-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_HPnet_imagenet_res_res.py
319 lines (261 loc) · 12.5 KB
/
train_HPnet_imagenet_res_res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
import datasets
import models as models
import matplotlib.pyplot as plt
import torchvision.models as torch_models
from extra_setting import *
import scipy.io as sio
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch Imagenet Training')
parser.add_argument('-d', '--dataset', default='imagenet', help='dataset name')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-c', '--channel', type=int, default=16,
help='first conv channel (default: 16)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('--gpu', default='4,5,6,7', help='index of gpus to use')
parser.add_argument('--epochs', default=1, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 200)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--lr_step', default='1', help='decreasing strategy')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
# select gpus
args.gpu = args.gpu.split(',')
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.gpu)
# data loader
assert callable(datasets.__dict__[args.dataset])
get_dataset = getattr(datasets, args.dataset)
num_classes = datasets._NUM_CLASSES[args.dataset]
train_loader, val_loader = get_dataset(
batch_size=args.batch_size, num_workers=args.workers)
# create model
model_main = torch_models.resnet50(pretrained=True)
model_main = torch.nn.DataParallel(model_main, device_ids=range(len(args.gpu))).cuda()
model_hp = models.__dict__['hp_net_res50']()
model_hp = torch.nn.DataParallel(model_hp, device_ids=range(len(args.gpu))).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
criterion_f = nn.CrossEntropyLoss(reduce=False).cuda()
optimizer_m = torch.optim.SGD(model_main.parameters(), lr=0.0001, momentum=0.9, weight_decay=1e-4)
optimizer_h = torch.optim.Adam(model_hp.parameters(), lr=0.00001, weight_decay=1e-3)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model_main.load_state_dict(checkpoint['state_dict_m'])
model_hp.load_state_dict(checkpoint['state_dict_h'])
optimizer_m.load_state_dict(checkpoint['optimizer_m'])
optimizer_h.load_state_dict(checkpoint['optimizer_h'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
if args.evaluate:
validate(val_loader, model_main, criterion)
return
lr_step = list(map(int, args.lr_step.split(',')))
for epoch in range(args.start_epoch, args.epochs):
if epoch in lr_step:
for param_group in optimizer_m.param_groups:
param_group['lr'] *= 0.1
for param_group in optimizer_h.param_groups:
param_group['lr'] *= 0.1
# train for one epoch
train(train_loader, model_main, model_hp, optimizer_m, optimizer_h, epoch, criterion_f)
# evaluate on validation set
prec1, prec5 = validate(val_loader, model_main, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict_m': model_main.state_dict(),
'state_dict_h': model_hp.state_dict(),
'best_prec1': best_prec1,
'optimizer_m': optimizer_m.state_dict(),
'optimizer_h': optimizer_h.state_dict(),
}, is_best)
save_predicted_hardness(train_loader, val_loader, model_hp)
def train(train_loader, model_main, model_hp, optimizer_m, optimizer_h, epoch, criterion_f):
batch_time = AverageMeter()
data_time = AverageMeter()
losses_m = AverageMeter()
losses_h = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model_main.train()
model_hp.train()
end = time.time()
for i, (input, target, index) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda(async=True)
# compute output
predicted_labels = model_main(input)
predicted_hardness_scores = model_hp(input).squeeze()
predicted_hardness_scores_test = predicted_hardness_scores.clone()
loss_m = criterion_f(predicted_labels, target).squeeze()
loss_m = torch.mean(loss_m * predicted_hardness_scores_test)
# measure accuracy and record loss
prec1, prec5 = accuracy(predicted_labels, target, topk=(1, 5))
losses_m.update(loss_m.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step for main net
optimizer_m.zero_grad()
loss_m.backward(retain_graph=True)
optimizer_m.step()
# compute loss for HPnet
predicted_labels.detach_()
loss_h = opposite_loss(predicted_labels, predicted_hardness_scores, target, criterion_f)
losses_h.update(loss_h.item(), input.size(0))
# compute gradient and do SGD step for HPnet
optimizer_h.zero_grad()
loss_h.backward()
optimizer_h.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
curr_lr_m = optimizer_m.param_groups[0]['lr']
curr_lr_h = optimizer_h.param_groups[0]['lr']
print('Epoch: [{0}/{1}][{2}/{3}]\t'
'LR: [{4}][{5}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss_m {loss_m.val:.4f} ({loss_m.avg:.4f})\t'
'Loss_h {loss_h.val:.4f} ({loss_h.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, args.epochs, i, len(train_loader), curr_lr_m, curr_lr_h,
batch_time=batch_time, data_time=data_time, loss_m=losses_m, loss_h=losses_h, top1=top1, top5=top5))
def validate(val_loader, model_main, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model_main.eval()
end = time.time()
for i, (input, target, index) in enumerate(val_loader):
input = input.cuda()
target = target.cuda(async=True)
# compute output
output = model_main(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
return top1.avg, top5.avg
def save_checkpoint(state, is_best, filename='./imagenet/checkpoint_res_res4.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, './imagenet/model_best_res_res4.pth.tar')
def save_predicted_hardness(train_loader, val_loader, model_hp):
model_hp.eval()
hardness_scores_tr = []
hardness_scores_idx_tr = []
for i, (input, target, index) in enumerate(train_loader):
input_var = torch.autograd.Variable(input, volatile=True)
predicted_hardness_scores = model_hp(input_var).squeeze()
scores = predicted_hardness_scores.data.cpu().numpy()
hardness_scores_tr = np.concatenate((hardness_scores_tr, scores), axis=0)
index = index.numpy()
hardness_scores_idx_tr = np.concatenate((hardness_scores_idx_tr, index), axis=0)
sio.savemat('./imagenet/hardness_scores_res_res_tr4.mat', {'hardness_scores_tr': hardness_scores_tr})
sio.savemat('./imagenet/hardness_scores_idx_res_res_tr4.mat', {'hardness_scores_idx_tr': hardness_scores_idx_tr})
hardness_scores_val = []
hardness_scores_idx_val = []
for i, (input, target, index) in enumerate(val_loader):
input_var = torch.autograd.Variable(input, volatile=True)
predicted_hardness_scores = model_hp(input_var).squeeze()
scores = predicted_hardness_scores.data.cpu().numpy()
hardness_scores_val = np.concatenate((hardness_scores_val, scores), axis=0)
index = index.numpy()
hardness_scores_idx_val = np.concatenate((hardness_scores_idx_val, index), axis=0)
sio.savemat('./imagenet/hardness_scores_res_res_val4.mat', {'hardness_scores_val': hardness_scores_val})
sio.savemat('./imagenet/hardness_scores_idx_res_res_val4.mat', {'hardness_scores_idx_val': hardness_scores_idx_val})
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()