-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtest.py
executable file
·101 lines (83 loc) · 4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import os
import pathlib
import numpy as np
import tensorflow as tf
from modules.models import RRDB_Model
from modules.utils import (load_yaml, set_memory_growth, imresize_np,
tensor2img, rgb2ycbcr, create_lr_hr_pair,
calculate_psnr, calculate_ssim)
flags.DEFINE_string('cfg_path', './configs/esrgan.yaml', 'config file path')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
flags.DEFINE_string('img_path', '', 'path to input image')
def main(_argv):
# init
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
set_memory_growth()
cfg = load_yaml(FLAGS.cfg_path)
# define network
model = RRDB_Model(None, cfg['ch_size'], cfg['network_G'])
# load checkpoint
checkpoint_dir = './checkpoints/' + cfg['sub_name']
checkpoint = tf.train.Checkpoint(model=model)
if tf.train.latest_checkpoint(checkpoint_dir):
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
print("[*] load ckpt from {}.".format(
tf.train.latest_checkpoint(checkpoint_dir)))
else:
print("[*] Cannot find ckpt from {}.".format(checkpoint_dir))
exit()
# evaluation
if FLAGS.img_path:
print("[*] Processing on single image {}".format(FLAGS.img_path))
raw_img = cv2.imread(FLAGS.img_path)
lr_img, hr_img = create_lr_hr_pair(raw_img, cfg['scale'])
sr_img = tensor2img(model(lr_img[np.newaxis, :] / 255))
bic_img = imresize_np(lr_img, cfg['scale']).astype(np.uint8)
str_format = "[{}] PSNR/SSIM: Bic={:.2f}db/{:.2f}, SR={:.2f}db/{:.2f}"
print(str_format.format(
os.path.basename(FLAGS.img_path),
calculate_psnr(rgb2ycbcr(bic_img), rgb2ycbcr(hr_img)),
calculate_ssim(rgb2ycbcr(bic_img), rgb2ycbcr(hr_img)),
calculate_psnr(rgb2ycbcr(sr_img), rgb2ycbcr(hr_img)),
calculate_ssim(rgb2ycbcr(sr_img), rgb2ycbcr(hr_img))))
result_img_path = './Bic_SR_HR_' + os.path.basename(FLAGS.img_path)
print("[*] write the result image {}".format(result_img_path))
results_img = np.concatenate((bic_img, sr_img, hr_img), 1)
cv2.imwrite(result_img_path, results_img)
else:
print("[*] Processing on Set5 and Set14, and write results")
results_path = './results/' + cfg['sub_name'] + '/'
for key, path in cfg['test_dataset'].items():
print("'{}' form {}\n PSNR/SSIM".format(key, path))
dataset_name = key.replace('_path', '')
pathlib.Path(results_path + dataset_name).mkdir(
parents=True, exist_ok=True)
for img_name in os.listdir(path):
raw_img = cv2.imread(os.path.join(path, img_name))
lr_img, hr_img = create_lr_hr_pair(raw_img, cfg['scale'])
sr_img = tensor2img(model(lr_img[np.newaxis, :] / 255))
bic_img = imresize_np(lr_img, cfg['scale']).astype(np.uint8)
str_format = " [{}] Bic={:.2f}db/{:.2f}, SR={:.2f}db/{:.2f}"
print(str_format.format(
img_name + ' ' * max(0, 20 - len(img_name)),
calculate_psnr(rgb2ycbcr(bic_img), rgb2ycbcr(hr_img)),
calculate_ssim(rgb2ycbcr(bic_img), rgb2ycbcr(hr_img)),
calculate_psnr(rgb2ycbcr(sr_img), rgb2ycbcr(hr_img)),
calculate_ssim(rgb2ycbcr(sr_img), rgb2ycbcr(hr_img))))
result_img_path = os.path.join(
results_path + dataset_name, 'Bic_SR_HR_' + img_name)
results_img = np.concatenate((bic_img, sr_img, hr_img), 1)
cv2.imwrite(result_img_path, results_img)
print("[*] write the visual results in {}".format(results_path))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass