From 8622b96de39f06d4f01b713319f7cada4665418e Mon Sep 17 00:00:00 2001 From: Patricio Cubillos Date: Tue, 11 Nov 2014 11:38:23 -0700 Subject: [PATCH] Update README.md Added Documentation link to the README file. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index f19e179..355bbf4 100644 --- a/README.md +++ b/README.md @@ -22,6 +22,8 @@ MC3 provides a set of routines to sample the posterior probability distributions for the model-fitting parameters. To do so it uses Bayesian Inference through a Markov-chain Monte Carlo algorithm following, either, Differential-Evolution (recomended) or Metropolis Random Walk. It handles Bayesian priors, Gelman-Rubin convergence test, or shared parameters (pj=pi) over the MCMC iterations. You can run MC3 interactively through the python interpreter or from the terminal command line. +Get the extended MC3 documentation [here](doc/MC3_documentation.pdf). + **Modules summary** (project's [source](src/) code): * mcmc.py > Core module that implements the MCMC algorithm.