forked from aalto-speech/speaker-diarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspk-clustering.py
executable file
·442 lines (404 loc) · 17.3 KB
/
spk-clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#!/usr/bin/env python2
import argparse
import sys
import re
import os.path as op
import numpy as np
from scipy.linalg import det
from scipy.linalg import pinv
def parse_recipe(rfile):
"""Parses input recipe, checks for LNA's"""
r = []
audio_file = re.compile('audio=(\S+)')
lna_name = re.compile('lna=(\S+)')
start_time = re.compile('start-time=(\d+.\d+)')
end_time = re.compile('end-time=(\d+.\d+)')
for line in rfile:
try:
audio = audio_file.search(line).groups()[0]
lna = lna_name.search(line).groups()[0]
start = float(start_time.search(line).groups()[0])
end = float(end_time.search(line).groups()[0])
r.append((audio, lna, start, end))
except AttributeError:
print 'Recipe line without recognizable data:'
print line
return r
def load_features(recipeLine, fpath, ext):
"""Load features from file"""
ffile_name = fpath
ffile_name += op.splitext(op.basename(recipeLine[0]))[0]
ffile_name += ext
#print 'Loading features from:', ffile_name
with open(ffile_name, 'rb') as ffile:
dim = int(np.fromfile(ffile, dtype=np.int32, count=1))
features = np.fromfile(ffile, dtype=np.float32)
#print 'Total features read:', features.size
features = features.reshape((features.size / dim), dim)
#print 'Final shape:', features.shape
return dim, features
def get_spk_features(spk, features):
arr = features[int(spk[0][0]):int(spk[0][1])]
for s in spk[1:]:
# TODO: This copies, should be much faster and less memory consuming
# with views of the features, same everywhere else
arr = np.concatenate((arr, features[int(s[0]):int(s[1])]))
return arr
def write_recipe_line(recline, start, end, lna_start, speaker, outf, segf=None):
"""Write output recipes"""
global lna_letter, lna_count
lna = recline[1]
if not args.dlr:
if lna[:lna.find('_')] == lna_letter:
lna_count += 1
else:
lna_count = 1
lna_letter = lna[:lna.find('_')]
lna = lna[:lna.find('_') + 1] + str(lna_count)
outf.write('audio=' + recline[0] +
' lna=' + lna +
' start-time=' + str(start / rate + lna_start) +
' end-time=' + str(end / rate + lna_start) +
' speaker=speaker_' + str(speaker) + '\n')
if segpath != '' and segf is not None:
alignment = ' alignment=' + segpath + lna + '.seg'
segf.write('audio=' + recline[0] +
alignment +
' lna=' + lna +
' start-time=' + str(start / rate + lna_start) +
' end-time=' + str(end / rate + lna_start) +
' speaker=speaker_' + str(speaker) + '\n')
def bic(arr1, arr2):
"""Bayes Information Criterion."""
# Notes: In the seminal paper "Speakers, environment and channel
# change detection and clustering via the Bayesian Information
# Criterion" by Chen and Gopalakrishnan, they use a growing window
# approach, so it's not directly comparable when using a fixed
# sliding window.
arr = np.concatenate((arr1, arr2))
N1 = arr1.shape[0]
N2 = arr2.shape[0]
S1 = np.cov(arr1, rowvar=0)
S2 = np.cov(arr2, rowvar=0)
N = arr.shape[0]
S = np.cov(arr, rowvar=0)
d = 0.5 * N * np.log(det(S)) - 0.5 * N1 * np.log(det(S1))\
- 0.5 * N2 * np.log(det(S2))
p = arr.shape[1]
corr = args.lambdac * 0.5 * (p + 0.5 * p * (p + 1)) * np.log(N)
d -= corr
return d
def glr(arr1, arr2):
"""Generalized Likelihood Ratio"""
N1 = arr1.shape[0]
N2 = arr2.shape[0]
S1 = np.cov(arr1, rowvar=0)
S2 = np.cov(arr2, rowvar=0)
N = float(N1 + N2)
# This is COV only version, not optimized (revise) but more robust
# to environment noise conditions.
# See Ulpu thesis pages 30-31, also Gish et al. "Segregation of
# Speakers for Speech Recognition and Speaker Identification"
d = -(N / 2.0) * ((N1 / N) * np.log(det(S1)) + (N2 / N) * np.log(det(S2))
- np.log(det((N1 / N) * S1 + (N2 / N) * S2)))
# Ulpu version:
# Includes the mean, theoretically less robust
# arr = features[start:start+2*winsize]
# S = cov(arr, rowvar=0)
# d = -0.5*(N1*log(det(S1))+N2*log(det(S2))-N*log(det(S)))
return d
def kl2(arr1, arr2):
"""Simmetric Kullback-Leibler distance"""
S1 = np.cov(arr1, rowvar=0)
S2 = np.cov(arr2, rowvar=0)
m1 = np.mean(arr1, 0)
m2 = np.mean(arr2, 0)
delta = m1 - m2
d = 0.5 * np.trace((S1 - S2) * (pinv(S2) - pinv(S1))) +\
0.5 * np.trace((pinv(S1) + pinv(S2)) * delta * delta.T)
return d
def spk_cluster_in(features, recline, speakers, outf, dist=bic, segf=None):
"""Clusters same speaker turns"""
global total_segments
global max_dist, min_dist, max_det_dist, min_det_dist
start = int(recline[2] * rate)
end = int(recline[3] * rate)
arr2 = features[start:end]
mind = sys.maxint
spk = 0
while spk < len(speakers):
arr1 = get_spk_features(speakers[spk], features)
# print start, end, speakers[spk], arr1.shape, arr2.shape
d = dist(arr1, arr2)
if args.tt:
print 'Time:', end, '- Distance:', d, '- Speaker:', spk + 1
# Ignore infinite distances (non-speech?) and record stats
if d != np.inf and d != -np.inf:
if d > max_dist:
max_dist = d
if d < min_dist:
min_dist = d
if d < mind:
mind = d
best_candidate = spk
spk += 1
if mind <= threshold:
# Negative, same speaker!!
# Stats should be of total detected speakers
if d > max_det_dist:
max_det_dist = d
if d < min_det_dist:
min_det_dist = d
speakers[best_candidate].append((start, end))
# best_candidate + 1 because we want speakers_ >= 1 in the output
write_recipe_line(recline, start, end, 0, best_candidate + 1,
outf, segf)
else: # Positive, new speaker!
speakers.append([(start, end)])
write_recipe_line(recline, start, end, 0, len(speakers),
outf, segf)
def spk_cluster_hi(features, recipe, speakers, outf, dist=bic, segf=None):
"""Clusters same speaker turns"""
global total_segments
global max_dist, min_dist, max_det_dist, min_det_dist
sp = len(speakers)
# distances = np.empty((sp, sp), dtype=int)
distances = np.empty((sp, sp))
np.fill_diagonal(distances, sys.maxint)
mind = sys.maxint
# Get all initial distances
for s1 in xrange(sp):
for s2 in xrange(s1 + 1, sp):
arr1 = get_spk_features(speakers[s1], features)
arr2 = get_spk_features(speakers[s2], features)
d = dist(arr1, arr2)
distances[s1][s2] = d
distances[s2][s1] = d
# Ignore infinite distances (non-speech?) and record stats
if d != np.inf and d != -np.inf:
if d > max_dist:
max_dist = d
if d < min_dist:
min_dist = d
while True:
# Get min d
mind = distances.min()
index = distances.argmin()
best_candidates = (index / len(speakers), index % len(speakers))
best_candidates = (min(best_candidates), max(best_candidates))
if mind <= threshold or (args.max_spk > 0
and len(speakers) > args.max_spk):
# Negative, fuse speakers!!
if mind > max_det_dist:
max_det_dist = mind
if mind < min_det_dist:
min_det_dist = mind
print 'Merging:', best_candidates[0] + 1, 'and',\
best_candidates[1] + 1, 'distance:', mind
speakers[best_candidates[0]].extend(speakers[best_candidates[1]])
speakers.pop(best_candidates[1])
# Recalculating new speaker distances vs rest
s1 = best_candidates[0]
s1b = best_candidates[1]
# s1b is "out"
distances = np.delete(distances, s1b, 0)
distances = np.delete(distances, s1b, 1)
for s2 in xrange(len(speakers)):
if s2 == s1:
continue
arr1 = get_spk_features(speakers[s1], features)
arr2 = get_spk_features(speakers[s2], features)
d = dist(arr1, arr2)
distances[s1][s2] = d
distances[s2][s1] = d
# Ignore infinite distances (non-speech?) and record stats
if d != np.inf and d != -np.inf:
if d > max_dist:
max_dist = d
if d < min_dist:
min_dist = d
else:
# Convergence
break
# All done, time to write the output recipe
print 'Final speakers:', len(speakers)
while True:
# TODO: Sloooowww
candidate = None
for s in xrange(len(speakers)):
if candidate is None and speakers[s] != []:
candidate = (s, min(speakers[s]))
elif speakers[s] != []:
candidate2 = min(speakers[s])
if candidate2 < candidate[1]:
candidate = (s, candidate2)
if candidate is None:
# No more to write
break
else:
speakers[candidate[0]].remove(candidate[1])
write_recipe_line(recipe[candidate[1][2]], candidate[1][0],
candidate[1][1], 0, candidate[0] + 1, outf,
segf)
def process_recipe(recipe, speakers, outf, segf=None):
"""Process recipe, outputs a new recipe"""
this_wav = ''
l = 0
while l < len(recipe):
if recipe[l][0] != this_wav:
this_wav = recipe[l][0]
feas = load_features(recipe[l], feapath, feaext)
# Should I empty detected speakers here for a new wav? Maybe not,
# if batch processing in the same recipe the wavs should be
# related
if speakers == [] and args.method == 'in':
speakers.append([(recipe[l][2] * rate, recipe[l][3] * rate)])
write_recipe_line(recipe[l], recipe[l][2] * rate,
recipe[l][3] * rate, 0, len(speakers),
outf, segf)
elif args.method == 'hi':
# Populate for initial clustering
speakers.append([(recipe[l][2] * rate, recipe[l][3] * rate, l)])
else:
# args.method == 'in', after first speaker initialization
spk_cluster_m(feas[1], recipe[l], speakers, outf,
dist, segf)
l += 1
if args.method == 'hi':
# Initial clustering done, ready to start
# TODO: Multiple wavs on same recipe fails
print 'Initial cluster with:', len(speakers), 'speakers'
spk_cluster_m(feas[1], recipe, speakers, outf,
dist, segf)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Perform speaker clustering,\
using a distance measure.')
parser.add_argument('recfile', type=str,
help='Specifies the input recipe file')
parser.add_argument('feapath', type=str,
help='Specifies the features files path')
parser.add_argument('-seg', dest='segpath', type=str, default='',
help='Specifies the alignment segmentation files path\
and generates "alignment=" information, default empty\
(not generate)')
parser.add_argument('-o', dest='outfile', type=str, default=sys.stdout,
help='Specifies an output file, default stdout. If\
specified with the "-seg" option, a second output file\
will be created with "-seg" appended to the name\
before the extension')
parser.add_argument('-fe', dest='feaext', type=str, default='.fea',
help='Specifies feature file extension, default ".fea"')
parser.add_argument('-se', dest='segext', type=str, default='.seg',
help='Specifies segmentation files extension, default ".seg"')
parser.add_argument('-f', dest='frame_rate', type=int, default=125,
help='Specifies the frame rate, default 125')
parser.add_argument('-m', dest='method', type=str,
choices=['in', 'hi'], default='hi',
help='Specifies the clustering method, hierarchical\
agglomerative or in-order consecutive clustering.\
Default hierarchical (slower but more accurate).')
parser.add_argument('-d', dest='distance', type=str,
choices=['GLR', 'BIC', 'KL2'], default='BIC',
help='Sets the distance measure to use, defaults to\
Bayesian Information Criterion (BIC). Generalized\
Likelihood Ration (GLR) or symmetric Kullback-Leibler\
(KL2) are other possibilities.')
parser.add_argument('-t', dest='threshold', type=float, default=0.0,
help='Specifies threshold distance for detection,\
default 0.0 (nonsensical handpicked, tune it except\
for BIC).')
parser.add_argument('-ms', dest='max_spk', type=int, default=0,
help='Specifies the maximum speakers stopping criteria\
for hierarchical clustering, default 0 (use only the\
threshold as stopping criteria')
parser.add_argument('-l', dest='lambdac', type=float, default=1.3,
help='Lambda penalty weight for BIC, default 1.3')
parser.add_argument('-tt', action='store_true',
help='If set, outputs all the decision thresholds in\
every clustering attempt, useful to define a proper\
threshold.')
parser.add_argument('-dlr', action='store_true',
help='If set, disables lna renaming, so it keeps the lna\
original names (if there are two speakers in the same\
lna, start and end line should be used for adaptation).\
By default it renames so that all segments have a\
a different rna name.')
args = parser.parse_args()
# Process arguments
print 'Reading recipe from:', args.recfile
with open(args.recfile, 'r') as recfile:
parsed_recipe = parse_recipe(recfile)
print 'Reading feature files from:', args.feapath
feapath = args.feapath
if feapath[-1] != '/':
feapath += '/'
if args.segpath != '':
print 'Setting alignment segmentation files path to:', args.segpath
if args.segpath[-1] != '/':
args.segpath += '/'
print 'Segmentation files extension:', args.segext
segpath = args.segpath
segext = args.segext
print 'Feature files extension:', args.feaext
feaext = args.feaext
if args.outfile != sys.stdout:
outfile = args.outfile
print 'Writing output to:', args.outfile
if segpath != '':
segfile = op.splitext(outfile)[0]
segfile += '-seg' + op.splitext(outfile)[1]
print 'Writing seg output to:', segfile
else:
segfile = False
else:
outfile = sys.stdout
print 'Writing output to: stdout'
rate = float(args.frame_rate)
print 'Conversion rate set to frame rate:', rate
if args.method == 'hi':
print 'Using hierarchical clustering'
spk_cluster_m = spk_cluster_hi
elif args.method == 'in':
print 'Using in-order consecutive clustering'
spk_cluster_m = spk_cluster_in
if args.distance == 'GLR':
print 'Using GLR as distance measure'
dist = glr
elif args.distance == 'BIC':
print 'Using BIC as distance measure, lambda =', args.lambdac
dist = bic
elif args.distance == 'KL2':
print 'Using KL2 as distance measure'
dist = kl2
print 'Threshold distance:', args.threshold
threshold = args.threshold
print 'Maximum speakers:', args.max_spk
lna_letter = 'a'
lna_count = 0
if args.dlr:
print 'Disabling LNA renaming'
# End of argument processing
# Some useful metrics
max_dist = 0
min_dist = sys.maxint
max_det_dist = 0
min_det_dist = sys.maxint
# Detected speakers
speakers = []
# Do the real work
if outfile != sys.stdout:
with open(outfile, 'w') as outf:
if segfile:
with open(segfile, 'w') as segf:
process_recipe(parsed_recipe, speakers, outf, segf)
else:
process_recipe(parsed_recipe, speakers, outf)
else:
process_recipe(parsed_recipe, speakers, outfile)
print 'Useful metrics for determining the right threshold:'
print '---------------------------------------------------'
print 'Maximum between segments distance:', max_dist
if min_dist < sys.maxint:
print 'Minimum between segments distance:', min_dist
print 'Total segments:', len(parsed_recipe)
print 'Total detected speakers:', len(speakers)