-
-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathspacing.py
114 lines (84 loc) · 3.62 KB
/
spacing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as _onp
import casadi as _cas
from aerosandbox.numpy.determine_type import is_casadi_type
def linspace(start: float = 0.0, stop: float = 1.0, num: int = 50):
"""
Returns evenly spaced numbers over a specified interval.
See syntax here: https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
"""
if not is_casadi_type([start, stop, num], recursive=True):
return _onp.linspace(start, stop, num)
else:
return _cas.linspace(start, stop, num)
def cosspace(start: float = 0.0, stop: float = 1.0, num: int = 50):
"""
Makes a cosine-spaced vector.
Cosine spacing is useful because these correspond to Chebyshev nodes: https://en.wikipedia.org/wiki/Chebyshev_nodes
To learn more about cosine spacing, see this: https://youtu.be/VSvsVgGbN7I
Args:
start: Value to start at.
end: Value to end at.
num: Number of points in the vector.
"""
mean = (stop + start) / 2
amp = (stop - start) / 2
ones = 0 * start + 1
spaced_array = mean + amp * _onp.cos(linspace(_onp.pi * ones, 0 * ones, num))
# Fix the endpoints, which might not be exactly right due to floating-point error.
spaced_array[0] = start
spaced_array[-1] = stop
return spaced_array
def sinspace(
start: float = 0.0,
stop: float = 1.0,
num: int = 50,
reverse_spacing: bool = False,
):
"""
Makes a sine-spaced vector. By default, bunches points near the start.
Sine spacing is exactly identical to half of a cosine-spaced distrubution, in terms of relative separations.
To learn more about sine spacing and cosine spacing, see this: https://youtu.be/VSvsVgGbN7I
Args:
start: Value to start at.
end: Value to end at.
num: Number of points in the vector.
reverse_spacing: Does negative-sine spacing. In other words, if this is True, the points will be bunched near
the `stop` rather than at the `start`.
Points are bunched up near the `start` of the interval by default. To reverse this, use the `reverse_spacing`
parameter.
"""
if reverse_spacing:
return sinspace(stop, start, num)[::-1]
ones = 0 * start + 1
spaced_array = start + (stop - start) * (
1 - _onp.cos(linspace(0 * ones, _onp.pi / 2 * ones, num))
)
# Fix the endpoints, which might not be exactly right due to floating-point error.
spaced_array[0] = start
spaced_array[-1] = stop
return spaced_array
def logspace(start: float = 0.0, stop: float = 1.0, num: int = 50):
"""
Return numbers spaced evenly on a log scale.
See syntax here: https://numpy.org/doc/stable/reference/generated/numpy.logspace.html
"""
if not is_casadi_type([start, stop, num], recursive=True):
return _onp.logspace(start, stop, num)
else:
return 10 ** linspace(start, stop, num)
def geomspace(start: float = 1.0, stop: float = 10.0, num: int = 50):
"""
Return numbers spaced evenly on a log scale (a geometric progression).
This is similar to logspace, but with endpoints specified directly.
See syntax here: https://numpy.org/doc/stable/reference/generated/numpy.geomspace.html
"""
if not is_casadi_type([start, stop, num], recursive=True):
return _onp.geomspace(start, stop, num)
else:
if start <= 0 or stop <= 0:
raise ValueError("Both start and stop must be positive!")
spaced_array = _onp.log10(10 ** linspace(start, stop, num))
# Fix the endpoints, which might not be exactly right due to floating-point error.
spaced_array[0] = start
spaced_array[-1] = stop
return spaced_array