title | summary | category |
---|---|---|
TiSpark Quick Start Guide |
Learn how to use TiSpark quickly. |
User Guide |
To make it easy to try TiSpark, the TiDB cluster installed using TiDB-Ansible integrates Spark, TiSpark jar package and TiSpark sample data by default.
-
Spark is deployed by default in the
spark
folder in the TiDB instance deployment directory. -
The TiSpark jar package is deployed by default in the
jars
folder in the Spark deployment directory.spark/jars/tispark-SNAPSHOT-jar-with-dependencies.jar
-
TiSpark sample data and import scripts are deployed by default in the TiDB-Ansible directory.
tidb-ansible/resources/bin/tispark-sample-data
Download the latest version of JDK 1.8 from Oracle JDK official download page. The version used in the following example is jdk-8u141-linux-x64.tar.gz
.
Extract the package and set the environment variables based on your JDK deployment directory.
Edit the ~/.bashrc
file. For example:
export JAVA_HOME=/home/pingcap/jdk1.8.0_144
export PATH=$JAVA_HOME/bin:$PATH
Verify the validity of JDK:
$ java -version
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
Assume that the TiDB cluster is started. The service IP of one TiDB instance is 192.168.0.2
, the port is 4000
, the user name is root
, and the password is null.
cd tidb-ansible/resources/bin/tispark-sample-data
Edit the TiDB login information in sample_data.sh
. For example:
mysql -h 192.168.0.2 -P 4000 -u root < dss.ddl
Run the script:
./sample_data.sh
Note: You need to install the MySQL client on the machine that runs the script. If you are a CentOS user, you can install it through the command
yum -y install mysql
.
Log into TiDB and verify that the TPCH_001
database and the following tables are included.
$ mysql -uroot -P4000 -h192.168.0.2
MySQL [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| INFORMATION_SCHEMA |
| PERFORMANCE_SCHEMA |
| TPCH_001 |
| mysql |
| test |
+--------------------+
5 rows in set (0.00 sec)
MySQL [(none)]> use TPCH_001
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
MySQL [TPCH_001]> show tables;
+--------------------+
| Tables_in_TPCH_001 |
+--------------------+
| CUSTOMER |
| LINEITEM |
| NATION |
| ORDERS |
| PART |
| PARTSUPP |
| REGION |
| SUPPLIER |
+--------------------+
8 rows in set (0.00 sec)
First start the spark-shell in the spark deployment directory:
$ cd spark
$ bin/spark-shell
import org.apache.spark.sql.TiContext
val ti = new TiContext(spark)
// Mapping all TiDB tables from `TPCH_001` database as Spark SQL tables
ti.tidbMapDatabase("TPCH_001")
Then you can call Spark SQL directly:
scala> spark.sql("select count(*) from lineitem").show
The result is:
+--------+
|count(1)|
+--------+
| 60175|
+--------+
Now run a more complex Spark SQL:
scala> spark.sql(
"""select
| l_returnflag,
| l_linestatus,
| sum(l_quantity) as sum_qty,
| sum(l_extendedprice) as sum_base_price,
| sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
| sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
| avg(l_quantity) as avg_qty,
| avg(l_extendedprice) as avg_price,
| avg(l_discount) as avg_disc,
| count(*) as count_order
|from
| lineitem
|where
| l_shipdate <= date '1998-12-01' - interval '90' day
|group by
| l_returnflag,
| l_linestatus
|order by
| l_returnflag,
| l_linestatus
""".stripMargin).show
The result is:
+------------+------------+---------+--------------+--------------+
|l_returnflag|l_linestatus| sum_qty|sum_base_price|sum_disc_price|
+------------+------------+---------+--------------+--------------+
| A| F|380456.00| 532348211.65|505822441.4861|
| N| F| 8971.00| 12384801.37| 11798257.2080|
| N| O|742802.00| 1041502841.45|989737518.6346|
| R| F|381449.00| 534594445.35|507996454.4067|
+------------+------------+---------+--------------+--------------+
(Continued)
-----------------+---------+------------+--------+-----------+
sum_charge| avg_qty| avg_price|avg_disc|count_order|
-----------------+---------+------------+--------+-----------+
526165934.000839|25.575155|35785.709307|0.050081| 14876|
12282485.056933|25.778736|35588.509684|0.047759| 348|
1029418531.523350|25.454988|35691.129209|0.049931| 29181|
528524219.358903|25.597168|35874.006533|0.049828| 14902|
-----------------+---------+------------+--------+-----------+
See more examples.