forked from arjunvekariyagithub/camelyon16-grand-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_tf_records_heatmap.py
308 lines (230 loc) · 10.3 KB
/
build_tf_records_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts image data to TFRecords file format with Example protos.
The image data set is expected to reside in JPEG files located in the
following directory structure.
data_dir/label_0/image0.jpeg
data_dir/label_0/image1.jpg
...
data_dir/label_1/weird-image.jpeg
data_dir/label_1/my-image.jpeg
...
where the sub-directory is the unique label associated with these images.
This tf script converts the training and evaluation data into
a sharded data set consisting of TFRecord files
train_directory/train-00000-of-01024
train_directory/train-00001-of-01024
...
train_directory/train-00127-of-01024
and
validation_directory/validation-00000-of-00128
validation_directory/validation-00001-of-00128
...
validation_directory/validation-00127-of-00128
where we have selected 1024 and 128 shards for each data set. Each record
within the TFRecord file is a serialized Example proto. The Example proto
contains the following fields:
image/encoded: string containing JPEG encoded image in RGB colorspace
image/height: integer, image height in pixels
image/width: integer, image width in pixels
image/colorspace: string, specifying the colorspace, always 'RGB'
image/channels: integer, specifying the number of channels, always 3
image/format: string, specifying the format, always'JPEG'
image/filename: string containing the basename of the image file
e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG'
image/class/label: integer specifying the index in a classification layer.
The label ranges from [0, num_labels] where 0 is unused and left as
the background class.
image/class/text: string specifying the human-readable version of the label
e.g. 'dog'
If you data set involves bounding boxes, please look at build_imagenet_data.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.path.insert(0, '/home/arjun/MS/Thesis/CAMELYON-16/source')
import os
import time
from datetime import datetime
import math
import tensorflow as tf
from camelyon16 import utils as utils
N_TRAIN_SAMPLES = 250000
N_VALIDATION_SAMPLES = 10000
N_SAMPLES_PER_TRAIN_SHARD = 1000
N_SAMPLES_PER_VALIDATION_SHARD = 250
tf.app.flags.DEFINE_string('output_directory', utils.HEAT_MAP_TF_RECORDS_DIR,
'Output data directory')
tf.app.flags.DEFINE_integer('num_shards', 1,
'Number of shards in training TFRecord files.')
tf.app.flags.DEFINE_integer('num_threads', 5,
'Number of threads to preprocess the images.')
FLAGS = tf.app.flags.FLAGS
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(image_buffer, patch_name):
"""
Build an Example proto for an example.
"""
example = tf.train.Example(features=tf.train.Features(feature={
'image/patch_name': _bytes_feature(tf.compat.as_bytes(patch_name)),
'image/encoded': _bytes_feature(tf.compat.as_bytes(image_buffer))}))
return example
class ImageCoder(object):
"""Helper class that provides tf image coding utilities."""
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
self._decode_png_data = tf.placeholder(dtype=tf.string)
self._decode_png = tf.image.decode_png(self._decode_png_data, channels=3)
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def decode_png(self, image_data):
image = self._sess.run(self._decode_png,
feed_dict={self._decode_png_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def _process_image(patch_path, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide tf image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
with tf.gfile.FastGFile(patch_path, 'r') as f:
image_data = f.read()
# Decode the RGB PNG.
image = coder.decode_png(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3
return image_data, height, width
def _process_patches(name, patch_paths, patch_names, wsi_filename):
"""Process and save list of images as TFRecord of Example protos.
Args:
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
texts: list of strings; each string is human readable, e.g. 'dog'
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set.
"""
assert len(patch_paths) == len(patch_names)
output_dir = os.path.join(FLAGS.output_directory, wsi_filename)
sys.stdout.flush()
# Create a generic tf-based utility for converting all image codings.
coder = ImageCoder()
output_filename = '%s-patches-%s' % (name, wsi_filename)
output_file = os.path.join(output_dir, output_filename)
writer = tf.python_io.TFRecordWriter(output_file)
counter = 0
start_time = time.time()
for patch_path, patch_name in zip(patch_paths, patch_names):
image_buffer, height, width = _process_image(patch_path, coder)
example = _convert_to_example(image_buffer, patch_name)
writer.write(example.SerializeToString())
counter += 1
if not counter % 1000:
duration = time.time() - start_time
print('%d secs: Processed %d of %d images.' %
(math.ceil(duration), counter, len(patch_paths)))
sys.stdout.flush()
start_time = time.time()
writer.close()
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(patch_paths)))
sys.stdout.flush()
def _find_patches(data_dir):
"""Build a list of all images files and labels in the data set.
Args:
data_dir: string, path to the root directory of images.
"""
print('Determining list of file paths and names from %s.' % data_dir)
file_names = []
file_paths = []
# Construct the list of PNG file paths and names.
png_file_path = '%s/*' % data_dir
matching_files = tf.gfile.Glob(png_file_path)
file_names.extend(os.listdir(data_dir))
file_paths.extend(matching_files)
file_paths = sorted(file_paths)
file_names = sorted(file_names)
assert len(file_paths) == len(file_names)
print('Found %d PNG files' % len(file_names))
return file_paths, file_names
def _process_dataset(name, directory, wsi_filename):
"""Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
"""
patch_paths, patch_names = _find_patches(directory)
_process_patches(name, patch_paths, patch_names, wsi_filename)
def main(unused_argv):
# assert not FLAGS.num_shards % FLAGS.num_threads, (
# 'Please make the FLAGS.num_threads commensurate with FLAGS.num_shards')
print('Saving results to %s' % FLAGS.output_directory)
raw_patches_file_names = sorted(os.listdir(utils.HEAT_MAP_RAW_PATCHES_DIR))
print(raw_patches_file_names)
# raw_patches_file_names = raw_patches_file_names[8:9]
for wsi_filename in raw_patches_file_names:
print('processing: %s' % wsi_filename)
output_dir = os.path.join(FLAGS.output_directory, wsi_filename)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
print('tf-records already built for: %s' % wsi_filename)
continue
raw_patches_dir = os.path.join(utils.HEAT_MAP_RAW_PATCHES_DIR, wsi_filename)
assert os.path.exists(raw_patches_dir), 'directory %s does not exist' % raw_patches_dir
_process_dataset('heatmap', raw_patches_dir, wsi_filename)
if __name__ == '__main__':
tf.app.run()