forked from NVIDIA/nvbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstream.cu
60 lines (53 loc) · 2.23 KB
/
stream.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*
* Copyright 2022 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 with the LLVM exception
* (the "License"); you may not use this file except in compliance with
* the License.
*
* You may obtain a copy of the License at
*
* http://llvm.org/foundation/relicensing/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvbench/nvbench.cuh>
// Grab some testing kernels from NVBench:
#include <nvbench/test_kernels.cuh>
// Thrust vectors simplify memory management:
#include <thrust/device_vector.h>
// A function to benchmark but does not expose an explicit stream argument.
void copy(int32_t *input, int32_t *output, std::size_t const num_values)
{
nvbench::copy_kernel<<<256, 256>>>(input, output, num_values);
}
// `stream_bench` copies a 64 MiB buffer of int32_t on a CUDA stream specified
// by the user.
//
// By default, NVBench creates and provides an explicit stream via
// `launch::get_stream()` to pass to every stream-ordered operation. Sometimes
// it is inconvenient or impossible to specify an explicit CUDA stream to every
// stream-ordered operation. In this case, users may specify a target stream via
// `state::set_cuda_stream`. It is assumed that all work of interest executes on
// or synchronizes with this stream.
void stream_bench(nvbench::state &state)
{
// Allocate input data:
const std::size_t num_values = 64 * 1024 * 1024 / sizeof(nvbench::int32_t);
thrust::device_vector<nvbench::int32_t> input(num_values);
thrust::device_vector<nvbench::int32_t> output(num_values);
// Set CUDA default stream as the target stream. Note the default stream
// is non-owning.
cudaStream_t default_stream = 0;
state.set_cuda_stream(nvbench::make_cuda_stream_view(default_stream));
state.exec([&input, &output, num_values](nvbench::launch &) {
copy(thrust::raw_pointer_cast(input.data()),
thrust::raw_pointer_cast(output.data()),
num_values);
});
}
NVBENCH_BENCH(stream_bench);