-
-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathintegrate_discrete.py
814 lines (689 loc) · 25.7 KB
/
integrate_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
from typing import Union
import casadi as _cas
import numpy as _onp
from aerosandbox.numpy.array import length, concatenate
def integrate_discrete_intervals(
f: Union[_onp.ndarray, _cas.MX],
x: Union[_onp.ndarray, _cas.MX] = None,
multiply_by_dx: bool = True,
method: str = "trapezoidal",
method_endpoints: str = "lower_order",
):
"""
Given a set of sampled points (x_i, f_i) from a function, computes the integral of that function over each set of
adjacent points ("intervals"). Does this via a reconstruction approach, with several methods available.
In general, N points will yield N-1 integrals (one for each "interval" between points).
Args:
f: A 1D array of function values.
x: A 1D array of x-values where the function was evaluated. If not specified, defaults to the indices of f.
Should be the same length as f and should be monotonically increasing (i.e. x[i] < x[i+1], with no duplicated points).
multiply_by_dx: Whether to multiply the integral by the width of the segment. Defaults to True.
- If True, summing the integrals will yield the integral of the function over the entire domain (x[0] to x[-1])
- If False, you can think of the output as the "average function value" over each interval.
method: The integration method to use. Options are:
- "forward_euler"
- "backward_euler"
- "trapezoidal" (default)
- "forward_simpson"
- "backward_simpson"
- "cubic"
Note that some methods, like "cubic", approximate each segment interval by looking beyond just the integral itself (i.e., f(a) and f(b)),
and so are not possible near the endpoints of the array.
method_endpoints: The integration method to use at the endpoints, for those higher-order methods that require handling. Options are:
- "lower_order" (default)
- "ignore" (i.e. return the integral of the interior points only - note that this may result in a different number of integrals than segments!)
- "periodic"
"""
# Determine if an x-array was specified, and calculate dx.
x_is_specified = x is not None
if not x_is_specified:
x = _onp.arange(length(f))
dx = x[1:] - x[:-1]
method = str(method).lower().replace(" ", "_")
# Implement integration methods
if method in ["forward_euler", "forward", "euler_forward", "left", "left_riemann"]:
avg_f = f[:-1]
degree = 0 # Refers to the highest degree of the polynomial that the method is exact for.
remaining_endpoint_intervals = (0, 0)
elif method in [
"backward_euler",
"backward",
"euler_backward",
"right",
"right_riemann",
]:
avg_f = f[1:]
degree = 0
remaining_endpoint_intervals = (0, 0)
elif method in ["trapezoidal", "trapezoid", "trapz", "midpoint"]:
if method == "midpoint":
raise PendingDeprecationWarning(
"The 'midpoint' method will be deprecated at a future point, since 'trapezoidal' is the more accurate term here."
)
avg_f = (f[1:] + f[:-1]) / 2
degree = 1
remaining_endpoint_intervals = (0, 0)
elif method in ["forward_simpson", "simpson_forward", "simpson"]:
x1 = x[:-2]
x2 = x[1:-1]
x3 = x[2:]
f1 = f[:-2]
f2 = f[1:-1]
f3 = f[2:]
h = x2 - x1
hp = x3 - x2
# q1 = 0 # Integration lower bound
# q2 = 1 # Integration upper bound
q3 = 1 + hp / h
avg_f = (f1 - f3 + 3 * q3**2 * (f1 + f2) - 2 * q3 * (2 * f1 + f2)) / (
6 * q3 * (q3 - 1)
)
degree = 2
remaining_endpoint_intervals = (0, 1)
elif method in ["backward_simpson", "simpson_backward"]:
x1 = x[:-2]
x2 = x[1:-1]
x3 = x[2:]
f1 = f[:-2]
f2 = f[1:-1]
f3 = f[2:]
h = x3 - x2
hm = x2 - x1
q1 = -hm / h
# q2 = 0 # Integration lower bound
# q3 = 1 # Integration upper bound
avg_f = (f2 - f1 + 3 * q1**2 * (f2 + f3) - 2 * q1 * (2 * f2 + f3)) / (
6 * q1 * (q1 - 1)
)
degree = 2
remaining_endpoint_intervals = (1, 0)
elif method in ["cubic", "cubic_spline"]:
x1 = x[:-3]
x2 = x[1:-2]
x3 = x[2:-1]
x4 = x[3:]
f1 = f[:-3]
f2 = f[1:-2]
f3 = f[2:-1]
f4 = f[3:]
h = x3 - x2
hm = x2 - x1
hp = x4 - x3
q1 = -hm / h
# q2 = 0 # Integration lower bound
# q3 = 1 # Integration upper bound
q4 = 1 + hp / h
avg_f = (
6 * q1**3 * q4**2 * (f2 + f3)
- 4 * q1**3 * q4 * (2 * f2 + f3)
+ 2 * q1**3 * (f2 - f4)
- 6 * q1**2 * q4**3 * (f2 + f3)
+ 3 * q1**2 * q4 * (3 * f2 + f3)
+ 3 * q1**2 * (f4 - f2)
+ 4 * q1 * q4**3 * (2 * f2 + f3)
- 3 * q1 * q4**2 * (3 * f2 + f3)
+ q1 * (f2 - f4)
+ 2 * q4**3 * (f1 - f2)
+ 3 * q4**2 * (f2 - f1)
+ q4 * (f1 - f2)
) / (12 * q1 * q4 * (q1 - 1) * (q1 - q4) * (q4 - 1))
degree = 3
remaining_endpoint_intervals = (1, 1)
else:
raise ValueError(f"Invalid method '{method}'.")
if method_endpoints == "lower_order":
if degree >= 3:
method_endpoints = "simpson"
else:
method_endpoints = "trapezoidal"
if method_endpoints == "simpson":
if remaining_endpoint_intervals[0] != 0:
avg_f_left_intervals = integrate_discrete_intervals(
f=f[: 2 + remaining_endpoint_intervals[0]],
x=x[: 2 + remaining_endpoint_intervals[0]],
multiply_by_dx=False,
method="forward_simpson",
method_endpoints="ignore",
)
avg_f = concatenate((avg_f_left_intervals, avg_f))
if remaining_endpoint_intervals[1] != 0:
avg_f_right_intervals = integrate_discrete_intervals(
f=f[-(2 + remaining_endpoint_intervals[1]) :],
x=x[-(2 + remaining_endpoint_intervals[1]) :],
multiply_by_dx=False,
method="backward_simpson",
method_endpoints="ignore",
)
avg_f = concatenate(
(
avg_f,
avg_f_right_intervals,
)
)
elif method_endpoints == "trapezoidal":
if remaining_endpoint_intervals[0] != 0:
avg_f_left_intervals = integrate_discrete_intervals(
f=f[: 1 + remaining_endpoint_intervals[0]],
x=x[: 1 + remaining_endpoint_intervals[0]],
multiply_by_dx=False,
method="trapezoidal",
method_endpoints="ignore",
)
avg_f = concatenate((avg_f_left_intervals, avg_f))
if remaining_endpoint_intervals[1] != 0:
avg_f_right_intervals = integrate_discrete_intervals(
f=f[-(1 + remaining_endpoint_intervals[1]) :],
x=x[-(1 + remaining_endpoint_intervals[1]) :],
multiply_by_dx=False,
method="trapezoidal",
method_endpoints="ignore",
)
avg_f = concatenate(
(
avg_f,
avg_f_right_intervals,
)
)
else:
raise ValueError(f"Invalid method_endpoints '{method_endpoints}'.")
elif method_endpoints == "ignore":
pass
elif method_endpoints == "periodic":
raise NotImplementedError("Periodic integration is not yet implemented.")
else:
raise ValueError(f"Invalid method_endpoints '{method_endpoints}'.")
if multiply_by_dx:
if x_is_specified:
return avg_f * dx
else:
return avg_f
else:
return avg_f
def integrate_discrete_squared_curvature(
f: Union[_onp.ndarray, _cas.MX],
x: Union[_onp.ndarray, _cas.MX] = None,
method: str = "hybrid_simpson_cubic",
):
"""
Given a set of sampled points (x_i, f_i) from a function f(x), computes the following quantity:
int_{x[0]}^{x[-1]} (f''(x))^2 dx
This is useful for regularization of smooth curves (i.e., encouraging smooth functions as optimization results).
Performs this through one of several reconstruction-based methods, specified by `method`:
* "cubic": On each interval, reconstructs a piecewise cubic polynomial. This cubic is the unique polynomial
that passes through the two points at the endpoints of the interval, plus the next point beyond each endpoint
of the interval (i.e., 4 points in total). Numerically, this cubic is obtained using Bernstein polynomial
reconstruction, so it is numerically stable. This cubic is then analytically differentiated twice, squared,
and integrated over the interval. At the ends of the overall array, where this "look beyond" strategy is not
possible, a one-sided cubic is used instead (i.e., looks beyond the interval at one end only and uses two
extra points from this side).
* "simpson": On each interval, makes two unique quadratic reconstructions:
* One reconstruction that uses the two points at the endpoints of the interval, plus the next point beyond
the right endpoint of the interval (i.e., 3 points in total).
* One reconstruction that uses the two points at the endpoints of the interval, plus the next point beyond
the left endpoint of the interval (i.e., 3 points in total).
These two quadratics are then analytically differentiated twice, squared, and integrated over the
interval. This requires much less calculation, since the quadratics have uniform curvature over the
interval, causing a lot of things to simplify. The result is then computed by combining the results of this
process for the two quadratic reconstructions.
This is similar to a Simpson's rule integration, balanced between the two sides of the interval. In
frequency-domain testing, this method appears to be more accurate than the "cubic" strategy at every
frequency, with less computational effort. Thus, it should be preferred to the "cubic" strategy.
* "hybrid_simpson_cubic": First, starts out by estimating the first derivative of the function at each point
in the array (including endpoints) using a quadratic reconstruction. (See `numpy.gradient()` for more
information or source code on this; this code uses `numpy.gradient()` directly for this step.) Then,
reconstructs a cubic polynomial on each interval, with the following boundary conditions:
* The cubic passes through the two points at the endpoints of the interval.
* The cubic has the same first derivative as the precomputed derivatives at the endpoints of the interval.
This cubic is then analytically differentiated twice, squared, and integrated over the interval.
In frequency-domain testing, this method is also more accurate than the "cubic" strategy at every
frequency. Compared to the "simpson" strategy, it is more accurate at high frequencies and less accurate
at low frequencies. Because the goal of this function is to be used as a regularization term,
which should be more sensitive to high-frequency oscillations, this method is preferred to the "simpson"
strategy. This method is also preferred as its estimate tends to err high rather than low, which serves
well as a regularization strategy. (It is still convergent to the true value in the high-sample-rate limit.)
"""
# Determine if an x-array was specified, and calculate dx.
x_is_specified = x is not None
if not x_is_specified:
x = _onp.arange(length(f))
if method in ["cubic", "cubic_spline"]:
x1 = x[:-3]
x2 = x[1:-2]
x3 = x[2:-1]
x4 = x[3:]
f1 = f[:-3]
f2 = f[1:-2]
f3 = f[2:-1]
f4 = f[3:]
h = x3 - x2
hm = x2 - x1
hp = x4 - x3
dfm = f2 - f1
df = f3 - f2
dfp = f4 - f3
### The following section computes the integral of the squared second derivative of the cubic spline interpolant
### for the "middle" intervals (i.e. not the first or last intervals).
### Code is generated by sympy; here s_i variables represent common subexpressions.
s0 = hm**2
s1 = hp**2
s2 = h + hm
s3 = h**2
s4 = hp**6
s5 = h**6
s6 = hp**5
s7 = h**3
s8 = 3 * s7
s9 = hp**4
s10 = h**4
s11 = 4 * s10
s12 = hp**3
s13 = 3 * h**5
s14 = hm**6
s15 = hm**5
s16 = hm**4
s17 = hm**3
s18 = hm * s10 * s12
s19 = hp * s10 * s17
s20 = s12 * s17
s21 = s0 * s12 * s8
s22 = s1 * s17 * s8
s23 = 3 * s0 * s1 * s10 + s21 + s22
s24 = 2 * h
s25 = 6 * s3
s26 = 7 * s7
s27 = 3 * s3
s28 = -s20 * s27
s29 = 3 * h
middle_intervals = (
4
* (
df**2
* (
s0 * s27 * s9
+ s0 * s29 * s6
+ s0 * s4
+ s1 * s14
+ s1 * s15 * s29
+ s1 * s16 * s27
- s12 * s16 * s29
- 2 * s16 * s9
- s17 * s29 * s9
+ s23
+ s28
)
+ df
* dfm
* (
2 * h * s17 * s9
- hm * s1 * s13
- hm * s24 * s4
- hm * s25 * s6
- hm * s26 * s9
+ 3 * s0 * s3 * s9
+ s1 * s17 * s7
- 6 * s18
+ s21
- s28
)
+ df
* dfp
* (
2 * h * s12 * s16
- hp * s0 * s13
- hp * s14 * s24
- hp * s15 * s25
- hp * s16 * s26
+ s0 * s12 * s7
+ 3 * s1 * s16 * s3
- 6 * s19
+ s22
- s28
)
+ dfm**2 * (s1 * s5 + s11 * s9 + s12 * s13 + s3 * s4 + s6 * s8)
+ dfm * dfp * (hm * hp * s5 - s18 - s19 - 2 * s20 * s3 - s23)
+ dfp**2 * (s0 * s5 + s11 * s16 + s13 * s17 + s14 * s3 + s15 * s8)
)
/ (h * s0 * s1 * s2**2 * (h + hp) ** 2 * (hp + s2) ** 2)
)
### Now we compute the integral for the first interval.
h_f = h[slice(0, 1)]
hm_f = hm[slice(0, 1)]
hp_f = hp[slice(0, 1)]
df_f = df[slice(0, 1)]
dfm_f = dfm[slice(0, 1)]
dfp_f = dfp[slice(0, 1)]
s0 = h_f**2
s1 = hp_f**2
s2 = h_f + hm_f
s3 = hp_f**6
s4 = df_f * dfm_f
s5 = hm_f**6
s6 = 2 * dfp_f
s7 = df_f * s6
s8 = h_f**6
s9 = dfm_f * dfp_f
s10 = 4 * s9
s11 = df_f**2
s12 = hm_f**2
s13 = dfm_f**2
s14 = dfp_f**2
s15 = hm_f**3
s16 = hp_f**5
s17 = 3 * s11
s18 = hp_f**4
s19 = hm_f**4
s20 = 4 * s19
s21 = hm_f**5
s22 = hp_f**3
s23 = h_f**3
s24 = 6 * s13
s25 = h_f**4
s26 = h_f**5
s27 = 3 * s14
s28 = df_f * dfp_f
s29 = -dfm_f
s30 = df_f * h_f
s31 = 15 * df_f
s32 = 2 * df_f
s33 = dfm_f * hm_f
s34 = 3 * dfm_f
s35 = -s34
s36 = dfp_f * hp_f
s37 = 3 * s12
s38 = 5 * s11
s39 = 3 * s0
s40 = -3 * s28 + s9
s41 = 18 * s11
s42 = -s7
first_interval = (
4
* (
-2 * h_f * hm_f * s3 * s4
- h_f * hp_f * s5 * s7
+ hm_f * hp_f * s10 * s8
- hm_f * s0 * s16 * s34 * (4 * df_f + s29)
- 9 * hp_f * s0 * s21 * s28
+ s0 * s13 * s3
+ s0 * s14 * s5
+ s0 * s15 * s22 * (27 * s11 - 21 * s4 + s40)
+ s1 * s11 * s5
+ 4 * s1 * s13 * s8
+ s1 * s15 * s23 * (-12 * s28 - 14 * s4 + s41 + 9 * s9)
+ s1 * s19 * s39 * (s38 - s4 + s40)
+ 3 * s1 * s21 * s30 * (-dfp_f + s32)
+ s1 * s25 * s37 * (s10 + s13 + s17 - 7 * s4 + s42)
+ 6 * s1 * s26 * s33 * (dfm_f + dfp_f - s32)
+ s11 * s12 * s3
+ s11 * s18 * s20
+ s12 * s14 * s8
+ 6 * s12 * s16 * s30 * (df_f + s29)
+ s12 * s18 * s39 * (s13 + s38 - 9 * s4)
+ s12 * s22 * s23 * (s24 - 42 * s4 + s41 + s42 + 3 * s9)
+ 13 * s13 * s18 * s25
+ 12 * s13 * s22 * s26
+ s14 * s20 * s25
+ s15 * s16 * s17
+ s15 * s18 * s30 * (-7 * dfm_f + s31)
- s15 * s25 * s36 * (-8 * dfm_f + s31)
+ s15 * s26 * s27
+ s16 * s23 * s24
+ s17 * s21 * s22
- 4 * s18 * s23 * s33 * (7 * df_f + s35)
- s19 * s22 * s30 * (dfp_f - s31 + s34)
- s19 * s23 * s36 * (16 * df_f + s35)
+ s21 * s23 * s27
+ s22 * s25 * s33 * (-30 * df_f + 15 * dfm_f + s6)
- s26 * s36 * s37 * (s32 + s35)
)
/ (hm_f * s0 * s1 * s2**2 * (h_f + hp_f) ** 2 * (hp_f + s2) ** 2)
)
### Now we compute the integral for the last interval.
h_l = h[slice(-1, None)]
hm_l = hm[slice(-1, None)]
hp_l = hp[slice(-1, None)]
df_l = df[slice(-1, None)]
dfm_l = dfm[slice(-1, None)]
dfp_l = dfp[slice(-1, None)]
s0 = h_l**2
s1 = hm_l**2
s2 = h_l + hm_l
s3 = hp_l**6
s4 = 2 * dfm_l
s5 = df_l * s4
s6 = hm_l**6
s7 = df_l * dfp_l
s8 = h_l**6
s9 = dfm_l * dfp_l
s10 = 4 * s9
s11 = df_l**2
s12 = hp_l**2
s13 = dfm_l**2
s14 = dfp_l**2
s15 = hm_l**3
s16 = hp_l**5
s17 = 3 * s11
s18 = hm_l**4
s19 = hp_l**4
s20 = 4 * s19
s21 = hm_l**5
s22 = hp_l**3
s23 = h_l**3
s24 = 3 * s13
s25 = h_l**4
s26 = h_l**5
s27 = 6 * s14
s28 = df_l * dfm_l
s29 = -dfp_l
s30 = df_l * h_l
s31 = 15 * df_l
s32 = 2 * df_l
s33 = dfp_l * hp_l
s34 = 3 * dfp_l
s35 = -s34
s36 = dfm_l * hm_l
s37 = 3 * s12
s38 = 5 * s11
s39 = 3 * s0
s40 = -3 * s28 + s9
s41 = 18 * s11
s42 = -s5
last_interval = (
4
* (
-h_l * hm_l * s3 * s5
- 2 * h_l * hp_l * s6 * s7
+ hm_l * hp_l * s10 * s8
- 9 * hm_l * s0 * s16 * s28
- hp_l * s0 * s21 * s34 * (4 * df_l + s29)
+ s0 * s13 * s3
+ s0 * s14 * s6
+ s0 * s15 * s22 * (27 * s11 + s40 - 21 * s7)
+ s1 * s11 * s3
+ 4 * s1 * s14 * s8
+ 3 * s1 * s16 * s30 * (-dfm_l + s32)
+ s1 * s19 * s39 * (s38 + s40 - s7)
+ s1 * s22 * s23 * (-12 * s28 + s41 - 14 * s7 + 9 * s9)
+ s1 * s25 * s37 * (s10 + s14 + s17 + s42 - 7 * s7)
+ 6 * s1 * s26 * s33 * (dfm_l + dfp_l - s32)
+ s11 * s12 * s6
+ s11 * s18 * s20
+ s12 * s13 * s8
+ s12 * s15 * s23 * (s27 + s41 + s42 - 42 * s7 + 3 * s9)
+ s12 * s18 * s39 * (s14 + s38 - 9 * s7)
+ 6 * s12 * s21 * s30 * (df_l + s29)
+ s13 * s20 * s25
+ 12 * s14 * s15 * s26
+ 13 * s14 * s18 * s25
+ s15 * s16 * s17
- s15 * s19 * s30 * (dfm_l - s31 + s34)
+ s15 * s25 * s33 * (-30 * df_l + 15 * dfp_l + s4)
+ s16 * s23 * s24
+ s17 * s21 * s22
+ s18 * s22 * s30 * (-7 * dfp_l + s31)
- 4 * s18 * s23 * s33 * (7 * df_l + s35)
- s19 * s23 * s36 * (16 * df_l + s35)
+ s21 * s23 * s27
+ s22 * s24 * s26
- s22 * s25 * s36 * (-8 * dfp_l + s31)
- s26 * s36 * s37 * (s32 + s35)
)
/ (hp_l * s0 * s1 * s2**2 * (h_l + hp_l) ** 2 * (hp_l + s2) ** 2)
)
### Now, we stitch together the intervals.
res = concatenate(
(
first_interval,
middle_intervals,
last_interval,
)
)
return res
elif method in ["simpson"]:
### Forward Simpson for intervals 0 to N-2
x2 = x[:-2]
x3 = x[1:-1]
x4 = x[2:]
f2 = f[:-2]
f3 = f[1:-1]
f4 = f[2:]
h = x3 - x2
hp = x4 - x3
df = f3 - f2
dfp = f4 - f3
res_forward_simpson = 4 * (df * hp - dfp * h) ** 2 / (h * hp**2 * (h + hp) ** 2)
### Backward Simpson for intervals 1 to N-1
x1 = x[:-2]
x2 = x[1:-1]
x3 = x[2:]
f1 = f[:-2]
f2 = f[1:-1]
f3 = f[2:]
h = x3 - x2
hm = x2 - x1
dfm = f2 - f1
df = f3 - f2
res_backward_simpson = (
4 * (df * hm - dfm * h) ** 2 / (h * hm**2 * (h + hm) ** 2)
)
### Fuse them together
first_interval = res_forward_simpson[slice(0, 1)]
a = res_backward_simpson[slice(None, -1)]
b = res_forward_simpson[slice(1, None)]
# middle_intervals = (a + b) / 2
middle_intervals = (
(a**2 + b**2) / 2 + 1e-100
) ** 0.5 # This is more accurate across all frequencies
last_interval = res_backward_simpson[slice(-1, None)]
res = concatenate(
(
first_interval,
middle_intervals,
last_interval,
)
)
return res
elif method in ["hybrid_simpson_cubic"]:
from aerosandbox.numpy.calculus import gradient
dfdx = gradient(f, x, edge_order=2)
h = x[1:] - x[:-1]
df = f[1:] - f[:-1]
dfdx1 = dfdx[:-1]
dfdx2 = dfdx[1:]
res = 4 * (dfdx1**2 + dfdx1 * dfdx2 + dfdx2**2) / h + 12 * df / h**2 * (
df / h - dfdx1 - dfdx2
)
return res
else:
raise ValueError(f"Invalid method '{method}'.")
if __name__ == "__main__":
import aerosandbox.numpy as np
from scipy import integrate, interpolate
import sympy as s
np.random.seed(0)
# degree = 4
# coeffs = np.random.randn(degree + 1)
# a = 1
# b = 3
#
#
# def f(x):
# out = 0
# for i in range(degree + 1):
# out += coeffs[i] * x ** i
#
# return out
a = 0
b = 2
def f(x):
sin = np.sin if isinstance(x, np.ndarray) else s.sin
return sin(2 * np.pi * x * 1) + 1
print("\n\nTest 1: Integration")
exact = integrate.quad(
f,
a,
b,
epsrel=1e-15,
)[0]
x_vals = np.cosspace(a, b, 100)
f_vals = f(x_vals)
approx_intervals = integrate_discrete_intervals(
f=f_vals,
x=x_vals,
multiply_by_dx=True,
# method="trapz",
method="cubic",
# method_endpoints="ignore",
)
integral = np.sum(approx_intervals)
print(f"exact: {exact}")
print(f"approx: {integral}")
print(f"error: {integral - exact}")
print("\n\nTest 2: Squared curvature")
x_sym = s.symbols("x")
f_sym = f(x_sym)
df2dx_func = s.lambdify(x_sym, s.diff(f_sym, x_sym, 2))
exact = integrate.quad(
lambda x: df2dx_func(x) ** 2,
a,
b,
epsrel=1e-15,
)[0]
print(f"exact: {exact}")
approx = integrate_discrete_squared_curvature(
f=f_vals,
x=x_vals,
# method="simpson"
method="hybrid_simpson_cubic",
)
integral = np.sum(approx)
print(f"\nintegrate_discrete_squared_curvature: {integral}")
print(f"error: {integral - exact}")
approx = integrate_discrete_intervals(
f=np.gradient(f_vals, x_vals, n=2) ** 2,
x=x_vals,
)
integral = np.sum(approx)
print(f"\nintegrate_discrete_intervals + np.gradient: {integral}")
print(f"error: {integral - exact}")
print("\n\nTest 3: Squared curvature with global-spline reconstruction")
x = np.arange(0, 100 + 1)
f = np.cos(np.pi * x / 2)
f_interp = interpolate.InterpolatedUnivariateSpline(x=x, y=f, k=3)
exact = integrate.quad(
lambda x: f_interp.derivative(2)(x) ** 2,
x[0],
x[-1],
epsrel=1e-8,
)[0]
approx = integrate_discrete_squared_curvature(
f=f,
x=x,
method="hybrid_simpson_cubic",
# method="simpson"
)
integral = np.sum(approx)
print(f"exact: {exact}")
print(f"\nintegrate_discrete_squared_curvature: {integral}")
print(f"error: {integral - exact}")
x_plot = np.linspace(x[0], x[-1], 10000)
# p.qp(x_plot, f_interp.derivative(2)(x_plot) ** 2)