forked from MonoGame/MonoGame
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ray.cs
executable file
·272 lines (216 loc) · 8.21 KB
/
Ray.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// MIT License - Copyright (C) The Mono.Xna Team
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
using System;
using System.Diagnostics;
using System.Runtime.Serialization;
namespace Microsoft.Xna.Framework
{
[DataContract]
[DebuggerDisplay("{DebugDisplayString,nq}")]
public struct Ray : IEquatable<Ray>
{
#region Public Fields
[DataMember]
public Vector3 Direction;
[DataMember]
public Vector3 Position;
#endregion
#region Public Constructors
public Ray(Vector3 position, Vector3 direction)
{
this.Position = position;
this.Direction = direction;
}
#endregion
#region Public Methods
public override bool Equals(object obj)
{
return (obj is Ray) ? this.Equals((Ray)obj) : false;
}
public bool Equals(Ray other)
{
return this.Position.Equals(other.Position) && this.Direction.Equals(other.Direction);
}
public override int GetHashCode()
{
return Position.GetHashCode() ^ Direction.GetHashCode();
}
// adapted from http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-7-intersecting-simple-shapes/ray-box-intersection/
public float? Intersects(BoundingBox box)
{
const float Epsilon = 1e-6f;
float? tMin = null, tMax = null;
if (Math.Abs(Direction.X) < Epsilon)
{
if (Position.X < box.Min.X || Position.X > box.Max.X)
return null;
}
else
{
tMin = (box.Min.X - Position.X) / Direction.X;
tMax = (box.Max.X - Position.X) / Direction.X;
if (tMin > tMax)
{
var temp = tMin;
tMin = tMax;
tMax = temp;
}
}
if (Math.Abs(Direction.Y) < Epsilon)
{
if (Position.Y < box.Min.Y || Position.Y > box.Max.Y)
return null;
}
else
{
var tMinY = (box.Min.Y - Position.Y) / Direction.Y;
var tMaxY = (box.Max.Y - Position.Y) / Direction.Y;
if (tMinY > tMaxY)
{
var temp = tMinY;
tMinY = tMaxY;
tMaxY = temp;
}
if ((tMin.HasValue && tMin > tMaxY) || (tMax.HasValue && tMinY > tMax))
return null;
if (!tMin.HasValue || tMinY > tMin) tMin = tMinY;
if (!tMax.HasValue || tMaxY < tMax) tMax = tMaxY;
}
if (Math.Abs(Direction.Z) < Epsilon)
{
if (Position.Z < box.Min.Z || Position.Z > box.Max.Z)
return null;
}
else
{
var tMinZ = (box.Min.Z - Position.Z) / Direction.Z;
var tMaxZ = (box.Max.Z - Position.Z) / Direction.Z;
if (tMinZ > tMaxZ)
{
var temp = tMinZ;
tMinZ = tMaxZ;
tMaxZ = temp;
}
if ((tMin.HasValue && tMin > tMaxZ) || (tMax.HasValue && tMinZ > tMax))
return null;
if (!tMin.HasValue || tMinZ > tMin) tMin = tMinZ;
if (!tMax.HasValue || tMaxZ < tMax) tMax = tMaxZ;
}
// having a positive tMin and a negative tMax means the ray is inside the box
// we expect the intesection distance to be 0 in that case
if ((tMin.HasValue && tMin < 0) && tMax > 0) return 0;
// a negative tMin means that the intersection point is behind the ray's origin
// we discard these as not hitting the AABB
if (tMin < 0) return null;
return tMin;
}
public void Intersects(ref BoundingBox box, out float? result)
{
result = Intersects(box);
}
/*
public float? Intersects(BoundingFrustum frustum)
{
if (frustum == null)
{
throw new ArgumentNullException("frustum");
}
return frustum.Intersects(this);
}
*/
public float? Intersects(BoundingSphere sphere)
{
float? result;
Intersects(ref sphere, out result);
return result;
}
public float? Intersects(Plane plane)
{
float? result;
Intersects(ref plane, out result);
return result;
}
public void Intersects(ref Plane plane, out float? result)
{
var den = Vector3.Dot(Direction, plane.Normal);
if (Math.Abs(den) < 0.00001f)
{
result = null;
return;
}
result = (-plane.D - Vector3.Dot(plane.Normal, Position)) / den;
if (result < 0.0f)
{
if (result < -0.00001f)
{
result = null;
return;
}
result = 0.0f;
}
}
public void Intersects(ref BoundingSphere sphere, out float? result)
{
// Find the vector between where the ray starts the the sphere's centre
Vector3 difference = sphere.Center - this.Position;
float differenceLengthSquared = difference.LengthSquared();
float sphereRadiusSquared = sphere.Radius * sphere.Radius;
float distanceAlongRay;
// If the distance between the ray start and the sphere's centre is less than
// the radius of the sphere, it means we've intersected. N.B. checking the LengthSquared is faster.
if (differenceLengthSquared < sphereRadiusSquared)
{
result = 0.0f;
return;
}
Vector3.Dot(ref this.Direction, ref difference, out distanceAlongRay);
// If the ray is pointing away from the sphere then we don't ever intersect
if (distanceAlongRay < 0)
{
result = null;
return;
}
// Next we kinda use Pythagoras to check if we are within the bounds of the sphere
// if x = radius of sphere
// if y = distance between ray position and sphere centre
// if z = the distance we've travelled along the ray
// if x^2 + z^2 - y^2 < 0, we do not intersect
float dist = sphereRadiusSquared + distanceAlongRay * distanceAlongRay - differenceLengthSquared;
result = (dist < 0) ? null : distanceAlongRay - (float?)Math.Sqrt(dist);
}
public static bool operator !=(Ray a, Ray b)
{
return !a.Equals(b);
}
public static bool operator ==(Ray a, Ray b)
{
return a.Equals(b);
}
internal string DebugDisplayString
{
get
{
return string.Concat(
"Pos( ", this.Position.DebugDisplayString, " ) \r\n",
"Dir( ", this.Direction.DebugDisplayString, " )"
);
}
}
public override string ToString()
{
return "{{Position:" + Position.ToString() + " Direction:" + Direction.ToString() + "}}";
}
/// <summary>
/// Deconstruction method for <see cref="Ray"/>.
/// </summary>
/// <param name="position">Receives the start position of the ray.</param>
/// <param name="direction">Receives the direction of the ray.</param>
public void Deconstruct(out Vector3 position, out Vector3 direction)
{
position = Position;
direction = Direction;
}
#endregion
}
}