1PckU+2vbqWv393l8eqyLCWkxjE+LYVxaDHnDYsgfmUxDQ3v/5xZtVda8omKjNbfoqgvbb7gTg4FPs/Fnz8aIH9G/BxJDlmK3o44ZizpmLCxeCoDR2ECgdDfanl3EZmdiREsLbiGEEEIMPG3/Przr11nVn7o6rY0OR3j1J8mWwDRNatp8ocpOp1Z66vDrfZ6jANkJbkYlR4eCnUYlRzEyKQqPw977+IEYZj2AWrcr1OrOcfKTXknbelQ6gawZVqu7rJkYcSMG6MGFsEQcCPXkk0+yevVqnnjiidOWKAdYs2YNVVVV/OlPfwpt27NnD/n5+aiqSkFBAWVlZdxyyy0ANDY20tTURFaWLNAJIcRQV1dXR2JiIk6nM7QtJSUFn89Hc3MzSUlJYcc/9dRTAKxdu7bXtaZNmxb28wsvvICmaUydOhWwFisMw2DBggW0tbUxd+5c7rvvPmJizj4Dsb/vnbrPu5zeexnNzXhfe5mudWsxqqtC2x1XXoWneCnOmbNRTtM+5FIeL80wOdrQaS1M1PQEPfU1ubApMDIpygp6So9hQloM49KiiXM7wo7rz3gpXY2hVneOyk3YW4+H7TcdUQQyZ1iBTzmz0ZPGhz3Axf5Xcym/xgaSmpqKOu86lOuuIylYPVAIIYQYqmRuceky2trwvvEa3nUvoh87GtruuGIy7uJluOZei+Jw9HnupTxeumFyrLEz1Dq7rKaNA3UdtPaRqa0Aw5M8jE+z5hXj02MYnxpDQlTvuUWkVXoVb7O1KFGxCUflJtTmI2H7TdVNIPMqq+JTzmz0lHxQegITL/a/mkv5NTaQ7MnJ2K+5FuXaa6WauxBCCCEGlNHZge/tN/GuX4d+oCy03Z4zHNfCYtw33XLZVn8yTJMTrV6O1HeeUuWpk6MNnXQG+g54siuQneCxgp1SohkdrPI0PNGDu4+Ap4G9YQ21rjTY6m4zjuqPUbTO8EM8Kae0upuJnjBa3oyL8yqiQKjDhw/z1FNP8a1vfYupU6dSV9eTGZSamkpdXR2xsbG43W6+9rWv8dWvfpU///nPXHPNNaxfv55du3axatUqAP7hH/6BBx54gLy8PMaNG8ejjz5KXl4eEydKn3EhhBjqurq6whYqgNDPfn/fGatnY+fOnaxcuZK7776b1NRUAoEAFRUVZGdn8/DDD9Pa2sqKFSv4yU9+wtNPP33W101OPrdWgOd6/lBnmibeXbto+p/naX39dczg36EtLo6E4mIS7vgarlGjzvp6F/t4eQM6+060sqfa+tpb3cK+k234NaPXsU67jQkZsRRkxpGfGU9hZhwThsXhcZ79xOKM4+XvhOOb4cj71tfJ3eH7bSpkXwmjr4XR16JkTcVpd+Ds41KXkov9NXahyXgJIYQYymRucenx7ttH0/88T8srr2B2dQFgi4oifvEiEu64A/e4cWd9rYt9vHyazoGT7ZRWt7CnuoU91a2UnWijq4/FC4ddYWxaLIVZcRRkxlOQGUdeRhzRrrP/+PaM4xXwQsXW4NziAzixA8xT5jiKDbKmwqhrrLlFznScqgsncCnXALrYX2MXmoyXEEIIIc6FaZo91Z/eeROC8wUcDlzXXod7QTHqFZMvm+pPumFS1eKlvKEjVOWpvKGT8sZOfH2sRwCoNoXhiZ5QZafuSk/DEzw4VVuf5ww400Ct34uj8iMrueLEx9j84cm4hiuBQNaMUKs7PWmcBD6JCyqiQKh3330XXdd5+umne31ItH//fmbPns2KFStYsmQJBQUFPPnkkzzxxBM8/vjjjB07lj/96U+kB0tdz58/n9bWVh599FEaGhqYPn06Tz311GXzH5sQQlzMXC5Xr0WJ7p/dbne/rvn555/zzW9+k7lz5/KDH/wAAIfDwdatW3G5XDiCmcKPPPIIS5cupaamJvQ75cv0N2NRUbikMx5NrxfvO2/iXfsi2ikZF+q4CbiXLMP9lRtR3G7agLb6L68oczGOV5tXC1V36q72dKyxE72P+4922hmXFh2WjT0qKQrVHj656GjtpOMsHrvP8TI01Nqdoaxsx4ntKEb4vzUteUIoK1vLvArTeUoFgyYvEF5i9lJyMb7GBtO5jldKiixyCCGEOP9kbnFpMH0+fO9voKtkDVppT/C+fXQunuKluG66GVtUNO1A+yU6t+jwaxyo7bDmFzXW/OJIQye60fsJeBw2xqZare0mpFvfc1OicHxhbtHV1kXXWRT37HtuoVtZ2ZXBuUX1xyi6L+w8LXEMgezZBHLmEMi6GtMV37Oz2Q/0PxhxqLsYX2ODSeYWQgghhDgXRkd7T/Wng/tD2+3DR+BeWIzrpluwJSQM3g2eZ5puUNnsDVZ26rAqPTV2cqyxE39fixFYiRIjk6IYFazsNDoY9JST4O61JnHemQb2hjKr2lPVFhzVW7H5WsIOMZxxBDKvDrW605MnhFWUFeJCiygQ6lvf+hbf+ta3Trt///79YT/PmzePefPmnfb4r371q3z1q1+N5BaEEEIMAenp6TQ1NaFpGmqwTVpdXR1ut5u4uLiIr7dt2za+853vMGvWLB5//HFstp43R19sU5GbmwsQ0WKFaXJOH2ye6/lDjX78GF3rXsT3+quY7cFP1Z1OXNfdgLt4GWpefigwuT/Pe6iOV32HP6yt3f7adqpa+g4aSvQ4rLYTaTGhwKesBDe2PgK2z+m5mia2hoOoFRtxBrMnvpg5ocdkWq3usmfjz5qFGZ32hWucw+NfpIbqa2yokvESQggxlMnc4uKmV1fhXV+C95X1mC3N1kZVxXnNdXiKl6JOvOKSnFs0dfqtZIoaq73dgbp2jjd19XlsvFsNzSu6v3ISPdhtAz+3UJqO4Kz4CGflRhyVH/VanNCj0gnkzMafPYdA9iyMmIwvXOMcHv8iNVRfY0OVjJcQQgghzpZpmmj79uJdX4Lv3bfAG/ws3unEdc11uBcuRp10aVV/CugGx5u6gtWdOqy2dg2dHG/qQusjQQLApdqsgKdgsFN3wFNmvBu1jznDBWGa2BsPoFYGW91VbcXmbQw7xHDEWK20s2YSyJ6JlpwPtvPcgk+ICEQUCCWEEEIA5OXloaoqO3bsYNq0aQBs376doqKisIWGs3HgwAG++93vMmfOHJ544onQ4gfAoUOHuP3221m/fj05OTkA7Nu3D1VVGTFixMA9ocuAqWn4N2/EW/IigU8/Dm23ZWbhXrwU9y23YYtPGLwbHECmaZWTPXBqpafaDho6+s5mzohz9VqYSI1xDuwEzNCxtVdhby7H3lKOvbkctaUcGveR2HYi/FBXPIHsWfizZxPIno0eP0pKxgohhBDikiVzi4uPqesEPt5KV8kaAls3h6IibGnpuBcV4751IbbklEG+y4FhmiYn23y9Eipq2/ueW6TFOHuSKYKJFemxroGdW5gGtrZqa15x6tyiaT9JLRVhhxqOGAJZM/HnzCaQPQc9cYzMLYQQQgghxHlltLfje/sNvC+vQz94ILTdPmIU7oWLrWqxF/lahE8zONZotbE70tjd0q6DiqauPrtNgFUVtruN3eik7rZ2UWTEuftMkjivDA1bZy229hPY2k9g7zh5yp9PQOtREjvqwk4x1SgCmVeGWt1pqUVgk1ATMXTJq1MIIUTEPB4PixcvZvny5Tz88MPU1tby3HPPsWLFCsDK4I6NjT2rVhb/+q//SkZGBg888ABNTU2h7bGxsYwePZoRI0bw85//nJ/+9Ke0trby4IMPcvvttxMfH3+Gq4puRn093ldewru+BKOu1tqoKDhnzsZdvAzHlVehRLjANJRohsmxxs6wRYn9te20+/RexyrAyKSoUHu77q94j2NgbqaPBYnQ99bjKEag79PsLgIZV1qBTzlz0FIKJXNCCCGEEJcNmVtcPIzmZryvrsf70lqME9Wh7Y4rr8JdvAznjFko6sX7UaNumFQ0dZ2STNHOgdp2Wrxan8cPT/ScMq+w5hiJUc6BuRnTwNZxMnxO0XI0OLc41qvFXeg0m4PAsKkEcubgz56NljZJFifEZcPn8/HQQw/x1ltv4Xa7ueuuu7jrrrv6PHbv3r08+OCDHDhwgDFjxvDQQw9RWFgIWAGQTz75JC+88AJdXV3MmjWLf/3XfyUpKelCPh0hhBDiomKaJtrePXhfLsH37tvh1Z/mXY97YTFq0aSLrvqTN6BztLEzWOEpGPjU0EFVi5fTFHgi2mkPVnWK6gl8So4iPdbVZ8eJAacHsHXUYOs4gT0Y3PTFP9s6alHM3msop+petwhkWa3utLRJYB+gtRQhLgCZCQshhOiXBx54gOXLl3PnnXcSExPDPffcw4033gjA7NmzWbFiBUuWLDnjNerq6vj8888BuPbaa8P2dZ//9NNP86tf/Yqvf/3r2Gw2FixYwH333XdentOlwjRNtB2f07VuDf4P3gPdekOrJCTivm0R7oWLsWdkDvJdRs6nGRyq7wgtSJTVtHOovgOfZvQ61mFXyE0OBjwFM7HHpkbjcZxjgFE/FyQATJsTPX4Eevwo9IRRGAmjiBlZRIN7HKbdc273JYQQQghxEZO5xdBlLWiU4i1Zg++9d8FvVUJSYuNw3XIbnkVLsOcMH+S7jJxfMzjS0BFMpOigrKadg3XtePuYW9htCqOTo8LaZo9NiybaeY4fq5omts6a3nOLFuu7ovXdxhusgCc9bjh6wij0+ODcYkQhDZ4JmGrUud2XEBepVatWUVpayp///Geqq6u5//77yczMZP78+WHHdXZ28q1vfYsFCxbwyCOP8Pzzz/Ptb3+bt99+m6ioKP7617+yZs0aHnvsMRISEli+fDk/+9nPePrppwfpmQkhhBBDl9HWZlV/Wl+CfvhQaLt95Cjci5bgunE+trihn3jS4dc42nBKwFMw+OlEi/e03aNjXeopAU9R5AaDnga828SpdB+29pPYO06EKjh1V3Gy/nwSW2ctyln0vDZtKkZUOkZMBnpMBkZMJkZMBkbMMOKyx9HgGIFpc52f5yHEBSCBUEIIIfrF4/GwcuVKVq5c2Wvf/v37+zxnyZIlYQsYqamppz22W0ZGBk8++eS53exlwuhox/fm63hL1qAfLQ9tVydOwlO8DOfceSjOAcpQPs/afRoH6qxgpwPBxYnyho4+y8pGOeyhKk/jgosTo5OjcNj7WenKNLF11vau6tSPBQk9fmTP4kRMZlilJ0WBmJRYqG/jLOYlQgghhBCXLJlbDD1mVxe+d96kq+RF9IM946pOyMNdfDuu67+C4vryKl1DQadf52BwbtFdQfZIQydaHyncLtXGuNRTKsimx5CbHI1T7f/cQumqD80n1C8EPSla5+lPVezocTmhRIpTvxuxWWGVnmRuIS53nZ2dvPDCCzz77LMUFBRQUFDAwYMH+ctf/tIrEOq1117D5XJx3333oSgKP/vZz/jwww954403WLJkCR988AG33HIL06dPB+Af//EfuffeewfjaQkhhBBDkmmaaHt2412/Dt+Gt8EXTA52unBddz3uBcWoRROHZPWnNq9GeaPVxu7UKk8n206f4BzvVhmdEs3oYGWn7kpPyVGOgX2OWpcV5NRebVVtaj/Zu6JTV/1ZXcq0OawAp2grsMkKdgoGOkVnWN89KX12plAUQOYW4hIggVBCCCHERU47dBDvuhfxvvU6dHVZGz0e3DfOx714KeqYcYN7g1+iocPfq7VdZXPfwUYJHkeo7UT3V06iJ/KSsqaJ0tVw2mAnW6Dj9KdGsCAhhBBCCCHExUQ7dhTvS2vxvf4KZnu7tdHpwvWVG3EvXoojL39wb/BLNHcGwuYVZbXtVDR19fn5fZxbtRIpUmMYnx7NhLRYhid6sNv6MbfwNp1+buFvO/2pig0jNjs4pxgZTKYIzi9ic6T1hBBnqaysDE3TmDx5cmjb1KlTeeaZZzAMA5utJ5hx586dTJ06NbRwqSgKU6ZMYceOHSxZsoSEhATef/99vvGNbxAfH8+rr75KXl7eBX9OQgghxFBjtLVaidgvr0M/cji03T46F/eCxbhuuhlbbNwg3mGPlq6A1causZOjDZ1UtPrYf7KVunb/ac9JjnZabeySeqo8jU6OGpj214HOnqCm9uqwik727nZ13qYvvw5WyzqrglNPUNOpFZ306AxMTxIo/UzmEOISISt1QgghxEXI9Pvxf/geXSVr0HbtDG23jxyFe/FSXDfdgi0mZhDvsDfTNDnR6qMsuChxIPj9dJOP9FgXE4LBTlalp2jSY11nn2XR14JEdxu7lnJZkBBCCCGEEAIwNQ3/pg/xlqwh8Nmnoe227Bw8i5bguuW2IdfOwjRNatp87K/tYH9tW/B7OzWnyeROjXGGJVOMT4shIy6CuQWgeJtPH+zkazn9vaJgxGaFJ1J0V46NGw72i6NqrxBDWV1dHYmJiThPqYKdkpKCz+ejubmZpKSksGPHjBkTdn5ycjIHDx4E4J//+Z/57ne/y9y5c7Hb7aSmpvLXv/71wjwRIYQQYogxTROtdDfe9SX4NrwD/uD7bZcL13U34F64GLWgaNCqPzV1+jlyaku7YKWnxs7Aac9Ji3GGqjqdGvgU7+nfZ/6Kvy08qClY0amnmtPJM84XTmWqnp7KTaGKThlhFZ1MV0KwbJMQ4kwkEEoIIYS4iOgnT+BdX4L3lfWYTY3WRrsd5zXz8CxehnrF5CFRclY3TI41dVqZ2DXW4sSBug5avVqvYxVgeKInrP3E+NQYEqLObuJxTgsSMZm9qjpZCxI5YJf+10IIIYQQ4tKl19fhe/klvOtLMOrrrI02G86Zs3EXL8MxbTqKbfCziA3T5HhTVyiRYn+t1eaupY+5BUBOgjuUTDEh3ZpjJJ1lFrfib+s9r+hOpPiSDG09JiM8gSI0txgO6sXRRlCIi1VXV1dYEBQQ+tnv95/Vsd3HVVVV4Xa7eeaZZ4iLi2PVqlX89Kc/5bnnnovonvrz0Uz3OUPgY52LhoxZZGS8IiPjFTkZs0tHqPrT+hL08iOh7fbRY3AvKsZ1w3xssbEX5F5M06Shw98T7NTYE/jU3HX6gKdhsa5QVadJI5NJddkYmRRFjOsswyNME8XXEh7U1B3wdEpFJ1ug/awuZzhieqo2xQzraVF3SkUn0xkn/4CEGCASCCWEEEIMcaZhEPhkG951L+LfvAkMAwBbahruhcW4b1uELSVl0O7PrxkcbrAysI+1HmXnsSYO1nXg1Yxex6o2hdHJUaEFifFpMYxNjSHK2bsX9anOaUEietgpmdenZmGPkAUJIYQQQghxWTFNk8Dn2/GWrMG/8QPQdQCUxCTcCxbhXliMPX3YoN1fQDc40tDJgdp2jrUeY8fxJg7WdtAZ0Hsda1dgVHK0lUgRrCA7LjXmyxc2/B2oYQkUPZVjbV31ZzxVj0rvqRgbFuw0Ehyec3jmQohz4XK5egU8df/sdrvP6li3241pmtx///3cd999zJs3D4Df/OY3zJs3j507dzJp0qSzvqfk5P4vDp/LuZcrGbPIyHhFRsYrcjJmFyfTNNF277SqP723oaf6k9uN6/obcC8oRs0vOG+J2KZpUtvuD1V1Kj+l0lObr+8kCAXIiHczOhjw1F3paWSSh2inNS9QFEhJiaW+vg3TDD0YirepV1CTvb06WMXJCn5StK6zunfDFY8RPSysmpMRndHTwi4mA9Mp/y6EuJAkEEoIIYQYooyWZryvvYL3pbUYVZWh7Y5p03EXL8U5cw6KemF/lXf4NQ4E2050fx1p6EQ3zF7Hehw2xqZaixLdLe5Gp0ThsJ8mq9zfYS1AtJSjnrooIQsSQgghhBBCnBOjvR3fG6/iXbcW/Vh5aLs66Qo8i5fhvGYeiuPCtn/uCujBKk8doWpPhxs6COi95xYu1cbY1OieSk9pMeSmRONSTzO3CHSFzSes79Zcw95Ze8b7MjwpYYkU2int7HBGD8AzF0IMtPT0dJqamtA0DTX4OUldXR1ut5u4uLhex9bXh3/GUF9fT1paGo2NjZw4cYLx48eH9mVkZJCYmEhVVVVEgVANDacstp4lRbGCB/pz7uVKxiwyMl6RkfGK3LmOWUqKBIoMBqO1Bd8br+Fdvy5srmDPHYN70RKr+lNMzMA9XrDN9ZH6To40dISqPJU3dNLh750AAWBTIDvBw6ik7mAnK/BpRFIUHscXkqxNA6WrAXtzT/UmjAZi6o5ha6u2qjt1nETR+26r3et+3YmnBDVl9lRwiu5uXzdM5glCDEESCCWEEEIMMYG9e/CWrMG34W0IZikqMTG4br4N9+KlqMNHXJD7aOr0h9pO7K/t4EBdO8eb+s6AiHerjE+LYfLIJHJinYxPjSEn0YPd9oXskECXtQDRq7rTUeydNWe8H1mQEEIIIYQQIjLaoQN4S17E+/Yb0GW9l1c8UbhuutmaW+SOuSD30dIVCEum2F/bzrHGLvpaH4tx2a25xYgkhsc5GZcaw4ikKNQvzi00L/aGY19ojx38c8fJM96P4U5Cjx/ZZ5tsydQW4uKTl5eHqqrs2LGDadOmAbB9+3aKioqwfaHF56RJk3j22WcxTRNFUTBNk88++4zvfOc7xMfH43Q6OXz4MLm5uQA0NjbS3NxMdnZ2RPdkmvQ7cOJczr1cyZhFRsYrMjJekZMxG/pM00TbtQPv+nX43n83tA5hVX+6EffCYtS8/HOq/qQbJidavT0t7YKVno42dtIV6N1NAqyqrzmJHkYlR1vBTklRjE6JYnhilJUEYejYuuqwBSs32U9a1Zusik4nrYpOHSdRjN4t8/rqDWF4UsKDmk6p4KRHZ2DEDANVEq2FuBhJIJQQQggxBJheL75338JbsgZtf1lou33seDxLluG6/kYUz/l5w22aJifbfOyvCV+YqG3393l8Wowz1Nauu8VdeqwLm02xSsyerMPWfAz70f4sSCT2ruoUDHYyXXFnPFcIMfT4fD4eeugh3nrrLdxuN3fddRd33XVXn8fu3buXBx98kAMHDjBmzBgeeughCgsLQ/vfeOMNfv3rX1NTU8OUKVP4xS9+QVZWFgBvv/023/ve98Kud9NNN/G73/3u/D05IYQQYogy/X5872+w5halu0Lb7aNG4y5ehuvG+diiBy6jO+yxTZO6dj9lwTnFgWBixcm2vrOtU6KdobZ249NiGJ8eQ2acu2duUdOAreU49mO922Tb2qtR+gylshiu+NPPLdwJ5+X5CyEGh8fjYfHixSxfvpyHH36Y2tpannvuOVasWAFY1aFiY2Nxu93Mnz+fxx9/nF/96lfccccdrF69mq6uLm6++WZUVWXJkiWsXLmSxMRE4uPjWblyJZMmTaKoqGiQn6UQQghx7oyWZqv608vr0I8dDW23jx2He2ExrhtuiniuoBkmVc1docpORxo6OVLfwbGmLnxa3wFPqk1heKIn2NLOCnoalehkpKsNV1cNtvYjVuWmhhPYjltt6mztJ7B11qAYfbfJO5WJghGVhhEzDCMmA1fKCDrU5GBwU2Yw+Ckd7K6InqsQ4uIhgVBCCCHEINKPH6PrpbX4XnsFs73N2uh04rruK7gXLxvwntu6YVLR1GVVejplcaLF2/fkYXiiJxT01L04kRjlBN2PvfU49ubPsR/pWZCg7RjJLZVnsSDRRxu7+FGyICHEJWbVqlWUlpby5z//merqau6//34yMzOZP39+2HGdnZ1861vfYsGCBTzyyCM8//zzfPvb3+btt98mKiqKzz77jHvvvZef//znTJ8+nVWrVvGjH/2Iv/71rwAcOnSIefPm8Ytf/CJ0TZdLPsgQQghxedFPVON9qQTvq+sxm5usjXY7zmuuw1O8FHXS5AGdWximSWWztyeZIphY0dTVO/saICveHUqmGBecY6REO0EPYG+rwN68y0qmCFaMpe0oyS0VKGbfiycAhjP2lPnEqRWeRmO6EwfsuQohhr4HHniA5cuXc+eddxITE8M999zDjTfeCMDs2bNZsWIFS5YsISYmht///vc8+OCD/O1vf2P8+PH84Q9/ICoqCoCf/vSn/OY3v+Hee+/F5/Mxc+ZMHn300QH9/1MIIcT5E0lSXrdPP/2U+++/n3fffTe0zTRNnn32WVavXk1zczNFRUX8/Oc/Z8wYq6Lq3r17KS4uDrtOQUEBa9euHfgndY5M00Tb8Tnel0vwvb8BAsH36x4Prq/chHvhYtTxeV/6u07TDSqavRwJVnYqD34da+rss701gNOuMCIpirFJDopiOxnnaWOk2kSq2YDaeRJ7xwls1SewHTiBrbP2jO/9Q89HsWFEp4dXcQqr6JSJEZUGdqv1t6KAKyWWrnppcynE5UQCoYQQQogLzNQ0/Js34V33IoFPtoW22zIycS9eivuWBdgSEs75cfyawZGGjuDCRAdlNe0crGvH20cWht2mMDo5qqfSU1oMY1OcxHlP9GRdHy/Hvuso9pZybG2Vp52UKPSxIBEW7JRozT6EEJe0zs5OXnjhBZ599lkKCgooKCjg4MGD/OUvf+kVCPXaa6/hcrm47777UBSFn/3sZ3z44Ye88cYbLFmyhOeee46FCxdyxx13APCzn/2MO++8k8bGRpKSkjh8+DDjxo0jNTV1MJ6qEEIIMWhMwyDw8Va6StYQ2PJRqAeJLS0N98Ji3Lctwpaccs6Po+kG5Y2dwbbZVjLFgboOOvx6r2PtCow8ZW4xPi2Gcclu4gMng3OLrdgrylFLg5Wd2ipRzN7XAWtuYapRPW2xv5hI4UmWuYUQArCqQq1cuZKVK1f22rd///6wnydOnEhJSUmf13G5XNx///3cf//95+U+hRBCnF9nm5TXbf/+/fzgBz/olVC3evXqUHXBkSNH8sc//pFvfvObvPbaa3g8Hg4dOkReXh7PPvts6BxVHVrL7kZzM943XsX38jr048dC2+3jJuBZVIzzKzdii4rudZ5fMzje1MWRho6wKk/Hm7rQjd6RRC785KotTInrIC+6jdHOZrLtTSQbDcT4arB1nMR2rO6MydPdTJuKET3slNZ03W3qhoX+bESlgW1ojbUQYuiR/yWEEEKIC8RoqMf7ykt415dg1NZaGxUFx4xZeIqX4Zh+NYrN1q9rd/p1DtZZixLdixNHGjrR+pqYqDbGpVrVnSakepgY08poWw2utl1WwFNVOfa95dhbK067IAG9FySMhFHEjiiggXQMtyxICHG5KysrQ9M0Jk+eHNo2depUnnnmGQzDwHbK/3c7d+5k6tSpocwzRVGYMmUKO3bsYMmSJXz88cc88sgjoeNzcnLYsGFD6OfDhw8zc+bMC/CshBBCiKHBaG7G+9rLeF9ai1FdFdruuPIq3IuX4pw5G6WfCzHegM7Buo5QFdkDte0cru/A30eWt9OuMCbVqh6bl+phYkw7o+01eNr3WHOLE+XYy4JzC6PvSlEApuoOT6BIGEXs8AIalHQMT5rMLYQQQgghxJeKJCkPrGCnlStXkpOTQ3t7e9i+kpIS7rrrLubNmwfA8uXLmT59Op999hmzZs3i8OHD5ObmDrmkPNM0Cez4DN/6EnwfvBeq/qR4onDd0FP9Caz3/cdq24OVnawqT0caOqlq7qL7rb8bH8OURjKURibTQI6zibHuVkaozaTRQIJWh8sfrEbbGfw63b3ZnBgxw/qo4NTzs+FJAZv9PI6QEOJyIYFQQgghxHlkmibazs/pKnkR/wcbQLcCi5T4BNy3LcK9qBh7RmZE12zuDPS0nwguTlQ0dfWZTxHrUpmQFsX0hE6uiK5nrL2W1EAlautR7DXl2A8ej2xB4pTvRlT4goSiQGxKLGZ9G2eR3CGEuMTV1dWRmJiI0+kMbUtJScHn89Hc3ExSUlLYsd2lxbslJydz8OBBWltbaWlpQdd17r77bsrKypg4cSLLly8nPT0d0zQpLy9n06ZN/P73v0fXdebPn8/3v//9sMc+G/1ZY+0+R9Znz56MWWRkvCIj4xWZdp/G2/vrWHylE5uM2ZBnmiba3j14163Bt+Ed8PsBUGJicd1yG55FS7APHxHRNVu9gVAF2e72dseaOukjn4Jop50JqVFcmeTliqh6xqq1pGtVOFqOYq8rx37oGIrhP/39213ocSP6aGM3CiN6GCg9QdIytxBCCCGEEJGKJCkP4MMPP2TlypW0t7fz5JNPhu277777yM7ODv2sKAqmadLW1gZYSXnjx48/j88mMkZTE943XrWSsCsrQtvVCXnYbllE1RWzONIJR2o6Kd9bSnljJ03NzQxTGhimNJKpNFBEIzcqjQxTG8myNZJhayLObOv9YP7g1ylMu+sLQU2ZPT8HqzuZnqSw9/xCCHE+SSCUEEIIcR4YHe343noDb8ka9PIjoe1q4UTcxctwXXsdypcs0JumSU2bL7go0RZanKhp8/U6VsGgMLqdmQnNTPLUM8ZeyzC9iuiO49gbj6PU9T4n9DgRLEgIIcTZ6urq6hWI1P2z3+8/q2P9fj+dnVYq2S9/+Ut++MMf8oMf/IDf/va3fPvb32bt2rWcOHEidP5vfvMbKisr+eUvf4nX6+Vf/uVfIrrn5OTYSJ/mgJx7uZIxi4yMV2RkvL5cl1/nO3/axqfHmmgJmPz4pqHzIb4IZ3q9+N55k66SF9EPlIW228dNwLNkGa7rb0Rxu898DdOkvsPfk0xRY1V6qm7ta55gMs7TzuzEZq7wNDDWUUtGcG6hNh9FaTjD3MLmQI8fYc0nvpBMYcRkyNxCCCGEEEKcN5Ek5QE89dRTAKxdu7bXtaZNmxb28wsvvICmaUydOhWwAqEMw2DBggW0tbUxd+5c7rvvPmJiYiK653NJysM0CHy2He/6dVb1J00DQHN7OF44ndLR4zjp1HEc203m8fcZRiPXK42hCk9x7jOUb4JQQoKpetBjMnta08V8IdApOgPTnfClT2awcm8kYSoyMl6RkzGLzIUaLwmEEkIIIQaQdvgQ3nUv4nvzdcyu4ETC7cZ94824Fy9FHTuuz/MM06SiqSu80lNNOy1e7ZSjTNJo5irlJFOi65noaSDXXsMwrYqYrkpsuhca+r4v0+ZAjxveq6qTHj8KIzZTFiSEEAPO5XL1Cnjq/tn9hcXa0x3rdrux261y2LfffjuLFy8G4LHHHmPWrFns2LGDKVOmsG3bNuLj41EUhby8PAzD4Cc/+QkPPPBA6Pyz0dDQhhlh1QlFsQIu+nPu5UrGLDIyXpGR8To7mm5w77q9fHqsiViXyuLJmf0es5QUCTo7X/Tjx+ha9yK+11/FbA9mYjuduK67AXfxMtS8/FBb2VOZpklVizfUMrv7q7Hz1EqwJqm0ME05yeSoBiZFNTDGXsMwvZq4rgpsWic09n1fpk1Fj83pPbdIGIURkyWtLIQQQgghxKCIJCkvEjt37mTlypXcfffdpKamEggEqKioIDs7m4cffpjW1lZWrFjBT37yE55++umIrt2fJJ768oPs/rcV8M77qPVNoe2BRDvuXJ2s4VUUOZ/nVgANcJz+WqYrDiUuE0JfWcHv2aFtijse9RKI8JCEqcjIeEVOxiwy53u8JBBKCCGEOEdmIID/g/foWrcGbeeO0Hb7iJG4Fy/FNf9WbKdkggR0gyMNnaHWE/tr2zlY10FnQAdMUmhlpHKCG20nGaWepMBVT669hjStGqfRZV1EA75QlfbMCxKZYJNf+0KICyc9PZ2mpiY0TUNVrf9/6urqcLvdxMXF9Tq2vr4+bFt9fT1paWkkJibicDgYPXp0aF9iYiIJCQmcPHkSgISEhLBzc3Nz8fl8tLS09Mr2OxPTpN+BE+dy7uVKxiwyMl6RkfE6PcM0Wf7GAT4qb8Sl2vj1kgLGpMVSXy/BY0OBqWn4N2/EW/IigU8/Dm23ZWbhXrwU9y23YYtPCG3XDJOj3XOLYNvsA7XtdPituUUSbYxUTjJP6Z5b1JFrryFdq8ZlBBM3dHrPLRQbRmwOesLIsOpOWvwojNhssJ9hNUUIIYQQQohBEElS3tn6/PPP+eY3v8ncuXP5wQ9+AIDD4WDr1q24XC4cDut98SOPPMLSpUupqakhPT39rK8faULKkV0fYvvhj4kOFmn1Ok3KJpgcy9ewJ2mk6Dopuo0UzUWs4iHBmUJCbCZqXHZYqzojJhMjZhim80sCETqAjvazv8EhSBKmIiPjFTkZs8ic63idbUKerIgKIYQQ/aTXnMS7vgTvyy9hNgXTpe12nHOuwV28DMfkqXg1g9K6DsoOVnMguDhxuKGdGL2VUcpJRionud52kn9UTjLKVcNo5SRRdH3hgYJfyIKEEOLikZeXh6qq7NixI1ROfPv27RQVFWGzhVehmzRpEs8++yymaaIoCqZp8tlnn/Gd73wHVVUpKCigrKyMW265BYDGxkaamprIyspi48aN/PjHP+b999/H4/EAsG/fPhISEiIKghJCiMuBaZo88d5h3thXi92msHJBPldkxQ/2bQnAqK/H+8pLeNeXYNTVWhsVBefM2dbc4sqr8Okm++o7KDtaHQx86uBQXTsevS00t7jWdpJvKCcZ5TzJaFsNMXSEP9CpcwsUjNjsXu2x9fhR6HE5YD9zK28hhBBCCCGGkkiS8s7Gtm3b+M53vsOsWbN4/PHHwz7P+mILvNzcXICIA6EiTeJRXdG0RENVMrx7hY3NeQo+pwKc7r27H1WpJMnsItHfQFLHCZK1ZJK6kklqTSbJlUSSK5kkdzJJziScdtfZ38xFRhKmIiPjFTkZs8ic7/GSQCghhBAiAqZhEPj0Y7wla/Bv3gSGAYAtJRVuXkj59OvZG3Cx/0Q71TveQ20+ygjlJCNtVhb2PwQzseMdp++/bS1IZPWq6iQLEkKIi4nH42Hx4sUsX76chx9+mNraWp577jlWrFgBWB9ExcbG4na7mT9/Po8//ji/+tWvuOOOO1i9ejVdXV3cfPPNAPzDP/wDDzzwAHl5eYwbN45HH32UvLw8Jk6cSEdHBy6Xi3/5l3/hn//5n6moqGDVqlX84z/+42A+fSGEGJKe23acv35eDcDy+eOZNVoCRgeTaZpoOz6na90a/B+8B7oVoaQkJGKbv4BjM77CXjOGspp2Kv+8EXtzOcOxAp7m2E7yv5WTjFRPkug4c4a2HpPZ99wifjhcwgsdQgghhBDi8hJJUt6XOXDgAN/97neZM2cOTzzxRCiwCuDQoUPcfvvtrF+/npycHMBKylNVlREjRgzcE+pDzrip5Ly0DWecSXb1cW711tPka6TR10CDr4HGL3y1BlrRTI1abw213povvX6sI5YkVzKJriSSXSnBQCnre7IrhcRg4FScI67PNt1CCDFUSCCUEEIIcRaM1hZ8r71C10trMSorQtvrc/MpGz+Byngb8Z37GPnhe6GAp0SlHc6wrqDHZIRVdQp9jxsOav9K9QohxFDywAMPsHz5cu68805iYmK45557uPHGGwGYPXs2K1asYMmSJcTExPD73/+eBx98kL/97W+MHz+eP/zhD0RFRQEwf/58WltbefTRR2loaGD69Ok89dRTKIpCTEwMf/rTn3j44YdZunQp0dHR3HHHHRIIJYQQX7BmRzXPfHQMgB/PEwxCWQAA/lBJREFUy2V+Xtog39Hly+hox/fm63hL1qAfLQ9tbxw5jv0T8jmW6CTGf4RRm/5/zFJO8nXlJClK6+mTvAE9Ov00wU4jQPVcgGclhBBCCCHE4IokKe/L/Ou//isZGRk88MADNDU1hbbHxsYyevRoRowYwc9//nN++tOf0trayoMPPsjtt99OfPz5r7irKArxrjhGxI5keMzIMx7r1/00+5v6CJJqpNFXT6OvkQZvPU3+RgJGgLZAG22BNo61Hz3jdVVFtSpJuU6pKhX8Snb3/DnRmYRTEruFEINAAqGEEEKIM+jctZuTzzyL8uF72DQNAN1hwxhpJ21MM3nx7zCHd8AE+uhKF4hKx0zoXogYeUqw00hwyIKEEOLS5vF4WLlyJStXruy1b//+/WE/T5w4kZKSktNe66tf/Spf/epX+9w3duxY/uM//uPcblYIIS5hb5XVsurdQwD849XD+dqUrEG+o8tTV1mZNbfY8A42vx8AQ1XQhqukjmklL+l9ZvH+6ecW7hTMxFHo8aN75hcJo9HjR4Ij6kI+FSGEEEIIIYaks03KO5O6ujo+//xzAK699tqwfd3nP/300/zqV7/i61//OjabjQULFnDfffedl+d0Lpx2J2medNI8Z27XZ5om7VobDd7wgKkGXwNNwcCp7j/3r8pUd1WpZBK7A6ZOCZ5KciUT64iVKlNCiAEjgVBCCCFEH47t20LTgz8k+4SBPbitI1mnLc+HfaSXRJuBZuh06gqGmog/diSO5FyU5FxZkBBCCCGEEEPGlqONPPj6fkxg2aQMvjXz/LZqEL3VHiuj4oF/YESFHppbdCbqtE7wYxvtJUHV0XWDdl1Bscfjjx2BPTkXe3LuKdWdRmI6Ywf1eQghhBBCCDHURZKU123JkiVhwVGpqamnPbZbRkYGTz755Lnd7BCiKAqxjjhiHXGMjB11xmP9up8mf2PvqlK+Rhr9DaFgqt5VpsrPeF2HzUGiM6mnqpQzmST3qVWnUkLVpxy2PjJHhBDiFBIIJYQQQvSh/OOXKTxhELDD5jyFt6bYOJhpB8UFxIUd67Q5SXDaiXc2k6AfJr69nnj/YRKaE4h3JpDgTCDBmWj92ZVAjCqZDUIIIYQQ4vzbXd3KfS/tRTNMbhyfyk+uHyPvQwfBkZ1vMqZCR7PBx+MV3pxiY19O99wiPLjJYXMS71RJcLYQbxwhoaOJ+MARElqseUW8MzH43ZpjxDhisCm2wXliQgghhBBCiMuO0+4k3TOMdM+wMx5nmiZtgTYafMEgqWCFqb5a9LUF2ggYgZ4qUy1nvoc4RxyJoapSSadUnEoh0dUTTCVrMUJcviQQSgghhOjD3P/1Cz6KiaM5Q6UrMYaJpo8R/mZa/M00h7434Tf8+A3/WZeBBbAr9lCAVM/3xLCfQ4FTzgRinXHYFfuXX1gIIYQQQoigw/Ud/LCkFK9mcPXIRJbfPB6bfAA8KK5e+AO2mAYNSQHaUuIpxEd295zCZ80rWvzN+AwfAcNPvbeOem/dWV3bptiJd8RbcwlXcB7hiA8FSiW4wucc8Y447Db5OFAIIYQQQghxfimKQpwzjjhnHKNiR5/xWL/up9HfQFOwulRjMHAqvEWftU0zNVoDrbQGWs+iypSTJFcS6dFpxNrje7Xo627Pl+hKkipTQlxi5JMPIYQQog82u525y/4vKSmx1Ne3YZq9jzFNE6/eRXMoOKrplD830+xr+kLgVDNdeie6qYfewJ8NBass7amZ3z0LHV/YFvySN+1CCCGEEJev6hYv97y4mxavRlFGLKsW5uOwS9WgwTRz8Q/POLcA6NK6QgkXzWFJGE20+FvC5hwt/mY6tA4MU6fJ30iTvxHav/w+rLlFbGgO8cUEjVMr2cYHg6qcdufADoYQQgghhBBCnMJpdzLMk8EwT8YZjzNNk9ZAax9BUlZ1qe7qUw3eBtq1NgKGn5quk9R0nfzSe4hzxPeuKhUMlOpu0ZfsSiZajZEqU0JcBCQQSgghhOgnRVHwqFF41CgyojLP6hy/7vvCosZpgqiC29oCbZiYtAZaaA20QMexs3qcaDXmtBWmujPFE5wJxDnjSXAm4ra7z2UohBBCCCHEENHY6eeeF3dT1+5ndHIUvy4uxOOQ6qIXA4/qwaN6GBZ15g//u/l1Py2BFmsu4Ws+TRBVT8Wp1kBrcG5hZU9XdBw/q8eJVqNDCRc984vTV7X1qJ5zGQYhhBBCCCGE6JOiKMQ744l3xp9FlSkfjf5GmnwNBFydHK2rpNHbd4s+3dRDazBHz7LK1BerSn2xRV+CK1ES1oUYRBIIJYQQQlxATruLNE86aZ70szpeMzRaAy1hLTNOXdBo9jfT6m8J7Wvxt2Bg0KG106G1U9VZeVaP47a7z6pNX3fmeJQaJVkPQgghhBBDTLtP4/svlnK8qYuMOBf/trSIeI988HqpctqdpNpTSXWnntXxumG1kDhzQkYTLb7gz4EWDFOnQ+ugQ+ugurPqrB7HZXOdpjVf+Nyi+8/RarTMLYQQQgghhBADyml3Mczz/2fvzuOjqO/Hj79m7819bA5Cwn2FcCfBAzzQiniAiEe1FxYqWi9+tSpFq8JXBUGxtVLQoihWaqoUKkW8rfUGkhCukADhCgRy33tkj/n9scmSJRzZkBAC7+fjkQe7M5+Z+czbjZPPznven250C+rmrc4bdOLqvB7VQ62vypS3qlSFo4KKpin6GsqpsHvXtaXK1PFVpY4lTR1LopIqU0K0P0mEEkIIETCHw8HcuXP59NNPMZlMTJs2jWnTpp1ym8zMTGbNmsUXX3zhW6aqKsuWLSMjI4OqqiqGDh3Kk08+Sb9+/XzrFy1axKpVq/B4PNx666088sgjaDQXzrQeOo3O98dxa3j/aK898Q2NhqpmT4ofW+ZSXdjdduyt/OMdQK/Rt7ihEWGIICEyDp3T3OJJ8VB9KBrlwvnvJoQQQghxtjlcHn7/7x3kl9QRadaz+NZhxIYaO7tbpyVji7NHq9ERaYwi0hjVqvYe1UOds+64BzL8xxnHV7p1ehpweByU2IspsRe36jg6RedXbappar6EiDgMriDC9f5VbUP1YTK2EEIIIYQQQrQLjaLxjUd6h/Y9ZVuH20Gl48RVpZpP0Xd8lal9dXtPuV+DxnDCqlKRjf82JU5FGqPQaSS9Q4jWkN8UIYQQAVu4cCHbt29nxYoVFBUVMWvWLBISEpgwYcIJ2+fn5zNz5kyMRv8bMRkZGSxfvpz58+fTq1cvXn/9de6++27Wr1+P2WzmzTffZN26dSxevBiXy8Wjjz5KdHQ006dPPxun2SV5/2j3lobt0Yr2qqpS76pvlixVfZIpNY69t7vtOD1OyuyllNlL/Xe4/2T90hKuD2vxFPiJnxSPJFwfhlb+oBdCCCGEaBWXR+WJdTvJPlRNsEHLK7cMpUdk15ieTMYW5y6NoiHMEEaYIQzoedr2qqpic1uPjSNOUdW2aZndbcOluih3lFHuKGtdv/D263SVbJu/lpsFQgghhBBCiDNl1BqJD+p22unMm6pMldsbE6V8VaWaEqaOVZ6qd9XR4GngqO0IR21HTtuHcENE47R8x6pKnWiKPqm8Ky508i2AEEKIgFitVt5//32WLVtGSkoKKSkp7N69m5UrV57wZkVGRgYLFiwgKSmJuro6v3Vr1qxh2rRpjBs3DoA5c+YwevRosrOzGTNmDG+//TYPPfQQaWlpADzyyCO8/PLLcrOiHSmKQog+hBB9CN2DE1u1jd1t958yoymJylmFXamnuKbU7+ZGvasOj+qmsqGSyoZK4NRzbDcJOy5xKtwQfsqp+wxawxlEQgghhBCia1JVlXmf7uJ/BeUYtAqLJqcwMC6ks7vVKjK2OL8oikKQLpggXTAJQd1btY3D7Wj2QIZ/tSmHpp6jNSXe941jjzpXLR48vnYHWtm3EF2odwxhPNk0fcfGGRGGCAzac7+amhBCCCGEEOLc1LzKVB9OX2XqRFWljk3R502kqnRU4Fbdvsq81Baccr9GjdFXRap5VakoUzRRhmiiTd4EqkhDpDw4Is5L8qkWQggRkLy8PFwuFyNHjvQtS01N5dVXX8Xj8bSYWuLrr79mwYIF1NXVsXjxYr91jz32GImJx5JvFEVBVVVqa2spLi7myJEjpKen+x3n8OHDlJSUEBsb20FnKE7HpDURb+5GvNn/qQdFwTvXdpn/XNtOj9Nv2gy/p8IdLZfVOmtQUalx1lDjrKGw/mCr+hWkCzrlDY3jE6fMuq5RJUEIIcSFyV1SjHPTRpw5WTQYdTgt8Wi6J6JN7IE2MRFNaFhnd1GcI175eh//2VGMRoF5NyaTmhTR2V1qNRlbCKPWSJw5njhzvN/yk40tXB7XKStMVTcmVTW9rmmowYOHOlctda5aDlkLW9UvszbIbwzRYuq+46ramrVB8rS1EEIIIYQQImBGrZFuQQl0C0o4ZTuP6qGmodqXJNW8qlTFcdP01bvqcXgcHLEVccRWdMr9KiiEG8Ibq0l5fxIi4nDaPSiKBg0aNIoGRVHQokVRFDSKFg1K4/JjbTSN6xQUtEpjW9/2jW1o3F5RUHzbNa1r1rZx/00/zdv67d/v+N51TfvXoPXrU/M2Mn47/0kilBBCiICUlpYSGRmJwXCs+o7FYsHhcFBVVUVUVJRf+yVLlgCwevXqFvtqehq7yfvvv4/L5SI1NZXi4mIAv5sSFosFgKNHj8rNii5Er9FjMcVgMcW0qr1bdVPju3lRddyNDv9p+pr+daturC4rVpeVI9ZT/2HfxKgxnuCGRmOilLHlU+HBuhD541gIIUSH8dTV4dychTNzI87MjbgPHqtz4jhBeyUszJsU1T0RbVISmu5Jx16HhZ+9jotO9fbGQv6eeQiAJ8YP4Ip+lk7uUWBkbCECpdPoiDZZiDa17rPuVt3UOWuPPXzhOFUSlffHpbqwua3YbNbT3jRootcYjhtTnPyBjAhjBCG6UBlbCCGEEEIIIVpNo2iIMEYSYYw8bZUpu9vemCjVmBxl95+ez5dM1VCJR3X7Ku7ubaoydfgsnFAn06DxS+pSFA1av4SrlglUzRO1tL6kK+8yvU6H6qZZwpfmhIla3uX+bbTHJXr5b++fdHas7QmSzk643bGkMF+bkya4texfUyzaJ2nN2yetRkO429Th/40lEUoIIURAbDab340KwPe+oaGhzfvdsmULCxYsYPr06cTExHDgwAG/fZ/Jcdr6/XLTdvL9dOu0V7x0ipYoUxRRpqjTN8Y7HUydq5Yqh3+ilO+mhqPpBke174ZHg6cBh8dBib2YEntxK/ul80ucOvYEeGSLp8QjDBGEGsLQKtqT7k8+X4GTmAVG4iXEuU11uXDt2EZD5iacmRtw7cwFt/tYA40G3aDBGNLSCY6OoHbXHlyHCvEcOoSnvAy1pgZX7nZcudtb7FsJDUObmIg2sTFBKjHJ+757Ekp4uNx8P0/8e+sRXvnGO+XwzCv6MGlI/Gm2OPfI2EKcTHuOLSKM3r/doddp26uqSr2rzjuecDRVrm05bZ9v3OGowuFx4PQ0UGovodRe0qp+aRVtswcywv0ewPAmS/knUYUZwmVs0c4kZoGReAkhhBBCdB0mranVVaaqG6r8qkpVNpTj0Fips9pwqx5U1YNH9eDBg6qquFU3Kioe1Y1HVfHgXa+qKh4alzW2cavuxuXH2hy/vdq4zvfTuK75dk0/x9p6t/P1j+Zt1FOes+/c8YDqfXhGnH1RpijeuvwfhOg6ruK9JEIJIYQIiNFobHGzoOm9ydS2DN7Nmzdz9913c/nllzNz5kzA/8aE0Wj0O47ZHNiUZtHRoW3qV3ttf6HpjHjFEAZ0b1VbVVWxuWxU2CuotFdS6ag89tre+NrR7LW9EqvLikt1Ue4oo9xR1qrjeOcBDyfSFEmkKZIoUxSRxki/9+GOcIJ0QZh0JkxaEyadCbPOjFFrxKg1yo3qk5DfycBIvIQ4N6iqinv/XpyZm2jYtAFXzmZUm9WvjSYxCUP6RejT0tGPTEMTGuqbHopm00OpVivuokO4Dx3CfajQ+3P4EJ5DhXjKSlFra3DtzPUmVx1HCQn1Tq13XIKUNjEJJSJCrj1dxJe7y5j/+W4Apo5O4hdpiafZ4twkYwtxOp03tjj1DYPmrE5ri/FDpb2SCsex103jjkp7JXXOOtyq23ejoTUUFMKNjWMLY+PY4rhxRoQ9giB9EEat0TeuaBpjyNji5OR3MjASLyGEEEKI84dG0RBpjCLSGEVf+gEnn6a8q1BVtTHRqnkCV2PSFJ7jErX8E72aJ1P5Er2Ob9ssUcuX1IWb0FATVdX1x+3zJEldzfvklyjmwU3L5LPj++c57lw8jed72qS1Zsc+vn9u3H7H8u9fY9La8f3wS4Jrdg6nSlpr3C5EH3LKh33agyRCCSGECEhcXByVlZW4XC50Ou9lpLS0FJPJRFhY4Jm7GzZs4N5772XMmDEsWrQIjUbjO07TvhMTE32vAWJiWjfFWpPy8rb9waYo3i/52rr9haarxctEON2UcLqZesFp7rM1uB2+J8CPPRXevNqU/xQbtc5aPKrHe7PDUQnVgfdPQWlMiDJh0hoxakwYtd6bGKbG5d51TctMGDXNlxubrfeuO36ZSWtErzF0mZsiXe0z1tnONF4Wi9zkEOJMuctKcTZWfHJmbsJT7p9Mq4RHoE8bjSEtHX3aaLTx3Vq1XyUoCF2/Aej6DWixTrXZcBcdPpYgdagQz+FDuA8X4ikpQa2rxZW3E/J2ttxvcHCzKlLeilLa7klok5JQIiK7zPXifJd5sIo/frgTjwo3DY3n/rG9OrtLbSZjC3EyXS1eRsKIJ4x4U89WjC0aqHZWU+2oPG6M0TimcPgvq3HWoKJ6K1Q5qtjHvjb10aQ1YdAY/ccPzcYNxsYxx/Hrjx+DeMcdx23XuNwgY4vzlowthBBCCCFEV6Aoim/KurN3zMbkMZOMLVrDO7YIoby8rkPjJYlQQgghApKcnIxOpyMnJ4e0tDQAsrKyGDp0qO9GQ2vt2rWL3/72t1x22WW89NJLvpsf4L1ZkZCQQFZWlu9mRVZWFgkJCcTGxgZ0HFXljC6mZ7r9heZ8jJdeYyTGFEeMKa5V7V0eFzXO6mbTafgnSjW9tqp11DusONwO74/HjtPjBEBFxe62Y3fb25JH1WrNE66MmuY3REy+ylTNb4gcn1zlfxPluJsmGmOHJFydj5+xjiTxEuLsUa1WnDnZNGRuxJm5Efe+vf4NDEb0w0d4k5/SL0Lbtx9KgH8/nY5iNqPr2w9d334t+2e3+yVJeQ4fqyjlKSlGra/HlZ8H+Xkt9xsUjKZ7ItqkJLTdE30JUtruiShR0V3mxndXl3u0lt//ewdOt8q4/hZm/6R/l469jC3E6ZyP8dJrDFiMMViMrUvCc3tcVDtrfNPzVTd7EOPY+0rqPd6xhd1tbzG2AHxjixpnR44uaDFWaPnwRmPS1PEPeGiOtTEcn6ilaTYG0RrbNeHqfPyMdSSJlxBCCCGEEOJMnY3vsiQRSgghREDMZjOTJ09mzpw5zJs3j5KSEpYvX878+fMB75PVoaGhrZrK4qmnnqJbt27Mnj2byspK3/Km7e+8805efPFF4uPjAVi0aBHTpk3rmBMToh3pNDqijNFEGaNP2uZkJWbdHhcOjwO724Gj6SaG247d433tvbFhb7bO0bjO7tvG18bjOLa92397l+oC/BOuOpI34arZk+Ma43EJV01Plx9/w8T/afNYWySOetUvaat5xauuVOFKCNH1qS4Xrrxc73R3mRtwbd8GbvexBoqCbsBA9GkXoU8fjX7IMJTGabk6g2IyoevTF12fvi3WqY6mJKlDjdPsHTz2uvgoqrUe9+583LvzW+7XHIQmMdGbIJXYo3G6Pe9rJVqSpNrL/gorM1dvx+p0k9YjgmeuH4RW07VjK2MLIU5Pq9ERZYwiyhh10jYnHVuobhp8Y4BjYwG7x964/Ljxg29scWws0nwb3wMczcYXJ0u46kgne5ij6UGO5glXxuMrVzUlXOlMvrGFoal6rqbrVs8VQgghhBBCCHGMJEIJIYQI2OzZs5kzZw5Tp04lJCSEBx98kPHjxwMwduxY5s+fz5QpU065j9LSUjZv3gzAlVde6beuafvp06dTXl7OAw88gFar5dZbb+Wuu+7qiFMS4pyh1egI0ugI0gV36HGOT7hqfvPDu/xYwlXzNg0n2eb45KsTJ1zZsLttHXpexydcHT8FyPFPpBs0LacFabpx4ncj5bgn0vUavdwUEeICpKoq7sKDODM34ty0AefmLNT6er82mm4JGNIvQp+Wjn5UGprwiM7pbIAUowld777oep8oScqB+0iRt3LUoULcTZWkDhfiOXoU1WbFvXsX7t27Wu7YZPJPkGqcbk+TmIjGEiP/L22lozV2Hli1jSqbk+S4EF68aTBG3dkr896RZGwhRMfRKlrMuiDMuqAOPU7T2ML3oMZxyVN+Yw2/hCv7SR8A8Uu2OkX13I7UUdVzjx+DSMKVEEIIIYQQQrQvRVW7djHb4590ao2TPSUlTkziFTiJWWAkXoE705jFxIS2f6fOYW2Nk3w2AyPxCsyFEi+Xx+W7cXH8TZC2PJHu1jipc9T73xRplnB1tmjQ+E3n0Tx5yn86jxM9kX7ibfyeVG+HhCu5VgROxhZnR1eLmaeyAmfWJho2eae785QU+61XQsPQp6Ydm+4uoXu7Hv9cj5fa0ID7SJF/glTTdHvFR8HjOfnGRqN3ir3mCVKN0+1pLDFtmjbwXI9XW1TZnMzI2MK+Cis9I80su2M4kUGGdtu/XC8CI2OLs0PiFZgLJV4nepijodmY4fiHORpOkHDVfKzh0bj8xhbHP8xxtjR/mMNwwoSrVlTP1bR86KM9q+d2hWuFw+Fg7ty5fPrpp5hMJqZNm3bSyn+5ubk8/fTT7Nq1i379+jF37lyGDBkCwMCBA0+4zYIFC5g8eXKr+yNji7NDYhYYiVdgJF6B6wrXi3ONXC86nsQrMBKvwEnMAnO2rhVSEUoIIYQQQnQYnUaHTqMjmDOvcHWqP5CbJ1z5P3Hefk+k29x2PKp3yisPnrNS4UqD5thNkWZJVf5Pl/uv89380Jm4REknlqQO7aMQ5xvVbse5ZTPOzI00ZG7EvWe3fwO9Hv3Q4ejTRqNPH42u/0AUrbZzOnsOUAwGdD17Qc9eLdapTieexkpSfklShw/hOXoEHA7ce/fg3run5Y6NRm8lqe6J3mSppCQ0jZWlNDFtS5LqiqwNbv7f6u3sq7ASG2Jg8a1D2zUJSgghupL2rJ57qrHFqarn2n1VcE82PXnDeVs9N80zgkRNy8qR54qFCxeyfft2VqxYQVFREbNmzSIhIYEJEyb4tbNarcyYMYOJEyfy/PPP8+6773LPPffw2WefERQUxLfffuvX/q233uKjjz7i6quvPpunI4QQQgghhDgDkgglhBBCCCG6vPZMuDqVEyVctdcT6U03VI5PuLK5rdjc1jb199WdJv4z/lO0ivzZL8TJqG43rl353qnusjbi3LYVnE6/Ntr+AzCkehOf9MNGoJhMndTbrkXR69H26Im2R88W61SXy5skdVyClPtQIZ4jRY1JUgW49xa03LHBgDahu7eKVGJTgpT3tTYu7iyc2dnR4PLw2Nod7DhaS7hJx+JbhxEfJp89IYToaGdruvKWYwtHi+SpYw9mnKx67skfAGla114JV5pcDR9c8zHBupD2DEO7sFqtvP/++yxbtoyUlBRSUlLYvXs3K1eubJEItX79eoxGI4899hiKovDEE0/w9ddf8/HHHzNlyhRiYmJ8bQsLC/n73//Oq6++SmjohVelRAghhBBCiK5K7ogIIYQQQgjRSmcz4epYopWdhrY8ke5xkNZ9JDqNTkryCnEc9+FDNGRuxLlpI87sTNTaGr/1mtg49OmjMaRdhD41DU1kVCf19Pyl6HRok3qgTerRYp3qcuE5euS4qfYO4TlciLvoMDQ04N6/D/f+fS13bDBQk5QE8QloEr3T7PkSpmLjukz1LrdH5emP8thwoAqzXsPLU4bQOzqos7slhBCiHXX2wxwNp6ye2yzBqjHhanDcIII7ODmsrfLy8nC5XIwcOdK3LDU1lVdffRWPx4OmWSXJLVu2kJqa6psmUFEURo0aRU5ODlOmTPHb71/+8hcuueQSLr300rNzIkIIIYQQQoh2IYlQQgghhBBCnGN0Gh0hmhBC9G1/2rr5dB9CXOg81VU4szNp2LQRZ+ZGb8WhZpTgYPSj0tCnX4QhNR1NUg/fzTFx9ik6nS95iYsu8Vunulx4SopxFx70S5TyHD7kS5JqKCiAghNUktLr0SZ091aQ6p7oTcRqTJTSxMah6M6Nr0hUVWXhF3v4fFcZOo3CCzelkNItrLO7JYQQootqj4SrU00leC4oLS0lMjISg+HY9LEWiwWHw0FVVRVRUVF+bfv16+e3fXR0NLt3+0+HXFRUxLp168jIyGhTn9ryp2TTNvJnaOtJzAIj8QqMxCtwEjMhhBDninPjWz4hhBBCCCGEEKKdqA4Hzm1bcGZ6E59cu/Lxu2un06FLGYohfTT6tNHoBiafM0kw4tQUnc47LV5C9xbrVLcbteQowbXlVO7YhaspQepQYyUppxP3gf24D+zHefzGOh3abglouiehTTquklRc/Fn9fLz63X5Wbz2CAjx7wyAu6hl51o4thBBCdEU2m80vCQrwvW9oaGhV2+PbrVq1iiFDhjB8+PA29Sk6uu1T6Z3JthcqiVlgJF6BkXgFTmImhBCis8k3vUIIIYQQQgghujTV48G9ZzcNmzbgzNqEc0sONDj82mj79EWfmo4h/SL0w0eiBMk0Y+cbRatFk9CdEMsg7AOH+eW+qW43ntIS/wpSTdPuNU23V3gQd+FBnD8et2OtFk23BF9ilF+SVHy3dk2S+kfWIZZvKATgD9f05+oBMe22byGEEOJ8ZTQaWyQyNb03mUytant8u08++YQ77rijzX0qLw+8epaieJMH2rLthUpiFhiJV2AkXoE705hZLJJAJYQQon1IIpQQQgghhBBCiC7HffQIzk0baMjchDNrE2p1ld96jSUGfVo6+rTG6e4sls7pqDgnKFot2vhuaOO7Qdpov3Wqx+OfJHXoEO7DjUlShw9DgwPPoUI8hwpbVpLSatHEdzuWINU03V73RDQJ3QNKklqfW8yfvtoLwH1jezFlWLczPGshhBDiwhAXF0dlZSUulwtd47W3tLQUk8lEWFhYi7ZlZWV+y8rKyoiNjfW9P3LkCHv27OHqq69uc59UlTYnTpzJthcqiVlgJF6BkXgFrjNj5nA4mDt3Lp9++ikmk4lp06Yxbdq0U26TmZnJrFmz+OKLL3zLVFVl2bJlZGRkUFVVxdChQ3nyySd906uqqsqiRYtYtWoVHo+HW2+9lUceeQSNRtOh5yeEEKJ1JBFKCCGEEEIIIcQ5z1NbizM7E2fmRhoyN+I5VOi3XjEHoRs5ylvxKTUdba/eKIrSSb0VXYmi0aCNi0cbFw+p6X7rvElSpbgPNyZIHTqI+/Ah3I3JUjgceA4fwnP40ImTpOLiWyZIJfVA2y0BRa/3Nf26oJz/+zgfgJ+ldueu0UkdfNZCCCHE+SM5ORmdTkdOTg5paWkAZGVlMXTo0BY3pIcPH86yZctQVRVFUVBVlezsbO69915fmy1bttCtWzcSEhLO6nkIIYQ4cwsXLmT79u2sWLGCoqIiZs2aRUJCAhMmTDhh+/z8fGbOnInRaPRbnpGRwfLly5k/fz69evXi9ddf5+6772b9+vWYzWbefPNN1q1bx+LFi3G5XDz66KNER0czffr0s3GaQgghTiPgRKji4mKee+45fvzxR4xGI9dffz0PP/xwiwsEwNq1a/nrX//KkSNHGDx4MI8//jjDhg1r0e6jjz7i//2//0d+fn7bzkIIIYQQQgghxHlFbWjAtWM7DZkbcG7aiCt/J3g8xxpoteiSU9Cnj8aQNhrd4CHtOkWZENCUJBWHNi4ORqX5rVM9HjzlZcclSDVVkjoEdjueosN4ig7j3LTBf8cajTdJKjGJyvBYfijRkGaOot/wgTx4SaIk8QkhhBABMJvNTJ48mTlz5jBv3jxKSkp8N6/BWx0qNDQUk8nEhAkTWLRoEc899xx33HEHGRkZ2Gw2rrvuOt/+du/eTd++fTvrdIQQQrSR1Wrl/fffZ9myZaSkpJCSksLu3btZuXLlCROhMjIyWLBgAUlJSdTV1fmtW7NmDdOmTWPcuHEAzJkzh9GjR5Odnc2YMWN4++23eeihh3wJuI888ggvv/yyJEIJIcQ5IqBviVVV5aGHHiIsLIyVK1dSXV3N448/jkajYdasWX5tMzMzeeKJJ3j22WcZNWoU//jHP7j77rv58ssvCQ4O9rWrqanhueeea5+zEUIIIYQQQgjRJamqintvgXe6u6xNOHOywW73a6Pt2Qt92mjvz8hRaIJDOqm3QjQmScXEoo2JRT9ylN86VVUbk6S8SVHuwsJm0+0dApsNz5EiPEeKCAF8X5VvgMplii9JSts9EU1i0rGp9xK6o5zgQTQhhBDiQjd79mzmzJnD1KlTCQkJ4cEHH2T8+PEAjB07lvnz5zNlyhRCQkJ47bXXePrpp3nvvfcYOHAgf/vb3wgKCvLtq6ysjPDw8M46FSGEEG2Ul5eHy+Vi5MiRvmWpqam8+uqreDyeFlUCv/76axYsWEBdXR2LFy/2W/fYY4+RmJjoe99URbC2tpbi4mKOHDlCevqxisKpqakcPnyYkpISv+lWhRBCdI6AEqH27t1LTk4O3333HRaLBYCHHnqIBQsWtEiEKi0t5b777uOmm24C4P7772f58uUUFBT4VYVauHAhSUlJlJaWnum5CCGEEEIIIYToQtwlxTgzN3mnu8vaiFpR4bdeiYrCkNqY+JSWjjY2rpN6KkRgFEVBa4lBa4lBP6JlkpRaUc6RvD28teYHwitLSHFXMVypRT18CNVmxXP0CJ6jR3Bmbjx+x2hi4xqn20tC0z3J99qbJGU6i2cphBBCnDvMZjMLFixgwYIFLdYdPxPFsGHDWLNmzUn3NXfu3HbvnxBCiI5XWlpKZGQkBoPBt8xiseBwOKiqqiIqKsqv/ZIlSwBYvXp1i301VXpq8v777+NyuUhNTaW4uBjAL+Gp6b750aNHA0qEaksx4KZtpJBw60i8AiPxCpzELDBnK14BJULFxMTw+uuv+/5n3uT4coGAXylZu93OW2+9RXR0tF9J2Y0bN7Jx40aeeOIJZsyYEWjfhRBCCCGEEEJ0IZ76Olw52RzdnkPNN9/iPrDfv4HJhH7EKAyp6ejTL0Lbp69MESbOO4qiUG4M5b6dGoq6pdJ/WDB3/XQ4IUadN0mqsgL3ocZp9g4X+l57DhWiWuvxFB/FU3wUZ3Zmi31rYmPRJjYmSCUmoU1MRNuYLKWYJElKCCGEEEIIcf6y2Wx+SVCA731DQ0Ob97tlyxYWLFjA9OnTiYmJ4cCBA377PpPjREeHtrlfZ7LthUjiFRiJV+AkZoHp6HgFlAgVFhbGZZdd5nvv8Xh45513uPjii0+6zQ8//MC0adNQVZUXX3zRNy1eQ0MDTz75JE899RR6vb6N3ZdM2bNB4hU4iVlgJF6Bk5gJIYQQoitQXS5cudtpyNyIc9NGXDt3gNt9rIFGg25gMvr0xqpPKUNRjvvSUojzTY3dyYP/2k5RtZ3ECBOv3DKUEKP36xlFUVCiotFERaMfNtxvO1VVUasqvYlRTdPsHTqEp/G1WleHp6QET0kJZGe1OK4mJhZN90T/BKnEJHSJiYB8WSeEEEIIIYTo2oxGY4tEpKb3pjY+GLJ582buvvtuLr/8cmbOnAn4Jz0ZG6cubzqO2WwOaP/l5bWoamB9UhRvAkFbtr0QSbwCI/EKnMQsMGcaL4uldd9hBZQIdbwXXniB3NxcVq1addI2/fv3Z/Xq1fz3v//lD3/4A4mJiYwYMYK//vWvpKSkMHbsWDZs2NDmPkim7Nkj8QqcxCwwEq/AScyEEEIIcS5RVRX3gf3eqe42bcC1ORvVZvVro01MIvSyMXiGjEQ3MhVNaFgn9VaIs8/udPO7NTvYU1aPJdjA4luHEh3cuuQ/RVFQIqPQREahHzrMb52qqqjV1bgPHWxMlDqE59BB3IcP4S4sRK2rxVNagqe0BFdOtv+OtVoMCxfARZe312kKIYQQQgghxFkXFxdHZWUlLpcLnc57C7y0tBSTyURYWODfPWzYsIF7772XMWPGsGjRIjQaje84TftOTEz0vQbv7EqBUFXanDhxJtteiCRegZF4BU5iFpiOjlebE6FeeOEFVqxYwZ/+9CcGDBhw0nYWiwWLxUJycjJbtmwhIyODoKAg3nvvPf7zn/+09fA+kinb8SRegZOYBUbiFbizlS0rhBBCCHE6nvIyGjI34czciDNrE57SEr/1Sng4+tTRGNLS0aeNRpeQgMUSSlmZ/O0nLiwut4dZ/8lla1ENoUYdr9wylO7hgT0tfDKKoqBERKCJiEA/ZFiL9Z7qKl+ClPvQQTzNpt5T6+pQbbZ26YcQQgghhBBCdJbk5GR0Oh05OTmkpaUBkJWVxdChQ31JTK21a9cufvvb33LZZZfx0ksv+RKrwJsIlZCQQFZWli8RKisri4SEBGJjY9vvhIQQQrRZmxKhnnnmGd59911eeOEFrr322hO22bp1K1qtlpSUFN+yvn37UlBQwKeffkp1dTXXXHMNAO7GqRFGjhzJ3LlzmTRpUqv7IpmyZ4/EK3ASs8BIvAInMRNCCCHE2aZarTi3bPZOd5e5EffeAv8GBiP64SPQp6ZjSL8Ibb/+KAF+4SjE+cajqsz5OJ/v91Vi1Gn4080p9IsJPmvH14RHoAmPQJ8ypOVKt4uI+EjKymrPWn+EEEIIIYQQor2ZzWYmT57MnDlzmDdvHiUlJSxfvpz58+cD3qpNoaGhrZom76mnnqJbt27Mnj2byspK3/Km7e+8805efPFF4uPjAVi0aBHTpk3rmBMTQggRsIAToRYvXkxGRgYvvfQSEyZMOGm7VatWcfjwYd544w3fsh07djB48GB+8YtfMHHiRN/yLVu28Oijj/Lvf/+b6OjoQLskhBBCCCGEEKKDqC4XrvydjdPdbcS1Yxu4XMcaKAq6AQPRp432/gwdjmI0dl6HhTjHqKrKS/8t4JO8UrQahQWTBjO8e3hnd8tH0bW5WLgQQgghhBBCnFNmz57NnDlzmDp1KiEhITz44IOMHz8egLFjxzJ//nymTJlyyn2UlpayefNmAK688kq/dU3bT58+nfLych544AG0Wi233nord911V0eckhBCiDYI6NuugoIClixZwowZM0hNTfXNdwreOU+bZ9L+9Kc/5fbbb2fFihVcccUVrF27lq1bt7Jw4UIiIiKIiIjwbXv06FEAevbs2T5nJYQQQgghhBCiTVRVxVN4kIasTTg3bcC5OQu1rs6vjaZbN/RpF2FIH41+ZBqaZuM7IYS/N348yD83FwEwZ8JAxvSO6uQeCSGEEEIIIcT5yWw2s2DBAhYsWNBiXX5+/gm3mTJlil9yVExMzEnbNtFqtcyePZvZs2efWYeFEEJ0iIASob744gvcbjdLly5l6dKlfuvy8/P9MmlTUlJYvHgxL730EosWLaJ///688cYbxMXFtesJCCGEEEIIIYQ4M57KSpxZm2jI3IAzcxOe4qN+65XQMPSj0tCneae70yR0R1GUTuqtEF3H+zlFvPb9AQAeGdeXCcmxndwjIYQQQgghhBBCCCHObwElQs2YMYMZM2acdP3x2bHjxo1j3Lhxp93vRRdddNrMWiGEEEIIIYQQ7UO123FuzcG5aSMNWRtx797l30CvRz90GPrU0ejTL0I3YCCKVts5nRWii/o0r4QXvtgDwN2X9OCno7p3co+EEEIIIYQQQgghhDj/BZQIJYQQQgghhBCi61Hdbly783FmNk53t30rNDT4tdH2648hbTT6tNHoh41AMZs7qbdCdH3f76vgqY/yUYHbRiRw9yU9O7tLQgghhBBCCCGEEEJcECQRSgghhBBCCCHOQ+6iwzgzN9KwaQPO7EzUmhq/9ZrYWPRpF2FIH41+VBqaqOhO6qkQ55etRTXMWpuL26Ny7aAYHrmqr0wlKYQQQgghhBBCCCHEWSKJUEIIIYQQQghxHvDUVOPMyvQmP2VuxFN02G+9EhyMfmQq+vSL0KeNRpvUQ5IzhGhnBWX1/G7NduwuD5f0iuTpCQPRyO+ZEEIIIYQQQgghhBBnjSRCCSGEEEIIIUQXpDocOLdvxblpI86sjbjy80BVjzXQatENGYoh7SL0aenoBg1G0ckQUIiOUlRt58F/baPG7mJotzAWTBqMXqvp7G4JIYQQQgghhBBCCHFBkW/BhRBCCCGEEKILUD0e3AV7vFPdZW7EuTUHHA6/NtrefdCnjcaQNhr9iFEoQUGd01khLjDl9Q08sGorpXUN9IkO4k83p2DWazu7W0IIIYQQQgghhBBCXHAkEUoIIUSbORwO5s6dy6efforJZGLatGlMmzbtlNtkZmYya9Ysvvjiixbrli5dyoEDB3j++ed9y3Jzc7n55pv92qWkpLB69er2OQkhhBDiHOYuPopz0wYaMjfhzNqEWlXpt14TbUGflo4+7SIMaaPRWCyd1FMhLlx1DhczV2+nsMpOQpiRV24ZSrhZ39nd6nJkbCGEEEIIIYQQQggh2oMkQgkhhGizhQsXsn37dlasWEFRURGzZs0iISGBCRMmnLB9fn4+M2fOxGg0tli3bt06XnnlFSZNmuS3fM+ePSQnJ7Ns2TLfMp1M6yOEEOI85amtxbk5y1vxKXMj7sKD/g3MZvQjRmFI9053p+3VB0VROqezQggcLg+///cO8kvqiArS88qtw4gNbfm3rjg9GVsIIYQQQgghhBBCiPYg3/YIIYRoE6vVyvvvv8+yZctISUkhJSWF3bt3s3LlyhPerMjIyGDBggUkJSVRV1fnW+5yuXjmmWdYs2YNSUlJLbYrKCigb9++xMTEdOj5CCGEaH+BVPfIzc3l6aefZteuXfTr14+5c+cyZMgQ3/qPP/6YP/3pTxQXFzNq1CieeeYZunfvHvBxzjWq04lrxzYaGhOfXDtzweM51kCrRZc8uLHiUzq6wUNQ9FJpRohzgcuj8sS6nWQfqibYoOUvU4bSI9Lc2d3qkmRsIYQQQgghhBBCCCHaiyRCCSGEaJO8vDxcLhcjR470LUtNTeXVV1/F4/Gg0Wj82n/99dcsWLCAuro6Fi9e7FtutVrJz8/nvffe46233mpxnIKCAgYOHNhh5yGEEKLjtLa6h9VqZcaMGUycOJHnn3+ed999l3vuuYfPPvuMoKAgsrOz+f3vf8+TTz7J6NGjWbhwIQ8//DD//Oc/AzrOuUBVVdz79h6b7m5LNthsfm20PXqiTxvt/RmZiiYkpJN6K4Q4GVVVee7TXfyvoByDVmHR5BQGxsnvalvJ2EIIIYQQQgghhBBCtBdJhBJCCNEmpaWlREZGYjAYfMssFgsOh4OqqiqioqL82i9ZsgSA1atX+y0PCwsjIyPjpMcpKCjA4/EwceJEamtrufzyy3nssccICeCmcFtnDGraTmYcah2JV2AkXoGTmAWms+MVSHWP9evXYzQaeeyxx1AUhSeeeIKvv/6ajz/+mClTprB8+XImTZrEHXfcAcATTzzB1KlTqaiowGQyBVRFpDO4S0sap7rbREPmRtSKcr/1SmQUhrR09Kne5CdtXFwn9VQI0RqqqvLy//axbkcxWgXm3TiY1KSIzu5WlyZjC3E8iVdgJF6Bk5gFRuIlhBBCCCGE6EokEUoIIUSb2Gw2vxsVgO99Q0NDuxzD6XRSWFhIYmIi8+bNo6amhvnz5/Poo4+ydOnSVu8nOjr0jPpxpttfaCRegZF4BU5iFpjOilcg1T22bNlCamoqSuOdFUVRGDVqFDk5OUyZMoWNGzfy/PPP+9onJSXx5ZdfApCdnR1QFZGzwWOtx7k525v8tGkj7gP7/BsYjehHjEKfNhpD2mi0ffqidEI/hRBt8/amQ6zMOgTAH68dwBX9oju5R12fjC3EyUi8AiPxCpzELDASLyGEEEIIIURXIIlQQggh2sRoNLa4KdH03mQytcsx9Ho9P/74I0ajEb1eD8Dzzz/PLbfcQnFxMXGtrJhRXl6LqgZ+fEXxfsnX1u0vNBKvwEi8AicxC8yZxstiObObHIFU9ygtLaVfv35+20dHR7N7925qamqorq7G7XYzffp08vLyGDZsGHPmzCEuLi7gKiKn0pYn3BUFVKcT57YtNGzaSMOmjbhyt4PbfayRRoNuYLK36lP6ReiHDEU57ob/hUQqCgRG4hWYjo7Xv7ceYfE33uTG/3dlHyYOie+YA51F58JnTMYW4ngSr8BIvAInMQtMZ48thBBCCCGEECIQkgglhBCiTeLi4qisrMTlcqHTeS8npaWlmEwmwsLC2u04x09T0bdvX4CAblaoKmf0xeaZbn+hkXgFRuIVOIlZYDorXoFU9zhZ24aGBqxWKwDPPvssv/vd75g5cyYvv/wy99xzD6tXr27XKiJtecI946HxDPqqEONxh9L36EHwpZcQfMmlBF98Edrw8ID3fb6TigKBkXgFpiPi9fH2I8z7bDcA913Zl/83YVC7H6MzdeZnTMYW4mQkXoGReAVOYhYYiZcQQgghhBCiK5BEKCGEEG2SnJyMTqcjJyeHtLQ0ALKyshg6dGi7TUO0Z88ebrvtNtauXUtSUhIAO3fuRKfT0bNnz3Y5hhBCiI4RSHWPk7U1mUxotVoAbrvtNiZPngzAiy++yJgxY8jJyWnXKiJtecI9ePdhjA1QY4adPRXU4ckMHv8b+g4c6+0L0OAEymoD2/F5TCowBEbiFZiOitemg5U89K/teFS4eVg8v05NoOw8+b0+F6p8yNhCCCGEEEIIIYQQQrQXSYQSQgjRJmazmcmTJzNnzhzmzZtHSUkJy5cvZ/78+YD3Ce7Q0NAzmsqiT58+9OzZkyeffJLHH3+cmpoann76aW677TbCpbKGEEKc0wKp7hEXF0dZWZnfsrKyMmJjY4mMjESv19OnTx/fusjISCIiIjh69Cjx8fHtVkWkLU+4Jz3zBms/ms3X8Uc4aNABu2DPYwwqGcCNPW9hXLerMeuCAtvpBUIqCgRG4hWY9oxX7tFafr8mF6dbZVx/C7Ou7g8o591/j878jMnYQgghhBBCCCGEEEK0l/Z5rE4IIcQFafbs2aSkpDB16lTmzp3Lgw8+yPjx4wEYO3Ys69evP6P9azQali5dSkhICD//+c+5//77ueSSS3j88cfbo/tCCCE6UPPqHk1OVt1j+PDhbN68GbXxDryqqmRnZzN8+HB0Oh0pKSnk5eX52ldUVFBZWUn37t0DOk5HSOyVwmN//JJfWF5kZlEwE+rq0akqeTW7eHHbfG77YhJ/3v4CBTW7O7wvQoj2t7/cyszV27E63aT3iODZ6weh1Sid3a3zkowthBBCCCGEEEIIIUR7UFS1az/DWFYWeOl2RfGWbm/LthciiVfgJGaBkXgF7kxjFhNz5tNXdCVtjZN8NgMj8QqMxCtwErPAnAvXiqeeeors7GxfdY9Zs2Yxf/58xo8f71fdo66ujmuuuYYbbriBO+64g4yMDD7++GM+/fRTgoKC+Pjjj5k9ezbz5s1jwIABvPDCC5SUlPCvf/0LRVFOeZxAnOnYoqC0jv+sXcnN9tfZElbHqtAQCvV6X9tB4YOZ2GMyV3a7GrPOHNiBziPyuxwYiVdg2jNeR2vs/CZjC8W1DpLjQlh6+zCCDedfYe1z4XrRlcjY4uyQeAVG4hU4iVlg5FoROLlvcXZIzAIj8QqMxCtwcr0InFwvOp7EKzASr8BJzAJztq4VUhFKCCGEEEII0SFaW90jJCSE1157jaysLKZMmcKWLVv429/+RlCQd0q5CRMmMHv2bF544QWmTJmC2+1myZIlKIpy2uOcTX0sIfz2V3fzweCVFJbdzDuFNSw7Usy1dfXoVMirzuWFbfO4/ctJvLz9RQpq9pz1PgohWqfK6uTBf22juNZBz0gzf5ky9LxMghJCCCHOFw6Hg8cff5y0tDTGjh3L8uXLT9o2NzeX2267jeHDh3PLLbewfft2v/Uff/wx1157LSNGjGDatGkcPny4o7svhBBCCCGEaEfyLZ4QQgghhBCiQ5jNZhYsWMCCBQtarMvPz/d7P2zYMNasWXPSfd1+++3cfvvtAR/nbDPoNDx45QA29XmU29eP4+d1GTxv+4xqbSX/Dgvj/ag4Drvq+eDgaj44uJrkiBRuTLqJcQk/waQ1dXb3hRBAfYOLmWu2s7/CRmyIgcW3DiUiSH/6DYUQQgjRaRYuXMj27dtZsWIFRUVFzJo1i4SEBCZMmODXzmq1MmPGDCZOnMjzzz/Pu+++yz333MNnn31GUFAQ2dnZ/P73v+fJJ59k9OjRLFy4kIcffph//vOfnXRmQgghhBBCiEBJRSghhBBCCCGEaGfpPSJ5deqVfNfn91zbsIAtzmFMr6pi/d58Xiu3cpW5D1pFy86qHbywbR63fTGJl3csYm9NQWd3XYgLWoPLw2Mf5JJ7tJZwk47Ftw4jPkySFIUQQohzmdVq5f333+eJJ54gJSWFa665ht/85jesXLmyRdv169djNBp57LHH6Nu3L0888QTBwcF8/PHHACxfvpxJkyZxxx130KdPH5544glKS0upqKg426clhBBCCCGEaCNJhBJCCCGEEEKIDhBu1jPvxmR+ce04HmA2v2qYxV41kUtryng59ys+qdJxT+x4ugUlUO+q44MD/+I33/6SB76/m48PfYjdbe/sUxDiguL2qDz1UR4bD1Zh1mt4+Zah9I4O6uxuCSGEEOI08vLycLlcjBw50rcsNTWVLVu24PF4/Npu2bKF1NRU3zTbiqIwatQocnJyANi4cSPXXHONr31SUhJffvklUVFRHX8iQggh2kUg06U2yczM5Oqrrz7huqVLl/KHP/zBb1lubi4DBw70+5kyZUq79F8IIcSZk6nxhBBCCCGEEKKDKIrCjSnxjOgezlPrg7j2yBDu1H7JH4z/Iq5iNw9s2M30HlfydcqjrK3K5Lvir8mt2kFu1Q7+mvsy13SfwMQeN9E7tG9nn4oQ5zVVVVnwxW6+2FWGXqvwwk0ppMSHdna3hBBCCNEKpaWlREZGYjAYfMssFgsOh4Oqqiq/JKbS0lL69evnt310dDS7d++mpqaG6upq3G4306dPJy8vj2HDhjFnzhzi4uIC6lNjnlWbtmnLthcqiVlgJF6BkXgF7lyJWWunS22Sn5/PzJkzMRqNLdatW7eOV155hUmTJvkt37NnD8nJySxbtsy3TKeT2+5CCHGukP8jCyGEEEIIIUQHS4ww87c7RvDmjwd540cta62X8oegtdyhfoT54FeML/yGy4f8ksJL3+Kj0u/4sHAtR2xF/PvAKv59YBWDI4Ywscdkrux2NUZtyy/mhBBnZul3+1mz9SgaBZ69fhAX9Yzs7C4JIYQQopVsNptfEhTge9/Q0NCqtg0NDVitVgCeffZZfve73zFz5kxefvll7rnnHlavXo1G0/oJNqKj255QfSbbXqgkZoGReAVG4hW4zoxZ03Spy5YtIyUlhZSUFHbv3s3KlStPmAiVkZHBggULSEpKoq6uzrfc5XLxzDPPsGbNGpKSklpsV1BQQN++fYmJienQ8xFCCNE2kgglhBBCCCGEEGeBTqNw96U9uahXJE+tz+Px6jt5XXMlSyxrGFTzLeZtb9Fv1xqmp/+OOy57h6zKLXxY+AHfFX9DbtV2cqu2N1aJupYbe0ymd2ifzj4lIc4L/8g6xJsbCgH4w0/6c9UA+SJbCCGE6EqMRmOLhKem9yaTqVVtTSYTWq0WgNtuu43JkycD8OKLLzJmzBhycnIYNWpUq/tUXl6LqgZ2HoriTR5oy7YXKolZYCRegZF4Be5MY2axnHkC1cmmS3311VfxeDwtklq//vprFixYQF1dHYsXL/Ytt1qt5Ofn89577/HWW2+1OE5BQQEDBw484/4KIYToGJIIJYQQQgghhBBn0bCEMFb+ahQvflnAuh0woeQ+7oi+lqf07xBUlU/It3MwbX+bMWOeIn3kc5Q7yvn40Id8WLiWo7YjrDmwijUHVpESOZSJSZO5ottVUiVKiDb6cEcxf/pqLwD3je3FzcO6dXKPhBBCCBGouLg4KisrcblcvmmJSktLMZlMhIWFtWhbVlbmt6ysrIzY2FgiIyPR6/X06XPsgYPIyEgiIiI4evRoQH1SVdqcOHEm216oJGaBkXgFRuIVuM6MWSDTpQIsWbIEgNWrV/stDwsLIyMj46THKSgowOPxMHHiRGpra7n88st57LHHCAkJCai/MpVqx5N4BUbiFTiJWWDOVrwkEUoIIYQQQgghzrJgg46nJwxkbJ8o5n22m4zyvqzVPc2rg7Yz9vDf0FXtJfzDu2hIvAzt2Kf4eb+p3Nn3l2SVbWTdwbV8V/INOyq3saNyG4tz/8z4xAnckHSTVIkSIgBfF5TzzCf5APwstTt3jW453YEQQgghzn3JycnodDpycnJIS0sDICsri6FDh7ao/DF8+HCWLVuGqqooioKqqmRnZ3Pvvfei0+lISUkhLy+P66+/HoCKigoqKyvp3r37WT8vIYQQgQtkutS2cjqdFBYWkpiYyLx586ipqWH+/Pk8+uijLF26NKB9yVSqZ4/EKzASr8BJzALT0fGSRCghhBBCCCGE6CRXD4hhSLcw5nycT+bBKn61fQjX9v4b8/t9SuSO5RgOfUPkP6/FPvjn1F/0COkxF5MeczHl9jI+OrSODwvXUmw7yur977N6//sMiRzGjT1u4op4qRIlxKlkH6ri8XU7catwQ0ocM6/ogyKP7gkhhBBdktlsZvLkycyZM4d58+ZRUlLC8uXLmT9/PuCtDhIaGorJZGLChAksWrSI5557jjvuuIOMjAxsNhvXXXcdAL/+9a+ZPXs2ycnJDBgwgBdeeIHk5GSGDRvWmacohBCilQKZLrWt9Ho9P/74I0ajEb1eD8Dzzz/PLbfcQnFxMXFxca3el0yl2vEkXoGReAVOYhaYszWNqub0TYQQQgghhBBCdJS4UCN/vXUoD13eG51G4ZN9dq7J/QlfXPFvHH1vQFE9mHf8nah3xmLe/Cq4HUSbLPyi3128c+X7PJ/+EmPjrkCjaNleuZXntzzD7V9OYnHun9lfu6+zT0+Ic05+SR0Pr9mBw+Xh8r7R/HH8ADQXahKU24mueAu4XZ3dEyGEEOKMzJ49m5SUFKZOncrcuXN58MEHGT9+PABjx45l/fr1AISEhPDaa6+RlZXFlClT2LJlC3/7298ICgoCYMKECcyePZsXXniBKVOm4Ha7WbJkiSRMCyFEF9F8utQmJ5su9UyEhIT4kqAA+vbtC0BxcXFA+2maRjDQnzPZ9kL8kXhJvCRm59bPmf7/rzWkIpQQQgghhBBCdDKNovDL9CRG94zkyQ/z2Fdh5TcfNfDTkY/y+4l3EfnDXPRl2wn5/lnM2/9O3Zg/0tB7AlpFy+iYixkdczFl9lJvlaiDaymxF7N6/3us3v8eQyOHc2OPm7g8fpxUiRIXvMJKGw/9axv1DW5GJobz3A2D0GkuwBubTivm3Hcx5/wNbd1huOpJGHxPZ/dKCCGEaDOz2cyCBQtYsGBBi3X5+fl+74cNG8aaNWtOuq/bb7+d22+/vd37KIQQouMFMl1qW+3Zs4fbbruNtWvXkpTknWJ9586d6HQ6evbs2S7HEEIIcWakIpQQQgghhBBCnCMGxobw9i9GcvuIBAD+ubmIO/+rZ9O496i56iXcQbFoaw4Q/tHdhH9wO9rSHb5tLaYYftnv16wct4r5aYsYE3c5GkXLtsotzN/yf9z+5ST+mvsyB+r2d9LZCdG5SuscPLBqKxVWJwNignlpcgomvbazu3VWKfZKgja+RPTbFxHy7dNo6w7jCYqBXmM7u2tCCCGEEEIIccaaT5e6detWPv/8c5YvX86vfvUrwFsdym63n9Ex+vTpQ8+ePXnyySfZtWsXmZmZPPnkk9x2222Eh4e3x2kIIYQ4Q5IIJYQQQgghhBDnEJNey6NX9+PPNw8hKkhPQZmVqf/YwpvWSyn/+dfUpz6EqjViOPwDke9NIOTLR1DqS3zbaxUtF8VewjOpz/PuuNX8uv/dxJriqHXW8q/9/+TXX/+MmT/8ls8Pf0KD29GJZyrE2VNjd/Lgv7ZRVOMgKcLEX24ZSojxwimSrak9TPA3TxO9YjTBm15CY6/EHdaT2iuep+JXP0CPizu7i0IIIYQQQgjRLlo7XWpbaTQali5dSkhICD//+c+5//77ueSSS3j88cfbo/tCCCHagaKqgcykd+4pK6sNaC5AAEUBiyW0TdteiCRegZOYBUbiFbgzjVlMTGj7d+oc1tY4yWczMBKvwEi8AicxC4xcKwJ3Lo4tKqwNPPPJLr7dWwHART0jeHrCQOLUMoJ/mIdp9wcAePTBWFMfxDb8N6AztdiPW3WzqXQDHxZ+wA/F3+HBA0CYPozx3a/jxh430SOkV/ufwAnI73JgJF6BOVG8bE43D6zaxtaiGizBBl6/czjdw82d29GzRFueT9DmpRh3/xvF4wLAaRmCbdT9OPpeDxqtXC8CJGOLs0PiFRiJV+AkZoGRa0XgzsWxxflIYhYYiVdgJF6Bk+tF4OR60fEkXoGReAVOYhaYs3WtuHAefxRCCCGEEEKILiYqyMBLk1P415Yj/Pl/e9lwoIo7V2TxxPgBjBv/V2xDf03It3PQl+QQ8uPzmHespO7SJ2joe4N3VNlIq2i5OPZSLo69lFJ7KR8V/of1hf+hxF7Mqv3/ZNX+fzIsagQTkyZzWfwVGLTGTjxrIdqP0+1h1tpcthbVEGrU8cqtQy+IJCjdkUyCsv+Kcf9nvmUN3cdgTb0fZ+JloCjUOmvYXJLN/rq9/Nz8U3QEd2KPhRBCCCGEEEIIIYRoH5IIJYQQQgghhBDnMEVRuHVEAmlJEfxxfR75JXU8tjaXm4bE8/C4kbhuXYtx178J/mEe2tpCwj+5F2e30dSNfRpX7PAW+4sxxfCr/tP4eb+pbCr9kXUHP+DHku/ZWpHD1oocwnLDuTbxOm5IuokeIT074YyFaB8eVWXux/n8sL8Sk07Dn6cMoZ/lPE72UVUMB74kKPuv6I9s9C5CoaHvdVhH3ofVMpjcqu1k7XqNrLJMdlXn+arDaQ0qv+g5vTN7L4QQQgghhBBCCCFEu5BEKCGEEEIIIYToAnpFB/Hmz0bw6ncH+PumQj7YfpTsQ1U8c/0gUgZOwdFnAkGbXyVo81L0RzYS+f4N2AfeSv3Fs/CEdGuxP2+VqDFcHDuGUlsJ6w95q0SV2kt4f18G7+/LYHjUSG7scROXxV2JQWvohLMWom1UVWXRlwV8kleKVqOwYNJghiWEdXa3OobbiXHPWoKyl6CryAdA1eixDbyFHQNuYFPDUbIOvs3WnBzsbrvfpj1DepFqSeeXg3+JWt8ZnRdCCCGEEEIIIYQQon1JIpQQQgghhBBCdBF6rYYHL+/Npb0jeWp9HoVVdqa/m8Pdl/bkrtE9sI5+GPvgOwj+cQGm/H9hyl+FseBDrKPuwzriXtCfeEqwGHMsU/tP5xf97mJjyY+sK/yADSXfs6ViM1sqNhOmD+faxOu5MekmkkJ6nOWzFiJwr/9wkPdyilCAuRMGcmnvqM7uUvtz2jDtfJegza+hrTsMwBFjKN/0vYIfQiPIqtpO5dbv/TaJNESRakljlCWd1Oh0YsyxKApEm0Mpq6/tjLMQQgghhBBCCCGEEKJdSSKUEEIIIYQQQnQxqUkRvDs1lec/38Nn+aW8+t0BfthXydzrB9I9PIHan7yMbehdhHw7F/3RTII3LsKU+w/qL56NY8BkUDQn3K9W0XJJ3BguiRtDia2Y9YX/Yf2h/1BmL+X9fe/y/r53GRE1iht73MTYuCukSpQ4J739w35e+/4AAI9c1Zdrk2M7uUftS7FXYt72Fuatb2JzVPKNycT3sd34ISya/e4asG0Fm7etSWtiWNQIUqPTSbWMpndoHxRF6dwTEEIIIYQQQgghhBCiA0kilBBCCCGEEEJ0QWEmPc/dMIixfaJY+MUethTV8PO3s3ns6n5clxyLK24kVVPWYNzzH4J/mIe29hBhnz+Ec9ub1I2dgys+9ZT7jzXHcdeA3/DLfnexodRbJWpjyQ/kVGSTU5FNuCGCa7tfz409biIxOOksnbUQp/bxzhKeXp8HwIxLenL7yO6d3KP2o6ktQp/zKgV7VvGjAX6INLHNmISrKa/JXYMGDQPCB5FqSSPVMprBEUMkYVEIIYQQQgghhBBCXFAkEUoIIYQQQgghuihFUbh+cBzDu4fx1Pp8thbV8PRH+Xy3t4I//KQ/oSYdjv6TcPS+hqCc1wnKegV98WYi/3UT9v43UX/J43hCT50ootXouDRuLJfGjaXYdpSPCtf5qkS9t+8fvLfvH4yIHsXEpMmMjb8CvUZ/ls5eCH/f76vg6Y/yUVW4fWQCv7mk60/jqKoqh4v+x9Ydr5FZk8cmk5H6uAi/NglB3Um1jCbVks7I6FGE6sM6p7NCCCGEEEIIIYQQQpwDJBFKCCGEEEIIIbq47uFmXvvpcN7acJDXfzjAp/mlbCmqYe51A0lNigCdGWvag9iTbydow0JMO9/DtPsDjHs/xjryXqwj7wND8GmPE2eO91WJ+rH0Bz48+AEbSn8gpzybnPJsIgwRXJt4Azcm3UT34MSOP3EhGm0tqmHW2lzcHpVJwxN45Kq+KHTNKeAqHBVsLssku/AjssuzKFZc3hVBZgDCtUGMjLmYUZZ0Ui3pdAtK6MTeCiGEEEIIIYQQQghxbpFEKCGEEEIIIYQ4D+g0Cr+5pCcX94rkyfV5HKqy89v3tvKr0Uncc2lP9FoNnuA46q5ahH3oXQR/OwdD0QaCM1/GlJtB/SV/wDHwFlA0pz2WVqNjTNxljIm7jGLbUdYX/of1hf+h3FHGP/eu5J97VzIyOpWJPSYzJu5yqRIlOtSesnp+t2Y7dpeHS3tF8uJtw6mpqkdVO7tnrWN329lakUNW2Sayyjaxt3bPsZUKGDwqIzQhjOz+E0b2uol+YQPQtOL3VAghhBBCCCGEEEKIC5EkQgkhhBBCCCHEeWRItzBW/jKVl/5bwAfbj7JiYyEb9lfyzPWD6BUdBIArZijVk1dh2PsRId8/i7bmIGFf/A7n1jepGzsHV8LoVh8vzhzPrwfcza/6/ZofS79n3cEP2Fj6I5vLs9hcnkWEIYIJiTdwg1SJEh3gcLWNB1dto8buYmi3MBZMGoxBd24nCblVN7ur872JT+Wb2FG5DafH6dcm2dHARfYGUi3pDBz5e3SWwZ3UWyGEEEIIIYQQQgghupZz+9tBIYQQ5yyHw8Hjjz9OWloaY8eOZfny5afdJjMzk6uvvvqE65YuXcof/vAHv2WqqvLiiy9y8cUXM3r0aBYuXIjH42mX/gshhBDnsyCDlj9eO4AFkwYTbtKRV1LHL97J5l9bilCbyuQoCg19r6fiZ/+l7pIn8OhD0JduJXLNFEI/vhdNzcGAjumtEnU589MXsXLcKn7R7y6ijRaqGqrI2LuSX/7vdh7dMJOvjnyJ0+08/Q6FOI3y+gYeXLWNsvoG+lqC+NPNKZgN2s7u1gkdrj/Efw7+mznZjzPl8+u57/vf8Mau18gpz8bpcdLNrTKlto6FJWX8t6iCt2Jv4q6Jn5ByzRsXRBKUjC2EEEIIIYTo+tSuUpZXCCHEeU8qQgkhhGiThQsXsn37dlasWEFRURGzZs0iISGBCRMmnLB9fn4+M2fOxGg0tli3bt06XnnlFSZNmuS3/M0332TdunUsXrwYl8vFo48+SnR0NNOnT++QcxJCCCHON1f1tzAkPpS5H+ez8WAVz3++h+/2VvDktQOIDDJ4G2mN2Eb9FvugWwne8CKmne9iKliHcf9n2Ib/BmvqA6iG0ICOG2/uxrQBM5jabxo/lHzHusK1bCr9kaxybwWcV3Jf4tru13N94iSpEiXapM7h4qF/baOwyk5CmJFXbhlKuPncmYKxuqGazeVZZDdOd3fEVuS3PlgbRJo2kjGlBVxSU0FPlwvVHI1t2APYhvyKelNE53S8k8jYQgghhBBCiK7F7XGxr24veVW55FXtJK86l0P1hTyc9jDXxkw6/Q6EEEKIDiSJUEIIIQJmtVp5//33WbZsGSkpKaSkpLB7925Wrlx5wpsVGRkZLFiwgKSkJOrq6nzLXS4XzzzzDGvWrCEpKanFdm+//TYPPfQQaWlpADzyyCO8/PLLcrNCCCGECEBsqJFXbh3Ku1mH+eu3+/hmbwV3rMjiqQkDGdM7ytdODYqhbtwCbEOnEvLd/2E49C1B2X/FtPM96i9+FPugn4ImsGo7Wo2OsfFXMDb+Co5aj/Bh4Vo+OrSOCns57xa8w7sF75Aanc6NPW7i0rjL0GvOnUQWce6yO908/O8d7CqtJypIz+JbhxET0jIh5mxqcDvYXrmNrLJNZJdvYld1PirHnobWKlpSIoeSFjqQS0v3Myr/Q/SuPADcYT2oG3EP9uTbQWfurFPoNDK2EEIIIYQQ4tymqirFtqPsrNpBXrU38WlXdR4Oj6NFW61yblbpFUIIcWGRRCghhBABy8vLw+VyMXLkSN+y1NRUXn31VTweDxqN/8yrX3/9NQsWLKCuro7Fixf7llutVvLz83nvvfd46623/LYpLi7myJEjpKen+x3j8OHDlJSUEBsb2zEnJ4QQQpyHNIrCz9MSSe8RwZPr89hbbuX/rd7O7SMSePDy3pj0x76odFsGUz3pXQz7PyP4u2fQVe8j9L+PYd76FnVjn8aZOKZNfYgP6sb0gfdw14Dp7LBl848dGWwq3eCrEhVpiGJC4g3c0GMSCUHd2+vUxXnG5VF54sM8Nh+qJtig5S+3DCUp8uwnD3lUD3tr95BVlklW2Ua2VWxpcROgV0hvUi2jSbWkMVIJw7L1TYyb/4zi8U4N6YpOxjrqfhz9bgTNhfv1jIwthBBCCCGEOLfUNNSQX53Lzqpcb8Wn6lyqGqpatAvWhTAoPJlBEckMikghOSKZgYm9KSurPfudFkIIIZq5cL9pE0II0WalpaVERkZiMBh8yywWCw6Hg6qqKqKiovzaL1myBIDVq1f7LQ8LCyMjI+OkxwD8bkpYLBYAjh49GtDNCkVpddMTbtfW7S80Eq/ASLwCJzELjMRLnMiA2BBW/Hwki7/Zxz83F/FeThGbCqt45vpBDIwNOdZQUWjoPZ6GHldi3raCoE1/QleeS8QHP8XR+1rqLv0jnojebeqDTqPj6p5XMzx4NEX1RawvXMtHhz6kwlHOu3v/zrt7/06aZTQ3JnmrROku4AQR4c+jqjz76S6+LijHqNPw0s0p/p/bDlZiKyarcaq77PJNLW4ERBstjLKkkWpJJzU6nWiTBd3RLIIyl2Dc94mvXUPCxVhH3Y+zx5XyP2lkbCFOTOIVGIlX4CRmgZF4CSHE+avB7WBPzW7ymiU+HbYeatFOp+joG9afQRGDSQ4fzKCIwSQGJ6FRjj24INcJIYQQ5wr5RlkIIUTAbDab340KwPe+oaGhXY5ht9v99nsmx4iODj2jvpzp9hcaiVdgJF6Bk5gFRuIljmfSa3nkqn5c2juKuR/ns6/cyq//sZn7xvbmZ6nd0TT/5lJrwDbibuwDbyF40yJM29/BuO8TDAe+xDZsGta0majGsDb3pVtQAtMH3svU/r/h+5Jv+fDgB2SWbfT9RBqiuC7pRm5ImkS3oIR2OHvRVamqysv/28uHO4rRKvDcDcmMSozo0GPWOevYUpFNZmPy06H6g37rTVozI6JGMsqSTqolnV4hvVEUBVQVw8H/Ys5egqHoR197R+9rsY66D1d8aof2u6uRsYU4FYlXYCRegZOYBUbiJYQQXZtH9VBYf9Bb5anKm/hUULsbt+pu0TYxuEdjtafBJEcMpm9ofwxawwn2KoQQQpx7AkqEKi4u5rnnnuPHH3/EaDRy/fXX8/DDD2M0Glu0Xbt2LX/96185cuQIgwcP5vHHH2fYsGGA9wvMZcuWkZGRQVVVFUOHDuXJJ5+kX79+7XNWQgghOpTRaGxxw6DpvclkapdjNL8x0XSdaTqG2RzY9Cfl5bWoauB9UBTvl3xt3f5CI/EKjMQrcBKzwJxpvCwWuclxvru0dxQZU1N59tPdfF1Qzsv/28v3+yqYM2EgsaH+YzzVHEXd5c9hGzKVkO/+D8PBrwjKeQ1T3vvUX/QI9sE/O6OpvXQaHZfHX8nl8VdyxFrEh4Vr+ahwHZUNFfyj4G3eLfg7qZZ0buwxmUtjx0qVqAvQio2F/CPrMABPXjuQK/pFt/sxXB4XuVXbyS7LJLNsI3nVO/E0uyGgQcOgiOTG6e7SSY5IQa/RH9uBx4Vx9zqCspegK88FQNXosQ+Ygm3kvbij+rd7n88HMrYQJyLxCozEK3ASs8DI2EIIIbqmMntp49R2O8mryiW/eif1rvoW7SINkQyKSPFOcRc+mIHhyYQZ2v7QkxBCCNHZWv3tsaqqPPTQQ4SFhbFy5Uqqq6t5/PHH0Wg0zJo1y69tZmYmTzzxBM8++yyjRo3iH//4B3fffTdffvklwcHBZGRksHz5cubPn0+vXr14/fXXufvuu1m/fn3AX0AJIYQ4++Li4qisrMTlcqHTeS8lpaWlmEwmwsLaZ4AUFxfn229iYqLvNUBMTExA+1JVzuiLzTPd/kIj8QqMxCtwErPASLzEqUQGGXjxpsGs2XqEl77ay6aDVdz5dhZPXNOfqwa0vN66owZQPfEdDAe+JPi7Z9BV7ib0f49j3raCujFP4exxxRn3qVtQAr8ZeC939f8N3xd/w7pC/ypRUcZorku8gRuSbiI+qNsZH0+c+9ZsPcJfv90PwO+u7MMNKXHtsl9VVTlQt5+sso1klW1iS0UONrfVr01icA9So73T3Y2IHkWI/gQ3cl02TDvfIyjnNbQ13qpRqi4IW8ovsI34DZ4QqWZ2KjK2EKci8QqMxCtwErPASLyEEOLcZXXVk1+d11jtaSd51bmU2ktatDNpTfQPG0hyRAqDIgYzKCKZOFO8t7qtEEIIcZ5odSLU3r17ycnJ4bvvvsNisQDw0EMPsWDBghaJUKWlpdx3333cdNNNANx///0sX76cgoIChg0bxpo1a5g2bRrjxo0DYM6cOYwePZrs7GzGjBnTXucmhBCigyQnJ6PT6cjJySEtLQ2ArKwshg4dikajOc3WrRMXF0dCQgJZWVm+mxVZWVkkJCQQGxvbLscQQgghBCiKwpThCYxKiuCp9XnsLK5j1n92MjGlgt9f1ZdgQ8thY0PPq2hIvAzTjncI3rgIXUU+Ef/5OY6eV1M/5knckWde7Ven0XF5t3Fc3m0cRdbDfHhwLR8fWkeFo5yVBW/zj4K/kx5zETck3cQlsWOkStR56stdpTz/+W4A7hqdxM9SE89of+X2MrLLM8lqnO6u3FHmtz7cEMGo6DTSLKMZZUkjzhx/0n0p9irM29/GvPUNNLZyADymKGzDp2Mb8itUU+QZ9fVCIWMLIYQQQgghAuPyuNhXW8DOqlzyqr3T3B2o24+Kf7aqBg29Qvv4Kj0lR6TQK6QXWhk/CyGEOM+1+koXExPD66+/7kuCalJXV9ei7XXXXed7bbfbeeutt4iOjqZv374APPbYY74vnsD7xbuqqtTW1gZ8AkIIIc4+s9nM5MmTmTNnDvPmzaOkpMRX6Q+8CbGhoaFnPJXFnXfeyYsvvkh8vPcG1KJFi5g2bdoZ918IIYQQLfWKCuKNO0fwt+8PsGJjIf/ZUczmw9X833WDGJpwgqosWj32Yb/GMeBmgjL/jHnbWxgPfIGh8H/YhvwKa/rv2i0RJCGoO3cP+i13DThWJSqrbBMbS39kY+mPRBstTEi8gRuSJkmVqPPIxgOV/HF9Hh4VJg+N576xvQLeh81lZUtFDlllm8gu28S+ur1+6w0aA0OjhpNqGU2aJZ0+of3QKKdOvtHUHcG85XVMO95B4/ROK+EOTcI68h7sg34Keql0HQgZWwghhBBCCHFyqqpyxFZEXlWuL/Fpd3U+DZ6GFm3jzPEMCh/sq/Q0IGwQZp2MT4QQQlx4Wp0IFRYWxmWXXeZ77/F4eOedd7j44otPus0PP/zAtGnTUFWVF198keDgYADfE35N3n//fVwuF6mpqYH2n7ZUamzaRqo8to7EK3ASs8BIvAJ3LsRs9uzZzJkzh6lTpxISEsKDDz7I+PHjARg7dizz589nypQpZ3SM6dOnU15ezgMPPIBWq+XWW2/lrrvuaofeCyGEEOJE9FoN91/Wm0t6R/L0+nwOVdm5OyOH6Zf05NcX9UCnafnHh2qKoH7sHOwpvyT4+2cx7v+MoK3LMeX/i/rRv8ee8kvQ6tunfxo9V3S7iiu6XcXh+kN8WLiWTw59SLmjjJUFK/hHwdukx1zEjY1VouQp165rx9FaHv0gF6db5ar+Fv7wk/6tmqrB7XGxtXQrX+z5isyyTeRWbselunzrFRT6hw0k1ZJOqiWdIZFDMWiNreqTtnIP5s1LMeWvRvE4AXBFD8I66n4c/SaCfN7aTMYWQgghhBBCeFU3VPmmtttZ5a32VOOsbtEuRBfqrfQUMbgx+SmZKGN0J/RYCCGEOPcoqtq2Wb0XLFjAypUrWbVqFQMGDDhhm7KyMkpLS/nvf//LkiVLeOeddxgxYoRfmy1btjB16lSmTp3K7373u7Z0RQghhDilsrJa2nK1UxSwWELbvP2FRuIVGIlX4CRmgTnTeMXEhLZ/p85xbYnV+fy5rLW7WPDFbj7JKwVgWEIYc68bSGLEqZ8m1Rd+Tci3c9FV5APgiuxH/aVP0tDzKlCUdo+Z0+Pku+Jv+PDgB2SVb/ItjzZauC7pRq5Pmki8uetWiTqfP2Mns7/cym8ycqi2u0jvEcGfbx6CQXfiKk2qqnLYeoisso1klWWyuTyLepd/5ep4c7fGxKfRjIweRbghIqD+6I5mE7R5CYa9n6A0TjXRkHARtpH3+T7XXZlcLwIjY4uzQ+IVGIlX4CRmgZFrReBkbHF2SMwCI/EKzNmIl8PtYHfNLvIaE552Vu/giLWoRTu9Rk/f0P4kRwz2JT51D048bTXbs02uF4GT60XHk3gFRuIVOIlZYM7WtaJNjyu+8MILrFixgj/96U8nTYICsFgsWCwWkpOT2bJlCxkZGX6JUJs3b+buu+/m8ssvZ+bMmW3pCuXlbbtAREeHtmnbC5HEK3ASs8BIvAJ3pjGzWC68AYUQQgghAhNq0vHsDcmM6RPFgs/3sLWohl/8PZtHr+rH9YNjT1qdx5l0OZU//QRTbgbBGxaiq9xD+IdTaehxBXWXPoXHMrBd+6nX6Lmy21Vc6asS9QEfN1aJemfPW6zcs4LRMRdzY4+buDjmUqkSdY47WmPn/lVbqba7GBwfygs3DW6RBFXlqGRzeRZZZZvIKt9Ese2o3/pQQygjo1IZFe2t+pQQ1L1V1aT8qCr6wv8RlP1XDId/8C129L4W66j7cMUHXtFaCCGEEEIIceFyq24O1h3wJj1V7ySvKpe9tXtwq+4WbZOCezAoYjDJ4SkMikimT2g/DFpDJ/RaCCGE6JoC/gb4mWee4d133+WFF17g2muvPWGbrVu3otVqSUlJ8S3r27cvBQUFvvcbNmzg3nvvZcyYMSxatAiNpm1Zy6pKmxMnzmTbC5HEK3ASs8BIvAInMRNCCCFER7suOY7hCeE8/VEeOYdrmPNxPt/urWD2Nf0IM51kyjuNDvuQX+DoP4mgrL9g3vIGhoP/I7JwPPYhv4AJTwPt/yVu9+BEZgy6n18PmMF3xV+z7uAHZJdnsqH0BzaU/kC00cL1SRO5Pmkiceb4dj++ODNVVicP/msbJXUN9Ioy8/LNQwg26HC4HWyr2EJ2+SYyyzaxp2aX33Y6RceQyGHeqk8x6VzaJ43KCmvb/k72uDAWfIg5ewn6sh0AqBodjgFTsI68F3fUyR8GE0IIIUTncTgczJ07l08//RSTycS0adOYNm3aCdvm5uby9NNPs2vXLvr168fcuXMZMmSIb31aWhq1tbV+22RnZxMcHNyh5yCEOL+U2kvZWbWjMfEpl13VeVhd1hbtIg1RvkpPyREpDAwfRIheHmQ+E4FcE5pkZmYya9Ysvvjiixbrli5dyoEDB3j++ed9y1RVZdGiRaxatQqPx8Ott97KI4880ub73UIIIdpXQIlQixcvJiMjg5deeokJEyactN2qVas4fPgwb7zxhm/Zjh07GDx4MAC7du3it7/9LZdddhkvvfQSOp08kSuEEEIIIYQQ56qEcBOv3j6cFRsL+dsPB/h8Vylbi6qZe90g0npEnHQ71RhG/aV/xDb454T88BzGvR9j3rYCdv0bU9pMbEPvgg54qtVbJepqrux2NYfqC/mwcK2vStTf97zJO3veaqwSNZmLYy6RKlHngPoGFzPXbGd/hY3YUD0PX2vkoyMZZJdlsrVyC05Pg1/7PqH9SLWkkWoZzdDI4Zh13ikbFQW0Gm3gHXDZMOW9T9DmV9HWHARA1QVhS/k5tuF34wlNOONzFEIIIUTHWbhwIdu3b2fFihUUFRUxa9YsEhISWtzHsFqtzJgxg4kTJ/L888/z7rvvcs899/DZZ58RFBREcXExtbW1fP7555hMJt92QUFBHX4OpYfyyFq9FkvPkVgSBmG2dEOReydCdAn1znryG6s87az2TnNX7ihr0c6kNTMwfFDj9HbJJEekEGM6ecVl0TatvSY0yc/PZ+bMmRiNxhbr1q1bxyuvvMKkSZP8lr/55pusW7eOxYsX43K5ePTRR4mOjmb69Okdck5CCCEC0+q/ogsKCliyZAkzZswgNTWV0tJS37qYmBhKS0sJDQ3FZDLx05/+lNtvv50VK1ZwxRVXsHbtWrZu3crChQsBeOqpp+jWrRuzZ8+msrLSt5+m7YUQQgghhBBCnFu0GoVpF/fgol6RPLU+j4OVNu57fyu/TE/k3jG90GtP/tSjJ6I3Nde9jv7w94R8Oxdd2Q5Cvvs/TNvfpv7SJ2noPd6bwdIBEoOTuGfQ/fy6/93eKlGFH7C5PMtXJcpiiuH6RG+VqFhzXIf0QZxag8vDzLVfs9ueTWhSAdqIfTyRU+PXxmKKIbVxqrtRljSijNHtcmzFUY1529uYt76Bxua9UeExRWIbNh3b0Kmopsh2OY4QQgghOo7VauX9999n2bJlpKSkkJKSwu7du1m5cmWLm97r16/HaDTy2GOPoSgKTzzxBF9//TUff/wxU6ZMoaCggJiYGJKSks76eeQ9OZ1Bu53AKqzg/QnSYg814QoPgcgI9FExmC3dCIlNwhzTHU1kFJqoKDSRUSgnuIEvhGh/To+TfbUF7KzK9VV7Olh3ABX/krQaRUvvkD6+ak+DwgfTM7QXWqUND26IVgvkmgCQkZHBggULSEpKoq6uzrfc5XLxzDPPsGbNmhNeE95++20eeugh0tLSAHjkkUd4+eWXJRFKCCHOEa1OhPriiy9wu90sXbqUpUuX+q3Lz89n7NixzJ8/nylTppCSksLixYt56aWXWLRoEf379+eNN94gLi6O0tJSNm/eDMCVV17pt5+m7YUQQgghhBBCnJtS4kP5+y9G8aevCvj3tqO8vekQGw5U8cz1g+gdfeon5Z3dL6Xq9vVYDq3F8/n/oaveT/hH02noPoa6sU/jtgzusH4btAbGJfyEcQk/obDuIB8WruWTw+sps5fy9p7l3ipRsZdwY9JNXBRzsVSJ6mB1zlqyy7PIKt3Epwe/wxFUgqnx41PngiBdEMOjRnmnu7Ok0yO4Z7s+Ja2pP4o5ZxmmHe+gcdYD4A5NxDpiBvbkO0Df8VUfhBBCCNE+8vLycLlcjBw50rcsNTWVV199FY/H4zdN0ZYtW0hNTfX9XaEoCqNGjSInJ4cpU6awZ88eevfufdbPAcAxPIXD1TkEWyG0HrQqBFndBFnrobgeKAbyAXABtcdt7zIbcEeEoYmMQh8dizE6Dm1UNEpjopQmKgpNVLQ3acpsPstnJ0TXpKoqh+sPsbOyqdLTDnbX7G5RsRYg3tzNO71duDfxqV/YAF/lWnH2BHJNAPj6669ZsGABdXV1LF682LfcarWSn5/Pe++9x1tvveW3TXFxMUeOHCE9Pd3vGIcPH6akpITY2NiOOTkhhBCt1upvdmfMmMGMGTNOuj4/P9/v/bhx4xg3blyLdjExMS3aCiGEEEIIIYToOoIMWp4YP4BLe0fx3Ke7yC+p45fvZDPzij7cOrzbqRNWNFoY9Ssq46/BnLkY85ZlGA5/R+R7E7An30H9RY+iBsV0aP+TQnpwb/IDTBswg2+L/8e6wg/IKc/mx5Lv+LHkO2JMsVyXeKNUiWpHTo+T3MrtZJZtJKtsE7uq8/Dg8a5UQFU19AoexBUJF5NmGc2giMHoOiAZTVtZgHnzUkz5q1Eab164ogZiHXUfjn6TQKtv92MKIYQQomOVlpYSGRmJwXBsymWLxYLD4aCqqoqoqCi/tv369fPbPjo6mt27dwPemTFsNhu//OUv2bdvH8nJyTz++OMBJ0e1JX/7mt/9DfPjCj/+5y2cuzKIadhFqUtHZYOOqgYj9e5wNE492lobQbUNhNerhNdDRD3oPKCzNaCzlcGRMmAXjlMdzGTyJkWdIEnKV2EqyvtaCQo+Z6ftaurWOdq9c47E6/SqHJXeSk+N09zl1+yk2lHdol2oPtRX5clb8SmZSGPUCfZ4YTkXPmOBXBMAlixZAsDq1av9loeFhZGRkXHSYwB+CU8WiwWAo0ePBpQI1ZZYnQtx7kokXoGReAVOYhaYsxUvecRVCCGEEEIIIUSbjOtvYUi3UP7v4138eKCShV/s4ft9Ffxx/ACigw2n3FY1hFB/yR+wpfyc4B/mYdrzH8y5/8C4ey3WtIewDZ8O2o6d3sOgNXBVwjVclXANhXUHWVf4AZ8cWk+pvcSvStTEpMmMjr1YpjAIgKqq7KvdS1b5JrLKNrG1YjN2t92vTagmgfKyXnis/Xjy8uu4blDPDuuPrjiHoOy/Ytj7MUrjlBUN3S7CNuo+GnpeJd9WCSGEEF2YzWbzu+EN+N43NDS0qm1Tu71791JdXc3DDz9MSEgIy5Yt46677uLDDz8kJCSk1X2Kjg5ty6kAcNVPH0BV72d77nasXy4jrexDuislQAkAR4MG4E69C8eQKyhy1bOz9jAlJfupPrIfa/ERHGUlaCqrCatXiaiHMCuEN74OrwejC7Db8RQdxlN0+LT9UYxGtNFR6KIt6KKj0Vqifa91lmi00RZ0lmh00dFowsM7JWnqTOJ9IZJ4edlcNnaW72Rb2Ta2l21nW9k2Dte1/J0waAwMih7EUMtQhliGMMwyjKTQpHM2QfBc0JmfsUCuCW1lt9v99nsmxziTWMnvcmAkXoGReAVOYhaYjo6XJEIJIYQQQgghhGizmBAjL98yhIzsw/z1m318u7eCn72dxVPXDmRMn9M/EesJS6L22qXYhv6akO/moi/ZQsgP8zDveIe6S5+goc/1ZyVJJSmkB79NfpDpA+7hm+Kv+PDgWnIq/KtEXZ80kesTJxJjljL3J1JqLyW7bBNZZRvJKsuksqHCb32kIZJRjVPdHTycyLJvvU9WP35Nf64b1K39O6Sq6Au/9iZAHf7et9jRazzWUffh6pbW/scUQgghxFlnNBpb3Hhuem8ymVrVtqndG2+8gdPpJDg4GIAXX3yRK664gv/+979MnDix1X0qL69FVQM7D0Xx3hBq2rZbXC+63fkcFbV/5L0fPiRy9/tc7tlAvHUXfPM0Dd/o0SdcQ0raL3En3wuDj0335PQ4KbEVU2w7SrHtKLsa/y2uP0JV9REayksIrXc3qyrl/df705g0ZQVzA6gOB66iI7iKjpz+JHQ6b1WpxspSftPyHT89X3g4ynFTVAXq+JiJU7uQ4+VW3Rys209uZS551bnkVeWyt3YvHtXdom3PkF7eKe4ikrm4ZzrRajd0SrPKsQ1QXl53FnvfdZzpZ8xiOfOb4oFcE9qqedKT0Wj0O4Y5wKlH2+N6IU5N4hUYiVfgJGaBOVvXCkmEEkIIIYQQQghxRjSKws9SExndI5I/rt9JQZmV/7dmO7cO78bMK/pg0p++kpIrYTRVt/4HY/5qgn+cj7bmIOEf30NDwkXUj52DK2boWTgTb5WoqxPGc3XCeA7WHeDDZlWiVux+g7/vfpOLYy/lxh43kR5zYVeJsrrq2VKeQ1a5d7q7A3X7/dYbNUaGR49kVHQaqZbR9Anti6IorNtxlGXf7gLg/rG9uHlYOydBuV0Ydq/FnLUEfdl2AFSNDseAm7GOuBd39MD2PZ4QQgghOlVcXByVlZW4XC50Ou8tj9LSUkwmE2FhYS3alpWV+S0rKyvzTWNkMBj8KnwYjUYSExMpLi4OqE+qSptvhB2/bWSImXHX3Ir76lv4JG8vFZnvclH1epI1B0kqWg9r11NlTMCd8lMYciee0AR0ip6EoEQSghJPeAy36qbcXuZLlCq2HeWI7Qg5zd43eBowOI9Nv9d8Kr7wepVwK0RbtURZNYTWezDaXOBy4SktwVNacvoT1WpRwiP8k6Qio/2Tp5qm6QuPQNGd/HbWmcT7QnS+x0tVVUrtJeRV5bKzMekpvzoPu9vWom200eJNegofzKCIwQwIH0SI3lv9TVG8N1vLyuTGdqA68zMWyDXhTI7RtN/ExETfa4CYmJiA9tWe1wtxahKvwEi8AicxC0xHx0sSoYQQQgghhBBCtIt+McGs+Pko/vrNPt7NPsyqLUfIKqzmmesHMTCuFVOJKBocg27F0fd6grKXELR5KYaiDejfux77oNuxXvwYnuC4jj+RRj1CevLb5Ie8VaKO/o91hR+wpWIz35d8y/cl3xJriuP6pIlclzSRGFNgX3Z2RW6Pi53VO8kq20h2WSa5VdtxN3uCWkFhQPgg0izppFpGMzhiCAat/5QE/9tTzrOfeJOgfp6ayNTRSe3XQZcdU/77sOU1wir3A6DqzNgG/wzbiBl4Qru337GEEEIIcc5ITk5Gp9ORk5NDWpq34mNWVhZDhw5Fc1zFoeHDh7Ns2TJUVUVRFFRVJTs7m3vvvRdVVbnmmmu47777mDJlCgBWq5UDBw7Qp0+fs35ex9NqFC4Z3BcG/5GDFQ/z1w3/xVKwiuv4lghHEWT/CU/2n6mMG4NuxC9o6D0etCeerlqraIk1xxFrjmMow1usV1WVqoZKjjZLjCq2HeWo7Qj7Gl/Xu+obW3sA0Lu0hB2XKBVjM9DNbsZi1xFRrxBS58JYY0dXZwW3G7WiHHdFOS1r8hxHUbxJU5GRx6pNRUahjYqmqkcCDkOQN2GqsRqVotefbo/iPFLnrCW/Os+b+FS1g7zqnVQ4ylu0M2uDGBg+iEERg33JTxZTjExxd54J5JrQVnFxcSQkJJCVleVLhMrKyiIhIcGXWCuEEKJzSSKUEEIIIYQQokM4HA7mzp3Lp59+islkYtq0aUybNu2EbXNzc3n66afZtWsX/fr1Y+7cuQwZMsS3Pi0tjdraWr9tsrOzCQ4O5rPPPuOBBx7wW3fttdfyl7/8pf1PSpyWUafh4XF9ubR3JHM+3sW+Cit3/WMz943txc/TEtG25ktmfRDWix7BPvhOgn+Yj2n3vzHn/RPTnv9gTX0A64i7QRdYufkzYdAaubr7eK7uPp6DdftZd/ADPj38ESX2Yt7a/Tpv717eWCVqMukxF503VaJUVaWw/iBZjdPdbanY3OyGl1dCUHdSo73T3Y2ITiXMcPInbLMKq3h8XS5uFW5MiWPmFb3b5aaD4qjGtP3vBG15A43N+xSuxxSJbeivsQ37Naop8oyPIYQQQohzl9lsZvLkycyZM4d58+ZRUlLC8uXLmT9/PuCt0hEaGorJZGLChAksWrSI5557jjvuuIOMjAxsNhvXXXcdiqJw5ZVX8sorr9C9e3eioqJ4+eWXiY+P54orrujks/TXIyqIHtfdgN05gX/tOEhJ1mour/+ES7S5RBd/C598i00fgWvgLTiH3Ik7elBA+1cUhUhjFJHGKJIjBp+wTZ2z1pccVXxcwlSB7SjVDVWAC6htsa3WrSXMCjE2PT2dkXRvCCHObiTapiW8HoJqGzDU2NBUVaNWVYGqolZV4q6qxL1vr9++6lvsHZTQMF+ylOa46fmUxqn5fO8bp7USXYPT46SgZjd5VTvJq/YmPhXWH2zRTqNo6RPa11fpaVDEYHqE9Dxvxmri5AK5JpyJO++8kxdffJH4+HgAFi1adNLvvIQQQpx9kgglhBBCCCGE6BALFy5k+/btrFixgqKiImbNmkVCQgITJkzwa2e1WpkxYwYTJ07k+eef59133+Wee+7hs88+IygoiOLiYmpra/n888/9vqgKCgoCYM+ePYwbN45nnnnGt84oX2Z3uot7RZHxq1Se+2wXX+0p5y9f7+P7fRXMuW5gq+dy94R2p3b8YmzDfk3It3PRF2cTvGEhph0rqb/0cRz9JnnnKziLeoT04r7BM/nNwHv5+uhXrCv8gK0VOX5Vom5ImsR1STdi6YJVoiodFWSXZZJVvonsskxK7P7TwITpwxgZnUaqxZv81C0ooVX7zS+u4/f/3kGDW+XyvtE8MX7AGSdBaeqPYt7yOqbt76Bx1gHgDklAO3YmFT1vRtUFndH+hRBCCNF1zJ49mzlz5jB16lRCQkJ48MEHGT9+PABjx45l/vz5TJkyhZCQEF577TWefvpp3nvvPQYOHMjf/vY339ji0UcfRafT8fvf/566ujouvvhi/va3v6HVnpvJEya9lhtH9EYd/jDbj9zNU5s2EX9gDVM0/yPeWQnb34Dtb1AfPQzP0J/h6H8TqqF1f4ufTog+lBB9KH3D+p9wvc1lo8Re7E2WsjZLlrJ7/y3XllEZ6mIXpUDpCfehU3TEGhLprVpIaggjwRFMrN1ApFVDWL0HU40dQ30djuISPBUVeKoqvZWmamtw19bAgf2nPQ8lOLhZwlR0s4Sp5lP0eZOnFPPZexhDeB/MOGw95K3yVJVLXvVO9tTswulxtmjbLSiBQY1JT8kRKfQL649Je2aJLqLrau014UxMnz6d8vJyHnjgAbRaLbfeeit33XVXO/ReCCFEe1BUtWvPVNiWuXllXt/ASLwCJzELjMQrcGcas5iY9vnCo6toa5zksxkYiVdgJF6Bk5gFprOvFVarlYsvvphly5Zx0UUXAbBkyRJ++OEH/v73v/u1XbVqFUuXLuXzzz/3TU9x7bXXcu+99zJlyhS+//57HnvsMb799tsTHuuRRx4hISGBhx9++Iz6LGOLjqGqKh9sO8qi/xZgd3kINep4/pZhXJQQEljMVBXj7g8I/mEe2roiAJzxqdSNeRpX/KiO6XwrHfBViVpPrdP7xLtG0XJJ7BhuTLqJtJjRbX7yuKM/Y3a3nW0VOWSWeROfCmp3+63Xa/QMiRxGqiWdNMto+ob1D/hcDlbauDsjhwqrk5GJ4fxlyhBM+rbfTNRW7cW8eSmmvH+heBoAcEUNxDrqtzT0vwlLXJT8Tgags68XXY2MLc4OiVdgJF6Bk5gFRq4VgevMsUWFtYH/bD1E0ZaPucbxGT/RZKNXvJPPubQmnP1uxDH4DpzdLjrrDxU05/Q4KbEVt6gm1fRTYi/2m4b5RBQUYoJiiDHGEW/uRpwxju6ecOLtZiw2PRFW0FXVepOkKivwVFSgVpb7XuNyBdZpk8mvmpQmKvqkVaeU4OBzbsq1c/3/fRWOCvKrdrKz2pv4lF+90ze+ai5MH+6t8hSe7Ps3wtj+VWDP9Xidi+R6ETj5LqrjSbwCI/EKnMQsMGfrWiEVoYQQQgghhBDtLi8vD5fLxciRI33LUlNTefXVV/F4PGg0Gt/yLVu2kJqa6vuSWFEURo0aRU5ODlOmTGHPnj307t37pMcqKCjg0ksv7biTEWdEURQmD+vGyMRwnlyfx87iOu7/RzY3psTx+3F9CTG2cliqKDgGTMbR+1qCtvyNoKzF6I9mEfmvSdgHTKH+kj/gCWlddaL21jOkF/cPnsndA+/lf0f/y7qDH7CtcgvfFX/Nd8VfE2eO5/qkiVyX2PlVotyqm93V+WSXZZJZvpEdldtaPFHdL6w/qZbRjIpOY2jU8DN6krq0zsGDq7ZSYXUyICaYlyantDkJSlecQ9DmJRgKPkLB+02Js9torKPuo6HnVaBoOvNenhBCCCHEOSEqyMDUi/vgHv1bvtv3U+7PyqVH0Tp+qv2K/hxGl78Kc/4qGsJ60TD4DhyDbsMTHHfW+6nX6OkenEj34MQTrnerbsrtZX7JUcdPw9fgaaDEWkKJtYQdldtOuJ+IqAjiuscTZ44nztyHOPOlxJnjiTfFEesOwVzbgFpRgaeq4riEqab35d6kKYcD7HY8R4rwHCk6/QkaDL7kKCXyBNWlmiVPKaFh51zSVEezuWzsrsknryqXnVW55FXnUmw72qKdXmOgf9gAkiNSGBSRzKDwwSQEdb/g4iWEEEKIwEgilBBCCCGEEKLdlZaWEhkZicFg8C2zWCw4HA6qqqqIiorya9uvXz+/7aOjo9m921uZpqCgAJvNxi9/+Uv27dtHcnIyjz/+OL1790ZVVfbt28e3337La6+9htvtZsKECTz00EN+x26NtnyP2rSNfAd7er2ig3jzZyNY9sMB3txQyLodxWw+VM3/XT+Q4d3DW78jgxlb+kwcyT8l6McFmPLex7RrNca967GN/C3WUb8FfedMiWbUGRmfOIHxiRPYX7uvsUrURxTbjvLmrmWs2L2cS2PHMLHHZNJiRqNRNKfdZ3t8xoqsh8ks3UR22SY2l2dR46zxWx9rivNWfIpJZ2R0KpHGqJPsKTDVNicP/msbRTUOkiJMvHLrUEJNAX4NoaroC7/BnL0Ew6FjVeEaev0E66j7cCWMBqApPPI7GTiJmRBCCHF+0moULu8bzeV9L6OwMo03cw5zcMe33Oj+nBu1PxJSsx/Dj88TvOEFGnqOw558pze5XKvv7K4DoFW0xJrjiDXHMZThLdarqkq1sxK7oYb8o3s5aj2WLFXSmChV76qnqqGKqoYq8qvzTnicYF2IN0kqNJ642HjizfHEmQc0Jk7FE2nwVhpSbVZvwpQvWcpbWUptljzV9F61WaGhAU/xUTzFLZN7WtDpvMlRJ6wu1fi+KWkqPAJFc/pxxLnE7XGxv24/edW5vsSn/bV78eDxa6eg0COkF4PCkxsTnwbTJ7QvOo3cyjwd1eMBjwfcbvB4UD3uxvce8Li96xtfN7XzbeNxg9vT+N7tv43fPo+9btqP6m5a5n2v6HS4Jl2H3H4WQgjR2eRKJIQQQgghhGh3NputRSJS0/uGhoZWtW1qt3fvXqqrq3n44YcJCQlh2bJl3HXXXXz44YdUV1f7tv/zn//MoUOHePbZZ7Hb7fzxj38MqM/R0W0vwX4m215onpw8jGuHJ/K7f+ZwuMrG3RlbePCq/jx4VT902gC+0LeEQq/X4fB98MnjKAd/IGjTnwjK+yf85GkYejt04g0Ci2UYab2H8QfXo3x24DNW7VpFdkk23xZ/zbfFX9M9pDtT+k/h5n43ExN0+ipRgXzGqh3VbDiygR+O/MCPRT9yqO6Q3/oQfQij40dzccLFXNLtEnqG9Wz3J6qtDS5mvLeVgjIrcWFG/jHjEpKiAkhQ87gh9wP47s9wZIt3maKFobfBmJkY4gZzqlRH+Z0MnMRMCCGEOH8lRZr53bh+2Mf25tO8CfxicwH9K77gdu1XpGt2Ydz/Ocb9n+M2x+AYdAv25DtxR/bt7G6fkqIoRBqjsFh60k3pdcKpVeqctSesJOVddpTqhirqXXXsrd3D3to9JzyOUWP0JUXFmeOJC4onPrqbL1kqyhTdYupo1W73JUr5V5dqmUCl1tWBy4WntARKSzj1ZICARoMSEeGbms+v6lSzKfs0kVEoEREourN7G1BVVYrtR8mr2kleY6WnXdV52N325o1QVIgzxJAcOoiBoQMYGDqQfsF9CdKaGpNy3GDzQH0xbl/STlOSTuN697FEHv8knXZI9GlM7vGYdFjr7MfaND+Gx+1NBDrRMY7vQ7PtWvS9eYLSCY7h26/b5UtuUj3+53ou0R3ci+63Mzu7G0IIIS5wkgglhBBCCCGEaHdGo7FFwlPTe5PJ1Kq2Te3eeOMNnE4nwcHBALz44otcccUV/Pe//2XixIls2LCB8PBwFEUhOTkZj8fDo48+yuzZs9FqWz8FV3l54POSK4o3eaAt216oFAVG945i5a9GsuCzPXy0s4SXv9jNl7lHeeaGQSRGmAPbobE/THwPQ8GHBH/3HNraQlhzD87vllB/2Vxc3dI65kQCcEn4lVySfiX7avd6q0Qd+pjDdYd5ZfMrLMlZwqVxl3Fjj0mkWVpWiWrNZ6zB3cD2yq1klWWSVbaRXdX5qBxrrFW0pEQOIdUymlRLGoPCk9E2PVXthPLyunY9X6fbw+/X7CD7YBVhJh0v3zwEs8dNWVnt6Td22THlrcK8+VW01fsBUHUm7IN/hm3EDDxhjVOnnGRf8jsZuDONmcUiCVRCCCFEV2HSa5k0NJ6JQ+LYcXQob+bczh/zc7hZ+YpbtF8TYyslaPOrBG1+FWe3dGzJd+DoeyMYgju7620Sog8lRB9K37D+J1xvc9kosRd7E6OszZKl7N5/y+1lODwODtYf4GD9gRPuQ6foiDHFEhcUT5zpWMJUfFA34nrHE5M8CL3m5FW2VIcDT1WlN2GqWfKUL4mq2ZR9anW1N1GmogJ3RQXughMnb/koCkpYuF+VqYbwEOxWx0krBfkn5RyX6HP8ercHj9tJg8uO0+XA5WrA7XaieDz08EAvFa5XQeMBjQpaVUHjAcX3R+fRxp+vALA3/pxLrJ3dgfai0TT+aEGr8VYV02i9y7QalGav0WiPrdce205p9hqNpvG99th6nRbFaCT85pup7+zzFUIIccGTRCghhBBCCCFEu4uLi6OyshKXy4Wu8QnU0tJSTCYTYWFhLdqWlZX5LSsrKyM2NhbwVodqXjHKaDSSmJhIcXExABEREX7b9u3bF4fDQXV1td8UfKejqrQ5ceJMtr1QhRh0/N/1gxjTO4rnv9jNtiO1/GxFNo9c1ZcbU+ICrFCk4Oh7I46eP8G85XWCsl5BX7KFiH9Nxt5vEvWXPH4sgaYT9QrpwwODf8fdA+/jf0e+ZF3hB2yv3Mo3R7/im6NfEW/uxg1Jk7gu6UaijNF+2zb/jHlUD/tqC8gs8053t7UiB4fHcdyxejPKkk6aJZ1hUSMI0gW32F9H8Kgqcz7K5/v9lZh0Gv508xD6WoJPezzFUYNp+9sEbXkDja3Uuy9jBLZhv8Y29Neo5sbf5Vb2W34nAycxE0IIIS4ciqIwpFsYQ7qFUXlFH9ZuH8PNOb8kuX4Dt2u/YpwmB/2RTeiPbMLzzVM4+k/CnnwHrrhR59V8umadmZ4hvegZ0uuE650eJyW24hbVpJp+SuzFuFQXR2xFHLEVnXAfCgrRJos3Ocrcza+6VLw5nlhzPKa4eLRx8aftr+py4amqbDYdX7nflHx+U/RVVYKqolZX4a6uwr1vLwCO0xyjLfSNP6fXyj82FaUxKacx4eZESTp+STgaFK3WL9nHL0mneaKP336PvT62X+2x42g1mINM2BvcqE39OEViENqmBKLjjqHRnrTv/n1ovo8TJSlp23QMNJp2rwB8qv90Zkso9a15CEYIIYToQJIIJYQQQgghhGh3ycnJ6HQ6cnJySEvzVuTJyspi6NChaI6brmz48OEsW7YMVVVRFAVVVcnOzubee+9FVVWuueYa7rvvPqZMmQKA1WrlwIED9OnTh2+++YZHHnmEr776CrPZW0lo586dREREBJQEJTrPtcmxDOsextMf5bP5UDX/98kuvttXweyf9Cfc3Lqv0310JmypD2AfdDvBG1/AlJuBac9ajPs+wTpiBrZR96MaQjrmRAJg1BoZn3gd4xOvY19tgbdK1OGPOWo7whu7XuOt3a9zaexl3NjjJtJi0gEosRWTWbqJrLJNbC7PpLKh0m+fUcZoUi3ppEanM8qShsV0+un22puqqiz6soBP8krRahQWTBrMsISwU26jqS/GvOV1TDveQdPg/bLcHZKAbcQMbMl3dtnqA0IIIYQQXUVkkIGpo5P4RVoi3+8bxPKca3hi/15u0X7D7dr/0ttZjDn3Xcy57+KKHIB98B3YB0xBDbJ0dtc7nF6jp3twIt2DT/xQhVt1U24vO27KPf9p+Bo8DZTZSymzl7KjctsJ9xNhiGiWINXNL1EqztyNEL13DKPodGgtMWA5/d/6qtuNWl3lX12qsoIgvYLV7kRtnvjTlCzTLNFH1ShUOKs4bC/ikO0wh2yHKLIfwYkbjwY8Co3/KkSZLfQI60PPsD70DO9LUmhvDHrTCZON0DZPWtKeMEnpbCXtnI6ieKuflpVJtVkhhBCiq5FEKCGEEEIIIUS7M5vNTJ48mTlz5jBv3jxKSkpYvnw58+fPB7zVoUJDQzGZTEyYMIFFixbx3HPPcccdd5CRkYHNZuO6665DURSuvPJKXnnlFbp3705UVBQvv/wy8fHxXHHFFdhsNoxGI3/84x+5//77KSwsZOHChfzmN7/p5AiIQHQLM7H0tmG8vamQ174/wBe7ythWVMOc6waS3iMy4P2pwbHUjXsB25C7CPluDobDPxCc9Qqmnf+k/uJZOAbdBsdNQddZeof25cGUh7l70LEqUTsqt/FN8Vd8U/wV3cwJGPUG9tfs99vOpDUzPGqEb7q7XiF9Ov2Gwes/HOS9nCIUYO6EgVza++TJiNqqvZg3v4Yp730Uj3dqTFfkAKyj7sPR/ybQBpgEJ4QQQgghzohWo3BZ32gu6xvNoap+rMoZyk07bmaQYzs/1X3F9ZoNmCt3EfLd/xH8wzwael2DPfkOGnpc6U1ouQBpFS2x5jhizXEMZXiL9aqqUtVQydETVpTyJkzVu+qpaqiiqqGK/Oq8Ex4nWBfSopJU8/cRhsgWYwFFq0WJikYTdazS7KkSeyoc5eysyiWv6ad6J/WaOgjC+9Mo3BDFoPBkkiNSGBQxmIHhyYQbwtscQyGEEEKIjiCJUEIIIYQQQogOMXv2bObMmcPUqVMJCQnhwQcf5P+3d+fxUZVn38B/58y+JTPJJIGEJOwQwr6oVVyoiqDlKSJWrHUpVtunKn1aqxSXClJEUNtqrRsVqy9WKqittda6taXuEEwQ2cOSkHUmySQzmX3Oef+YySSTjZyQlfy+fvKZmTNnm9sZrrnnvs51z58/HwAwd+5crF+/HkuWLIHZbMazzz6LBx54AK+++iomTJiA5557DkZj9NfWu+66C2q1GnfeeSc8Hg/OOeccPPfcc1CpVDCbzXj++efx0EMP4aqrroLJZMKyZcuYCDUIqUQB3z87B2fn2nD/2wdQUufDj7d9hetmjcCP546EVq08cSmSlo/6b78K7bF/wvzxWqgaTiDpwzsR2vMCGuc+gFDWN3rhlXSPXqXHZSMux2UjLsfRhmK8VfpXvFf2TnSKDR8gQsREax5m2udgln0OJlknQyMOnGShV78sw3OfngAA3HXxWFyWl97ueurqPTDsfgq64r9DiE2NERo2G96ZtyE48uIBk6BGRERENJSNsBrwfxeNxo/Oy8W7B8fgD4VzsLqqGotUn+I7qn9jOoqhO/oP6I7+AxHTMPgnfgf+vGsgJef296kPKIIgwKZLgU2XgjzrpHbX8YTc7VaSii6rRH3QhcawB0fdR3DUfaTdfehEXUJiVOtp+FL0qVAJzclqvrAXB10Hsb++OfGp2l/VZr9aUYvxyRMxMTkPE62TkGfNxzDD8H6/AIOIiIjoVARZHtwFHbtTkpLlLJVheynHNlOG7aXc6bZZWpql509qAOtuO/G9qQzbSxm2l3JsM2UYK5Rj36JvdKXNfKEIfvvvo3h9TwUAYFyaCWsvn4gx9tOYJi0SgGHPH2Hc9dv4FGyBMZfD8417B+yAjT/ix+eOT2BLNmOMJg8m9cD8XP5zfzXuezt69fqt5+bilm+0ak9ZhubkRzDufgrak/+NLw7kXgzvzNsQzjyrx86Fn0nlGC+UYd+ib7C9lGF7Kcc2U4axQrkzsW/xdUUDthVV4L0D1RglncB3VP/BEvVHsMEdXyeY9Q3485YhMOZyQG3o9XMa6G3WE3xhH6r9VdHEKG+LZCl/9LbG74SMzl+8WlAjTZ+ODMMwNMpuFNcVQ4KUsI4AASPNozDROin6l5yHUZYxUItDt57CUHh/9TTGC+XOxHgx0LC9lGF7Kcc2U6avYsXQ/QZDREREREREA5JBo8KqS8fh3FE2/OrdwzjsaMSNL3+JFReMwtXTM7t3BbJKB9+MH8I/cSlMXzwG/ddboCt+G9pj78M37WZ4Z6+ArB1YP7rqVXpcNPybA/rHlE+O1eKBdw4CAL4zPRM/OCen+UkpAu3Rf8C4+yloHHsAALKgQmDct+Gd+b+IpOb1xykTERERUTfkD09C/vAk/N8Fo/Hm3pF4vmgcNjQswyViAa5R/Rvnq76CtuxTaMs+hbTjfgTGL4Y/bxnCaVOiI17ULQa1Abnmkcg1j2z3+ZAUQrWvqp2p96J/1f4qhOUwKnzl0WqzMWn6dORZJ2FicjTxaXzyBBjVp3HhCREREdEAwkQoIiIiIiIiGpAuHGtH/vAkrHnnID47XodHPizGx8dqcf9lE2A3abu1T9mQCs+FD8E3+QaYP34Q2tIdMH75NPQHXkXj2XfBn3ctIKpOvSNCUVk97n5zHyKSjMsmpuHOb46JJqmF/dAf3A7Dl89CXX8MACCr9fDlXQvf9FshJWX385kTERERUXdZjRrccFY2rps9Ap8er8W2wnTcdOwcDA85cZVqB67V7EBmsBqGvS/BsPclhFMnwTdpGQLjr4Sst/X36Z9xNKIGWaYRyDKNaPf5iBxBjd8ZryKVYUtBpjgSqbq0Pj5TIiIior7DRCgiIiIiIiIasOwmLR5fMhmvflmO3+04ik+O1eG7Lxbg/svG4/wxqd3ebyR1IuoXvQztiQ9h+ngN1K6jsPz7FzB89SI85z2AUPbcHnwVZ54jjkb89I2vEQhLOHeUDQ8smABV0A3911tgKPoDVN5qAICkS4Zvyvfhm/p9yIbu//8iIiIiooFFJQqYOzoVc0en4qTLh9eKKvDS3mF40r8Y3xD34Vr1v7FAtROamn2w/PeXMH/8KwRGL4B/0jKERswFBLG/X8KQoBJUSDdkIN2QganCtAFdbZaIiIiop/CbJhERdUsgEMA999yD2bNnY+7cudi8efMpt9m1axcuvvjiNsvfeustXHLJJZg2bRpuu+021NbWxp/bt28fJkyYkPC3ZMmSHn0tRERENLCJgoBlM7Pw4vdmYlyaCXW+EH72l6/x8PuH4Q9Fur9jQUBw5MWoW/YBPHNXQ9IlQ12zH9Y3lyHp78uhch3tuRdxBimr9+GO176COxDG1MwkPHKxHdYvNiDlpbNh/vQhqLzViJiHwzN3NWpu+ALes3/OJCjqFPsWREREg9sIqwE/uXA03rr1bNx/2UTUpZ2DO4K3Y7bv9/hl6EYcEUdBkILQH3kT1je/i5T/dy6MX/waorusv0+diIiIiM5ArAhFRETdsnHjRuzduxcvvvgiysvLsXLlSmRmZmLBggXtrn/w4EH85Cc/gU6nS1i+Z88e3HvvvVizZg0mTpyIdevWYdWqVXj22WcBAEeOHEFeXh42bdoU30atZvgiIiIaisbaTfjjd2fg9x8dw58KyvBaUQV2lbiw9oqJyMuwdH/HKg18034A/4SrYPzi1zDsfQm64+9CW/IhfFO+D+/sn0DWW3vsdQxmNY1B3L79Kzgbgzg/pR5Ppr+FpFdegxAJAADCtnHwzvwxAuO+Dai6N30hDT3sWxAREZ0Z9BoVFk0ehkWTh+HrSje2FZZj6wELXvJehnzhOL6n/Q8Wqz6GwX0Spp2/hnHnbxDKvgD+vGsQGH0ZoNKd+iBENOAEwhL2VjTgsKMRV52dC/YEiYiov/HXHiIiUszr9WLbtm3YtGkT8vPzkZ+fj8OHD+Pll19ud7Bi69at2LBhA7Kzs+HxeBKe27JlCxYuXIjFixcDiA6CzJs3D6WlpcjOzkZxcTHGjBmDtDTOW09ERESAVi3ipxeNwbmjUrDmnYM4UefD9/9UiP89byS+N3sEVKLQ7X3LehsaL1gL/+QbYPpkLXQnPoSxaBP0B7ej8aw74c//HiAO3W60JxDGite+QnL9fqw2/h0X+z6DcEACAIQyZsI78zYER13KaU5IEfYtiIiIzkz5wyzIXzAB/3fhaPxtbyW2F+mxqn4kVuNaXCbuxK3mjzA5WARt6X+gLf0PJJ0V/glL4M9bhoh9Un+fPhF1IiLJOFDlxs4SF3aWuFBU3oBAONo3rPKF8H9zR/bvCRIR0ZDHXyeJiEixAwcOIBwOY8aMGfFls2bNQlFRESRJarP+jh07sGHDBtx0001tnisqKsLs2bPjj4cPH47MzEwUFRUBAIqLizFy5Mgefw1EREQ0uJ2da8OfbpiFeePsiEgynvzvMfx42x5UNvhPe9+RlHFo+NZLcC3agrBtPER/HSw77oNt63xoTvyrB85+8PEHw3jh1Zdxn+s+/F13Ly6RPoEgSwjkfhOuK7fDddVfERx9GZOgSDH2LYiIiM5sVoMG18/Jxhs3z8Fvr5yMOaOH4W/SefhWw0qcH/gNnheXokGTDjHggnHPZqT8eT6s266Afu//gxCo7+/TJyIAsiyj2NmIP+8uw8//8jUueeoT3PSnQvz+o+P4osSFQFhCilGDyyam4ea5o/v7dImIiFgRioiIlHM4HLDZbNBqm4vc2u12BAIBuFwupKSkJKz/1FNPAQBef/31Nvuqrq5Genp6wrLU1FRUVlYCiA5WSJKERYsWwe1244ILLsDdd98Ns9nc5fMVulkYomm77m4/1LC9lGF7Kcc2U4btRUOB1aDBhkV5+NveKjz6ryPYfbIe175UgFWXjMP8iemn3sEphHIuQt2yudDv+xNMnz8Cdd0hWN+6HoGceWg875eIpIzrgVcxwEkRqIvfQehfj+LB0GFABciCCoGxi+Cd+WNerU+njX0Lag/bSxm2l3JsM2XYXtQTREHAeaNTcN7oFJx0+fB6UQXe3KvGWu8SrMNiXKT+CrclfYoZvk+gqS6CproI5o9WIzDmCvgnLUMo8xt8ExL1ofJ6P3aW1GFniQu7SutR0xhMeN6kVWFWthVzcqJ/o1ONEEUBdrsJTqe7n86aiE5X0BdG+REXGn0BaA0qaA1qqLWq/j4tIsWYCEVERIr5fL6EgQoA8cfBYLC9TTrk9/vb3VcwGEQoFEJpaSlGjBiBhx56CA0NDVi/fj3uuusuPP30010+RmqqRdE59fT2Qw3bSxm2l3JsM2XYXnSmEwQB/zNlGGaMSMb9bx/A15Vu3Pv3A/j4WC3u+uZYmHWn2e0V1fBPvgGBcd+GcefjMHz1AnQl/4K2dAf8k69H41l3QtbbeubFDCSRAPQHX4Nh99NQ1x+DDYBf1qB69FKY5t4BKSmnv8+QzhDsW1Bn2F7KsL2UY5spw/ainjLCasCKC0fj1nNz8f4hB7YXVuDDymn4sHYaUvBd3Jr8Bb6j+jdSvEehP/Q69IdeRyQpF/68ZfBPXArJPLy/XwLRGafWG8SuEhe+KHFhV4kLZfWJ1ZZ1ahHTMpMwO8eKs3KsmJBhgfo0pqYnooHB1xCE44QbzhMeOI67UV/tA+TEdVRqAVqDGlpj9E/X4r7WoILOqIbWoI7eNv3p1RBV/DeC+g8ToYiISDGdTtdmUKLpsV6v75F9GQwGaDQafPbZZ9DpdNBoNACAhx9+GFdddRWqqqqQkZHRpWPU1Lghy6derzVBiP7I193thxq2lzJsL+XYZsqcbnvZ7RzkoMEl22bAH5ZNwx8+K8ELn5fg7X3VKDxZjwcvn4hpWcmnvX9Zl4zGub+Ef/L3YPpkHXTH/gnDV3+E7tAb8M75KXyTbwBU2lPvaIATgm7o926BoegPUHmrAAAu2YQtkUsx8tIVOHvSeLSdrIyo+9i3oPawvZRheynHNlOGfQvqLXqNCt/KH4Zv5Q/Dvko3theW492DIh6uvwQP42KcozuOn9o+w2zPh1A1nIDp8w0wfvEIgjnz4M+7BqFRl/T3SyAatDyBMHafrMfOEhd2ltSh2OlNeF4lAJOGJWFOrhVzsq2YkpkEnZpToRMNZrIsw1MbgON4c+JTY12gzXpmmw7hUAQBbwSyJCMSluFzh+BzhxQdT6NXJSZINSVNtU6canFfrRUhsAIk9QAmQhERkWIZGRmoq6tDOByGWh0NJQ6HA3q9HklJSYr35XQ6E5Y5nU6kpaUBQJtpKsaMGQMAigYrZBmn9cPm6W4/1LC9lGF7Kcc2U4btRUOJWiXiR+eNxDdG2vDLtw+gvCGAW/9chJvOzsEt5+RArTr9H20j1tFouPx5aE5+DPNHq6Gu2Q/zR6uh3/sSGs/7JYK5Fw/KKTsErwPGoueh3/sSxGADAMCtScNvvfOxNfJN3LVgOs6e1LXvXkRKsG9BnWF7KcP2Uo5tpgzbi3rTpGEW/HLBBKy4cDT+trcSrxVV4LP6UbimchQMuBK3p+/Fd1T/RlrdbuhOfADdiQ8gGVKB6ddCNeoqhG1DYNpqotMQCEvYU96U+OTC/ko3Iq3+TR+XZopPdTc9K/n0KywTUb+SJBn1VT44T7jjyU9+T6tkJgGwZhiRNtIMe64FaSMtyB6VAqfTDUmSEQ5KCHrDCHjDCPrCHdyPJCwP+SMAgJA/gpA/0m6yVUdElRCfkk9rbCdZquVyQ3OClYqJmtQKIxgRESmWl5cHtVqNwsJCzJ49GwBQUFCAKVOmQBSVfdmYNm0aCgoKsGTJEgBARUUFKioqMG3aNBw5cgRXX3013nzzTWRnZwMA9u/fD7Vajdzc3J59UURERHTGmJaVjJdvmIVHPzyCv++rxubPSvD58TqsvXwism2GHjlGaMR5qPvOO9Dv3wrT549A7TqK5L/fhOCI8+GZ+0tEUvN65Di9Taw/DuOXz0J/4FUIkegPU2HbWHxkvxa3fDUOIajx04tG44p8JkFR72DfgoiIiFqyGjS4fk42rps9Ap8er8P2wnJ8fLQWj1TPxiOYjdnmGvzc/gVm178Dtc8BfPokbJ8+idCwWfDnLUNg7CLIWvOpD0R0hgtLMvZXurGrNDrd3Z6yegRbZT6NsOpjiU82zM5Ohs04+KscEw1lkbCEurJGOGLVnmpKPfGkpCaiSkDKCFM06SnXjNQcM7T65pSRltf2CYIAjU4FjU4Fk03X5fOQIjKC/miiVMsEqZZJU0FvGAFfOOG+FJYhRWT4PWH4PWFFr12tEztJllIlTOfXtFyjV7H61BmMiVBERKSYwWDA4sWLsXr1ajz00EOorq7G5s2bsX79egDRK7gtFkuXprK49tprcf3112P69OmYMmUK1q1bh4suugjZ2dmQJAm5ubm4//77cc8996ChoQEPPPAArr76aiQnn/4UN0RERHTmMuvUWL1wIs4dlYKH3z+CryvduO7/FeDOeWPwP5OH9cwPHaIK/vzrEBj3PzAW/A6Gwj9Ae/K/sP35MvgnXYfGs38O2ZB6+sfpBWrHXhh2PwVd8VsQ5Ohkd6GMGfDOvA3/CM3APX8/CAnA98/Oxndnjejfk6UzGvsWRERE1B5REHDeqBScNyoFZfU+vF5Ugb9+VYldnlQs8yyETrwMK7KP4rva/8J68kNoKgugqSyA+b8PwD92EfyTliE8bPagrNZK1B2yLKPY6cUXJXXYVeLC7pP1aAwmJkDYTVrMjlV8mpNjxfAkZVNRE9HAEgpEUFPqiVd7qj3pQSScmPCo1oqw5zRXe0rJMkGl6d3qSaJKgN6kgd6k6fI2siwjEpJiCVPtJEs1JVK1vu+PADIQDkgIB4LwuoJdPqYgAlp9iwSpeLJUi8SpllP4xdbp7fajnsFEKCIi6pZVq1Zh9erVuPHGG2E2m3HHHXdg/vz5AIC5c+di/fr18SuxOzNjxgw8+OCDeOKJJ1BfX4/zzjsPa9euBQCIooinn34a69atw3XXXQdRFLFo0SLcfffdvfraiHpT0B+Gq9yLuvJGhH3lCIZCEFUiVBoRKrUIlUaI3YotbpuXiS2fUwvRZSqBVy4QEXVg/sR0TM1MwgP/OIjdJ+vxq3cP4+Njdbjn0nGwGrr+g0xnZK0Fjd+4B75J18H86UPQFf8dhq//H3SH/wLv7J/AN/X7gKrrV871GlmGpuwTGHc/BW3pf+KLgzkXwTvzNoQyz8HnJS7c/+ZeSDJw5dRh+N/zRvbf+dKQwb4FUfeEAhG4KqJ9i72N5QgGQ4n9haa+RTvLxJZ9jXj/QoSoZt+CiAaerGQD7rhgNG49dyTeP+jA9qJy7K1w45ETY/EIxuLs1Ovw07QCzKr7OzT1R2E48GcYDvwZYdtY+CdeA//EpZCNaf39Moh63EmXLz7VXUGpC7XexCmvLDo1ZmUnx6s+jUwxnPFxPhAIYM2aNXj33Xeh1+uxfPlyLF++vNNtdu3ahZUrV+KDDz5IWP7WW2/ht7/9LRwOB+bOnYu1a9ciJSUFALBv3z5ceeWVCevn5+fj9ddf79kXRNSCvzEE5wlPfKo7V6UXsWvb4nQmdbzakz3XAuswI0TVwP/cC4IAtVYFtVYFo4JrlSRJRsgfSZyqr1UCVXR5JCGJKhKSIEtAILaNEiqNCK1BFU+Q0hnVSEoxQhYkaFomVLVIotLoVRDFgf//4UwiyPLgntXb6XQrnpdcEAC73dKtbYcitpdybDNl2F7KnW6bpaVZev6kBrDuthPfm8qwvdpqGpioLWtEXVkj6sq9cNf4e/5AApoTo1oMcoidDHzEk6raS75qORgSX09olZwl9nkHiu8xZRgrlGPfom/0V5tFJBlbdp3EMx8fR1iSkWbW4oEFE3B2rq3Hj6Up/wym/66Gxrk3euykXHjOuw/BUQsUX5HeI+0lS9AefQfG3b+HprooukgQERi7CN4ZP0YkLR8A8HVFA/532x74QhIuHm/HuivyoBpkP9LwM6kc44Uy7Fv0DbZXW+FgrG9R7o31LRrR4PQDPd0+rfoW8YSpNn0LoVWfom1SVetlHSVfqTQCRFXfXlXN95gyjBXKsW/R+/ZXubGtsBzvHnAgEI6OApt1Im4b5cRS4V+wl74NIewDAMiiGsHci+GfdC2CORcB4tCsEcD3mDIDsb2cjUHsKnFhZ6zqU3lDIOF5nVrEjKxo4tPsHCsmpJv7tE83EOLF2rVrsXPnTqxfvx7l5eVYuXIlHnroISxYsKDd9Q8ePIjly5dDp9Phww8/jC/fs2cPrr/+eqxZswYTJ07EunXrYDQa8eyzzwIA3nzzTWzevBmbNm2Kb6NWq2GzKfuNgfGi9w3m9mp0BeA87o5Pded2th1bMFq1SMu1wD4ymvxksetPK+FxMLeXEs3Vp8JtkqiCvkjitH1N6/jCbRLPukwAtHpVO9P2tag41ZRc1WK5SiOecQmsfRUrhua3PSIiIqIe1jww0Yi6smjyk7um/YEJo1WLlCwThuUmo7ExgEhIQiQsIRKSm++HJUjh2OMWy6L3ZUTCUvO+ZcTWA4BI2wP2EkFEm0QrsWlQo2VSVXzwJPZ8JxWvWi4TWy1TawTI0hnc+yKiXqUSBdx4VjbOzrXivr8fwIk6H27f/hW+OysLP547Cjp1zw3AhjLPges7b0N3YDtMnz0MVcMJJP/jFgSzvgHPeavjiUe9LhKA/uDrMHz5DNSuYgCArNLBn7cM3um3QkrOja96rMaLn7y+F76QhLNyrHhw4cRBlwRFRHSmCIck1FfGLqiIJT41OHzt/khsSNJE+xYjk+HzBhGO9x2a+xJSuLkPkdi/aO5/DLS+xan6DeIpKl4l7EfTeh32LYjOBHkZFjywYALWLpmKP/6nGNuLynHS5ceGAynYgKtwwYhrcUf6HkyreQvaqt3QHfsndMf+iYgxA4GJS+HPuwYR6+j+fhlEnXL7w9h9Mlrx6YsSF47VeBOeV4kCJg+zRCs+5VoxeVgStD3Ytx1svF4vtm3bhk2bNiE/Px/5+fk4fPgwXn755XYTobZu3YoNGzYgOzsbHo8n4bktW7Zg4cKFWLx4MQBg48aNmDdvHkpLS5GdnY3i4mKMGTMGaWmsNkc9Q5ZlNDj88WpPzhMeeOvbTvOWlKZH2khLbKo7M4zJA6AC+SCk0ogwaLQwJGm7vI0sywgFWk7b11xlSgURrhovgo3hxCQqXxjhQLS/FfRFEPRFgNrAqQ8WI6qFaIUpQ4vp+WJJU20SqlpUohoMVcB6GxOhiIiIiBRKHJhoRG2ZF+4OBiaMyVrYMo2wZZqQkmWCLdMInUlz2lnvsixDisjxBCop3DphqsVAR7sDIYnLWm4ntU66apWcFT8HCQgHJYSD3b0MontElZAwECK2SLRqL6mq7SBKF6YIabkvThFCdEaZmGHBlutn4rf/OYrXiirwp4IyfHHChbVXTMRYu6nnDiSICOR9B4ExV8C4+/cwFj4LbdmnsL26AP68a9B49t2QTek9d7yWhw56oP96CwxFm6BqrAIASLpk+CbfCN/U5ZCN9oT1Kxv8uH37HtT7w5g0zIJHvp0/pH88JyLqS5FwrG/RotJTfbWv3SuN9RYNUjJNsGVF+xe2TBMMlp7rW0jhVn2IVn2Jpj5HONyi/9FynRbL2t9X87Km5Kz4OfRn36KpKtUpqluJp6h41XwBSIt9NfU1OP0gUa+xGrX43pwRuHZWFj47XoftheX46GgtdpwMYsfJiciwTMMtk/y4UvgXbEffgMpbFf1+vvv3CGaeDX/etQiMuQLQGPr7pRDBH4qgqKwBO0ujyU8Hqtxonbc7Ps2EOTk2zMm1YnpWEkxaDvU2OXDgAMLhMGbMmBFfNmvWLDzzzDOQJAmimNjP3bFjBzZs2ACPx4Mnn3wy4bmioiLccsst8cfDhw9HZmYmioqK4olQEyZM6N0XRGc0KSLDVdEYr/bkLPEg2GqKNkEEbJkm2HPN0apPOWboTJp+OmMSBAFavRpavRpIabm88/5YJCwh5I80V5xqMXVfy4pUQV+LdXzheB/N5w7B5w613XEnNPHqU6rmBKkOpu1rWq7WnVnVpxgdiYiIiDoRCUlwVXlRV+aNJT3FrsZu5/d5g0UDWyzZKZr0ZILe3DsdE0EQ4ok60PfKIdolSzIiETkxoap1wlSoOWmq6Yp0qZ2kqpbbdZZ8FQnJCVdrSxEZUiQCZV/9T1M70w+2fxV6V6b+6MJ6TVWx+niKEKKhQq9R4ReXjMO5o1Lwq38ewhFnI27csht3XDAa18zI7NlOv9YE7zl3wz/puzB9th76w3+FYf9W6I78Dd5Zd8A37QeAumf+IRe8Dhj2bIZh70sQA/UAgIgpA75pt8Kffx1krbnNNnXeIG7f/hWqPUGMTDHg8Ssnw6hV9cj5EBFRokhYQkO1L17pqbasEQ3VPkiRtr+W60zqeJ+i6YIKJVcrK9HctwA06LsY0NS3SLioo+mCjvaSqhKSr9omWrVNvkrcrun5lu0d71t0/aLsHtG1qQVbVcltU303cdmp9iWIZ3YCViAQwJo1a/Duu+9Cr9dj+fLlWL58ebvr7tu3Dw888AAOHTqEsWPHYs2aNZg8eXKb9f7xj3/g//7v/3Dw4MHePn3qAaIg4NxRKTh3VArK6/14fU8F/vpVJarcAfxqt4CHxYsxf9wS/DDjECZWvglt6b+hLf8c2vLPIf33fgTGfRv+vGUIp09TPJ01UXeFIxK+rnRjZ4kLu0pd2FPegFCr7wU5NkO04lOOFbNGWGE1MgmiIw6HAzabDVpt83cmu92OQCAAl8uFlJSUhPWfeuopAMDrr7/eZl/V1dVIT0+8eCk1NRWVlZUAgOLiYkiShEWLFsHtduOCCy7A3XffDbO5bb+7M93556ZpG/5T1TUDpb3CIQm1pZ544lNNqafNRQAqtYDUbHOs4pMZqdlmaHR9+xvNQGmvweRUbabWiFBrRBgsXf/3W5ZlhINSQtJUy+n7WlajCrR4LuSPVvUN+SMI+SNorOv66xBVQrTSVKvp+xITplStKlOpo2NUCvTVe4yJUEREREQxkbCE+iof6sqbBybqq3ztTpkQH5jIMkWvyu7FgYmBRBAFqEUBak3fJuhEBygkWJOMcFQ1INxJxavOpxZsexV6R1e8D/YpQtQaEaOnpEOfyq/8RB25YEwqXrlxFh7850F8cqwOj/2rGB8fq8UDl42H3dyzpcWlpBFwz/89fFO+D/NHq6GpLoT5s4dh+PpleM69F8ExV3T7FwCx/gSMhc9Cv//PECLRkdywdQx8M/4X/glXAqr2X0tjMIyfvL4XJ+p8yLDo8LurpvBHdSKiHiJFJNRX+6N9i7JG1JY3or6y/aQnrVGNlExjc98iywRDkuaMTloBmvsW0IhAHxZikSQZckRCcpIRjsoGhNv0CeTYhRwSwl2tbtVBclakRfWslleHR9eNoE/7FgLaTmneXqKVWoTYaplaIyI3zw5TxsDt827cuBF79+7Fiy++iPLycqxcuRKZmZltpkLyer249dZbsWjRIjz88MN45ZVX8MMf/hDvvfcejEZjfL2GhgasW7eur18G9ZDMZD1uP38UbvlGLj445MD2wnJ8VeHG2wddePtgOsal/QQ3zvkZrpD+jaRD26BqOAHD11tg+HoLwqkT4c9bBv/4JZANKac+GJECkizjiKMxnvi0u7Qe3lBiLEg3azEnx4rZOVbMzrZiWFIfXgE5yPl8voQkKADxx8Fg2ynGOuP3+9vdVzAYRCgUQmlpKUaMGIGHHnoIDQ0NWL9+Pe666y48/fTTio6TmmpRtH5PbTsU9XV7BbwhVBTXo+KIC+WHXag+4W7TF9AZ1Rg+JhnDx1qROc6KtByL4qSS3sL3l3IDoc2kiISALwy/JwR/Yxj+xlDsfvQv0Nh83+8Jx+9HQtELRvyeMPye8KkP1IJGp4LepIHOpIbepIHerIneNv2ZNdAZ1QnLZUnu9fbiqAgRERENSfGBidigRF0nAxM6o7pNpaehMDAxkESnrFDBYNHCGNB1a8oPpVpOP9huUlWr6QbDraYMaZ1U1bJSVkeDKD09/eC+/1RgyX0zIIgDowNNNBClmrT47ZWTsa2wAk/sOIrPjtfh2pd2477543DhWPupd6BQePhsuJa+Cd2hN2D6dD1U7lIk//NHCA0/C565D0SvQO8ileNrGL98Crojf4MQK1UYSp8O76zbEBx1WTSbsgPBsISf/3Uf9ld5YDVo8ORVU/gDOxFRN0kRGQ0OH+rKm6vIuiq9Cd/rmmgNqti0dsb4hRXGZC37Fn1IFAUIKhUMZi2M1r7rW8iS3G7Fq6b+gNTOss6Tr1rtq0U/o2VyVvM5nF7f4qsPynDlvTOg0Q28IQWv14tt27Zh06ZNyM/PR35+Pg4fPoyXX365TSLU22+/DZ1Oh7vvvhuCIODee+/Fjh078M4772DJkiXx9TZu3Ijs7Gw4HI6+fjnUg3RqEZdPysDlkzJwoMqN7YUVeOdANQ47GnGfA1ivnYNFky7HTbNOYmTZG9AVvw11zQGYP1oN0ycPITBqPvyTliE04nxAZNVUUk6WZZx0+bGzpC6W/FQPly+xxnmyXo1Z2dZ48lOuzcDvBd2k0+naJDw1PdbrlfV3O9qXwWCARqPBZ599Bp1OB40mejHRww8/jKuuugpVVVXIyMjo8nFqapRPbSwI0YSL7mw7FPVVe/ncQTiOe+A44YbjuBv1Vb7mi2xj9BYN0kZakJYbrfqUnG6AIDZ/3utcjb13gl3E95dyA7LN1IAmWYQmWQcLTn2xZzgY6bTSVDBhKr/oFH4hXxiyDIQCEYQCEbhru356SXY9Lv3xJKi7UZXebu9aAtXA67UQERER9bDmgYlG1MamuDvlwESWKX5VNgcmhqaE6Qf7UKdThLQz9Ue4g6vQpbCEnImpEFXiwOmAEQ1QgiDgOzMyMTsnGff9/QAOOxrx87/uw5VTh+GnF42BQdPDgx6CiMCEqxAYvRDGL5+B8cunoKn4ArZtV8A/YSkaz1kJyTy8/W1lGZryT2Hc/RS0Jf+OLw7mXAjvjB8jlHXuKStLRSQZ9719ALtKXDBqVHh8yWSMTDV2ug0REUVJkgy3M3pBRV15I2rLvXBVeBEJtU0u0ehVsGUao9PbZZpgyzLCZNOxbzEECYIAQSVAVPXx9IOy3M7Ugu1MGdjBFObxarshCZmjbdDq1QOyb3HgwAGEw2HMmDEjvmzWrFl45plnIEkSxBYXhhQVFWHWrFnxz6EgCJg5cyYKCwvjiVBffPEFvvjiC9x777249dZb+/bFUK+ZmGHBfZdZsOLCUXjr6ypsLyxHqcuPrYWV2FqoxpycW3DtBT/FxeH/wnjgz9A49kBf/Bb0xW8hYs6Ef+LV8OddAykpp79fCg1wDk8AO0tc0cSnEhcq3Ynzr+rVImaMSI5Pdzc+3QyR3w16REZGBurq6hAOh6FWR4fAHQ4H9Ho9kpKSFO/L6XQmLHM6nUhLSwOANlPgjRkzBgAUJ0LJMrodW09n26GoJ9tLlmV4agNwnnDDccID53E3PLVt51o2p+qQlmuBPdeCtJHmdvsCA/X/Id9fyg3mNlNpVDAkq2BI7vo2siQj6I/Ek6TaT56KJCwP+sIIByWEgtE+h6oXC9MzEYqIiIjOKJIkw+3wxwYlotNQuCp9nQxMJF6NbbIy6Yn6V09NESII0asjnE53z50c0RludKoJf/zuDDz98XFs2XUSb+ypREFpPdZePhGThvVCuWaNEd6zfgb/pGUwfbYB+oOvQX9wO3TFf4d35o/hnf4jQBv7h0CWoD36Txh3PwVN1ZfRRYKIwNhF8M34X4TTJnfpkLIs4+H3D+Nfh53QqAQ8unhS77w2IqIzgCzJcNf449Nm15U3wlXhbbeijlorxi6oMMantzPbdAlXeBP1NUEQolNnn+bU5gO9b+FwOGCz2RKmMLLb7QgEAnC5XEhJSUlYd+zYsQnbp6am4vDhwwCi1T7uv/9+/PKXv4xX+eiO7vys0LQNf5Louu60WbJBg+tmj8C1s7Lw+fE6bCuswEdHa+KJKxmWCbhy6tO45lwXhh3bDt3B16HylMO063GYdj2O4Ii58E9ahuDoBYB6cFVU5XtMma62V4M/hILSenxxwoWdJXU4XutLeF4tCpiSacGcHBvOyrEif7gFGtWZWbm7v99jeXl5UKvVKCwsxOzZswEABQUFmDJlSkJSbFdMmzYNBQUF8STZiooKVFRUYNq0aThy5AiuvvpqvPnmm8jOzgYA7N+/H2q1Grm5uT37omhAkCUZ9VU+OE6448lPfndidTcIgDXDCPtIczz5yWDpxSwPon4miAJ0RjV0RjWQ2vXtpIiEtDQLausaezVxjIlQRERENGjFBybKoldidzowoRObk544MEFERB3QqkX85MLROHeUDav/cRAldT4sf6UQPzw3FzfMyYaqF+KGZM6E+5LH4ZtyE8wfrYamsgCmLx6Dft+f4P3GKqBUBeuO30BddwQAIKt08OddA+/0WyElj1R0rKc+Oo6/fFUJUQB+dUUe5uTYevz1EBENRk1Xdcenzi7zoq6iEeFA276FSiM2V3qKTaFtSdWzb0HUT3w+X0ISFID449bTGnW0btN6v//975Gfn4+5c+fi888/7/Y5paZ2P9H8dLYdqrrbZovSkrBoTi5O1nnx8ucl+PPOUlS5g3jm4xN4XiVgweQbccPVKzHb9zGEL7cAR/8N7cmPoD35EaC3AlO/A8y4Hhg+tWdfUC/je0yZ1u3lDYax83gdPil24pMjNdhbXp8wkCsIwOTMZJw7JhXnjrVjzkgbjNqhNRzbX+8xg8GAxYsXY/Xq1XjooYdQXV2NzZs3Y/369QCiybAWi6VL0+Rde+21uP766zF9+nRMmTIF69atw0UXXYTs7GxIkoTc3Fzcf//9uOeee9DQ0IAHHngAV199NZKTFZRToQErEpZQV94Ix3EPnCfccJZ4EPJHEtYRVQJSskywx6a5S802Q2sYWp91ou5QqUWIfZAQzE8jERERDQqyJMNTFxuYKGtEXXnHAxNqrQjr8FiVp0wOTBARkXJzcmz40w2zsP79w/jgkBNPfXQcnx6vw5qFEzA8qXeu/A5nzIBryV+gO/I3mD5ZB5WnDJb3VgCIdt4lbRJ8U26Eb+pyyMY0xfvfsusk/vhFKQBg1SXj8M1x9p48fSKiQUOWZTTWBRIqPdWVe9sMbgDRpCfrMENs6uzoBRUWux4i+xZEA4ZOp2uT8NT0uPVgd0fr6vV6HDp0CK+++ir+9re/nfY51dS4FV/hLgjR5IHubDtU9VSb6QHcPDsL108fjvcPObC9sAJ7yhvwt6Jy/K2oHGPtdiydvgGLzg7CduQ16A68CpW7DPjiOeCL5xBOmwx/3jIExi+GrLf21MvrcXyPKdPUXpXV9dhb7sYXsanu9pQ3ICwlNuDIFAPm5NgwJ8eKWdnJSDY0V4HxNvjg7euT7yen+x6z208/gWrVqlVYvXo1brzxRpjNZtxxxx2YP38+AGDu3LlYv359vMpTZ2bMmIEHH3wQTzzxBOrr63Heeedh7dq1AABRFPH0009j3bp1uO666yCKIhYtWoS77777tM+f+kcoEEFNqQfOEx44TrhRW+pBJJz4JlZrRaTmNFV7MiNlhBnq06y6SUS9h4lQRERENODEBybKvNGrsU81MDHciJRMI2yxxCcOTBARUU9INmiw/lt5eOvrKjz6YTG+PFmP775UgF9cPA6X5aX3zkEFAYFx/4PAqEthLPwDjLt/B0GXhMapP4Av/zrI2u79MPy3vZV4/D9HAQC3nz8Ki6cO78mzJiIasGRZhrc+2FxFNpb4FPS17VuIagHWYU2VnqK3SWkGiCr2LYgGsoyMDNTV1SEcDkOtjg55OBwO6PV6JCUltVnX6XQmLHM6nUhPT8e7776L+vp6XHrppQCASCT678SMGTOwZs0a/M///E+Xz0mW0e1Ek9PZdqjqqTbTqEQszMvAwrwMHKhyY3tRBd7ZX40jzkY8/P4R/E6rwrfyv42rFt6K8b7d0O/fCt3Rf0Lt2Auz4z6YPl6LwOiF8E+6FqGsbwDCwBwg53usc5Is43B1I3aW1qGwwoMvjtXAF0q8EDPDosOcHCvm5FgxO9uKdIsu4fkzun3DfojeaoiN1RAbK6FqrILorYLYWAUh6AYu+hlk0+R+awODwYANGzZgw4YNbZ47ePBgu9ssWbKk3eSojpYDwPDhw/Hkk0+e3slSvwk0huJJT84THtRVNEJudb21zqiGPdcM+0gL0nItsA4zsl9ANIgwEYqIiIj6lSzL8LqCqCtvUempg4EJlVpA8rDmSk8pWUZY7ByYICKi3iMIAhZNHoYZI5Lxy7cP4KsKN+57+wA+OlaLlRePhVnXS91qtQHe2XfAN+MHsKelwFfn6/YPyf854sS6dw8BAL43ewRumDOiB0+UiGjgkGUZvoZQ8/R2scSngDfcZl1RJSB5mCFa5SlW6Sk5Xd8nJfqJqGfl5eVBrVajsLAQs2fPBgAUFBRgypQpEMXEz/S0adOwadMmyLIMQRAgyzJ2796NH/3oR7j44ouxaNGi+LpFRUW466678Je//AWpqal9+pqo/03MsOC++RasuGAU3vq6CtsLy1Hq8uPPX5bjz1+WY3aODVdPexAXnr8O5sNvQL9/K9Q1+6E//BfoD/8FkaQc+POugX/C1ZAsmf39cqgTsiyjpM6HnSUu7CxxoaDUhXp/4neHZL26OfEpx4Zsqx6CcIb9HhkJQvQ6IDZWQmyMJjY1JzlVNy8PuDrfT9pI4KzJfXHGRF3mrvXjeGFNNPHpuBsNDn+bdYxWbbzaU1quBZa0M/BzTjSEMBGKiIiI+kx0YCLYXOkpdlV2sIOBiejV2Mb4NBRJHJggIqJ+MsJqwHPLpmPzZyfw/GcleGd/NYrK6rFm4UTMGJHcewdWGwBV97vuBaUu3PPWfkRkYFF+BlZcMIo/5BHRGcPnjvUt4tPbNcLvadu3EEQByRmG2AUV0UpPyRkGqNTsWxCdCQwGAxYvXozVq1fjoYceQnV1NTZv3oz169cDiFaHslgs0Ov1WLBgAR577DGsW7cOy5Ytw9atW+Hz+bBw4UIYjUZYrdb4fisrKwEAubm5/fGyaIBI0mvw3VkjsGxmFr44UYfthRX479Ea7IpNk5Zu1uLKqZdg8RXXYZjvIPT7tkJ3+C9QNZTA9PkjMH7xGELZF8CXtwzBUfMBlba/XxIBqHIHsKvEhZ0lddhZ4kK1J3HKTKNGhRkjkjFvUgYmpRowxm6COFj7UZEQRJ8jntwU//PGEp2a/vy1Xd6lrNJBMmVAMmUgYsyAZEqHZMqAbM6EZc5SoKHtBa5EfUWWZbgd/ni1J8cJN7yuYJv1ktL08WpP9lwzTFZdO3sjosGKiVDU7+TYZc1y/HHzfXTynNzqcujEdeSWm7c4Vtvnmo/VdCMn7CtxnY6fa3k+ggCENRq4vUGoBBEalQC1KEAlChx0IKIhxdcQTKjyVFvWiEBj+wMT1mGG6JXYmdGKT0npHJggIqKBRS0KuPXckThnZAp++fYBlNX78aNXi3DjWdm49Ru5UA+wZN2DVR7c+ZevEYzIuHBMKu6ZP579ESIatPyeUHMV2diFFX53qM16gggkpcWSnrJMSMk0IjnDCJVmYP0bTUQ9a9WqVVi9ejVuvPFGmM1m3HHHHZg/fz4AYO7cuVi/fj2WLFkCs9mMZ599Fg888ABeffVVTJgwAc899xyMRmM/vwIa6ERBwDkjU3DOyBRUNPjxxp4K/GVPJao9QTz7yQn84bMSfHOcHUunr8SMc++H/tjb0O//M7Rln0Jb8m9oS/4NSZ8C/4Sr4M9bhkjqhP5+SUOKyxdCQakrXvWppM6X8LxGJWBqZhJmZ0erPuUPs0CjFmG3W+B0ugfmVHdSGKLP2SK5KVa1yVuVUNFJ8NVAQNdegCxq4glOkjGa3BQxDWuxLJr0JOus0YGwVgQBsGiNANw9+1qJOiFFZLgqvfFqT84ST5sxCEEUYBtujFd7sueaoTNp+umMiagvDMlEqH+uWQrbgVIEDCJCBhUiRjVkvR4w6AGdBdAlI6g1ISDoEIAWAUELP3QICloEoEUQOvihRUDQwI/YOrFlkqACOku2iZE7SajparJNl9ZRtH3b5KH4fSF2zu28nu4mMg1VTUlRGpUItZh4v/lWgLrlfbE5mUqtEqFpsV3L5fFlogC1SoBGFKFWtT5Gi/21syy678TtVCIHS4jo1PyeEI5XOHF8v/OUAxPJ6QbYmqa348AEERENMlMzk/DyDTPx6IfFeOvrKrzweSk+P+HCgwsnIDdlYAyildT5sOL1r9AYjGDmiGT86oqJUPN7PRENEoHGEEqqanB8vxO1ZdHkJ19DO30LAbCkGZCSZYxNnW1C8jAj1OxbEA05BoMBGzZswIYNG9o8d/DgwYTHU6dOxRtvvHHKfZ599tlttiUCgOFJevx47ij84JxcfHDYge2FFdhT3oD3Djrw3kEHxtpNWDr9XCy4fDEs3lLoD7wK/YFXoWqsgrFoE4xFmxBKnw7/pGUIjPs2ZK2lv1/SGccbjODLsvpY1ScXDlV7EsamRCE6/eHsbCvOyrFiWlYS9BpVv51vAikCwVcDVesp6RKmqauC6HNAkKUu7VIW1dHEplhykxRLboq0SHiSTMMg623tJjgRDSThkITak554taeaEg/CwcTPgkotICU7mvSUNtKM8dOHocHjG5hJjUTUK4ZkIlR6UQlGVANAJPYXBOBNWCegATxGGQGTjIhRgmCQoNVHYNRHkKQLI1UbglUXhkorJ3wnCMkq+BBNmPLLWvihhR8a+KCDX44thyb+nA+6+OPoc1r44tvF/uQO7kMLCfxhp7c1/e9t+v8c/98tCB0/B0CSgbDUNqKGIjJCERm+UNe+oA4EooDE5C0lyVax59uuLyYkhVmT9Aj4ggnJWRpRbHXcjo7R/jkN2lK1RIOAvzEUrfIUG5SoK+94YCIpLZb0lGVESiYHJoiI6Mxg0qrxwIIJOG9UCta/fxj7Kt343v/bjZ/NG4PFU4b1a+WlancAt2/fg1pvCBPSzXhscf7A+VGfiKiVgDccm9Yu1r8ob2x36goIQJJdH60iG+tbWIcbodby3zciIuofWrWIhXkZWJiXgYPVHmwvLMc7+6txxNmIh98/gt/tOIYrJmXgqum3Y/RZd0Jb8h/o978C7fH3oakuhKa6EOaP1iAw9lvw5y1DaPhZTELpplBEwlcVDdh5woVdpS58VeFGpNX4zKhUI87KsWJ2thWzsq2w6Pt4iFSWIPjrYpWaKltNU9ci4cnrgCB3bWo5WVBBMtqjiU3GjObKTaZ0SMbmak6yISV6dSrRIBT0h1FT4oHjeHSqu9qyRkiRxM+3Rq+CPccMeyzxyZZpis82IQiAVq8GPP1x9kTUX4ZkIlTqw7/HvvdeQKimBkKDG2q3D3pPEEZ3BEmNEowBQBcCdPUCUC8ArZKNJACO2F9IBTSaZASNMqRYwpROH4FJF0ay3oPh2hD0egkqndQr3zEkUQNJpY/96eL3Iyo95KZlan3zOuroOtHnDNF5fGPPy7HtZY0hvo6s1kNW62C121HjDse/KAkQ2k3+AQChswShTp4TIMQftF1HaPP9v73neuxcTrOzIQiA3W6Bw9GAUERGWJIRikgJ98OSjHBERkiSWt3KCMeej64vxZOnwrF14vuL7SMsSV08RnTfbY/Rcn0Jrb4/QJKBYERGMDK45nVWCUislNWqypWmneSttslWLat3Je5Do4pOd6hpnbzVKgGs/WO0sz9On0gDVHxgoqwRtbHBCW99+wMTtgwjkmJT3KVkGWEdxoEJIiI6s10yIQ1TMpOw+h8HsKu0Hg+9dxifHKvFvZeOh9XY92XW630h3PHaV6hoCCDHZsATV02GWTcku/5ENAAFfWHUVUT7FNFp7rxorAu0u641w4ikDH1serto0pNGx74FERENTBPSzbh3/nisuGA03tpXhe2F5Sip8+HVwnK8WliO2dnJWDp9Ki6cPw+aQA30B1+Hfv9WqOsOQ39gG/QHtiFsHQ1/3jUITFgKyZTR3y9pQItIMg45PNh5IlrxqbCsHv5w4sXnw5N0mJNjxZwcG2ZnJ8Nu1vXOycgyhIAroXKTKl69KTHZSZDCp94fABkCJGNamynpEqo5GTMgG1IBkd+P6Mzic4fgPOGOTXXngavK22a6Ib1Fg7TcWOJTrgVJGQaIrIJNRC0MyV9Dc8bPwcxzv9nuvL6SLMFVX4m6iiNwVx2Ht/okQo4qSDVOiHUuaF2NMNYHkOyOwOwHNBHA2iAADW0TprxorjMVFgGfRY2ARQvJooWYpIfWooPRooPVrIfFKEJtBNTaMEQ5AIT9EFr8IeyHEIk9jjT/QCRKIYhSCAj1/ny72QBklS6aHKXSA+qmRKnoH9RNyVOG5sdNyzQGQNV6fUPz8y3Xb9pepR/0Vz8IQiw5RgUYBtEV2JLcnEDVlCjVMnEqFJE6T7Zq2q6dZKuE5K0W26k0Kni8wXaOkZjo1XJ/4XjiV/S2df2tiAxEwhKin5jBk8TVcsrEtlMfRpOtkvRqrLlyCtI0g/szQgNP0BeOXold3lTpqeOBCYtdD1umMT4wYcs0YniWtd34SkREdCbLsOjw+6un4uVdJ/HUR8fx7yM1+KqiAKsXjMc5I1P67Dx8oQh++sZeHK3xIs2sxe+umoIUo7bPjk9E1FLIH0FdRbRP0VRF1lPTft/CnKJLqPRkyzIic4SNfQsiIhp0LHo1rp2ZhWtmZGJniQvbC8uxo7gGu0rrsau0HmlmLa6cOhxXTrkJ9um3Ql21G/p9r0B35G9Qu47C/Ol6mD7biGDuN+HPW4Zg7jcBVd9fYDHQyLKME7U+fFHiws6SOuw+WY8Gf2JSkc2gwewcayz5yYqsZP3pXXQsy4CvDqqaYgiNidPUqRKSnKohSO1cNNoByWCPTknXalo6qeUyYxogDskhXBpiZFlGY10AjuOeePJTe30Gc4oO9pGWePKTOUXHogJE1ClFUbSqqgrr1q3DZ599Bp1Oh8svvxw/+9nPoNO1zaJ+88038fvf/x4VFRWYNGkS7rnnHkydOjX+/FtvvYXf/va3cDgcmDt3LtauXYuUlL77gbgjoiAixZqJFGsmkHdBh+sFIgE4G8pQV1kMd+UJ+KvLEHJWQa6pgaquHjqXF8aGAGxuGUk+QC0BlvowLPVhtJ6Gz4PmanySCPgsOgSsZki2ZIj2UdDah8GQngXLsJHQpGVAtNkgJpsgyuFYYpQfCPmaE6XCfiDsa06kisQSqVosS0isij2HjtaXmqc6EiKBWCJWfY+3fXviiVctk6tUzQlTCclYKj2gMbR4vsX6seWJyVuGhP1BpRv0iVc9RRQEaNUCtH009WJTBa3T/YEz0l5yVqvEqoSErnarcLVTKatFslVCQlcHCWKnPkbi/loLx/bd+gqW1j4/WoNvTbB3v8FoyGsamGhKeKora4SntpOBiaxoslNKVvRqbG2r8tH8J5SIiIYyURBw/ZxsnJVjw/1vH8CxWi/ueG0vls3Mwu3nj4JO3bvfrUMRCSvf3IevKtxI0qvxu6umIDNZ36vHJCJqEgpE4KpsOXW2F+4af5srtwHAZNXG+hYmpMT6GFoD+xZERHRmEQUBZ+facHauDZUNfryxpwJ/+aoSDk8Qz31yAs9/VoJ5Y+1YOn0MZs57BJ65a6A/8jfoD/wZmoqd0B1/D7rj70EypME/cSn8ecsQsY3p75fVpyob/NhZEq34tKvUBYcnMdnIpFVh5ohkzM6x4qwcG8bYjV1LjJBlCEF32ynpmqo5eZuTnhAJwNbF85X0KfGqTRFji8SmeMLTMEhGO6DixSo0dMmSjPpqX7zak/OEGz53KHElAbBmGOLVnuwjzTBY+LkhImW6nAglyzJWrFiBpKQkvPzyy6ivr8c999wDURSxcuXKhHV37dqFe++9F7/61a8wc+ZM/OlPf8Itt9yCDz/8ECaTCXv27MG9996LNWvWYOLEiVi3bh1WrVqFZ599tsdfYG/RqXTIso1Glm00kNf+OrIsoz7ogtNTAVfVUXgqT8BXXYFwTRVQUwt1XQN0Li/M7hBSPEBSIyBKgKk+AFN9ADhRA+BofH8t06dkAfBbdAhazZBtNoh2O3Rpw2FMHwFjRjbE1JEQ7XaIKakQNKd3tYAgR2BPVqOm2gmEmhOkWiZOCSEfEGldxcrX/HzL9cO+FslWrRKxIv6E0qDxxKtA7ydeyRDaJla1rlLVUSKWKrHKFTR6wGWDxhOBpNLF9qWDrNIBKm0swUsXS77ivMw9RSUKUA2yMrCyLEcTuNqZKrGzalw6tYhLpmXBVdfY3y+BBolQIAJXhRe1sSnu6sq9cDv97a5rsumilZ46GZggIiKi9k3IMOOl783AEzuOYVthObbuLsPOkjr86vI8jE0z9coxJVnG6n8cxKfH66BXi/jNlZMxxt47xyIiCgdjSU9NlZ7KGtHgbD/pyZisba4iG0t+0hnZtyAioqFlWJIe/zt3FG4+JxcfHnZie2E5isob8P4hB94/5MDoVCOWTs/E5ZOWwjRpGVR1R6DfvxX6A9sh+hwwfvk0jF8+jdDwOfDlLUNg7CJAY+zvl9Xj6rzBaOWsWNWnUlfib5dalYCpWck4K8eK2dlW5A2zQN1qKiwh6Gk3uanlMlVjVXRMqoskXXKrik0ZiLScps6YAcmUFh3vIaIEkbCEunJvvNpTTYkHQV/iDC6iSoAtyxSv9mTPMXM8gohOW5f/FTl69CgKCwvx8ccfw26PViBZsWIFNmzY0CYRyuFw4Mc//jG+/e1vAwBuu+02bN68GcXFxZg6dSq2bNmChQsXYvHixQCAjRs3Yt68eSgtLUV2dnYPvbT+JwgCrDobrDobkDoJmNT+esFIAM6AE5WNlXBVHUdjVQn81eWI1Dgg1NZBXeeGvt6LZLeEFA+Q3AioZMDQEIChIQCU1AA4AiA6+VfrSfICZh1CNgvkFBtUqWnQp2XCmDECGnsGRHsaxNRUiKl2CO1U9gIQnV9YZ4ZskCH3xQXFUriTqlatErEi7VS06rBKVnPSVsL+5GjAFSDHjtn1L8CnktyFdWRRG0uKiiVIqXQtkqZ0CUlTzfe10eSrFuvKKm10HXUs8Sph3ab96tusC1HLSy37kSAIUKsEqFUAFOQsCgKgVjGJjtrXNDBRW+aNJT2dYmAiy4SU2OAEByaIiIhOn16jwt0Xj8W5o2xY+89DKHZ6ccPLu3H7+aOwbGYWxB78/i3LMh79sBjvHnRALQrY+O1JmJqZ1GP7J6KhLRKSon2L8uYqsg3VvnarORuSNNHp7TJNSMmKXlihN3MqHyIioiZatYgFeelYkJeOg9UevFZUjn/sq8bRGi82fnAEv//vMVw+KQNLpw/H6HPvQ+PZK6E98QH0+7dCe+JDaCp2QlOxE9J/f4nAuP+BP28ZwhkzB+3v+43BML48WR+v+nTYkXjRrygAk4ZZMCfHirOHazEt2Q9D0AGx8RjE6iqIx5qSnFokPIW6fuGwpE1qp2pTBiKxpCfZnIGU7NGorQ9zql6iLgoHI6gp9cSnuqs52YhIKHH2E7VWRGp2NOkpbaQZKSPMUGs43kVEPavLI51paWn4wx/+EE+CauLxeNqsu3Dhwvh9v9+PP/7xj0hNTcWYMdGynUVFRbjlllvi6wwfPhyZmZkoKio6oxKhukqr0iHTmIVMYxaQNguY3HYdWZbREKqH0+/AscYq1DtPoLGqFAFHBSJOJ8TaOmhcHpgaArB6ZKR4AKsnOiWfzhOAzhMASp0ADgMA/LG/loImHcJWC5CSAnVaOvRpmdCnZUKVlgbvmBxE1EYIKXYIBkPvNoiohqw1A1pze2P2PS8SSqxI1el0ga2mGIy0k5wVW1+DEMIBX7SiVTgQ3XckGF2nxSsTpCCEYNfnj+4NTVMQIpaUFU/CUjclTenbJmSptC0StvQttmtZ8UrfZt3m5C19fF2omHRB1F3hkIT6poGJWOJTg6PzgYmULFN8mju9iQMTREREvWXu6FS8cuMsrP3nIXx0tBa/+fdRfHKsFg8smIA0c89cLbzp0xPYVlgOAcCahRPwjZH9P+U8EQ1OkbCE+ipfbGq7aP+ivtoHuZ0p3fVmdeyCiua+BaerICIi6roJ6Wbcc+l43HH+aLy1rwrbC8tRUufDtsJybCssx6zsZFw9PRMXjpmP4OgFEBsroTuwHfr9W6GuPw7Dvldg2PcKwrbx8E9aBv+EqyAbUvv7ZXUqGJbwVUUDvihxYVeJC19XuqGWAkgX6pCBOlwhujDJ3Ih8ixejdA1IRx00vmqI+6shFjV0+TiSxtwmuallRadIrKoTNJ2PdQkCYuu0Lj9ARE0C3nC82pPzhAd15d42/QetUR2v9pSWa4Z1uAmianAmcBLR4NHl7IOkpCScf/758ceSJGHLli0455xzOtzm008/xfLly6NXqD76KEymaGn+6upqpKenJ6ybmpqKyspKpeffrUT3pm0GU5J8tLqUFVadFWOTxwGZc9tdLxgJoCZQA6ffgf3eKtTXnERjVSlCjkpEapwQa13QuhqR7I7A6pFhawRsbkAbAbSNAWgbA0CZE8AhSGiejq/l17ywQYuwLQlCaio09nTo07Oi1aVSU6MVpux2iKmpEIymrs3H3N/UmugfkiCj3YIpigkCkJpqQX2Nu20ygixHq15FAkDT1H/h6K0QbrEsEowlVcWWhWPLIoFYYlbLbYIJ6wkRf/OypvVa3295vu0s60uyIAJqPVJUWshii4pYLZOnVNrE5KoW1a4SKmGpdS2qbLVO3mpVbavFfQyyKfUG479jdPoi4aakJ29sYKIxNjDRdl29WQNblrHFwIQJBguTnoiIiPpailGLXy/Ox2tFFfjtf47i8xMuXPtiAe6dPx7zxtlPvYNO/Hl3GTZ9WgIAuPvisZg/Mf0UWxARRUXCEhqqfdG+RSzxqb7KBynS9lcRnUmdMG22LSvatxgUv/kQERENcBa9GtfOzMKyGZn4osSF7YXl2FFcg4LSehSU1iPNrMWVU4Zj8dRhSJt1O3wzb4Om4nPo922FrvgtqOsOwfzxgzB9uh7BUZfCP/EaBHMu6v/fuyMBwF2F0rLjKC09hpqqUoQaKmCXazEPdbhGcCFDUwer0KqCUxBATfu7lNWGWLWm9BZT0jX9NS1Lj15oT0S9wlsfiFd7cpzwoKG67Sw7xmQt7LlmpI20wJ5rQVKann0HIupz3S7D8sgjj2Dfvn3Yvn17h+uMGzcOr7/+Ov71r3/hF7/4BUaMGIHp06fD7/dDq028Skyr1SLYjao4qakWxdv0xLYDlwWZsAOY0OEasiyjPlCPKm8Vqr3VONJYhVpHKdwVJQhUVSDscEKocUHv8sLWiGjClAeweQB9CFD7glD7nEC5E8BBBBH9btqapNNAstugttuhzxgOw7AsaNLToE5Lgzo9PXqblgYxKemMDYAD9j0my0CsOhXCgRZ//ha3/lbrtLdui+dOuW6L21iiVxNBloCQF2LI28lJ9zJRDaijiVSIJUzFH8dv21serWx12uuqdICovPTngH2P0WmLD0yUxaagOMXAREos2cmWaURKlgmGJF6NTURENFAIgoCl0zMxK9uK+98+gIPVHtz95j58e8ow/OyiMTBqlQ9SvLO/Go/+qxgAcOu5uVg6PbOnT5uIzhBSREJDtT82vV200pOr0ttu30JrULWp9GRM1p6xv9sQERENFIIg4OxcG87OtaGywY83vqrEX/ZUwOEJ4rlPT+D5z0swb2wqlk7PxMwRZyOUeQ485z8I3eE3od+/FZrqQuiK34au+G1ETMPgn/gd+POugZSc27MnGglB9DogNlYmTknXWA2xsRLhhgqIjVUwhOsBAGkAZjZt28HP37JKF6/YFIlXcmqR3BRbJmvMvDKYqA/Jsgy30w/HCQ+cx91wnnCj0dV2RDgpTR+v9mQfaYHJ2jMVsImITke3EqEeeeQRvPjii/jNb36D8ePHd7ie3W6H3W5HXl4eioqKsHXrVkyfPh06na5N0lMwGIShG1Ou1bRXcecUmqr1dGfbM4cKqchEqj4TeXoAqQAmJq4RjARRE3CiJuCEX+PG59UlqKsrh89RhrCjGnJNDVR1DUhyh2GLTcVniyVNGYOAGAhBLKsGyqrhx742U/E1kTRqSClWiKl2aNMyoEnLgJhqj/3Fqkyl2iEkJw+aH94Gz3tMBGCI/SH6L0JfzVInS80VrKQAUiwa1Dlrm6cRjFfHCraodBWITUfYojpWQhWtluu1vB9MrKLVtEwKN5+PFAaCnuhfP2lTyarlVIVqfbwyVkjUImKwIunSe1ATsXbrPWa3M4FqIEkYmIglPnU4MGFUIyV2FXb0qmwjDEkcmCAiIhoMRqUa8cJ3p+OZj4/j/+08ib9+VYndpS6svXwi8ocndXk/Hx+rxep3DgIArpmRiR+ck9Nbp0xEg4wkyXA7fKgr98anuHNVeBEJt+1baPSqeJ+iqeKT0cq+BRERUX8blqTH/543Ej84Jwf/OuzEtsJyFJY14P1DTrx/yIlRqUYsnZaJyyelQ578Pfgnfw+qmv3Q7/8z9Adfg6qxEqaCJ2AqeALBrHPhz1uGwJiFnU8FJ4VjCU6xxKaEJKcqqJqW+Too1xTTMv0hIKvhgA0+XRpgHgZzahYsqVkJyU2SKQOyNokJTkQDgCTJqK/0wnE8Wu3JecKNQGM4YR1BBKzDjUjLjVZ7sueaoTdxJgoiGngUpzysXbsWr7zyCh555BFcdtll7a6zZ88eqFQq5Ofnx5eNGTMGxcXRq1UzMjLgdDoTtnE6nUhLS1N6OpBldDvR5HS2HQo0ohbDDJkYbsyE3W6B09w2qUeWZTSEGuD0O1ATcKLM70CR3wFXfQX81eUI11QDNbXQuhpha5RhcwPWxuaEKbMfEENhiFVOoMqJMA4g3P7pQFarINusEFPToEnLgMqeFk2Uakqaij0WrDYI3ais0xv4HuuMCKgMkFWGaB/HZkEkktK37SWFWyRU+eOJV4nTFfoBKZiQcNXyvhT2Ixj2IRjxIRDxIRAJIBjxIxgJwC8FEYwEEZCDCEhhBOQwAlIYQYQQkCMIyBICggC/ICAgCs33BQF+IYyAEEFA8MMvCgg2PQcBEVmAplHGxi9+g+kz1/TLeywQCGDNmjV49913odfrsXz5cixfvrzTbXbt2oWVK1figw8+SFj+1ltv4be//S0cDgfmzp2LtWvXIiUlBUD035jHHnsM27dvhyRJWLp0KX7+859DHCCf8e6QIjLcTh9qy6JVnmrLGlFf2fHARNP0E00VnzgwQURENLhpVCLuuGA0vjEyBQ/84wBKXX7c/Eohbj13JG48KxsqsfM4X1RWj5Vv7kNEknHZxDT8bN4YfjegQY19i+6TJBkeZ1Olp9gUdxVeREJt587W6FTRae0yTdEptLNMMNl0/PeDiIhoANOoRMyfmI75E9NxqNqD14oq8I/9VThW48UjHx7B7/97DJdPSsfS6ZkYY89D49zVaPzGKmiPvQfD/legKdkBbdkn0JZ9AmlHEgLjFwMjZ8BYVQKhRZKT6K2G6HVAQNd+aI4IatSrUlAesaI0nIxq2Yoq2YZq2FArpsCWlo2ROaMwZVQOJgxLgrVFH6ftJFpE1F8iIQm1ZY1wxKo9OUs9CAcS+xIqtYCUEeb4VHep2WZodP089SYRURcoSoR68sknsXXrVvz617/GggULOlxv+/btKCsrw/PPPx9f9vXXX2PSpEkAgGnTpqGgoABLliwBAFRUVKCiogLTpk3rzmugfiQIApK1yUjWJmMMxna4XjASRG2gBk6/A86AA0f8DtT4nahrqESgpgJhZzWEmjpY3OF4klTLClNJPkAIRyA4agBHDUIHDiDUwbFkUQRSbFClpkEdqyYl2qPJUkKqHSp79Fa02iCo+6r8EfUFWZYRlILRZCQpkHAbkAIIRlreDyYuj98G44+jSU0t7jftq8X9sNxB6p4q9tcmEb5nym4JghrqMZec9n66a+PGjdi7dy9efPFFlJeXY+XKlcjMzOwwNhw8eBA/+clPoNMllkTds2cP7r33XqxZswYTJ07EunXrsGrVKjz77LMAgBdeeAFvvfUWnnzySYTDYdx1111ITU3FzTff3OuvsSdIUrR0bF2s0lNtuTd6NXZnAxPxaSiMHJggIiI6g83OseKVG2dh/XtH8P4hB57++Dg+PV6LNQsnIjNZ3+42RxyN+OkbXyMQlnDuKBtWL5gAkd8VaJBj36JrZEmGpzYQr/LUNH12ONi2b6HWivFps5sqPZlTdBBOkWhJREREA9f4dDNWXToOd1wwCn//ugrbi8pxvNaH7UUV2F5UgZkjkrF0eibmjU0Fxn4LwbHfgugug/7Aq9DvfxUqdykMe18C9r4EYwfHkAVVdDo6Y/OUdH5dGooDFuxpMOIzhxa76vSogxlybJ47lQBMGpaEOblWXJJjxeThSdCpB2+iOdGZLOSPwFnqiSc+1Z5sbDMrhUavgj3HHJ3qbqQZtkwTVPxME9Eg1OXR+OLiYjz11FO49dZbMWvWLDgcjvhzaWlpcDgcsFgs0Ov1uOaaa/Cd73wHL774Ii688EK8+eab2LNnDzZu3AgAuPbaa3H99ddj+vTpmDJlCtatW4eLLroI2dnZPf8KaUDQqrQYZhyOYcbhHa4jyzLcIXc8Wcrpd+Brf/S2trEaAWclJKcD6roG2GJJUtZGwOZGtNqUB0hqBERJApw1kJw1CB480PHxRAGCNZowlTgNX2qLClPR5UyYUk6WZYTlcDsJRMG2yUVSANoaATX19fHkpJZJSMFIMCFhqaMEpaDUdm7ivqQRNdCKOuhUOuhEHbQqbavHre6LWuhUTfd18XW1Ki108fu65vtN+1LpYFAbMDw9BU6nu89fp9frxbZt27Bp0ybk5+cjPz8fhw8fxssvv9zuYMXWrVuxYcMGZGdnw+NJnHpwy5YtWLhwIRYvXgwgOggyb948lJaWIjs7Gy+99BJWrFiB2bNnAwB+/vOf4/HHHx+QgxWyJMNd448PSNSWRaegONXAREqWCbYsE8w2DkwQERENNUl6DR761kTM3ZeCRz48gsKyBnz3pQKsvGQsFuZlJKx70uXDHa99BXcgjGmZSdiwaBLUKv4YSYMb+xbtk2UZjXWxpKcyL2rLG+Eq9yIUiLRZV6URYRvedEFFNPHJbNdDZN+CiIjojGTWqXHNzCx8Z0YmdpW6sK2wAjuOOLH7ZD12n6yH3aTF4inDcOXU4Ui3ZME756fwzv4JNCc/gf7Qa9BLbvg09uap6YzR24gpA7I+BQFJwJ7yeuwscWFniQv7K91olSeBcWkmzMmxYk6OFTNGJMOk5fgJ0UDk94TiSU+OEx7UV3rbzDCiN2vi1Z7Sci1IyjCwL0FEZ4Qufzv54IMPEIlE8PTTT+Ppp59OeO7gwYOYO3cu1q9fjyVLliA/Px9PPvkkfv3rX+Oxxx7DuHHj8PzzzyMjI/pD7owZM/Dggw/iiSeeQH19Pc477zysXbu2Z18ZDTqCICBJm4QkbRJGY0yH64WkEGoCTjj9zmjSlN+Bo7HbGm81QjVVkJxOmNzB5oQpD5DiAaxN1aYaAVGSgdpaRGprETl8sPNzS05ukRjVXGEq4X5KKoRWV6QOJBE5klARqXUCUVeqHzVXVQrGE5iaHreXqCShbQJIXxEFVSyBSJuQQBRPNmpKQoonKmmhFVrcb1ouaKEVtbH1tdAJTetqY/tu/hMFMTYfYuwkZBlAi/kRu/CcjJaPZSCM2DZN64YBOQTREAbSU/qmMVs5cOAAwuEwZsyYEV82a9YsPPPMM5Akqc3UEjt27MCGDRvg8Xjw5JNPJjxXVFSEW265Jf54+PDhyMzMRFFREbRaLSoqKjBnzpyE45SVlaG6uhrp6em99ApPTZajV2NHqzy1uBo70PY9r9KIzVdixyo+WVL1THoiIiIiANF+0BX5GZg+Igm/fPsg9pQ34JdvH8THR2ux8uJxSDKoUe324/btX8HZGMRYuwm/vjIfeg1L0dPgx75FLOnJFYxOa1feGJ9CO+RvJ+lJLcA6vLnKky3TBEsak56IiIiGIkEQMCfHhjk5NlS5A3hjTwXe2FMBZ2MQf/isBC98XoKLxtmxdFomZmUnI5Q9F+GcudDbLWh0uuM/S4clGfsr3dj1lQtflHyNPWX1CLbKfMq26jE7x4o5OTbMzk6Gzajth1dMRJ1p6lc4j7vhOOGG87gH7hp/m/XMKbp4tSd7riVaOZaVponoDNTlRKhbb70Vt956a4fPHzyYmEgyb948zJs3r8P1lyxZEp8aj0gJjajBMMNwDDN0Xl3KE3bHE6Wcfieq/Q7s8zvgCEQTpoK11RBqXfHp92yxRKl4wlRjdHo+tQTI9fWI1NcjUnyk03MTLEnxxCifxYRgIAS5ZfJLi8QXSYpAkiOQJAkypNjj6K0MOXorS5AgQZYkSLIUfRy7leOP5Rb3pdjxoreSLAGx5+MnIQNNX2kEuflWA0ALwNzO8033BTTvRmj9fEfrx7YRIUTXif8Xuy9Hb8XY2k3HaF636XHs+Vj7RR/L0WO2OKfmdHYZkH2A7G16U7S9bZ363g3h2J/3tPeknO6RjcA3Lurz4zocDthsNmi1zR1eu92OQCAAl8uFlJTEBK2nnnoKAPD666+32Vd7gw6pqamorKyMVx5s+bzdbgcAVFZW9tlgRVPSU21ZY2waii4MTDRNb8eBCSIiIuqirGQDnr1mGl74vATPf3oC/zzgQFFZA1ZeMhbPfVaKky4/MpP1eOKqyUjSt5l/mWhQGop9i0ZXALUno/2K2tgU2kFf276FqGpKempOfEpK00NkJTgiIiJqJcOiw4/OG4mbz8nBvw47sb2wHF+WNeCDQ058cMiJUSlGLJ0+HFfkZyBVlnHE0YgvSlzYeaIOu0/WozGY+F3EbtJiTo41lvxkxfCk9qfuJqL+I0syXFVeOI55oolPJ9zwNYQSVxKA5HRDvNqTPdcMQxITGYloaGC9SjojCYIAiyYJFk0SRlk6ry5VG6hpkTDlQEnAid0tKkz56xwwugMdJ0x5oglT2ggguxsQcTcgcuwoQh0etdW5xv7O/J8y5Va3FNeUbS8IzfdbPxZi75Smh0YT1HZ7l99nPcnn8yUMVACIPw4GlU1P6Pf7291XMBiE3+9P2PfpHKc7FzT4G0Mo+OtxOE54EGgMt3leVAuwDotNbReb4i4pzQBRNXSTnhLernRKbC/l2GbKsL2IBh+1KOCWb+TinFwbfvmPAzjp8uOnb3wNAEg1avDkVVOQZh64VWiJlBoqfYugP4yCN0/AccwNn7ttL05UCUjOMMSrPKVkGZGUboBKfeb/UtARfo9Rhu2lHNtMGbYX0eCgUYmYPzEd8yem44ijEduLyvH2viocq/XikQ+L8fv/HodRp4LTk/j9x6JTY1Z2cqzClBUjUwysEEM0QIVDEnb/7TgqDtYj4E0ctxBVAmyZxljFJwvsOWZoDUwFIKKhif/60ZCmETXIMAxDhmFYh+s0V5dqnorPGXDgUMvHvmqEGupiiVFyvJJUfB9CYvqPHOtDyABEUYRa1EAtqKFSRW/VKk10mahudauBWqWBRtDE19GIWqhFNTQqbXxdjaiFRqWBWtRCI2qa76ui64qCeOrkG6GpQlNz8k3z8pbbosX2rRJ3BLToMCXuN7qL2DFEAVabCS6XF3K76wrxU2h9fu3eJhwTrfbT3utpecxTvNaE/bTzXDvn3tH5nU5nUhAAk90Cn9Pd7X10l06nazNY0PRYr1d2dVBH+zIYDAkDE7rYtJNN6xoMBkXHSU21KFofAEqra3FynwtAtAORmmVGeq4F6blJSMu1ICXTBBWvxm5Xd9p7KGN7Kcc2U6Y/2ysQCGDNmjV49913odfrsXz5cixfvrzddfft24cHHngAhw4dwtixY7FmzRpMnjw5/vzs2bPhdifGvd27d8NkMik6DtFgMCUzCVuun4lf/6sYb+6tgkWvxu+WTkG2Tdl3IKKBbqj0LaqON6BkTy0AQBQFpGSZkJ5jQVpuEtJzLUjNNEOlYd+iPfzepwzbSzm2mTJsL6LBY2yaCb+4ZBxuP38U3t5XhW2F5The64M3FIFOLWJGVjLm5FgxJ9eK8WlmqFjRnmhQ8DUEcfzLGgCAWisiNdsMe64ZaSMtSMkyQa1V9fMZEhENDEyEIjqFxOpSoztcLyyFURNwosbvhDPggMWiR6BRglbUQaeK/mlFLbQqHXRNy0QdVCI/hoIA6O0WqFvMTU4DV0ZGBurq6hAOh6FWR9+/DocDer0eSUlJivfldDoTljmdTqSlpSEjIyO+7xEjRsTvA0BaWpqi49TUKH9v6dPUmLd8AuwZFkAvt5mCoq6uUdkOhwBBiP4o2p32HorYXsqxzZQ53fay209/kGPjxo3Yu3cvXnzxRZSXl2PlypXIzMzEggULEtbzer249dZbsWjRIjz88MN45ZVX8MMf/hDvvfcejEYjqqqq4Ha78f777ycMjBuNRkXHIRpMTFo17r9sAq6alomx2TbowmH+20dnnKHSt1CZBXzzlomwpZggGNCm0lNdPfsWrfF7nzJsL+XYZsoMhL4FEXWPWafGd2Zk4erpmdhb6YbZYsAIgwoaXuBJNChZUvW45Id5sFpNEIwyBJGfZSKi9jADg6iHqEV1vLqUIEQ7+E4m9tAZKC8vD2q1GoWFhZg9ezYAoKCgAFOmTIGo8Ev3tGnTUFBQgCVLlgAAKioqUFFRgWnTpiEjIwOZmZkoKCiID1YUFBQgMzMT6enpio4jy+jGZ1FA+ugkfpa7oXvtPXSxvZRjmynTX+3l9Xqxbds2bNq0Cfn5+cjPz8fhw4fx8ssvt0lQevvtt6HT6XD33XdDEATce++92LFjB9555x0sWbIExcXFSEtLQ3Z29mkdh2gwyh9ugd1qgLMfKoES9bah07cA0nIt7Ft0A7/3KcP2Uo5tpgzbi2jwEgQBUzP5WyfRmSA128zPMhHRKTBNlIiIFDEYDFi8eDFWr16NPXv24P3338fmzZtxww03AIheWe33+7u0r2uvvRZ//etfsW3bNhw4cAB33303LrroovhA97XXXotHH30Un3/+OT7//HM89thj8eMQEdHAduDAAYTDYcyYMSO+bNasWSgqKoIkSQnrFhUVYdasWfFpYwVBwMyZM1FYWAgAOHLkCEaNGnXaxyEiooGFfQsiIiIiIupJgUAA99xzD2bPno25c+di8+bNp9xm165duPjii9ssf+utt3DJJZdg2rRpuO2221BbWxt/TpZlPProozjnnHNw1llnYePGjfwdiohoAGFFKCIiUmzVqlVYvXo1brzxRpjNZtxxxx2YP38+AGDu3LlYv359/ErszsyYMQMPPvggnnjiCdTX1+O8887D2rVr48/ffPPNqKmpwe233w6VSoWlS5fipptu6q2XRUREPcjhcMBms0Gr1caX2e12BAIBuFwupKSkJKw7duzYhO1TU1Nx+PBhAEBxcTF8Ph+uv/56HDt2DHl5ebjnnnswatQoRcc5lVgeliJN23Rn26GKbaYM20sZtpdy/d1m7FsQEREREVFP2bhxI/bu3YsXX3wR5eXlWLlyJTIzMzusGn7w4EH85Cc/gU6nS1i+Z88e3HvvvVizZg0mTpyIdevWYdWqVXj22WcBAC+88ALeeustPPnkkwiHw7jrrruQmpqKm2++uddfIxERnRoToYiISDGDwYANGzZgw4YNbZ47ePBgu9ssWbKk3QGMjpYDgEqlwqpVq7Bq1arTO2EiIupzPp8vITkJQPxxMBjs0rpN6x09ehT19fX42c9+BrPZjE2bNuGmm27C3//+d0XHOZXUVIui9Xtq26GKbaYM20sZtpdy/dVm7FsQEREREVFP8Hq92LZtGzZt2oT8/Hzk5+fj8OHDePnll9tNhNq6dSs2bNiA7OxseDyehOe2bNmChQsXYvHixQCiCVbz5s1DaWkpsrOz8dJLL2HFihXxKb5//vOf4/HHH2ciFBHRAMFEKCIiIiIi6nE6na5NIlLTY71e36V1m9Z7/vnnEQqFYDKZAACPPvooLrzwQvzrX/9SdJxTqalxQ5YVbQJBiCYPdGfboYptpgzbSxm2l3Kn22Z2O5POiIiIiIio/x04cADhcBgzZsyIL5s1axaeeeYZSJIEURQT1t+xYwc2bNgAj8eDJ598MuG5oqIi3HLLLfHHw4cPR2ZmJoqKiqDValFRUYE5c+YkHKesrAzV1dVIT0/vpVdIRERdxUQoIiIiIiLqcRkZGairq0M4HIZaHe12OBwO6PV6JCUltVnX6XQmLHM6nfEfjrRabULVJ51OhxEjRqCqqgozZ87s8nFORZbR7cSJ09l2qGKbKcP2UobtpRzbjIiIiIiIBjOHwwGbzZbwG5LdbkcgEIDL5UJKSkrC+k899RQA4PXXX2+zr/YSmlJTU1FZWQmHwwEACc/b7XYAQGVlpaJEqO5MUd7f05sPNmwvZdheyrHNlOmr9mIiFBERERER9bi8vDyo1WoUFhbGy4QXFBRgypQpba7AmzZtGjZt2gRZliEIAmRZxu7du/GjH/0Isizj0ksvxY9//OP4dEderxcnTpzA6NGjFR2HiIiIiIiIiIjOTD6fLyEJCkD8cetq4qfi9/vb3VcwGITf70/Y9+kc53SmKOeU8MqwvZRheynHNlOmt9uLiVBERERERNTjDAYDFi9ejNWrV+Ohhx5CdXU1Nm/ejPXr1wOIXqVnsVig1+uxYMECPPbYY1i3bh2WLVuGrVu3wufzYeHChRAEARdddBF+97vfISsrCykpKXj88ccxbNgwXHjhhVCpVJ0eh4iIiIiIiIiIznw6na5NIlLTY71e3yP7MhgMCUlPOp0u4TgGg0HRcbozRTmnhFeG7aUM20s5tpkyp9tednvXEqiYCEVERERERL1i1apVWL16NW688UaYzWbccccdmD9/PgBg7ty5WL9+PZYsWQKz2Yxnn30WDzzwAF599VVMmDABzz33HIxGIwDgrrvuglqtxp133gmPx4NzzjkHzz33HFQq1SmPQ0REREREREREZ76MjAzU1dUhHA5DrY4OgTscDuj1eiQlJSnel9PpTFjmdDqRlpaGjIyM+L5HjBgRvw8AaWlpio5zOlOUc3pzZdheyrC9lGObKdPb7cVEKCIiIiIi6hUGgwEbNmzAhg0b2jx38ODBhMdTp07FG2+80e5+dDodfvGLX+AXv/iF4uMQEREREREREdGZLy8vD2q1GoWFhZg9ezYAoKCgAFOmTIEoior2NW3aNBQUFGDJkiUAgIqKClRUVGDatGnIyMhAZmYmCgoK4olQBQUFyMzMRHp6es++KCIi6hYmQhERERERERERERERERER0aBlMBiwePFirF69Gg899BCqq6uxefNmrF+/HkC0apPFYunSNHnXXnstrr/+ekyfPh1TpkzBunXrcNFFFyE7Ozv+/KOPPophw4YBAB577DEsX768914cEREpMugToQSh+9t0Z9uhiO2lHNtMGbaXcmwzZbrbTmxnZdheyrC9lGObKcP2Uo59i77BNlOG7aUM20s5tpky7Fv0DbaXMmwv5dhmyrC9lGPfom+wzZRheynD9lJuILTZqlWrsHr1atx4440wm8244447MH/+fADA3LlzsX79+niVp87MmDEDDz74IJ544gnU19fjvPPOw9q1a+PP33zzzaipqcHtt98OlUqFpUuX4qabblJ8vowXvY/tpQzbSzm2mTJ91V6CLHOmQiIiIiIiIiIiIiIiIiIiIiIiGtyUTYhKREREREREREREREREREREREQ0ADERioiIiIiIiIiIiIiIiIiIiIiIBj0mQhERERERERERERERERERERER0aDHRCgiIiIiIiIiIiIiIiIiIiIiIhr0mAhFRERERERERERERERERERERESDHhOhiIiIiIiIiIiIiIiIiIiIiIho0GMiFBERERERERERERERERERERERDXpMhCIiIiIiIiIiIiIiIiIiIiIiokGPiVBERERERERERERERERERERERDToDblEqEAggHvuuQezZ8/G3LlzsXnz5v4+pQHtvffew4QJExL+VqxY0d+nNSAFg0F861vfwueffx5fVlpaiptuugnTp0/H5Zdfjo8++qgfz3Bgaa+9fvWrX7V5v23ZsqUfz7L/VVVVYcWKFTjrrLNw/vnnY/369QgEAgD4/upNjBXKMV50DWOFcowXXcN40T8YL5RhrOg6xgtlGCu6hrGifzBWKMd40TWMFcoxXnQN40X/YLxQhrGi6xgvlGGs6BrGiv7DeKEM40XXMFYox3jRNf0ZL9Q9urdBYOPGjdi7dy9efPFFlJeXY+XKlcjMzMSCBQv6+9QGpCNHjmDevHlYu3ZtfJlOp+vHMxqYAoEA7rzzThw+fDi+TJZl3HbbbRg/fjxee+01vP/++7j99tvx9ttvIzMzsx/Ptv+1114AUFxcjDvvvBNXXnllfJnZbO7r0xswZFnGihUrkJSUhJdffhn19fW45557IIoi7r77br6/ehFjhXKMF6fGWKEc40XXMF70H8YLZRgruobxQhnGiq5hrOg/jBXKMV6cGmOFcowXXcN40X8YL5RhrOgaxgtlGCu6hrGifzFeKMN4cWqMFcoxXnRNf8eLIZUI5fV6sW3bNmzatAn5+fnIz8/H4cOH8fLLLzNAdKC4uBjjx49HWlpaf5/KgHXkyBHceeedkGU5Yflnn32G0tJSbN26FUajEWPGjMGnn36K1157DXfccUc/nW3/66i9gOj77eabb+b7Lebo0aMoLCzExx9/DLvdDgBYsWIFNmzYgAsuuIDvr17CWNE9jBedY6xQjvGi6xgv+gfjhXKMFafGeKEMY0XXMVb0D8aK7mG86BxjhXKMF13HeNE/GC+UY6w4NcYLZRgruo6xov8wXijHeNE5xgrlGC+6rr/jxZCaGu/AgQMIh8OYMWNGfNmsWbNQVFQESZL68cwGruLiYowcObK/T2NA++KLL3D22Wfjz3/+c8LyoqIiTJo0CUajMb5s1qxZKCws7OMzHFg6ai+Px4Oqqiq+31pIS0vDH/7wh3hwaOLxePj+6kWMFd3DeNE5xgrlGC+6jvGifzBeKMdYcWqMF8owVnQdY0X/YKzoHsaLzjFWKMd40XWMF/2D8UI5xopTY7xQhrGi6xgr+g/jhXKMF51jrFCO8aLr+jteDKmKUA6HAzabDVqtNr7MbrcjEAjA5XIhJSWlH89u4JFlGceOHcNHH32EZ599FpFIBAsWLMCKFSsS2nCo++53v9vucofDgfT09IRlqampqKys7IvTGrA6aq/i4mIIgoBnnnkGO3bsgNVqxfe///2E8oFDTVJSEs4///z4Y0mSsGXLFpxzzjl8f/UixgrlGC9OjbFCOcaLrmO86B+MF8owVnQN44UyjBVdx1jRPxgrlGO8ODXGCuUYL7qO8aJ/MF4ow1jRNYwXyjBWdB1jRf9hvFCG8eLUGCuUY7zouv6OF0MqEcrn87X5h63pcTAY7I9TGtDKy8vjbfbb3/4WJ0+exK9+9Sv4/X7cd999/X16A15H7ze+19p39OhRCIKA0aNH43vf+x527tyJ+++/H2azGZdeeml/n96A8Mgjj2Dfvn3Yvn07/vjHP/L91UsYK5RjvOg+xgrlGC9OjfGibzBeKMNYcXoYL5RhrDg1xoq+wVihHONF9zFWKMd4cWqMF32D8UIZxorTw3ihDGPFqTFW9B3GC2UYL7qPsUI5xotT6+t4MaQSoXQ6XZvGa3qs1+v745QGtKysLHz++edITk6GIAjIy8uDJEm46667sGrVKqhUqv4+xQFNp9PB5XIlLAsGg3yvdWDx4sWYN28erFYrAGDixIk4fvw4XnnlFQYIRIPDiy++iN/85jcYP34831+9iLFCOcaL7uNnWTnGi84xXvQdxgtlGCtODz/LyjBWdI6xou8wVijHeNF9/Cwrx3jROcaLvsN4oQxjxenhZ1kZxorOMVb0LcYLZRgvuo+fZeUYLzrXH/FC7LE9DQIZGRmoq6tDOByOL3M4HNDr9UhKSurHMxu4rFYrBEGIPx4zZgwCgQDq6+v78awGh4yMDDidzoRlTqezTZk3ihIEIR4cmowePRpVVVX9c0IDyNq1a/HCCy/gkUcewWWXXQaA76/exFjRPYwX3cPPsnKMFx1jvOhbjBfKMVZ0Hz/LyjBWdIyxom8xVnQP40X38LOsHONFxxgv+hbjhXKMFd3Hz7IyjBUdY6zoe4wXyjFedA8/y8oxXnSsv+LFkEqEysvLg1qtRmFhYXxZQUEBpkyZAlEcUk3RJf/9739x9tlnw+fzxZft378fVquV88x2wbRp0/D111/D7/fHlxUUFGDatGn9eFYD1+OPP46bbropYdmBAwcwevTo/jmhAeLJJ5/E1q1b8etf/xpXXHFFfDnfX72HsUI5xovu42dZOcaL9jFe9D3GC2UYK04PP8vKMFa0j7Gi7zFWKMd40X38LCvHeNE+xou+x3ihDGPF6eFnWRnGivYxVvQPxgtlGC+6j59l5Rgv2tef8WJI/atoMBiwePFirF69Gnv27MH777+PzZs344YbbujvUxuQZsyYAZ1Oh/vuuw9Hjx7Ff/7zH2zcuBE/+MEP+vvUBoWzzjoLw4cPx6pVq3D48GE899xz2LNnD5YuXdrfpzYgzZs3Dzt37sTzzz+PkpIS/OlPf8Jf/vIXLF++vL9Prd8UFxfjqaeewi233IJZs2bB4XDE//j+6j2MFcoxXnQfP8vKMV60xXjRPxgvlGGsOD38LCvDWNEWY0X/YKxQjvGi+/hZVo7xoi3Gi/7BeKEMY8Xp4WdZGcaKthgr+g/jhTKMF93Hz7JyjBdt9Xu8kIcYr9cr33333fL06dPluXPnyi+88EJ/n9KAdujQIfmmm26Sp0+fLp933nny7373O1mSpP4+rQFr/Pjx8meffRZ/fPz4cfm6666TJ0+eLF9xxRXyxx9/3I9nN/C0bq/33ntPXrRokTxlyhR5wYIF8j//+c9+PLv+9+yzz8rjx49v90+W+f7qTYwVyjFedB1jhXKMF51jvOg/jBfKMFYow3ihDGNF5xgr+g9jhXKMF13HWKEc40XnGC/6D+OFMowVyjBeKMNY0TnGiv7FeKEM40XXMVYox3jRuf6OF4Isy3LPpVURERERERERERERERERERERERH1vSE1NR4REREREREREREREREREREREZ2ZmAhFRERERERERERERERERERERESDHhOhiIiIiIiIiIiIiIiIiIiIiIho0GMiFBERERERERERERERERERERERDXpMhCIiIiIiIiIiIiIiIiIiIiIiokGPiVBERERERERERERERERERERERDToMRGKiIiIiIiIiIiIiIiIiIiIiIgGPSZCERERERERERERERERERERERHRoMdEKCIiIiIiIiIiIiIiIiIiIiIiGvSYCEVERERERERERERERERERERERIMeE6GIiIiIiIiIiIiIiIiIiIiIiGjQYyIUERERERERERERERERERERERENev8ft3nLUX/si0QAAAAASUVORK5CYII=",
- "text/plain": [
- "