-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
114 lines (92 loc) · 5.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import warnings
warnings.simplefilter('ignore')
import argparse
import os
import sys
import logging
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from data.loader import load_dataset
from models.model import DenseNet121
from utils.trainer import fit
from utils.utils import get_labels_frequency, set_logger
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str, default='../Datasets/APTOS/APTOS_images/train_images')
parser.add_argument('--csv_file_path', type=str, default='../CSVs/')
parser.add_argument("--logdir", type=str, required=False, default="./logs/aptos/", help="Log directory path")
parser.add_argument('--dataset', type=str, default='aptos')
parser.add_argument('--split', type=str, default='split1')
parser.add_argument('--ema_consistency', type=int, default=0, help='whether train baseline model')
parser.add_argument('--n_distill', type=int, default=20, help='start to use the kld loss')
parser.add_argument('--mode', default='exact', type=str, choices=['exact', 'relax', 'multi_pos'])
parser.add_argument('--nce_p', default=1, type=int, help='number of positive samples for NCE')
parser.add_argument('--nce_k', default=4096, type=int, help='number of negative samples for NCE')
parser.add_argument('--nce_t', default=0.07, type=float, help='temperature parameter for softmax')
parser.add_argument('--nce_m', default=0.5, type=float, help='momentum for non-parametric updates')
parser.add_argument('--CCD_mode', type=str, default="sup", choices=['sup', 'unsup'])
parser.add_argument('--rel_weight', type=float, default=25, help='whether use the CCD loss')
parser.add_argument('--anchor_type', type=str, default="center", choices=['center', 'class'])
parser.add_argument('--class_anchor', default=30, type=int, help='number of anchors in each class')
parser.add_argument('--feat_dim', type=int, default=128, help='reduced feature dimension')
parser.add_argument('--s_dim', type=int, default=128, help='feature dim of the student model')
parser.add_argument('--t_dim', type=int, default=128, help='feature dim of the EMA teacher')
parser.add_argument('--n_data', type=int, default=6400, help='total number of training samples.')
parser.add_argument('--t_decay', type=float, default=0.99, help='ema_decay')
parser.add_argument('--epochs', type=int, default=80, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size per gpu')
parser.add_argument('--drop_rate', type=int, default=0, help='dropout rate')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--seed', type=int, default=2024, help='random seed')
parser.add_argument('--optimizer', type=str, default='adam', help='optim')
parser.add_argument('--scheduler', type=str, default='OneCycleLR', help='sch_str')
parser.add_argument('--device', type=str, default='cuda:0', help='device')
parser.add_argument('--consistency', type=float, default=1, help='consistency')
parser.add_argument('--consistency_rampup', type=float, default=30, help='consistency_rampup')
args = parser.parse_args()
return args
# Function to set the seed for all random number generators to ensure reproducibility
def set_seed(seed):
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
# Get arguments
args = get_args()
# Set seed
set_seed(args.seed)
# Set Logger
if not os.path.exists(args.logdir):
os.makedirs(args.logdir)
logger = set_logger(args)
logger.info(args)
# Loading Data
train_ds, test_ds = load_dataset(args, p=args.nce_p, mode=args.mode)
n_classes = test_ds.n_classes
class_index = train_ds.class_index
print(n_classes)
def worker_init_fn(worker_id):
random.seed(args.seed+worker_id)
train_dl = DataLoader(train_ds, batch_size=args.batch_size,
shuffle=True, num_workers=12, pin_memory=True,
worker_init_fn=worker_init_fn)
test_dl = DataLoader(test_ds, batch_size=args.batch_size,
shuffle=False, num_workers=12, pin_memory=True,
worker_init_fn=worker_init_fn)
freq = get_labels_frequency(args.csv_file_path + args.dataset + '/' + args.split + '_train.csv', 'diagnosis', 'id_code')
freq = freq.values
weights = freq.sum() / freq
print(weights)
# Loading Models
student = DenseNet121(hidden_units=args.feat_dim, out_size=n_classes, drop_rate=args.drop_rate)
teacher = DenseNet121(hidden_units=args.feat_dim, out_size=n_classes, drop_rate=args.drop_rate)
for param in teacher.parameters():
param.detach_()
# Fit the model
fit(student, teacher, train_dl, test_dl, weights, class_index, logger, args, device=args.device)