-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbreeder.c
508 lines (384 loc) · 14 KB
/
breeder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/*
* Copyright (C) 2014-2018 Philippe Aubertin.
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <quatre/macros.h>
#include <quatre/tree.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include "breeder.h"
#include "critter.h"
#include "genome.h"
#include "scene.h"
#include "util.h"
#define CRITTERS_PER_SCENE 5
#define MILLISECONDS_PER_SECOND 1000
#define FITNESS_FORMAT "%10.3f"
typedef struct {
scene_t *scene;
int status;
pthread_t thread;
critter_t *critters_in;
critter_t *critters_out;
} thread_state_t;
struct breeder_t {
int generation;
qrt_tree_t *population;
int thread_n;
thread_state_t *threads;
pthread_mutex_t mutex;
pthread_t loop_thread;
};
static void tree_finalizer(void *param, void *genome) {
genome_free(genome);
}
breeder_t *breeder_new(int thread_n) {
breeder_t *breeder;
genome_t *genome;
qrt_tree_t *population;
thread_state_t *threads;
int idx, idy;
breeder = qrt_new(breeder_t);
if(breeder != NULL) {
population = qrt_tree_new();
if(population == NULL) {
free(breeder);
return NULL;
}
if(thread_n < 1) {
thread_n = 1;
}
threads = qrt_new_array(thread_state_t, thread_n);
if(threads == NULL) {
qrt_tree_free(population, NULL, NULL);
free(breeder);
return NULL;
}
for(idx = 0; idx < thread_n; ++idx) {
threads[idx].scene = scene_new();
if(threads[idx].scene == NULL) {
for(idy = 0; idy < idx; ++idy) {
scene_free(threads[idy].scene);
}
qrt_tree_free(population, NULL, NULL);
free(threads);
free(breeder);
}
}
breeder->generation = 0;
breeder->thread_n = thread_n;
breeder->threads = threads;
breeder->population = population;
pthread_mutex_init(&breeder->mutex, NULL);
for(idx = 0; idx < BREEDER_POPULATION_SIZE; ++idx) {
genome = genome_new();
if(genome != NULL) {
genome_make_random(genome);
(void)qrt_tree_add_value_duplicate(population, 0.0, genome);
}
}
}
return breeder;
}
void breeder_free(breeder_t *breeder) {
int idx;
if(breeder != NULL) {
for(idx = 0; idx < breeder->thread_n; ++idx) {
scene_free(breeder->threads[idx].scene);
}
free(breeder->threads);
pthread_mutex_destroy(&breeder->mutex);
qrt_tree_free(breeder->population, tree_finalizer, NULL);
}
free(breeder);
}
static void simulate_work(thread_state_t *thread) {
critter_t *critter;
scene_t *scene;
float delta;
int step;
int idx;
scene = thread->scene;
delta = (float)(BREEDER_TIME_STEP) / (float)MILLISECONDS_PER_SECOND;
thread->critters_out = NULL;
while(thread->critters_in != NULL) {
/* add critters to scene */
for(idx = 0; idx < CRITTERS_PER_SCENE; ++idx) {
/* take a critter from input list */
critter = thread->critters_in;
thread->critters_in = critter->next;
scene_add_critter(scene, critter);
if(thread->critters_in == NULL) {
break;
}
}
/* simulate scene */
for(step = 0; step < BREEDER_SIM_STEPS; ++step) {
scene_update(scene, delta);
}
/* harvest time */
critter = scene_harvest_critter(scene);
while(critter != NULL) {
/* add critter to output list */
critter->next = thread->critters_out;
thread->critters_out = critter;
critter = scene_harvest_critter(scene);
}
}
}
static void *simulate_thread(void *param) {
thread_state_t *thread;
thread = (thread_state_t *)param;
simulate_work(thread);
return NULL;
}
static void simulate_in_thread(breeder_t *breeder, int thread_index) {
thread_state_t *thread;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
thread = &breeder->threads[thread_index];
thread->status = pthread_create(&thread->thread, &attr, simulate_thread, thread);
if(thread->status != 0) {
/* if thread creation failed, let's do the job in this thread instead */
simulate_work(thread);
}
}
int breeder_lock(breeder_t *breeder) {
return pthread_mutex_lock(&breeder->mutex);
}
int breeder_unlock(breeder_t *breeder) {
return pthread_mutex_unlock(&breeder->mutex);
}
bool breeder_next_generation(breeder_t *breeder) {
qrt_tree_t population;
genome_t *gene_pool[BREEDER_POOL_SIZE];
genome_t **gene_ptr;
genome_t *genome;
critter_t *critter;
thread_state_t *thread;
breeder_iterator_t *iter;
int idx, idy;
int thread_idx;
float fitness;
/* copy population so we don't modify the original */
(void)qrt_tree_init(&population);
breeder_lock(breeder);
iter = breeder_iterator_new(breeder);
if(iter == NULL) {
breeder_unlock(breeder);
return false;
}
genome = breeder_iterator_current(iter);
while(genome != NULL) {
fitness = breeder_iterator_fitness(iter);
qrt_tree_add_value_duplicate(&population, fitness, genome);
genome = breeder_iterator_next(iter);
}
breeder_iterator_free(iter);
breeder_unlock(breeder);
/* discard the worst */
for(idx = 0; idx < BREEDER_WORST_DISCARD; ++idx) {
qrt_tree_pop_min(&population);
}
/* build gene pool */
gene_ptr = &gene_pool[0];
for(idx = 0; idx < BREEDER_BEST_KEEP; ++idx) {
genome = qrt_tree_pop_max(&population);
for(idy = 0; idy < BREEDER_BEST_PRIORITY; ++idy) {
*(gene_ptr++) = genome;
}
}
for(idx = 0; idx < BREEDER_RAND_KEEP; ++idx) {
genome = qrt_tree_pop_random(&population);
*(gene_ptr++) = genome;
}
for(idx = 0; idx < BREEDER_RAND_NEW; ++idx) {
genome = genome_new();
if(genome == NULL) {
return false;
}
genome_make_random(genome);
*(gene_ptr++) = genome;
}
qrt_tree_finalize(&population, NULL, NULL);
/* simulate genomes */
for(thread_idx = 0; thread_idx < breeder->thread_n; ++thread_idx) {
thread = &breeder->threads[thread_idx];
/* This will prevent joining threads which we do not actually create. */
thread->status = EAGAIN;
thread->critters_in = NULL;
for(idx = 0; idx < BREEDER_POPULATION_SIZE / breeder->thread_n; ++idx) {
genome = genome_new();
if(genome != NULL) {
genome_make_baby(genome, gene_pool[rand() % BREEDER_POOL_SIZE], gene_pool[rand() % BREEDER_POOL_SIZE]);
critter = critter_new(genome);
genome_free(genome);
if(critter != NULL) {
/* add to list */
critter->next = thread->critters_in;
thread->critters_in = critter;
}
}
}
/* We simulate the first scene in this thread last, because we want
* to start the other threads first. */
if(thread_idx > 0) {
simulate_in_thread(breeder, thread_idx);
}
}
/* simulate first scene in this thread */
simulate_work(&breeder->threads[0]);
/* critter harvest */
breeder_lock(breeder);
qrt_tree_clear(breeder->population, tree_finalizer, NULL);
for(thread_idx = 0; thread_idx < breeder->thread_n; ++thread_idx) {
thread = &breeder->threads[thread_idx];
/* wait for work to complete */
if(thread->status == 0) {
(void)pthread_join(thread->thread, NULL);
}
while(thread->critters_out != NULL) {
critter = thread->critters_out;
thread->critters_out = critter->next;
genome = genome_clone(critter->genome);
fitness = BREEDER_FOOD_COST * critter->food_count + BREEDER_DANGER_COST * critter->danger_count;
critter_free(critter);
qrt_tree_add_value_duplicate(breeder->population, fitness, genome);
}
}
breeder_unlock(breeder);
return true;
}
float breeder_fitness_n(breeder_t *breeder, int n) {
breeder_iterator_t *iter;
int count;
float fitness;
genome_t *genome;
fitness = 0.0;
iter = breeder_iterator_new(breeder);
if(iter == NULL) {
return fitness;
}
genome = breeder_iterator_current(iter);
count = 0;
while(genome != NULL && count < n) {
fitness += breeder_iterator_fitness(iter);
genome = breeder_iterator_next(iter);
++count;
}
breeder_iterator_free(iter);
return fitness / (float)count;
}
float breeder_fitness(breeder_t *breeder) {
return breeder_fitness_n(breeder, BREEDER_BEST_KEEP);
}
static void *loop_thread(void *param) {
struct timeval generation_start;
struct timeval ticks;
breeder_t *breeder = param;
while(1) {
/* compute a new generation */
gettimeofday(&generation_start, NULL);
breeder_next_generation(breeder);
gettimeofday(&ticks, NULL);
if(breeder->generation % 50 == 0) {
breeder_lock(breeder);
printf(
"generation: %6u duration (ms): %4u fitness: " FITNESS_FORMAT "\n",
breeder->generation,
interval_milliseconds(&generation_start, &ticks),
breeder_fitness(breeder));
breeder_unlock(breeder);
}
++breeder->generation;
}
return NULL;
}
int breeder_start_loop(breeder_t *breeder) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
return pthread_create(&breeder->loop_thread, &attr, loop_thread, breeder);
}
void breeder_dump_population(breeder_t *breeder) {
breeder_iterator_t *iter;
int position;
genome_t *genome;
breeder_lock(breeder);
iter = breeder_iterator_new(breeder);
if(iter != NULL) {
printf("position fitness\n");
printf("-------- -------\n");
genome = breeder_iterator_current(iter);
position = 1;
while(genome != NULL) {
printf("%8d " FITNESS_FORMAT "\n", position, breeder_iterator_fitness(iter));
genome = breeder_iterator_next(iter);
++position;
}
}
breeder_iterator_free(iter);
breeder_unlock(breeder);
}
struct breeder_iterator_t {
qrt_tree_iterator_t *qrt_tree_iter;
};
breeder_iterator_t *breeder_iterator_new(breeder_t *breeder) {
breeder_iterator_t *iter;
iter = qrt_new(breeder_iterator_t);
if(iter != NULL) {
iter->qrt_tree_iter = qrt_tree_iterator_new_from_end(breeder->population);
if(iter->qrt_tree_iter == NULL) {
free(iter);
return NULL;
}
}
return iter;
}
void breeder_iterator_free(breeder_iterator_t *iter) {
if(iter != NULL) {
qrt_tree_iterator_free(iter->qrt_tree_iter);
}
free(iter);
}
genome_t *breeder_iterator_current(breeder_iterator_t *iter) {
return qrt_tree_iterator_value(iter->qrt_tree_iter);
}
genome_t *breeder_iterator_next(breeder_iterator_t *iter) {
qrt_tree_node_t *node;
node = qrt_tree_iterator_prev(iter->qrt_tree_iter);
if(node == NULL) {
return NULL;
}
else {
return qrt_tree_node_value(node);
}
}
float breeder_iterator_fitness(breeder_iterator_t *iter) {
return qrt_tree_iterator_key(iter->qrt_tree_iter);
}