-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
FastFourierTransform.java
52 lines (47 loc) · 2.16 KB
/
FastFourierTransform.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package com.jwetherell.algorithms.mathematics;
import com.jwetherell.algorithms.numbers.Complex;
/**
* A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a sequence, or its inverse.
* Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency
* domain and vice versa. An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of
* sparse (mostly zero) factors.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Fast_Fourier_transform">Fast Fourier Transform (Wikipedia)</a>
* <br>
* @author Mateusz Cianciara <[email protected]>
* @author Justin Wetherell <[email protected]>
*/
public class FastFourierTransform {
private FastFourierTransform() { }
/**
* The Cooley–Tukey algorithm, named after J.W. Cooley and John Tukey, is the most common fast Fourier transform
* (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size N = N1N2
* in terms of N1 smaller DFTs of sizes N2, recursively, to reduce the computation time to O(N log N) for highly
* composite N (smooth numbers).
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm">Cooley–Tukey Algorithm (Wikipedia)</a>
* <br>
* @param coefficients size must be power of 2
*/
public static void cooleyTukeyFFT(Complex[] coefficients) {
final int size = coefficients.length;
if (size <= 1)
return;
final Complex[] even = new Complex[size / 2];
final Complex[] odd = new Complex[size / 2];
for (int i = 0; i < size; i++) {
if (i % 2 == 0) {
even[i / 2] = coefficients[i];
} else {
odd[(i - 1) / 2] = coefficients[i];
}
}
cooleyTukeyFFT(even);
cooleyTukeyFFT(odd);
for (int k = 0; k < size / 2; k++) {
Complex t = Complex.polar(1.0, -2 * Math.PI * k / size).multiply(odd[k]);
coefficients[k] = even[k].add(t);
coefficients[k + size / 2] = even[k].sub(t);
}
}
}