-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathneural_conversation_model.py
323 lines (277 loc) · 13.7 KB
/
neural_conversation_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""Most of the code comes from seq2seq tutorial. Binary for training conversation models and decoding from them.
Running this program without --decode will tokenize it in a very basic way,
and then start training a model saving checkpoints to --train_dir.
Running with --decode starts an interactive loop so you can see how
the current checkpoint performs
See the following papers for more information on neural translation models.
* http://arxiv.org/abs/1409.3215
* http://arxiv.org/abs/1409.0473
* http://arxiv.org/abs/1412.2007
"""
import math
import os
import random
import sys
import time
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from data_utils import *
from seq2seq_model import *
import codecs
tf.app.flags.DEFINE_float("learning_rate", 0.5, "Learning rate.")
tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.99,
"Learning rate decays by this much.")
tf.app.flags.DEFINE_float("max_gradient_norm", 5.0,
"Clip gradients to this norm.")
tf.app.flags.DEFINE_integer("batch_size", 64,
"Batch size to use during training.")
tf.app.flags.DEFINE_integer("size", 512, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("en_vocab_size", 40000, "English vocabulary size.")
tf.app.flags.DEFINE_string("train_dir", "./tmp/", "Training directory.")
tf.app.flags.DEFINE_string("vocab_path", "./tmp/", "Data directory")
tf.app.flags.DEFINE_string("data_path", "./tmp/", "Training directory.")
tf.app.flags.DEFINE_string("dev_data", "./tmp/", "Data directory")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 400,
"How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_integer("beam_size", 100,
"How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_boolean("beam_search", False,
"Set to True for beam_search.")
tf.app.flags.DEFINE_boolean("decode", False,
"Set to True for interactive decoding.")
tf.app.flags.DEFINE_boolean("attention", False,
"Set to True for interactive decoding.")
tf.app.flags.DEFINE_boolean("self_test", False,
"Run a self-test if this is set to True.")
FLAGS = tf.app.flags.FLAGS
# We use a number of buckets and pad to the closest one for efficiency.
# See seq2seq_model.Seq2SeqModel for details of how they work.
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
def read_chat_data(data_path,vocabulary_path, max_size=None):
counter = 0
vocab, _ = initialize_vocabulary(vocabulary_path)
print len(vocab)
print max_size
data_set = [[] for _ in _buckets]
with codecs.open(data_path, "rb") as fi:
for line in fi.readlines():
counter += 1
if max_size!=0 and counter > max_size:
break
if counter % 10000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
entities = line.lower().split("\t")
# print entities
if len(entities) == 2:
source = entities[0]
target = entities[1]
source_ids = [int(x) for x in sentence_to_token_ids(source,vocab)]
target_ids = [int(x) for x in sentence_to_token_ids(target,vocab)]
target_ids.append(EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(_buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
return data_set
def create_model(session, forward_only, beam_search, beam_size = 10, attention = True):
"""Create translation model and initialize or load parameters in session."""
model = Seq2SeqModel(
FLAGS.en_vocab_size, FLAGS.en_vocab_size, _buckets,
FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor,
forward_only=forward_only, beam_search=beam_search, beam_size=beam_size, attention=attention)
print FLAGS.train_dir
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
# ckpt.model_checkpoint_path ="./big_models/chat_bot.ckpt-183600"
# print ckpt.model_checkpoint_path
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def create_models(path, en_vocab_size, session, forward_only, beam_search, beam_size = 10, attention = True):
"""Create translation model and initialize or load parameters in session."""
model = Seq2SeqModel(
en_vocab_size, en_vocab_size, _buckets,
FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor,
forward_only=forward_only, beam_search=beam_search, beam_size=beam_size, attention=attention)
print FLAGS.train_dir
ckpt = tf.train.get_checkpoint_state(path)
# ckpt.model_checkpoint_path ="./big_models/chat_bot.ckpt-183600"
# print ckpt.model_checkpoint_path
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def train():
data_path =FLAGS.data_path
dev_data = FLAGS.dev_data
vocab_path =FLAGS.vocab_path
# Beam search is false during training operation and usedat inference .
beam_search = False
beam_size =10
attention = FLAGS.attention
normalize_digits=True
create_vocabulary(vocab_path, data_path, FLAGS.en_vocab_size )
with tf.Session() as sess:
# Create model.
print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size))
model = create_model(sess, False,beam_search=beam_search, beam_size=beam_size, attention=attention)
# Read data into buckets and compute their sizes.
print ("Reading development and training data (limit: %d)."
% FLAGS.max_train_data_size)
train_set =read_chat_data(data_path,vocab_path, FLAGS.max_train_data_size)
dev_set =read_chat_data(dev_data,vocab_path, FLAGS.max_train_data_size)
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]
train_total_size = float(sum(train_bucket_sizes))
# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
# the size if i-th training bucket, as used later.
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))]
# This is the training loop.
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
while True:
# Choose a bucket according to data distribution. We pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
# print "Started"
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
# Get a batch and make a step.
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
train_set, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, False, beam_search)
step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint
loss += step_loss / FLAGS.steps_per_checkpoint
current_step += 1
# Once in a while, we save checkpoint, print statistics, and run evals.
if current_step % FLAGS.steps_per_checkpoint == 0:
# Print statistics for the previous epoch.
print "Running epochs"
perplexity = math.exp(loss) if loss < 300 else float('inf')
print ("global step %d learning rate %.4f step-time %.2f perplexity "
"%.2f" % (model.global_step.eval(), model.learning_rate.eval(),
step_time, perplexity))
# # Decrease learning rate if no improvement was seen over last 3 times.
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
# # Save checkpoint and zero timer and loss.
checkpoint_path = os.path.join(FLAGS.train_dir, "chat_bot.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
# # Run evals on development set and print their perplexity.
for bucket_id in xrange(len(_buckets)):
if len(dev_set[bucket_id]) == 0:
print(" eval: empty bucket %d" % (bucket_id))
continue
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
dev_set, bucket_id)
_, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True, beam_search)
eval_ppx = math.exp(eval_loss) if eval_loss < 300 else float('inf')
print(" eval: bucket %d perplexity %.2f" % (bucket_id, eval_ppx))
sys.stdout.flush()
def decode():
with tf.Session() as sess:
# Create model and load parameters.
beam_size = FLAGS.beam_size
beam_search = FLAGS.beam_search
attention = FLAGS.attention
model = create_model(sess, True, beam_search=beam_search, beam_size=beam_size, attention=attention)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
vocab_path = FLAGS.vocab_path
vocab, rev_vocab = initialize_vocabulary(vocab_path)
# Decode from standard input.
if beam_search:
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = sentence_to_token_ids(tf.compat.as_bytes(sentence), vocab)
# Which bucket does it belong to?
bucket_id = min([b for b in xrange(len(_buckets))
if _buckets[b][0] > len(token_ids)])
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
# print bucket_id
path, symbol , output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True,beam_search )
k = output_logits[0]
paths = []
for kk in range(beam_size):
paths.append([])
curr = range(beam_size)
num_steps = len(path)
for i in range(num_steps-1, -1, -1):
for kk in range(beam_size):
paths[kk].append(symbol[i][curr[kk]])
curr[kk] = path[i][curr[kk]]
recos = set()
print "Replies --------------------------------------->"
for kk in range(beam_size):
foutputs = [int(logit) for logit in paths[kk][::-1]]
# If there is an EOS symbol in outputs, cut them at that point.
if EOS_ID in foutputs:
# # print outputs
foutputs = foutputs[:foutputs.index(EOS_ID)]
rec = " ".join([tf.compat.as_str(rev_vocab[output]) for output in foutputs])
if rec not in recos:
recos.add(rec)
print rec
print("> ", "")
sys.stdout.flush()
sentence = sys.stdin.readline()
else:
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = sentence_to_token_ids(tf.compat.as_bytes(sentence), vocab)
# Which bucket does it belong to?
bucket_id = min([b for b in xrange(len(_buckets))
if _buckets[b][0] > len(token_ids)])
# for loc in locs:
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [],)]}, bucket_id)
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True,beam_search)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if EOS_ID in outputs:
# print outputs
outputs = outputs[:outputs.index(EOS_ID)]
print(" ".join([tf.compat.as_str(rev_vocab[output]) for output in outputs]))
print("> ", "")
sys.stdout.flush()
sentence = sys.stdin.readline()
def main(_):
if FLAGS.decode:
decode()
else:
train()
if __name__ == "__main__":
tf.app.run()